Variables and variable naming in introductory

programming education
Werf, V. van der

Citation

Werf, V. van der. (2025, September 2). Variables and variable naming in
introductory programming education. Retrieved from
https://hdl.handle.net/1887/4259393

Version: Publisher's Version
Licence agreement concerning inclusion of doctoral
License: thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/4259393

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/4259393

CHAPTER I
INTRODUCTION

O ne of my students said to me: “Miss, if naming already is an issue, we have a big
problem!” This quote comes from a whole-class discussion with young software
developers-to-be, where the students debated about whether the topic of naming is an
issue for software developers. For me, this statement perfectly reveals two important topics
that illustrate the foundation of my research: (1) the relevance of naming practices to
software developers and programmers, and (2) whether or not naming practices are hard
to learn and apply for students and professionals.

However, before diving in deep, I will first highlight the context of this study. As the
interest in programming skills is increasing in society, programming will inevitably become
part of national curricula, and in some countries it already is. Through this dissertation, I
aim to make programming more accessible to everyone, and contribute to inclusion of
students and teachers from diverse backgrounds in programming education. Indeed I
hope to inspire programming teachers to expand their focus beyond mathematics and
problem solving. In particular, I approach the learning and teaching of a programming
language from a natural language perspective. In this approach, I see natural language,
that is already familiar to students, serving as a bridge between complex programming
problems and the programming language itself.

Moreover, neuroscientific results indicate that language-related brain areas are more
important for programming than brain networks related to problem-solving or mathe-
matics [Prat et al., 2020, Endres et al., 2021b, Floyd et al., 2017]. Furthermore, classroom
experiments demonstrate how training on technical reading abilities can improve pro-
gramming skills [Endres et al., 2021a] and how reading code aloud, a strategy derived from
natural language learning, helps with remembering syntax, which is an element of coding
that beginners often struggle with [Hermans et al., 2018a, Swidan and Hermans, 2019].
Research on reading and explaining code has also shown that code reading skills correlate
to code writing skills [Murphy et al., 2012a, Whalley et al., 2006].

From prior work, we can thus establish that learning a programming language is
related to natural language and natural language skills. Keeping this in mind, my research
focuses on one element of natural language found in written code, in particular, names,
also known as identifiers or identifier names. Names are assigned to objects like variables
and functions, among others —or the memory addresses associated with the objects— to
represent a ‘label’ for the human reader, helping them remember what the variable refers
to. For the non-programmer, these identifiers have a very similar function to labels or tags
to represent the contents of, for example, a moving box.

Software engineering research has repeatedly confirmed the importance of identifier
naming in reading and understanding code [Lawrie et al., 2006, Feitelson, 2023, Avidan
and Feitelson, 2017, Hofmeister et al., 2017, Hofmeister et al., 2017, Schankin et al., 2018,
Arnaoudova et al., 2016, Feitelson et al., 2022]. The main takeaway from these works is
that programmers rely on names for their comprehension of code. In particular, research
indicates that good names support a programmer’s comprehension while bad names
interfere with their understanding or can even be (unintentionally) misleading. This
means that programmers may end up with an incorrect understanding of a program due

to naming issues, which makes them slower in writing code, understanding its function, or
finding a bug. Especially general, non-specific names, such as ‘length’ [Feitelson, 2023] or
‘result’ [Schankin etal., 2018], appear problematic, as well as context-less letters and unclear
abbreviations [Lawrie et al., 2007b, Lawrie et al., 2006, Hofmeister et al., 2017, Beniamini
etal,, 2017], or names that are too long or too similar to remember well [Binkley et al.,
2009]. To make it worse, also full words can be unintentionally misleading, depending
on context and the interpretation of the reader [Avidan and Feitelson, 2017, Arnaoudova
et al., 2016, Feitelson, 2023, Feitelson et al., 2022]. It is safe to say that any name should be
chosen carefully and cautiously.

In practice, programmers generally follow standard conventions with clear rules on, for
example, when (not) to capitalize letters (like the Elements of Java Style and Java Language
Specification) [Butler et al., 2015]. They furthermore use a limited vocabulary [Lawrie
etal., 2006, Antoniol et al., 2002, Caprile and Tonella, 1999] and commonly use single
letter names, like , ¢, s, and ¢, which cover one-tenth to one-fifth of all names in C, Java
and Perl projects [Beniamini et al., 2017, Gresta et al., 2021]. The most popular names are
non-specific names such as ‘value’, ‘result’, and ‘name’. Other names follow a singular
noun-phrase pattern such as ‘nextArea’ or ‘max_buffer_size’, or are formulated as plural
when they concern a certain collection (of lists, arrays, etc.) or data grouping [Newman
etal., 2020]. In Scratch projects, a block-based programming language originally directed
at children, names tend to be longer than in other languages with only one in twenty-five
names covering just single letters like 7, x, and y [Swidan et al., 2017].

While different names can be understood by the majority of developers [Feitelson
etal., 2022], developers still choose to rename, often to narrow the meaning and support
code comprehension [Peruma et al., 2018]. Moreover, one in four code reviews contains
suggestions about naming [Allamanis et al., 2014], indicating that the original naming was
often not clear enough or perhaps incorrect. Professional guidelines describe good naming
as ‘meaningful’, ‘clear’, and ‘concise’, mention to use ‘familiar names’ within the domain,
and use words that are ‘present in a dictionary’ (i.e., [Vermeulen et al., 2000]). This shows
that some of the research on (good) naming practices has been incorporated. However,
what these statements and suggestions mean in more detail — in other words, how names
are to be chosen or how ‘meaningful’ naming is to be applied in which context — largely
remains up to the developer’s interpretation of the guidelines, the context, length, and
purpose of the code, and the developer’s creativity or professional requirements. Hence,
choosing appropriate names is much less straightforward than many guidelines make it
seem, or many programmers may think, even for professional developers.

As the research shows, developers are still choosing non-specific names that hinder
code comprehension and remain affected by naming choices. This begs the question of
how novices and learners are affected by naming practices that they encounter, especially
if they also have not learned the meaning of certain single-letter names, which might
be common and obvious to professionals. Although research has yet to investigate how
exactly such naming practices influence learners or learning, I will go ahead and assume that
all naming practices affect novice programmers more than experienced professionals. I am
confident in making this assumption for two reasons. First, novices are easily overwhelmed
by the many new aspects that learning a (new) programming language brings [Hermans,
2020], which pressures the cognitive load of students. As a consequence, they might be

even more dependent on natural language for the comprehension of programs or while
learning unfamiliar programming constructs. Using good names could thus facilitate
learning, while bad names may handicap them or even lead them astray. Second, novices
may still hold certain misconceptions, such as wrongly believing that computers interpret
or assign values based on the semantic meaning of variables’ names, which leads them to
incorrectly apply semantic assumptions to syntax [Kaczmarczyk et al., 2010].

Time to come back to the opening quote; “Miss, if naming already is a problem, we
have a big issue!”. Logical reasoning shows that 7/ naming practices are highly relevant to
programmers (they are), azd naming practices cause issues among students and profession-
als (they do too), then the topic is important within programming education and deserves
appropriate attention from the community. Unfortunately, and in stark contrast to the
extensive research on the effect of names on programming comprehension, very little
research covers the topic of naming practices in programming education. Some efforts
have been made to incorporate naming practices in rubrics for teaching code quality and
assess students’ assignments [Stegeman et al., 2014, Stegeman et al., 2016, Glassman et al.,
2015]. Indeed, feedback on naming practices with good azd bad examples is highly valued
by students [Glassman et al., 2015], and feedback related to code quality is frequently
asked for [Borstler et al., 2017]. This suggests that topics such as code quality and naming
practices, might not get enough dedicated attention in educational settings, however,
comprehensive investigations into this research area are lacking in the existing literature.

1.1 RESEARCH OBJECTIVES

This dissertation aims to open a scholarly discussion on naming practices in program-
ming education, examining how these practices are, can, or should be effectively used
and integrated in teaching novices. It furthermore aims to provide practical advice for
educators on how to incorporate naming practices in their courses to enhance under-
standing, improve code readability, and shape the development of future programming
curricula. Hence, my work strives to influence practitioners in the fields of Computer
Science and Software Engineering as well as those involved with teaching programming
skills to novices and professionals.

Before diving into the topic of naming, my dissertation starts with a wider exploration

of code comprehension through reading. In particular, the following research question is
addressed first:

RQ1 What do novice programmers express in their answers when asked to explain
given code segments in their own words?

Then, to contribute to a scholarly discussion and inform educators on the topic
of naming practices in programming education, my research investigates how teachers
perceive naming practices, how the topic is currently taught, and how the topic should
be taught based on scientific evidence. Therefore, this dissertation also addresses the
following research questions:

RQ2 How are variables and their naming practices introduced in beginner pro-
gramming education and materials?

RQ3 What are teachers’ beliefs and perceptions about naming practices and
teaching them?

RQ4 How can we incorporate activities that focus on naming in beginner pro-
gramming education?

1.2 RESEARCH DESIGN AND SNEAK PREVIEW

To answer the research questions, my research implements a qualitative and exploratory
approach and uses different types of data. Table 1.1 shows an overview of the different
studies and my research approach is further detailed below.

First, to investigate how novice programmers make sense of code reading exercises
(Chapter 2), I present students with short programs (also containing natural language)
and ask them to explain what the code does in their mother tongue. Such tasks are also
known as explain-in-plain-english (EiPE) tasks. To find patterns in these explanations
(RQi), I perform an exploratory artifact analysis, addressing three aspects: the expla-
nations’ focus, which elements are (not) included, and whether any misconceptions are
demonstrated. Among the findings was that students rely on the available natural language
that is presented in print and input statements, and names of variables and functions.
Particularly relevant to this thesis, I found that students are influenced (or distracted)
by such natural language in their interpretation of a program’s purpose. These findings
highlight the importance of natural language within a code and piqued my interest in
variable naming practices.

Then, to explore the current landscape of teaching approaches and learning activities
that focus on variable naming practices (RQz2; Chapter 3, Chapter 4, Chapter s), I
start by interviewing teachers about their perceptions of variable naming in general
(RQ3), their beliefs about good naming practices (RQ3), and their approaches to teaching
the topic (RQ2) (Chapter 3). These interviews are analyzed through an open-coding
process and reveal self-reported approaches. To confirm and extend these self-reported
approaches, I also observe actual teaching practices and educational materials in popular
online courses (Massive Open Online Courses: MOOCs) (Chapter 4) and programming
textbooks for children and novices (Chapter s) (RQz2). All three studies consistently
reveal a wide variation in how naming practices are taught, with a strong(er) focus on
‘syntax rules” demanded by the programming language rather than on what meaningful
naming is, or why it is relevant. Among teachers, there is a dominant belief that naming is
not difficult and is learned ‘naturally by example’. However, the examples that students are
shown in course materials, and the explanations that are given to them (if any), are often
uninformative and inconsistent. Moreover, feedback is rarely provided and students are
not encouraged to pay good attention to naming practices as the emphasis lies on whether
the code works. Whether the code is readable or adheres to code quality norms is regarded
as secondary, as evidenced by teachers (implicitly or explicitly) and educational materials,
which sometimes even deliberately state that naming is not important and you can choose
any name you like.

These results reveal that the opportunities that students have to develop good nam-
ing practices are limited. Knowing that good naming practices are essential within the

(souzgoprnd sazrarpow Suruavay) siskreue ‘voneruswoduwr ‘udisop | smorarur ‘doyssgom | x x x| ¥ | 9 gD
(soqowouddr Furqovar Tusnuos juosvanp juains) UONEAIISO SYoOqIxa) | X T S YD
(soqowouddr Furqovar Tuszuos jruosvonps jua.ainr) UONEAIISO SOOOW | X T | ¥yD

(saqovoaddy Mﬁ%w& 1013420454 1U2.0419) ma:uo?cumo SMITAIDIUT X ¢z | €D
(S77295 2T “worsusgaadutos apos) sisAJeue 10egmTe suoneuedxs 5pod X 1| zTY)

=7 7

o
(outaqz 40 1ndino) Yoxeasa (sanrerrfenb) yo ad4y, (s)aoanos v1e(q w S o oY
B g 2
> » 17
snoog

SITPNIS JO MITAIIA(D

‘T I[qeT,

programming profession, my studies thus demonstrate an opening for a better imple-
mentation of naming practices in programming education. In particular, I see room
for interactive activities that focus on discussing why naming is relevant and when is a
name meaningful, rather than telling students that naming is important, referring them
to guidelines, or focusing on a set of specific rules that might differ per programming
language or context.

Hence, to inform educators on how they can tackle the topic of naming practices
in their courses (Chapter 6), I present the design of a set of learning activities (RQ4)
tollowing a dialogic teaching approach. These activities emphasize reflection and discussion
and provide easy-to-implement opportunities for students to see and discuss the effect
of different naming choices. For example, I present a ranking activity focused on a set of
names which encourages reflection because it requires students to rely on their perceptions
and opinions to evaluate what they consider appropriate or misleading. Discussing these
rankings (students’ opinions) in class provides an opportunity for students to experience
that naming needs are not as straightforward as they seems at first sight. Through im-
plementing and testing the designed activities (RQ4), I determine several insights and
recommendations regarding the adoption of naming practices in a curriculum, such as the
importance of whole-class discussion and individual reflection, and the easy adaptation
of activities to fit any course without much teacher investment. Moreover, the activities
reveal potential issues and obstacles perceived by the students, such as that paying atten-
tion to naming is considered too time-consuming, inefficient, or even irrelevant, even
when the importance of naming for a (second) reader is recognized by the students. These
findings highlight the relevance of ‘priming’ students to adopt good naming practices
before expecting them to ‘figure it out themselves’.

1.3 CHAPTER OUTLINE

In the above section, I presented some of the chapters’ highlights and how each study
shaped my research journey. In this section, I outline the structure of the dissertation by
providing an overview of each chapter.

Chapter 2 introduces the importance of code reading exercises in learning a program-
ming language. In particular, EiPE tasks are discussed, as well as code comprehension in
general. The research presented in this chapter provides insight into what novice students
express in their explanations after reading a piece of code, and what these insights reveal
about how the students comprehend code. I performed an exploratory analysis on four
reading assignments extracted from a university-level beginner’s course in Python pro-
gramming and paid specific attention to (1) the core focus of student answers, (2) elements
of the code that are often included or omitted, and (3) errors and misconceptions students
may present. I found that students prioritize the output that is generated by print state-
ments in a program, followed by control flow elements and function definitions. Some
students omit (relevant) details on the code’s purpose beyond the information conveyed
through natural language, and their explanations are negatively affected when these names
convey unhelpful or distracting information. This shows that students rely on natural
language elements of the code when they are asked to explain a program, which shows
that explaining a program does not necessarily mean that they have understood the code.

Chapter 3 introduces the importance of variable naming practices for code writing,
comprehension, and debugging, while at the same time demonstrating that little is known
about how variable naming is taught. The research presented in this chapter investigates
naming beliefs, self-reported teaching practices, and observations regarding variable nam-
ing practices of teachers of introductory Python programming courses. I adopted an
in-depth qualitative approach by interviewing ten teachers from secondary education
and higher education and developed several themes to answer our research questions.
Among various opinions and practices, I found that teachers agree on using meaningful
names, but have conflicting beliefs about what is meaningful. Moreover, the described
teaching practices do not always match teacher’s views on meaningful names, and teachers
rarely encourage students to use them. Instead, teachers express that naming practices
should not be enforced and that students will develop them by example. Whereas some
teachers report focusing solely on conventions, others deliberately dedicate time for stu-
dents to engage with naming, create self-made guidelines, provide continuous feedback, or
include naming exercises on exams. This chapter concludes that naming practices are not
deliberately taught even though they influence program understanding and code quality,
as there exist inconsistencies in teachers’ self-reported naming practices.

Chapter 4 and Chapter s focus on the concept of variables in general and on variable
naming practices, and aim to understand how these are introduced in Massive Open On-
line Conrses (MOOC:s) (Chapter 4) and programming textbooks for children and adults
(Chapter s). The research presented in these chapters investigates (1) which definitions
and analogies are currently being used to explain the concept of variables, (2) which pro-
gramming concepts are introduced alongside variables, and (3) if and how variable naming
practices are introduced in the materials. To answer these questions, I gathered qualitative
data related to variables and their naming by observing 17 MOOC: (Java, C, Python)
and by analyzing 13 programming textbooks (Python, Scratch). Collected data include
connections to other programming concepts, formal definitions and used analogies, and
explanations and examples used to introduce variable naming practices. I found that analo-
gies are often explained using the ‘variables-as-a-box’ analogy, although some books also
introduce them as a ‘place’ or ‘label’. The definition of a variable mostly focuses on storing
information whereas other elements such as tracking or accessing information, computer
memory, or flexible use and changing values remain underrepresented. I furthermore
found differences between programming languages in the order in which variables and
other concepts are introduced, but the most connected programming constructs are data
types, program execution/control flow constructs, and operators/expressions. Finally, in
both MOOCs and textbooks, I found inconsistent teaching of naming practices that focus
on syntax rules which, when not adhered to, break the program. Most courses and books
remain vague about —or display disagreeing notions on— ‘what is a meaningful name’,
and present only a few examples of good and bad names. These observations match the
teachers’ self-reported approaches and perceptions, meaning that there is room for more
deliberate attention to the meaning of variable names within the current landscape of
teaching naming practices.

Chapter 6 addresses how to teach naming deliberately, without centralizing specific
naming rules or styles, and instead focusing on discussing questions such as why is naming
important and when is naming meaningful. The chapter presents a dialogic teaching

approach focused on teaching a critical reflection on naming practices through the design
of five types of activities: (A) expressing perceptions and experiences, (B) creating names,
(C) evaluating names through ranking, (D) comparing codes, and (E) locating a mistake.
For this study, I developed, ran, and analyzed a one-hour workshop, which is presented
here together with the experiences gained by teaching it to two courses. Ultimately, this
chapter leads to recommendations for teachers and has a two-fold contribution: (1) a set
of (adaptable) activities and exercises for supporting deliberate naming practices that assist
teachers interested in adopting them into their curriculum; (2) insights regarding the
student perspective on naming practices, derived from the activities, revealing potential
issues and opportunities in teaching the topic.

Chapter 7 presents the general discussion of this thesis by highlighting several key
findings, placing them in a wider context, and discussing relevant implications for both
educators and academics within the field of Computer Science Education. The chapter
finishes with a comprehensive summary of the dissertation’s main conclusions and a list
of my further recommendations for future research and educational practice.

1.4 ORIGIN OF CHAPTERS

All chapters of this thesis have been published as full papers in peer-reviewed confer-
ences. Chapters Two, Three, Four, and Five are all empirical studies, and Chapter Six
is published as an experience report. Besides formatting, no changes were made to the
papers’ original text or content.

Parts of this introduction are based on (1) a poster abstract and presentation at
the conference of International Computing Education Research (ICER’22)) in Lugano,
Switzerland, titled (How) Should Variables and Their Naming Be Taught in Novice Pro-
gramming Education?, by Van der Werf, Aivaloglou, Hermans, and Specht [van der Werf
etal., 2022a]; and (2) a doctoral consortium poster and presentation at KoliCalling’23
in Koli, Finland, titled Fostering a natural language approach in programming education
(Doctoral Consortium), by Van der Werf [van der Werf, 2024].

Chapter 2 was published as What does this Python code do? An exploratory anal-
ysis of novice students’ code explanations, by Van der Werf, Aivaloglou, Hermans, and
Specht, in the Proceedings of the toth Computer Science Education Research Conference
(CSERC’21), and presented online in 2021 [van der Werf et al., 2022b].

Chapter 3 was published as Teachers’ Beliefs and Practices on the Naming of Variables
in Introductory Python Programming Courses, by Van der Werf, Swidan, Hermans, Specht,
and Aivaloglou, in the Proceedings of the 46th International Conference on Software En-
gineering: Software Engineering Education and Training (ICSE-SEET’24), and presented
in Lisbon, Portugal in 2024 [van der Werf et al., 2024c].

Chapter 4 was published as Variables in Practice. An Observation of Teaching Variables
in Introductory Programming MOOCs, by Van der Werf, Zhang, Aivaloglou, Hermans,
and Specht, in the Proceedings of the 2023 Conference on Innovation and Technology
in Computer Science Education (ITICSE’23), and presented in Turku, Finland in 2023
[van der Werf et al., 2023].

Chapter s was published as Variables and Variable Naming in Popular Programming
Textbooks for Children and Novices, by Van der Werf, Hermans, Specht, and Aivaloglou,
in the Proceedings of the 2024 ACM Virtual Global Computing Education Conference
(SIGCSE Virtual’24), and presented at the online venue in 2024 [van der Werf et al.,
2024b].

Chapter 6 was published as Promoting Deliberate Naming Practices in Programming
Education: A Set of Interactive Educational Activities, by Van der Werf, Hermans, Specht,
and Aivaloglou, in the Proceedings of the 2024 ACM Virtual Global Computing Educa-
tion Conference (SIGCSE Virtual’24), and presented at the online venue in 2024 [van der
Werf et al., 2024a].

I

12

