
Variables and variable naming in introductory
programming education
Werf, V. van der

Citation
Werf, V. van der. (2025, September 2). Variables and variable naming in
introductory programming education. Retrieved from
https://hdl.handle.net/1887/4259393
 
Version: Publisher's Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/4259393
 
Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/4259393


58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf
Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025 PDF page: 41PDF page: 41PDF page: 41PDF page: 41

Chapter 3
Teachers’ Beliefs and Practices on the
Naming of Variables in Introductory

Python Programming Courses
Vivian van der Werf
Alaaeddin Swidan
Felienne Hermans
Marcus Specht

Efthimia Aivaloglou



58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf
Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025 PDF page: 42PDF page: 42PDF page: 42PDF page: 42

Abstract
Variable naming practices are part of the software developer’s profession, influencing program
comprehension and code quality. Yet, little is known about how variable naming practices are
taught in beginner courses. This chapter investigates naming beliefs, self-reported teaching
practices, and observations regarding variable naming practices of teachers of introductory
Python programming courses. We adopted an in-depth qualitative approach by interviewing
ten teachers from secondary education and higher education and developed several themes
in order to answer our research questions. Among various opinions and practices, we found
that teachers agree on using meaningful names, but have conflicting beliefs about what is
meaningful. Moreover, the described teaching practices do not alwaysmatch teacher’s views on
meaningful names, and teachers rarely encourage students to use them. Instead, they express
that naming practices should not be enforced and that students will develop them by example.
Whereas some teachers report focusing solely on conventions, others deliberately dedicate time
for students to engage with naming, create their own guidelines, provide continuous feedback,
or include naming exercises on exams. Naming practices do not seem to be deliberately taught,
even though they influence program understanding and code quality. We also identified
inconsistencies in teachers’ self-reported naming practices. As such, we encourage intentional
conversations about naming practices in educational settings, specifically linking naming to
code quality and readability. We see room for group and peer activities as a means to this
end, as well as providing formative feedback dedicated to naming. 1

Keywords
variable naming
programming education
novices
teachers
qualitative interviews
open coding

1Published as: van der Werf, V., A. Swidan, F. Hermans, M. Specht, and E. Aivaloglou (2024). Teachers’
Beliefs and Practices on the Naming of Variables in Introductory Python Programming Courses. In 2024
IEEE/ACM 46th International Conference on Software Engineering: Software Engineering Education and
Training (ICSESEET), ICSE-SEET 2024, page 368–379, New York, NY, USA. Association for Computing
Machinery. doi: 10.1145/3639474.3640069

38



58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf
Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025 PDF page: 43PDF page: 43PDF page: 43PDF page: 43

3

3.1 Introduction
Professional developers spend a significant percentage of their time (58%) on program
comprehension-related tasks [Xia et al., 2018]. One root cause of this is that code is often
writtenwith ‘meaningless’ identifiers or variable names that are unintentionallymisleading
[Feitelson, 2023,Xia et al., 2018]. This causes problems in understanding and shows that
finding a good name might not be straightforward. Accordingly, software engineering
handbooks recommend professional developers to consider naming as a part of high-
quality code, focusing on names’ expressiveness, readability, and consistency [Stegeman
et al., 2014, Börstler et al., 2017]. Evidently, naming plays a big role in understanding
code [Avidan and Feitelson, 2017,Hofmeister et al., 2017,Lawrie et al., 2007b,Lawrie et al.,
2006], which holds especially true for novice programmers [Teasley, 1994].

While some introductory programming courses include learning objectives that relate
to code quality [Stegeman et al., 2014], several works already [Keuning et al., 2019,Börstler
et al., 2017] noted that code quality, and naming in particular, do not seem to get equivalent
attention in Computer Science Education research. Occasional efforts to incorporate
naming include the development of code quality rubrics that involve naming as one
explicit aspect to review or give feedback to students in their assignments [Stegeman
et al., 2014, Stegeman et al., 2016,Glassman et al., 2015]. To the best of our knowledge,
however, there is no research on teachers’ perceptions of and approaches toward teaching
(variable) naming in classrooms. We are interested in variable naming specifically, as
variables are one of the first concepts taught in an introductory course, yet, the concept of
variables is challenging for students to understand [Grover and Basu, 2017]. To this end,
we conducted 10 in-depth interviews with teachers from secondary education, university,
and adult education on the perceptions and practices of teaching the naming of variables.
With these interviews, we aim to answer the following research questions:

RQ1 What are teachers’ beliefs and perceptions about variable naming practices?
We aim to identify how teachers think about names and naming practices in general,
as we believe that these convictions are the background to which teachers adopt
teaching strategies on the subject.

RQ2 How are variable naming practices taught?Here we investigate teachers’ self-
reported approaches regarding naming practices in the classroom. This question
considers explicit (active) and implicit (or passive) teaching approaches, how teach-
ers practice naming themselves, and information on feedback and grading.

RQ3 What do teachers observe in the classroom concerning variable naming?
We are interested in what teachers observe in their students; for example, specific
difficulties among their students and other observations.

3.2 Related work
3.2.1 What is good naming for comprehension?
Software engineering research indicates that programmers rely on names for their under-
standing of code [Avidan and Feitelson, 2017,Hofmeister et al., 2017,Teasley, 1994,Takang
et al., 1996,Lawrie et al., 2007b,Lawrie et al., 2007a,Lawrie et al., 2006], and names often

39



58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf
Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025 PDF page: 44PDF page: 44PDF page: 44PDF page: 44

serve as beacons during code comprehension [Gellenbeck and Cook, 1991]. Therefore,
names can be of “poor" quality when they interfere with the reader’s comprehension. In
general, the following types of names are considered “poor” for code comprehension:
names that are based on their data type (e.g. IntegerArray) or functionwithin an algorithm
(e.g. LoopCount) [Teasley, 1994], arbitrary names (e.g. GWhiz) [Teasley, 1994], and single-
letter names [Lawrie et al., 2007b,Lawrie et al., 2006,Hofmeister et al., 2017]. Moreover,
names can be unintentionally misleading and should therefore be chosen cautiously [Avi-
dan and Feitelson, 2017,Arnaoudova et al., 2016, Fakhoury et al., 2020,Feitelson, 2023].
It was found that these misleading names resulted in more errors, taking more time, or
giving up completely [Avidan and Feitelson, 2017]. Especially general, non-specific names
such as “length” appeared problematic [Feitelson, 2023]. Research also identified multiple
‘linguistic antipatterns’ that misdirect a reader [Arnaoudova et al., 2016]. Common an-
tipatterns that concern misleading names are names that “says one but contains many” or
vice versa, and names that “suggests Boolean but type does not.” Lexical inconsistencies
like these significantly increase cognitive load [Fakhoury et al., 2020].

In contrast, there are also claims and observations on the effect of ‘good’ naming
styles on code comprehension. Firstly, descriptive naming styles are advantageous over
meaningless naming styles, like “Function1” or “FunctionA”, even when documentation
is provided [Blinman and Cockburn, 2005]. Additionally, meaningful abbreviations can
be as effective as full-word names [Lawrie et al., 2006], and well-chosen abbreviations
can in certain situations also be preferable over full words [Lawrie et al., 2007b]. When
comparing letters, abbreviations, and full-word names, the latter still gives the best results
on source code comprehension [Lawrie et al., 2006, Hofmeister et al., 2017], whereas
letters can be meaningful if they convey information that is commonly attributed to that
letter (i.e. “i” for index or “s” for string) [Beniamini et al., 2017]. However, attributions to
specific letters vary over different programming languages [Beniamini et al., 2017], which
of course has implications for learners of different languages.

Generally accepted recommendations on naming styles are that names must be picked
with caution and given careful attention so that they reflect the concept or the role rep-
resented by each variable [Avidan and Feitelson, 2017], and, good naming consists of
“limited, consistent, and regular vocabulary” with limited name lengths, so as not to
overload a programmer’s memory (the longer the name, the harder it is to retain the
information) [Binkley et al., 2009]. Different roles of variables have been classified and
investigated thoroughly in relation to comprehension by Sajaniemi and colleagues [Sa-
janiemi, 2002, Sajaniemi and Kuittinen, 2005, Sajaniemi and Prieto, 2005,Laakso et al.,
2008].

On the subject of intermediate variables to break complex expressions into more
manageable ones, Cates et al. [Cates et al., 2021] found that using an intermediate variable
is generally beneficial for understanding only if the used name also reflects the meaning of
the variables. Concerning camelCase and underscore styles, no difference in accuracy is
found between the two styles [Sharif andMaletic, 2010]. Finally, naming styles are related
to code quality [Stegeman et al., 2014]. For example, poor-quality identifiers (especially
at the method/class level) are associated with lower quality, more bugs, and less readable
source code, and natural language and recognized abbreviations can function as indicators
for source code quality [Butler, 2009,Butler et al., 2010,Butler et al., 2009].

40



58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf
Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025 PDF page: 45PDF page: 45PDF page: 45PDF page: 45

3

3.2.2 How do developers use names?
Naming of all identifiers, including variable names, accounts for over 70% of all characters
in open-source projects and covers about a third of all tokens [Deissenboeck and Pizka,
2006]. Beniamini et al. [Beniamini et al., 2017] showed that single-letter variable names
are common practice, quoting “in C, Java, and Perl they make up 9–20% of the names.”
Gresta et al. [Gresta et al., 2021] investigated Java naming practices in open-source projects
and found that the three most common names are ‘value’, ‘result’, and ‘name’, while
also single-letter names, like ‘i’, ‘e’, ‘s’, and ‘c’, are commonly used. In twenty open-
source systems that use the languages C, C++, C#, and/or Java, Newman et al. [Newman
et al., 2020] looked for the most common grammar patterns in several types of identifier
names and found that names typically have a singular noun-phrase grammar pattern
(i.e. ‘nextArea’ or ‘max_buffer_size’), with the exception of function names or when
representing a Boolean value. More than three-quarters of identifiers containing a Boolean
include a verb, likely to show that a question is answered by a true or false. Moreover,
plural names often refer to a certain collection (of lists, arrays, etc.) or data grouping.
Peruma et al. [Peruma et al., 2018] found that if identifiers are renamed, it is to narrow the
meaning and serve code comprehension. Recently, Feitelson et al. [Feitelson et al., 2022]
found that the probability that two developers choose the same name is very low, although
different names are understood by the majority of developers. They suggest a model to
help developers choose better names; in short, select the concepts that need to be included,
choose words to represent those concepts, and construct the name with these words.

Swidan et al. [Swidan et al., 2017] analyzed projects in a block-based language originally
directed at children (Scratch) to see how variable names are named there. They found that
these names tend to be longer than in other languages, with most names between four and
ten characters of length and only 4% of names being single letters. When single letters are
used, ‘i’, ‘x’, and ‘y’ are the most common, showing both a crossover between languages
and a focus on coordinates; the latter reflecting the focus on games and animations in
Scratch projects. Additionally, Swidan et al. [Swidan et al., 2017] found that over half of
the variable names are single words, with another 30% having a maximum of one space.
This suggests that Scratch developers either use underscores or casing to separate words,
like in most textual languages, or that single words are most naturally chosen by Scratch
developers.

To support using consistent and concise names, a tool was developed striving to follow
certain composition rules [Deissenboeck andPizka, 2006]. Thiswas followedupbyLawrie
et al. [Lawrie et al., 2006], who then confirmed prior conclusions that programmers use a
limited vocabulary [Antoniol et al., 2002,Caprile and Tonella, 1999]. Furthermore, Butler
et al. [Butler et al., 2015] created a library checking naming conventions in Java, also in the
context of using certain typography, abbreviations, and phrases. They found that about
85% of Java projects follow standard conventions. Allamanis et al. [Allamanis et al., 2014]
presented a framework that learns the style of a codebase and suggests revisions to improve
stylistic consistency. They noted that “almost one-quarter of the code reviews examined
contained suggestions about naming,” highlighting again the relevance of proper naming.

41



58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf
Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025 PDF page: 46PDF page: 46PDF page: 46PDF page: 46

3.2.3 Naming in programming education
In comparison to experienced developers, proper naming styles (expressiveness, readability,
and consistency)might be especially relevant for novices learning to program. For example,
bugs are easier to find when words are used [Hofmeister et al., 2017], suggesting that good
names improve code comprehension and debugging. Additionally, when developers use
‘descriptive compound names’ (i.e., “convertedInput” instead of “result”), they change
their reading direction less often to find and correct a semantic bug, which they do 14%
faster than when normal names were used [Schankin et al., 2018]. The effect, however,
was stronger for experienced developers compared to novices, which suggests that novices
do not benefit the same way, perhaps because they have not learned to ‘interpret’ specific
naming customs yet. In fact, novice programmers often fail to name variables correctly
[Gobil et al., 2009] and Scratch students are found to be misled by variables named with a
letter, probably because of prior knowledge from their mathematics education [Grover
and Basu, 2017]. These findings highlight that opening a discussion between teachers
and students about “what is good naming” might be more relevant than just pointing
toward naming conventions created by experts. This notion is strengthened by the work of
Glassman et al. [Glassman et al., 2015], who, in the context of improving online curricula,
developed a tool and a quiz for their MOOC to assess naming in terms of length and
vagueness. As a by-product of their tool they found that feedback on naming practices,
as well as both good and bad examples, was highly valued by students. Also Börstler et
al. [Börstler et al., 2017] found that feedback related to code quality was frequently asked
for by students. This suggests that topics such as readability, including naming, might not
get enough dedicated attention in educational programs.

3.3 Methodology
This study aims to investigate teachers’ beliefs, practices, and classroom observations on
the naming of variables. Similarly to other works in CS education research [Keuning et al.,
2019,Tshukudu et al., 2021], we captured such information by asking teachers directly
through the means of semi-structured interviews.

3.3.1 Recruitment and teacher demographics
We targeted a wide range of teachers, including teachers at secondary school, university
level, and adult education, who currently teach or recently taught one or more Python
introductory courses. Teachers were recruited internationally through the networks of
the authors and through the national network for secondary school informatics teachers.
Teachers were required to speak either English or Dutch during the interview but could
speak a different language in the classroom. Before the interview, teachers gave informed
consent and completed a short questionnaire covering their backgrounds, such as pro-
gramming experience, teaching experience, and other demographics. An overview of the
recruited teachers can be found inTable 3.1. To minimize self-selection bias concerning
naming specifically among volunteering teachers, they were approached with the topic of
variables in general, not on the topic of variable naming.

In total, we conducted 12 interviews, with 7 teachers from 4 different universities, 4
teachers from 4 different secondary schools, and one teacher in professional “on-the-job”

42



58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf
Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025 PDF page: 47PDF page: 47PDF page: 47PDF page: 47

3

Table 3.1: Overview of participants; formatted as: T1Um = [T]teacher [1], [U]niversity
teacher, [m]ale. Teaching experience (programming and all) is counted in years. No. of
students is per class.

ID Education m/f Course target group Age Teaching
exp. prog.

Teaching
exp. all

No. of
students

T1Um university m CS + engineering BSc 25-34 2 2,5 70
T2Um university m CS BSc 45-54 20 20 400
T3Am adult m IT professionals 55-64 1 1 1-to-1
T4Sm secondary m HAVO/VWO, optional 25-34 4 4 50-70
T5Um university m CS + engineering BSc 55-64 16 17 400
T6Um university m CS + engineering BSc 35-44 9 23 400
T7Sm secondary m ICT track, mandatory 25-34 8 8 5-20
T8Sm secondary m VMBO/HAVO, optional 25-34 2 5 25
T10Uf university f CS BSc; CSMSc 25-34 1 1 300
T11Sf secondary f HAVO/VWO, optional <25 1 3 20-30

coaching. Participants worked in The Netherlands, Belgium and Spain. Their mother
tongues were Catalan, Dutch (incl. Flemish), French, Italian, and Turkish. The partici-
pating university teachers taught in English or Dutch, whereas the secondary education
teachers all taught in Dutch. Our participants’ teaching experience ranged from 1-20
years, indicating we recruited both experienced as well as starting teachers. Most teachers
program themselves, with the exception of one secondary school teacher. Eight teachers
also taught other languages besides Python.

3.3.2 Interview process
Weused a semi-structured interview protocol consisting of questions on three topics about
the teaching of variables: (1) general perceptions, (2) teaching practice, and (3) student
difficulties (see Appendix 3.6). To capture a broad view of teachers’ perceptions, practice,
and experiences, each topic contained various neutrally posed open-ended questions that
offered room to dive into detail with follow-up questions. The interview covered both the
concept of variables in general and the naming of variables specifically. Variable naming
was covered in all three topics both as part of specific predefined questions and as follow-up
questions during the interview. Each participant was given an equal opportunity to talk
about naming. When naming did not come up naturally, the topic was introduced via
follow-up questions. However, not every participant spent equal time on the topic: in
cases where the intervieweewas not able to elaborate any further, the interviewermoved on
to other questions. A pilot interview was used to test and inform the interview protocol,
after which it was decided that no further alterations or refinements were needed.

All interviews were conducted online, by the first author, via MS Teams, and recorded
for transcription. The average length of the interviews was 62 minutes, about half of that
time was dedicated to the topic of naming. The interviews were transcribed manually,
in the original language of the interview (Dutch or English), using intelligent verbatim
transcription. Transcripts were checked for discrepancies and made anonymous for sub-
sequent processing. From the 12 interviews we conducted, two were excluded from the
final analysis: one teacher did not teach Python programming despite indicating this

43



58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf
Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025 PDF page: 48PDF page: 48PDF page: 48PDF page: 48

beforehand, and one interview was considered a duplicate as it was with an assistant who
taught alongside a previously interviewed teacher and revealed no new information.

3.3.3 Coding process
Toobtain a broad overviewof variable naming practices in classrooms, we used a qualitative
open-coding approach from a constructivist perspective [Corbin and Strauss, 2008,Kenny
and Fourie, 2015,Charmaz, 2014].2 This means that we prioritized information generated
by the data in an intuitive way, rather than creating a framework or hypotheses based on
literature which then is used for deductive coding. Accordingly, the complete transcripts
were analyzed using an iterative process (“open coding” and “refocused coding”), which
means that all quotes throughout the interview related to variable naming were coded in
a way that best summarizes the quote’s intent and meaning [Corbin and Strauss, 2008,
Kenny and Fourie, 2015,Charmaz, 2014]. This process is known to generate a large set of
individual (in-vivo) codes that can be grouped and merged into themes according to the
research interests. In this case, the first author coded three interviewsfirst andused the open
codes from these interviews to develop a more structured codebook. The initial version of
the codebook consisted of grouped themes that provided information about our research
questions, such as “naming beliefs” (RQ1), “teaching strategies” (RQ2), “grading and
feedback” (RQ2), “own representations” (RQ2), and “student observations” (RQ3). In
iterative rounds, the first author, together with the last author, also identified preliminary
main categories that gave direction into the specific topics that teachers brought up. These
categories distinguished, for example, between various perspectives (i.e., focusing on
meaningful names or letters), teaching strategies (i.e., active or passive), and teachers’ own
identification of their representation of naming (i.e., using letters or full words).

Using the developed categories as a guideline, the coder then (re)coded all 10 interviews,
stillmaintaining a semi-open coding approach upuntil saturationwas reached. Thismeans
we continued creating new open codes if needed, but mostly added codes and quotes
to existing themes and categories. This process was done iteratively and repeated for
already coded interviews when new insights were made. New insights also meant that the
codebook was updated: new themes and categories were added, renamed, split, or merged
until all relevant and remaining open codes were summarized and grouped into categories
with similar meanings and intentions. For example, the old theme “teaching strategies”
was split and renamed into “active” and “passive” teaching approaches, each with its own
categories to more accurately describe and interpret the information given by the teachers.
During this process, doubts were discussed with the last author during regular meetings,
in which the last author also checked the emerging categories and themes for clarity and
validity. The final codebook is presented in Table 3.2. In total, we ended up with 238
individual codes to analyze. The tools used during the data processing and analysis were
Atlas.ti andMS Excel.

2Although this research follows Grounded Theory (GT) procedures, the intent of this work is to gather
various existing perspectives and teaching practices among a variety of programming teachers. Since we
know of no prior work attempting to create such an overview, we considered an iterative process as used in
GT procedures most intuitive to discover patterns in teachers’ own descriptions.

44

https://atlas.ti/


58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf
Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025 PDF page: 49PDF page: 49PDF page: 49PDF page: 49

3

Table 3.2: Final code book with examples of codes per developed theme, category, and RQ.
Examples of specific quotes (utterances) can be found in-text in the results section.

RQ Theme Category (# of codes) Examples of individual codes

1 beliefs and perspectives meaningful names (47) describes what is in the variable;
provides its function; should be intuitive

using letters (16) i, j, k, n, l are not very informative
size and detail (14) prefers longer names; depends on situation
overall structure (30) use a certain structure; use underscores

2 active teaching approach coding conventions, rules, guidelines (7) uses or focuses on a personal coding guideline;
focus on community practice

readability, programmers attitude (7) focus on readability;
focus on job expectations;
focus on human aspect

other active approaches (6) focus on errors (pointing out, discussion);
stresses code works independent of naming;
provides explicit naming assignments

2 passive teaching approach mentioning no teaching (4) not explicitly taught;
no discussion on naming

students learn by practice (12) naming comes naturally; lead the way;
only during other assignments

other (5) no specific way is required, taught on demand
2 own representation "meaningful" or similar term (8) representative; descriptive

single letters or abbreviations (5) uses single letters: loops;
uses single letters: basic operations

depends (2) depends on the program;
depends on the purpose

other (5) practical reasons, no particular style
2 grading and feedback no evaluation (4) not graded; no points deducted

unclear (5) part of general assignments;
part of other skills

evaluated (6) graded on test; continuous feedback
3 student observations difficulties (23) typos; too long names; what is ‘i’ in a loop

causes of difficulties (10) students lack creativity;
confusion because of renaming

other observations (22) better students give better names

3.4 Results
3.4.1 RQ1: What beliefs do teachers have about variable

names?
Below we present different topics that teachers mentioned when they reflected on naming
practices. The results are summarized by statements reflecting teachers’ beliefs about
variable naming.

Names should be ‘meaningful’ and ‘intention-revealing’
Most teachers agree that naming is important and should be meaningful. Names are con-
sidered meaningful when they are simple, straightforward, and intuitive. They have to be
descriptive, clearly represent the contents of the variable, or show its purpose. Mentioned
examples are usually nouns: studentName, interest, length, result or index. To sumupwhat
is regarded as ‘meaningful’, T1Um tells his students: “try to name it a name that makes
sense to you and two other people.” He also notes that the addition of adjectives, for example,
current_maximum, can be extremely helpful in loops, but should be used onlywhen it
makes sense, to avoid new confusion. For example, if there is only one maximum in the
code, adding a current tomaximum is not helpful. Moreover, names are to be intention-

45



58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf
Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025 PDF page: 50PDF page: 50PDF page: 50PDF page: 50

revealing. Teachers emphasize this specifically when it concerns functions: names have to
reflect the function’s purpose so that “just by looking at the name of the function you can
tell, okay this function is supposed to perform this, and so on” (T11Uf). Mentioned examples
are structured with a verb to indicate it “does something”: calculate_weight, organize_file
and find_cost.

Teachers disagree on using letters as names
Letters and abbreviations are generally considered to provide too little information to be
descriptive. Especially in the context of teaching, T4Sm explains: “if I start using very bad
names like ‘a’, ‘b’, and ‘c’, then, the code still works the same way, but it’s not telling students
what it does. And it can be a good exercise, but not in the parts where I’m explaining what
they do. It’s a good exercise on a test where [the students] need to know better but not during
teaching or not during comprehending the concept that I’m trying to explain.”

However, there is disagreement on whether letters should be used. In particular, T11Sf
mentions that “letters in the case of operations are meaningful because [my students] can
easily relate it to their math classes from before, which makes it an appropriate naming
scheme.” Also, T8Sm remarks, “with small assignments I will use letters, especially with
basic math operations, using ‘a + b’ is just more logical than writing ‘number1’. It’s more like
mathematics” (translated). Another consideration to use letters is the traditional practice
in the (online) community. This is especially true for (nested) loops, where the use of i -
j - k is common practice: “if [students] would google to something, they would find it like
that. So I try to teach them also in how they would find it if they would google online” (T11Sf).
However, some rather use an x - y - z structure in nested loops: “Now, for me [i-j-k] is an
example that it doesn’t make much sense because if I’m going through a matrix in which
there is an ‘x’ and there is a ‘y’, why am I using ‘i’ and ‘j’? I know, it’s tradition to use i-j-k
etc., I just think that in some cases it would make more sense to use ‘x’ and ‘y’. (...) Imagine
that I want to use ‘x in y’, I have to put ‘i in j’, and then, depending on how long is the loop, I
have to remember by heart that ‘i’ is ‘x’ and ‘j’ is ‘y’ ” (T1Um).

Whether letters are considered meaningful thus seems to depend on whether the letter
itself carries meaning. In other words, using random letters from the alphabet is generally
viewed as ‘bad practice’ whereas particular letters are accepted in certain contexts, like
loops, short codes, or codes that are not intended for sharing: “If it is formyself and nobody
else is ever going to see it, I might even use ‘x’, ‘y’, ‘a’, but as soon as it’s something that I will
share... yeah, no, for sure. I put the variables with the right names. I have to consider the fact
that somebody else is going to read this” (T1Um).

Names have an ideal size and level of detail depending on context
Several teachers report that names should not be “too short,” or “too long.” As is the case
with random letters, it is reasoned that names that are too short create confusion because
they do not convey enough information to the reader, which in turn makes it hard to
remember what contents are behind which names. Too long names, on the other hand,
create confusion because the reader might not read the whole name and rather assumes its
contents or function after reading only a part of the name (T4Sm). Teachers furthermore
mention that “enough detail” should be provided, but not “too much.” For example, the
name student is not detailed enough when its contents are numbers: it remains unclear

46



58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf
Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025 PDF page: 51PDF page: 51PDF page: 51PDF page: 51

3

if the variable represents a student’s age or grade or something else. On the other hand,
variables namedMax with contents "Max" or sevenwith an integer 7 are “too detailed,” as
well as all_names_of_name_list_starting_with_a.

According to teachers, writing efficiency also affects the balance between longer and
shorter names: longer names are less efficient and more prone to typing errors (T8Sm,
T4Sm, T10Uf). However, T11Sf mentions, “especially with beginners, I would prefer the
longer names, where we give the purpose of the variable or what it does over short and
concise names, even though I get that it’s more time-consuming.” Nevertheless, the ideal
size of a name varies per teacher and context. Short names, and even single letters, are
considered “okay” in short programs, whereas in longer programs names should also be
longer (T1Um). The simplicity and conciseness of a single word are valued, but only if the
name is unambiguous in its meaning. A maximum of one to three words are preferred,
connected with an underscore or via casing.

Overall structure is important but naming is a personal style
The overall naming structure and the relationship between names are considered impor-
tant. Some (T1Um, T6Um, T10Uf) prefer a numbered structure, for example, plant1,
plant2, p1, p2, a1, a2, example1, example2, str1, str2, df1, df2, or a logical structure between
the names. However, T3AM cautions that such structures can get too complex and con-
fusing, for example, when names are structured like aa, ab, ba, bb, etc. Moreover, T1Um
and T4Sm stress that names should not be too similar to each other to avoid confusion
between names (apple vs. apples). Additionally, T4Sm also warns that “if all or most
variables look the same, students think it should be done that way.” He experienced this with
a structure consisting ofmyInput, myText, myInt, as used in a KhanAcademy module:
students copy it, and start creating names such asmyLastTwoValues. This “does not help
and is not mandatory (...) It is not bad, but it is not what I expect from [my students] when
using variables (...) [and they] have to be able to makemore complicated names if necessary.”

Naming conventions are also mentioned as important. While T11Sf prefers following
traditional Python or community guidelines (i.e. PEP), others adopt self-created guidelines
in their teaching (T4Sm, T7Sm). For T2Um and T6UM, using a certain naming style is
not very important, as long as their students are consistent. Furthermore, depending on the
teachers’ own programming background they prefer underscores over camel-case or vice
versa, for example, T1Um: “I do like underscore because it gives me a visual interruption.”

Finally, some teachers consider names that include data types to be helpful to novices
or prevent issues when (accidentally) combining data types. For example T10Uf, “I try to
associate the variable with its type. If it’s a list then the name has a list, if it’s a string then
the name (...) most likely is going to have a string in its desirable name” and T3Am, “to keep
a certain type-safety or reminder by including it in the name (...), especially for beginners, I
recommend using naming that is as clear as possible, and possibly even include data types”
(translated). However, since Python is a dynamically typed language, T7Sm notes: “it is
not that important for students that don’t use that kind of programming languages to really
be constantly reminded of the datatype” and also T6Ummentions: “in my opinion, it’s not
necessary. (...) I don’t have a tendency to say that the type should be reflected in the variable
name.”

47



58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf
Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025 PDF page: 52PDF page: 52PDF page: 52PDF page: 52

3.4.2 RQ2: How are naming practices taught?
We found various teaching practices that we grouped into active teaching approaches -
naming is explicitly taught or mentioned in the classroom, passive teaching approaches
- naming is not or implicitly taught, own representation - the way teachers use naming
themselves when teaching, and feedback and grading - whether or not naming is evaluated.

Active teaching approaches
We consider teaching approaches as active when naming is explicitly taught as part of the
curriculum. There are two major topics: (1) coding conventions, including guidelines,
community practice, and specific naming rules, and (2) readability, including clear and
meaningful naming and the human aspect, such as teamwork and job expectations.

Coding conventions, guidelines and rules. Most teachers mention coding conven-
tions; however, T11Sf remarks: “I try to use the conventions of the languages, but that is quite
difficult when the students learn multiple different languages during the three short years
that they have computer science.” Consistent with this statement, conventions, guidelines
and rules are not very homogeneously taught among the teachers, which complies with
the diverse beliefs we have identified among teachers concerning naming practices. Some
teachers set up their own naming guidelines or recommend students to make their own
structure, others mention to include tradition and community practice (i.e. PEP) in their
teaching and focus on naming conflicts or recommending their students to include data
types in their names. T5Ummentions consistency to be most important in teaching nam-
ing: “what I would stress is more that things are done in a consistent way rather than having,
doing it always one way or another; the point is you shouldn’t mix and match in the same
program different styles, whether it’s for naming variables or for even programming style or
indentation and the comment style, all of that.” To help students develop their naming
practices, our teachers regularly mention to provide tips and show examples. Additionally,
tools such as Visual Studio Code or PyCharm are sometimes adopted for correcting and
teaching coding guidelines.

Readability, meaningful naming, and the human aspect. Most teachers merely
mention to students to use clear and meaningful names, for example: “We do insist on
trying to give names which are as readable and as complete as possible” (T2Um). However,
some teachers (T4Sm, T6Um,T7Sm, T8Sm) (also) discusswhy naming is important. This
usually includes a human aspect such as organizing your code to remember or find stuff
back. Other human aspects are working in teams, future job expectations, and naming
something in a way that you and at least two other people can understand what you mean.
When names are not “readable,” or, “according to the set guidelines”, T7Sm goes as far
as telling his students “Okay this thing, I don’t know what you mean here so I can’t read
your code, right now”, even if he does understand the names. Additionally, he likes to
prepare the most frequently seen mistakes in student projects, in order to discuss and
evaluate them in class and to show how students can improve their own projects. With
these strategies, he wishes to provide continuous feedback, prioritize the importance of
naming, and motivate his students to first fix naming issues before they can get help from
him on other aspects of the code.

48



58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf
Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025 PDF page: 53PDF page: 53PDF page: 53PDF page: 53

3

More active approaches. Teachers also indicate using strategies such as pointing out
naming errors (T1Um, T7Sm, T11Sf), discussing mistakes in class (T7Sm), and providing
explicit naming assignments (T4Sm, T7Sm) that include bad smells and error-hunts.
T1Um explicitly stresses that code works independently of naming and that naming
therefore is only important for a human reader: “I put a lot of stress on the fact that
[naming] does not matter but that it matters on our level of organization. (...) I don’t oblige
them to rename [their variables] because (...) I want to stress that the code could work anyway.
(...) You could call it ‘banana’ and it works, you just have to know where to put ‘banana’. On
the other hand, I also tell them it has to make sense for somebody who reads it.”

Self-reflections. Several teachers reflected upon their own practice and mentioned
wanting to incorporate more specifics about the practice of variable naming. T8Sm: “This
is something that I now will start to think about much more than I ever have before, that is
also nice for me” (translated), and T4Sm: “I underestimated how I teach variable names
because I thought it was one lesson and involved less and I can teach them everything about
variables [in one lesson]. But I’ve already split that into two, three lessons, just for Python.
Not only because it’s not as uncomplicated as I thought, but also because it’s a lot bigger than
I thought (...) It has to be done because it’s not as natural as I think it worked.”

Passive teaching approaches
We consider passive teaching approaches all strategies that do not explicitly teach naming
practices. This includes all statementswhere teachersmention that they donot give specific
attention to naming practices, and all statements pertaining to practices where students are
(sometimes explicitly) assumed to learn by themselves. This thus involves indirectly taught
naming practices (i.e. “through general exercises” or by “leading the way”). Furthermore,
some teachers do not require students to use specific naming styles. Table 3.3 presents an
overview.

Table 3.3: Overview of passive teaching approaches used

Passive teaching approach (N) Teachers

No explicit focus on naming (6) T2Um, T5Um, T6Um,
T8Sm, T10Uf, T11Sf

Naming is practiced through examples (8) T1Um, T2Um, T3Am, T4Sm,
T5Um, T8Sm, T10Uf, T11Sf

Specific naming is not enforced (6) T1Um, T2Um, T5Um,
T8Sm, T10Uf, T11Uf

No explicit focus on naming. Teachers report having no specific focus on naming
in their courses. For example, T2Um reports: “we don’t have an explicit theory session
where we talk about the naming conventions for variables would be this or that”, and T11Sf
mentions: “It is not something that I start focusing on but it is something that [students]
do start noticing along the way.” Interestingly, this finding is in contrast to what we see
under active approaches. Specifically, teachers tell us not to have a specific focus on naming
practices, while they also indicate telling students to “choose meaningful names” or to

49



58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf
Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025 PDF page: 54PDF page: 54PDF page: 54PDF page: 54

“follow the conventions.” However, teachers with this inconsistency do not seem to follow
up their instructions with further explanations or assignments; instead, they remain with
general tips. When elaborating on why they do not explicitly teach naming practices (see
below), teachers assume that students will pick up “good naming practices” on their own
and that naming practices do not require more explicit teaching or attention. It is also
mentioned that naming practices should not be enforced as it is seen as an individual
choice or preference.

Naming is practiced through examples. Teachers assume that students learn nam-
ing by themselves, either by following the traditional or given conventions or through
practicing in other assignments. For example, “so not very explicitly, but often naming is
featured in the context of an assignment [that shows] that it eases understanding” (T8Sm),
and “we introduce the rules as we go, by the examples we give them” (T2Um). Even more
strongly, T1Um chooses to lead the way as he assumes his students will copy him: “I do it
passively. For example, saying, “for ‘index’ ” because they’re indexes, “for ‘length’ ” because
it’s a list of lengths. So I try to make them get there.” Furthermore, T5Um argues that
naming practices do not need explicit teaching. He states “I don’t insist on [naming] very
much (...) I mean, that comes more naturally by example”, and emphasizes that it is not “a
major source of concern for the students” as they are confronted with a lot of code through
exercises, examples, and their own written code. Following this, he mentions: “I don’t
think naming is a big concern to us [teachers].” Twomore teachers mentioned focusing
only on naming if and when that was necessary, for example, in the context of an error or
when the topic was brought up by a student.

Specific naming is not enforced. Teachers do not like to emphasize -or require- specific
ways of how variables should be named, but rather leave it up to the students. T5Um:
“we don’t specifically insist very much on how variables should be named”, and T1Um: “I
don’t want to stress a lot they have to use these names or use that name.” Instead, T2Um
tells his students: “It’s okay, your code will work and it is not so important in this course, we
are happier if your code works.”

Own representation
We consider how teachers use names themselves when they are using examples or show live
coding to their students as their own representation of naming practices. It can be seen as
setting an example to the students, as such, we also consider teachers’ own representation
a passive teaching approach. However, since it is always present in a course, and therefore
complementary to other approaches used, it deserves its own category.

Almost all teachers report that they use, or try to use as much as possible, meaningful
names or equivalent terms. For example, T1Um: “I’m very straightforward, so like for
(...) doing the for-loop, I do: for index in the list of indexes. Because they’re indexes, so, let’s
use index.” Interestingly, many equivalent terms are mentioned (seeTable 3.4), possibly
showing that no one single way of good naming is present, and perhaps also showing slight
nuances in what teachers find most important in choosing a name. The variety in the
self-reported own representations presented here is consistent with the variety of naming
beliefs that we discussed previously.

50



58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf
Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025 PDF page: 55PDF page: 55PDF page: 55PDF page: 55

3

Table 3.4: Descriptions used by teachers to show what type of naming they use themselves
when teaching. Interpreted as variations of “meaningful names.”

Description used Teachers

meaningful names T4Sm, T5Um, T11Sf
clear names T3Am, T4Sm, T10Uf
representative names T3Am, T4Sm, T8Sm
descriptive names T4Sm, T8Sm
straightforward names T1Um, T3Am
informative names T6Um
adequate names T5Um
useful names T5Um
one-letter names T5Um, T8Sm, T10Uf, T11Sf
abbreviations T8Sm, T6Um
no one-letter names T3Am, T6Um

Some teachers note that their naming depends on the program or the purpose of the
code. While T3Am and T6Um explicitly told us that they do not use one-letter names,
others told us that they do use abbreviations and one-letter names, sometimes depending
on the purpose of the program or the complexity of the code. Single letters were especially
used when teaching loops and basic (math) operations, for reasons already discussed in
Section 3.4.1 (Teachers disagree on using letters as names). In particular, these reasons
concern a connection to prior knowledge (mathematics) and tradition or community
practice. Moreover, short names, abbreviations, and single letters were also used for
practical reasons or convenience. T8Sm: “If it doesn’t matter much, or the code is small, I
usually use just a letter, to have overview [and] for time efficiency. If the code grows larger or
more complex I prefer abbreviations” (translated). T6Um: “I would prefer to avoid these
too short names, although, actually, on some of my slides, I do use these short names.” His
reasoning is to avoid using a font size that is too small while still being able to compare
two pieces of code on the same slide. During the interview, he realized that “at the same
time, if you do that too often you give a bad example, that’s... that’s a difficulty [laughs]”
(T6Um). Interestingly, as his first response to the question of how he used names himself
in teaching, he said: “I like consistency a lot (...) that you approach things in a consistent
manner, that students get a certain, learn a certain way of thinking” (T6Um).

Feedback and grading
The topic of feedback and grading came up in 7/10 interviews, from which we identify
three approaches to evaluating naming practices: (1) no evaluation, (2) indirectly evaluated
or plays a minor role in grading, and (3) explicit grading and/or feedback. First, there is a
strong tendency to not grade or evaluate students on their naming practices. Most teachers
explain that naming is not part of the evaluation of student’s work, or that students do
not get “punished” (i.e. subtraction of points) when improper names are included in
their submissions, for example, T10Uf: “We don’t do a lot with variable naming (...) I
don’t think we pay attention to readability.” One reason mentioned is that auto-graders
do not look at naming quality. However, teachers indicate that it does not make sense to
grade it separately since naming is interwovenwith performance on other concepts (T7Sm,

51



58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf
Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025 PDF page: 56PDF page: 56PDF page: 56PDF page: 56

T10Uf). Even though consistency within a code is often desired, this is not enforced
(T5Um, T8Sm).

Second, when naming is part of grading it is usually connected to “programming
basics,” “using conventions” and “good commenting,” or it is graded through practice
with weekly assignments. However, although these weekly assignments are not necessarily
focused specifically onnamingpractices, they cover various programming topics, including
variables, and they are explicitly mentioned by the teachers as opportunities to practice
naming. Therefore, how naming is actually evaluated remains unclear.

Third, two teachers show explicit evaluation of naming practices. T7Smmentions
that although naming plays only a minor part in the grading of his students’ work, he finds
it important to always provide continuous feedback on naming conventions and good
naming practices. This includes the active teaching approach of not evaluating a student’s
work if the names are “unreadable,” or in other words, not to the standards that were
taught in class. Only T4Sm specifies that naming practices are explicitly considered in the
grade: “During the projects, I assess how readable the code is. It’s part of the readability, it
depends on how they describe their variables. If they’re all like x, a, z, and b, then I don’t
have a clue what’s happening, so they’ll get point reduction because it’s not readable code. But,
if they use the naming conventions that I’ve taught them and describe what’s happening in
the code then it’s a lot more clear to read, so they’ll get points for that.” He even implements
specific naming assignments on the final test: “there’s a specific assignment in the test that’s
about what’s happening in this program, and [I ask them to] rename the variables to make
more sense [and] to be more descriptive” (T4Sm).

Overarching patterns
We also investigated overarching patterns by grouping individual teaching approaches.
The results are shown inTable 3.5. In short, we identified three different teaching profiles:
(1) teachers that primarily use active approaches, (2) teachers that use a mix of approaches,
and (3) teachers that hardly or do not at all incorporate naming practices in their courses.
While teacherswith an “active” profile showdeliberate design choices for including naming
practices, and those who do not teach naming practices either deliberately “opt out” of
it, or were previously unaware that naming could be part of their course, most teachers
show a “mixed” profile. This could indicate that teachers act intuitively based on their
own experiences and beliefs regarding naming practices.

Our analysis further points towards a distinction between secondary and tertiary
education: only secondary education teachers show an active approach to teaching naming
practices, whereas university students are mostly expected to rely on their own abilities
to learn and use appropriate naming practices. However, the small amount of teachers
in our sample is not suited to draw any such conclusions definitively, and the distinction
made here is purely based on the profiles emerging from the teaching approaches. As such,
there is no clear indication (yet) that the teaching of naming practices requires different
approaches across educational levels.

52



58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf
Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025 PDF page: 57PDF page: 57PDF page: 57PDF page: 57

3

Ta
bl
e3
.5:

R
es
ul
ts
of

ou
rc
ro
ss-
an
aly

sis
in
to

ov
er
ar
ch
in
gp

at
te
rn
s:
th
re
et
ea
ch
in
gp

ro
fil
es
re
lat
ed

to
th
et
ea
ch
in
go

ft
he

na
m
in
go

fv
ar
iab

les
ar
ei
de
nt
ifi
ed

ba
se
d
on

se
ve
ra
lc
om

m
on

ch
ar
ac
te
ris
tic
so

fo
ur

re
se
ar
ch

qu
es
tio

ns
.

T
he
m
es

pr
ofi

le
1-

ac
tiv

e
pr
ofi

le
2
-m

ix
ed

pr
ofi

le
3-

no
tt
au
gh

t

D
om

in
an
tp

hi
lo
so
ph

y
na
m
in
gi
sa
n
es
se
nt
ial

sk
ill

m
ixe

d,
na
m
in
gi
sl
ea
rn
ed

by
ex
am

pl
e

na
m
in
gs
ho

ul
d
no

tb
et
au
gh
t

Pa
rt
of

co
ur
se

de
di
ca
te
d
tim

ea
llo
ca
te
d

no
de
di
ca
te
d
tim

e,
bu

tw
ov
en

in
to

th
ec
ou

rs
eo

rb
yl
ea
di
ng

th
ew

ay
no

at
te
nt
io
n
gi
ve
n,

stu
de
nt
sr
ely

on
th
em

se
lve

s
A
ct
iv
ea

pp
ro
ac
h

fo
cu
so
n
co
nv
en
tio
ns

ow
n
gu
id
eli
ne

cr
ea
te
d

m
ixe

d
tra

di
tio

na
lc
on
ve
nt
io
ns

fo
cu
so
n
re
ad

ab
ili
ty

ye
s

m
ixe

d
no

ex
pl
ici
tn

am
in
ga

ssi
gn
m
en
ts

ye
s

ra
re
ly

no
at
ten

tio
n
to
na
m
in
ge
rr
or
s

ye
s

m
ixe

d
no

na
m
in
gt
ip
sa
nd

ex
am

pl
es

on
m
ea
ni
ng

an
d

pr
o-
ac
tiv
ely

gi
ve
n

m
ixe

d
on

co
nv
en
tio

ns
an
d

up
on

re
qu

es
t

Pa
ss
iv
ea

pp
ro
ac
h

re
qu
ir
ed

to
fo
llo
w
gu
id
eli
ne
s

ye
s

no
no

O
w
n
re
pr
es
en
ta
tio

n
us
es
sin

gl
el
ett
er
so
ra

bb
re
v.

no
m
ixe

d
m
ixe

d
co
ns
ist
en
tw

ith
tea

ch
in
g

ye
s

m
ixe

d
m
ixe

d
G
ra
di
ng

an
d
fe
ed
ba
ck

in
clu

de
sn

am
in
g

ye
s

no
no

Te
ac
he
rs

T
7S
m
,T

4S
m

T
1U

m
,T

2U
m
,T

6U
m
,T

8U
m
,T

11S
f

T
3A

m
,T

5U
m
,T

10
U
f

53



58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf
Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025 PDF page: 58PDF page: 58PDF page: 58PDF page: 58

3.4.3 RQ3: What do teachers observe in the classroom
concerning variable naming?

Reported student observations
Teachers didn’t observe many issues with naming practices among students. They tell us
that naming practices are not a major source of concern and students ‘get the hang of it’
very quickly. For example, T2Um: “We do insist on trying to give names that are as readable
and as complete as possible, and I tend to believe [students] do that quite quickly. Apart from
the first few sessions, where obviously they will use variables like ‘x’, ‘y’, ‘z’, and use names
that don’t say anything. We do insist on that during the practical sessions and in all the
examples we give them. I think they very quickly catch on doing that.” Additionally, T1Um
tells us once he points out a mistake, students often recognize their mistake immediately.
Furthermore, students tend to use amix of single letters, abbreviations, and single words in
their first programs. However, throughout the course, and once students start to recognize
and experience the importance of naming, they pick up the habit of using meaningful
names (T2Um, T8Sm, T11Sf), and even start asking what convention they are expected
to use at that point: “After about three months of programming, and we start touching
upon new items, students will start asking me themselves ‘okay but what naming convention
should we use for this thing”’ (T7Sm). Also, T11Sf says, “Currently, the students usually go
back to ‘a’, ‘b’, ‘x’, ‘y’, and sometimes something more useful. And when they start PHP, of
course not Python but PHP for their website, they start to notice ‘o wait, the naming is kind of
important’.” Furthermore, teachers observe that more experienced students choose more
appropriate lengths for names (T11Sf), and, students that use better naming also present
better programs in general (T7Sm). T5Um andT8Sm also note that their students seem to
copy the examples that they are shown for their own naming practices. These observations
are interesting in relation to our previous finding regarding the teaching strategy “lead
the way”: although teachers may not be directly aware of it, they seem to say that such a
passive approach to teaching naming practices is valid, sufficient, and effective to teach
naming practices.

Specific difficulties and reported causes
Mentioned difficulties were considered of minor importance by the teachers and we did
not find any patterns among them. Firstly, teachers observe that most mistakes concerning
naming appear because students are inconsistent, make typos, or lack creativity. T2Um
notes that this might originate from an inconsistency between teachers, examples, and
learning materials, which might further confuse students. Although the presence of
typos could be just an oversight on the students’ part, teachers mention this proneness
to typos as a reason to not use too long names: mistakes are often and easily made in
spelling, wrongly placed capitals, or using invalid names (T4Sm, T11Sf). T11Sf furthermore
mentions that sometimes a student might lack creativity, possibly caused by a lazy attitude
and a desire to make the assignments with the least amount of effort. Thinking of a good
name might be considered “too much” effort, especially because students may not have
been taught about “what is a good name”. Teachers also observe confusion caused by
names that are too similar, especially with longer names (T4Sm). Secondly, teachers note
difficulties in connection to other identifiers such as functions and parameters (T2Um,
T5Um, T10Uf, T11Sf). These difficulties include name conflicts or using the same names

54



58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf
Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025 PDF page: 59PDF page: 59PDF page: 59PDF page: 59

3

for different objects, causing unintentional overwriting. Teachers attribute this issue to
not being sufficiently introduced to the new concepts, meaning that with more practice
and exposure, this mistake will disappear. Thirdly, teachers observe that students may
(gradually) change names during debugging and writing (T1Um, T10Uf), leading to
confusion when students have forgotten that names have changed, or when the name was
only changed in one part of the code, but not yet in another. Finally, T6Um and T10Uf
observe that there exists confusion among students about the “i” in a for-loop: students
do not seem to understand that this is also a name.

3.5 Discussion
3.5.1 Impact on teachers and educators
The results from the interviews suggest possible impact for teachers and educators in three
directions:

Teaching approaches for naming
While many teachers indicated that they mention naming conventions and guidelines,
only teachers with an “active” approach indicated they use explicit pedagogic approaches
that focus on the naming of variables in their classes. These teachers focused on an
instructional approach with direct assignments or tips. At the same time, the interviews
suggest that teachers realize that choosing a proper variable name is context-dependent and
dependent on who will read the code. As a result, we see room for adopting a wide range
of sociocultural teaching approaches that focus on group and peer activities. Especially
considering teachers’ philosophy in which naming is learned by example, some activities
can include the use of live coding sessions, peer instruction-assessment-review, and pair
programming, all with a focus on the naming of variables.

Developing CS Teachers’ PCK on code quality
Teachers need to develop further their Professional Content Knowledge (PCK) on code
quality in general and on the effect of naming on code comprehension. This is especially
important for introductory courses that include learning objectives related to code quality.
However, from the interviews, it seems that there is a matter of priority, as some teachers
indicate that there are more important concepts to focus on than naming, especially when
it comes to grading or feedback. To tackle this, the link between naming and code quality
needs to be stressed. Having readable and expressive variable names is not a matter of
code aesthetic, but rather an important aspect of code quality that is known to affect code
comprehension [Lawrie et al., 2006, Schankin et al., 2018,Avidan and Feitelson, 2017].
The effect of bad naming will extend to the professional life of the student as a developer
and will have an impact on their ability to contribute to projects and on the performance
of daily programming tasks [Xia et al., 2018].

Using existing tools
Teachers are also capable of giving constructive feedback on naming. We believe that while
teachers are obtaining more PCK on code quality, they could already implement such
feedback. Prior work has found feedback on naming both desirable and valuable [Börstler

55



58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf
Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025 PDF page: 60PDF page: 60PDF page: 60PDF page: 60

et al., 2017,Glassman et al., 2015]. Practical examples of existing teaching resources are
rubrics and tools that are recently developed for such goals [Stegeman et al., 2014,Stegeman
et al., 2016,Glassman et al., 2015]. These tools can be a good starting point to evaluatewhere
students stand in their variable naming so that teachers can give constructive feedback
to help improve the level of readability, expressiveness, and consistency of the naming of
variables in their code assignments.

3.5.2 Reflection on teaching themes
When looking at the emerging themes on teaching variable naming, generated from the
interviews, we can see that these themes follow the two mainstream theoretical pedagogic
approaches in computer science education [Fincher and Robins, 2019]. On one side, the
‘active’ teaching theme follows an “instructivist” approach: the focus is on the structure
and presentation of learningmaterials more than on the learners who are seen as recipients.
Yet, this is not a pure picture: within the profiles of teachers who presented quotes fitting
to the active teaching theme, we also observe aspects of “constructivist” approaches. In
particular, some teachers refer to programming languages’ guidelines on naming as a way
to ‘support that construction of knowledge’ rather than to communicate knowledge. This,
in effect, delegates learning goals to the students who will discover the topic of naming on
their own and decide which names to use, without the teachers integrating their students’
activities into the classroom. These and similar constructivist approaches of teaching
variable naming are even more visible within the passive teaching theme, again with less
focus on students’ activities in the classroom. From the interviews, we observe that such
teaching approaches have roots in the teachers’ beliefs and perceptions that naming does
not need explicit attention because it “comes naturally by example”.

3.5.3 Limitations and future work
As our research is based on self-reported data, teachers may have given us socially accepted
answers. We have tried to limit this by making the topic of the interviews more general
about variables, formulating questions neutrally, and taking into account the order of the
questions to avoid leading. Especially regarding teaching practices and student difficulties,
our findings are self-reported: we did not observe classroom practices ourselves. However,
to look at actual practices, we have conducted research intoMassive OpenOnline Courses
(Chapter 4) and Programming Textbooks (Chapter 5) and found similar results [van der
Werf et al., 2023, van der Werf et al., 2024b].

Although there was no indication before this work that naming is or should be ad-
dressed differently across educational levels, our findings suggest this might be the case.
However, as often with qualitative research, our sample set is too small to make represen-
tative conclusions, and being representative was not our current aim. Nevertheless, our
study could be followed up with a large-scale (international) questionnaire to generalize
and compare target audiences, class sizes, and class duration. Such research might also
provide further insights into the different teaching profiles that we have found and could
further dive into comparing naming practices among different programming languages.

56



58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf
Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025 PDF page: 61PDF page: 61PDF page: 61PDF page: 61

3

The effect of the programming language
Some findings are specific to Python. For example, one difficulty that teachers described
was that of students using the samename for variables and functions, causingunintentional
re-assigning, which would not be a difficulty in statically typed programming languages.
Furthermore, naming conventions and guidelines, which were often mentioned during
the interviews, are to a large extent language-specific. Finally, characteristics of other
programming languages not native to Python, such as pointers and static types, will not
be reflected in our findings, even though they might have effects on teachers’ perceptions
and practices on variable naming.

Future work
Our future line of research is to analyze programming textbooks, to further understand
how practices are represented in different forms of education. Additional research is
planned covering in-class observations, which can be compared with what teachers say
about the topic. We also aim to design and experiment with specific naming tasks to
investigate how naming can be easily but effectively implemented in existing curricula.

3.6 Conclusion
This chapter aimed to investigate the current teaching practices and beliefs concerning
variable naming. Primarily we want to encourage discussion on teaching naming practices
in programming education. Hence we investigated teachers’ beliefs and perceptions about
variable naming (RQ1), their practice (RQ2), and their observations in the classroom
concerning naming (RQ3).

Our results show a diversity of opinions; however, in line with most existing literature
on ‘good naming’ for comprehension, our teachers all advocate for simple, straightforward,
and intuitive names that clearly represent the content or show the purpose of the variable.
Nevertheless, when it comes to the actual teaching practice, this promotion of meaningful
names is not so directly demonstrated. Even though teachers tell their students to use
meaningful names, they seem to rarely incorporate practices that encourage or force
students to think critically about what a good name entails, or how names might be
misleading. Moreover, teachers themselves do not always use meaningful names in their
examples to students, even though they agree that students learn naming practices by
example.

57



58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf
Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025 PDF page: 62PDF page: 62PDF page: 62PDF page: 62

Interview protocol
Questions that explicitly cover the topic of NAMING of variables: 2b, 2c, 3, 4b, 6, 7, 10.
Other questions might include naming if the interviewees brought up the topic themself.

Introduction (5 minutes)

• Overview, duration, recording, confidentiality, anonymity
• Introduction interviewer + interviewee

Practice (15-20 minutes)

(1) Can you shortly describe the setting of your course?

a) Follow up on the level of education, online/offline, class size, language, dura-
tion

(2) Can you tell me something about how you explain variables in your course(s)?

a) Can you give me an example?
b) Follow up on topics related to variables (assignment, naming, role), dedicated

time/attention, when introduced, etc.
c) In your courses, what type of names are you promoting? Why? Motivate.

i) Follow up on short & concise (abbreviations, letters) vs. full words
ii) Follow up on examples of promoted names
iii) Follow up on underscore vs. camel case

d) If not taught: Why not? Can you provide a reason? (Is it a conscious choice?)

(3) Can you provide me an example of how you name variables yourself while you
explain other concepts throughout your course(s)?

a) Would you consider this example to be generic for the way you use variables
in your teaching? (Why not? // Are there other ways that you use variables in
your teaching yourself?)

b) Follow-up on name length, letters, words, conciseness
c) Follow-up on underscore vs. camel case

(4) (if time) Are variables evaluated in your course? Why? How?

a) Can you give me an example?
b) Follow up: formally/informally, which elements (inc. naming?), why (not)

Student difficulties (15-20 minutes)

(5) What are common errors that you see your students making when it comes to the
concept of variables?
a) Follow up on misconceptions identified, causes, how to overcome

(6) Can you give me some examples of how your students struggle when it comes to
variable names? What difficulties do they experience?
a) Follow up on why they might occur and how teachers solve them.

58



58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf
Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025 PDF page: 63PDF page: 63PDF page: 63PDF page: 63

3

General perceptions (10 minutes)

(7) In your opinion, what should variable names consist of? What information should
it contain?
a) What do you consider “good naming”? What do you consider “bad naming”?

(8) As a programmer, and speaking in general, how important are variables to youwhile
programming your own code and/or understanding someone else’s code?

(9) As a teacher, how important do you consider variables for teaching programming
skills to students?

(10) If you could make one recommendation to other teachers about teaching variables
and their naming, what would it be? Motivate.

(11) Recommendations about what to stop doing?

Closing

(12) Do you have final remarks or questions?

59



58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf
Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025 PDF page: 64PDF page: 64PDF page: 64PDF page: 64

60


