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This manuscript was compiled on August 2, 2025

Decision making and learning processes together enable adaptive strategic behavior. Animal
studies demonstrated the importance of subcortical regions in these cognitive processes,
but the human subcortical contributions remain poorly characterised. Here, we study choice
and learning processes in the human subcortex, using a tailored ultra-high field 7 T fMRI
imaging protocol combined with joint models. Joint models provide unbiased estimates
of brain-behavior relations by simultaneously including behavioral and neural data at the
participant and group level. Results demonstrate relations between subcortical regions
and the adjustment of decision urgency. Value-related BOLD differences were found with
opposite BOLD polarity in different parts of the striatum. Multiple subcortical regions showed
BOLD signatures of reward prediction error processing, but contrary to expectations, these
did not include the dopaminergic midbrain. Combined, this study characterises the human
subcortical contributions to choice and learning, and demonstrates the feasibility and value
of joint modeling in facilitating our understanding of brain-behavior relationships.

Linking propositions | Error-driven learning | Reinforcement learning evidence accumulation
models (RL-EAMs) | Bayesian hierarchical estimation

Decision making and instrumental learning continuously interact (1): Error-
driven learning processes refine and update the information on which value-

based choices are made. In behavioral studies, recent advances have integrated
insights from the traditionally separate fields of perceptual decision-making on the
one hand, and error-driven learning on the other, into a singular framework (2–13).
The combination of evidence accumulation to threshold (a core principle from
decision-making research) and simple delta rules (a core principle in reinforcement
learning) was shown to provide a precise characterisation of behavior in instrumental
learning tasks: It can explain response time distributions, choice accuracy, and the
learning-related changes in response time distributions and choice accuracy.

While providing a rich account of the algorithmic processes underlying choice
and learning, cognitive models are agnostic about the neural implementation, which
is our focus here. Both fields can lean on rich literatures on the relation between
neural and behavioral data, although based largely on animal recordings. In
decision making, the basal ganglia have long been implicated in action selection
(14–18)Furthermore, key insights were obtained from recordings that demonstrated
processes resembling evidence accumulation in a variety of brain regions including
the basal ganglia (19–21), the superior colliculus (22–24), and cortical regions
including parietal cortex (25–29), the frontal eye fields (30–34), and premotor and
motor cortex (35–38). In parallel, studies in reinforcement learning have long
focused on the role of the dopaminergic midbrain in calculating reward prediction
errors, and on dopamine as a signal conveying reward prediction errors (e.g., 39–43).

Thus, both fields suggest prominent involvement of subcortical regions. Unfor-
tunately, in humans, the role of subcortical regions in decision making and learning
is less well characterised (44). This is due to various factors that make imaging
the subcortex particularly difficult. Many subcortical regions suffer from signal
losses when conventional functional magnetic resonance imaging (fMRI) methods
are used. The underlying causes include the deep location of the subcortex, high
iron concentrations, and the small sizes of individual regions (for an overview,
see 45). Because of these factors, the majority of human neuroimaging studies
have focused on the neocortical sheet, combined with the larger subcortical regions
including the striatum and thalamus (for a meta-analysis, see 46). To achieve the
signal quality necessary for investigating the typically small blood-oxygenation
level dependent (BOLD) responses associated with cognitive functions in smaller
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regions, specialised MRI protocols designed at ultra-high field
strengths of 7 Tesla (T) have been developed (47–49).

Signal quality is not the only factor to consider when
discussing the challenges of studying the human subcortex.
Statistical considerations form a second factor hampering
the characterisation of the human subcortex in cognitive
processes. Model-based analysis methods offer a principled
advantage in terms of bridging the algorithmic and neural
levels of analysis (50, 51). Traditional model-based MRI
studies, however, rely on two-stage approaches, in which
a cognitive model is first fit to behavioral data, and the
resulting parameters are used as regressors in the analysis of
the neural data. While straightforward to implement, two-
stage approaches do not fully take into account the reciprocity
in the relation between behavior and the brain. Using this
approach, the neural model is informed by the cognitive data,
but the cognitive model is not informed by the neural data.
Furthermore, the measurement uncertainty in the parameters
of the cognitive model are ignored. When unaccounted for,
this source of noise causes negatively biased effect sizes, a
phenomenon known as attenuation (52, 53). It also comes at
the risk of overconfidence in the effects of covariates, since
the uncertainty in the estimation of the covariate is ignored
(52). This is especially detrimental when studying noisy data
such as fMRI timeseries obtained from the human subcortex.
Joint models, which simultaneously model both the neural
and behavioral modalities of data, at all levels of the hierarchy
(participant and group level), are required to remedy this
issue and achieve full statistical power (50, 54–57).

This study takes a joint modeling approach to studying
decision-making processes and instrumental learning in the
human subcortex. We bring together three contributions.
Firstly, we use a single task paradigm combined with a single
cognitive model, that unifies the study of decision making
and reinforcement learning processes (6, 7), and allows
for disentangling potential interactions between decision
making and learning. In this task, participants are required
to repeatedly make value-based choices between abstract
symbols, and learn from the probabilistic reward associated
with each symbol. Prior to each choice, participants are
informed to emphasise either response speed or choice
accuracy, thereby enforcing a change in choice strategy.

Secondly, we used an fMRI protocol tailored to meet the
specific requirements for studying small subcortical nuclei
at an ultra-high field of 7 T (47–49, 58–62). This protocol
includes a short echo time to match the low T2* of iron-rich
nuclei, small voxels to mitigate partial voluming effects, and
a relatively high repetition time. Furthermore, we acquired
multimodal quantitative anatomical MRI data, which enabled
us to delineate individual subcortical nuclei with automated
algorithms (63).

Finally, we analysed brain-behavior relations in the
resulting data using high-powered Bayesian joint modeling
techniques, in which two reciprocal links between neural
and behavioral data are included: Reward prediction errors
and value estimates of the reinforcement learning model
are fed forward to the neural models within subjects, and
simultaneously, across participants, inter-individual correla-
tions between neural and behavioral model parameters are
estimated. The simultaneous estimation of the cognitive
and neural models allows for all sources of uncertainty to be

modeled accurately, which leads to unbiased estimates of the
brain-behavior relations.

Results

Thirty-seven participants performed an instrumental learning
choice task (Figure 1A) while undergoing 7 T BOLD-fMRI.
They made repeated decisions between two abstract choice
symbols, each followed by choice-dependent probabilistic
rewards, which they used to inform subsequent choices. In
total, each participant made 342 decisions. Prior to each
decision, participants were instructed to emphasise either
response speed or response accuracy. The behavioral data,
consisting of response times and choices, were modeled with
the reinforcement learning-advantage racing diffusion (RL-
ARD) model (7). This model proposes that decisions are
formed through an evidence-accumulation process, where the
rate of accumulation depends on the sum of an urgency signal
and the internal representations of the value of each choice
option (Figure 2A). The values of choice options are learned
via a standard delta rule (64). The effect of the speed and
accuracy instructions were modeled by allowing both the
urgency and threshold parameters to vary with instructions,
in line with previous work (7). Threshold refers to the overall
amount of evidence that participants require to inform their
decisions, whereas urgency refers to how participants become
less patient as within a trial as time passes. In previous work
(7), we demonstrated favorable parameter recovery properties
with this exact paradigm (see their Figure 7-figure supplement
3).

We used mixed effects models (MEMs) to confirm the
difficulty (defined as the difference in pay-off between the
choice options) and speed-accuracy trade-off (SAT) manipu-
lations had the intended effects on behavior. In the MEMs,
fixed effects of difficulty, SAT, and their interaction were
estimated, as well as random effects of difficulty and SAT. A
linear MEM indicated a significant fixed effect of the SAT cues
on RT (t(66.49) = −10.413, p < 0.001), but not of difficulty
nor an interaction. A generalized MEM demonstrated an
interaction between SAT cue and difficulty on choice accuracy
(z = −2.576, p = .01), as well as a main effect of SAT cue
(z = 6.04, p < .001), with larger SAT effects on accuracy in
the easy trials compared to the hard trials (1C). Moreover,
the RL-ARD provided a generally adequate account of the
behavioral data, capturing the learning-dependent increase
in accuracy, decrease in response time, and the differences
in RT and choice accuracy between the speed-emphasised
and accuracy-emphasised trials (Figure 1B-C). Note that
there was some misfit in of the RTs in the early trials, which
replicates an earlier finding with the same paradigm and
model (7).

To ensure that the SAT manipulation did not affect
reward prediction error processing, we fit a second RL-ARD
specification that allowed learning rates to differ between SPD
and ACC trials. The estimated learning rates (Figure 1D)
show large overlap, and formal model comparisons suggested
that an RL-ARD with a single learning rate provided a
better trade-off between fit and model complexity (BPIC
difference = 66 in favor of the simpler model; see Table
S4 for participant-wise BPIC values of both models). In
supporting information, we performed a simulation study
which demonstrated that our sample size, trial numbers, and
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fitting methods would favor a two-learning rate model if a
true learning rate difference were 0.05 or larger. We also
tested whether there was any between-cue difference in the
effect of reward prediction error on the subsequent trial’s RT
(i.e., post reward prediction error slowing). A linear MEM
showed evidence for a main effect of RPE on subsequent RT
(t(37.12) = 2.592, p = .014), as well as a main effect of the
previous trial’s cue (t(37.86) = −3.542, p = .001), but no
interaction between RPEs and SAT condition (t(44.87) =
−0.386, p = 0.701; Figure 1E). Combined, the behavioral
data and RL-ARDs suggest that the manipulations had the
intended effects and the RL-ARD with a single learning rate
provided an sufficient account of the behavioral data.

In a separate session, participants underwent high-
resolution quantitative MRI scans that allowed us to de-
rive multimodal anatomical data (T1 maps, T2* maps,
and quantitative susceptibility maps), which were used
to delineate 17 subcortical regions of interest using the
multi-contrast anatomical subcortical structure parcellation
(MASSP) algorithm at the individual level (63). The masks
of the gray matter structures — the amygdala (Amg),
claustrum (Cl), globus pallidus interna (GPi) and externa
(GPe), periaqueductal gray (PAG), pedunculopontine nucleus
(PPN), red nucleus (RN) substantia nigra (SN), subthalamic
nucleus (STN), striatum (Str), thalamus (Tha), and ventral
tegmental area (VTA) — were subsequently used to extract
timecourses of the signal from the fMRI data. Figure 4A
provides an overview of these ROIs.

These neural fMRI timecourses were modeled with a
general linear model (GLM; Figure 2E) which, next to a set of
nuisance regressors (see Methods), included cues (speed and
accuracy), stimulus value differences, and reward prediction
errors, as regressors of interest. The latter two regressors
were derived from the RL-ARD model, and vary across trials
within participants. We estimated their mean effect on the
group level (Figure 2C). We also estimated the correlations
between the speed–accuracy contrasts in the neural models
(one per region of interest) and speed–accuracy difference
between the urgency and threshold differences as derived
from the RL-ARD (Figure 2D). Combined, this resulted in
three brain-behavior relations per region of interest that were
jointly informed and reciprocally constrained by the two
modalities of data.

The resulting joint model is visualised in Figure 4. Figure
4B shows the inter-individual correlations between strategic
adjustments in choice behavior (urgency and threshold) and
the BOLD responses in the subcortical regions (see Table
S1). Although the thresholds were overall higher in the ACC
condition than in the SPD condition, the joint models revealed
across-participant correlations between urgency and neural
responses bilaterally in the Str and VTA, left Cl, and right
RN and Tha. Next, we turned to brain-behavior relations of
value learning. The PPN and SN showed relations with value
differences, as well as the left PAG (Figure 4C). The joint
model further indicated reward prediction error processing
in the Amg, Cl, GPe, and Str (Figure 4D). Interestingly,
we found no evidence for involvement of the VTA or SN in
reward prediction error coding; if anything, results indicated
a negative association between reward prediction errors and
neural activity in the right SN.

A

B

C Manipulations D Learning rates

E Post−RPE slowing

0.
4

0.
6

0.
8

Trial bin

Accuracy

AC
C

0.
4

0.
7

1.
0

Trial bin

Correct RTs

RT
 (s

)

Trial bin

Error RTs

2 6 10
0.

4
0.

6
0.

8
Trial bin

SP
D

2 4 6 8 10

0.
4

0.
7

1.
0

Trial bin

RT
 (s

)

2 4 6 8 10
Trial bin

0.
55

0.
65

Difficulty

RT
 (s

)

Hard Easy

0.
50

0.
65

0.
80

Difficulty

Ac
cu

ra
cy

Hard Easy

−1.0 −0.5 0.0 0.5 1.0

0.
4

0.
8

RPE (previous trial)

RT
 (s

)

SPD
ACC

0.00 0.10 0.20 0.30

0
10

20
30

Learning rate

De
ns

ity

Single
SPD
ACC

Outcome: 100

Reward: 100

Outcome: 100

Reward: 0
Too slow!

Outcome: 0

Reward: 0
Too slow!

Outcome: 0

Reward: 0
SPD

ACC

Fix
2-4 s

Cue
1 s

Stimuli
1.5 s

Fix
2 s

Fix
0-2 s

Feedback
1 s

8.28 s (6 TRs)

Fig. 1. A. Experimental paradigm. Each trial started with a fixation cross, followed by
the speed–accuracy trade-off (SAT) cue (‘SPD’ or ‘ACC’), another fixation cross, the
stimuli representing choice options, another fixation cross, and feedback. Feedback
depended both on the response time (in time or too slow) and on the outcome of the
probabilistic gamble (0 or 100 points). Rewards were only given if the response was
in time. Durations of the fixation crosses were jittered to decorrelate event timing. B.
Data (black) and model fit (green) of the RL-ARD model in the accuracy (top) and
speed (bottom) condition. Left column depicts accuracy over trials across the run.
To visualize the learning effects, all trials were binned into 10 bins (approximately 17
trials per bin), and summary statistics were calculated per bin. Middle and right panel
show 10th, 50th, and 90th RT percentiles for the correct (middle) and error (right)
response over trial bins. Shaded areas correspond to the 95% credible interval of
the model fit. C. Effects of the difficulty (x-axis) and SAT manipulations (orange =
ACC, blue = SPD) on mean RT (top) and accuracy (bottom). Points are data, error
bars the 95% credible interval of the model. Difficulty is defined as the difference in
pay-off probability between the two choice options (smaller is harder). D. Estimated
(posterior) learning rates for an RL-EAM with a single learning rate (black), and an
RL-EAM with separate learning rates for SPD and ACC trials. E. Effect of reward
prediction error (RPE) size on subsequent RT. Individual shaded crosses are trials,
lines indicate linear mixed effects model predictions of the fixed effects of RPE size
per previous trial’s cue type.
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Fig. 2. Overview of joint modeling approach. The behav-
ioral model (A) is informed by the RT and choice data
(B; see Figure 1B for detail on the visualisation of the
behavioral data). The trial-by-trial differences in Q-values
and prediction errors are fed forward to the design matrix
of the GLM (E). The GLM is informed by the neural data
(F). Mutual constraint between the two modalities of data
is enabled by the joint structure that uses a multivariate
normal distribution at the group level. This is described
by a group-level mean (C) and correlation matrix (D). All
behavioral and neural parameters are estimated simulta-
neously on the group level and participant level. Brain-
behavior associations of reward prediction errors and value
differences are characterised with group-level means, while
brain-behavior associations between speed-accuracy trade-
off behavior and neural responses are estimated as inter-
individual correlations. The correlation matrix is divided into
behavior-behavior correlations (blue rectangle), brain-brain
correlations (green), and brain-behavior correlations (red).
For visualisation purposes, only a subset of the parameters
are shown.

To investigate this further, we fit another joint model that
used an RL-ARD with two separate learning rates for SPD
and ACC trials. We reasoned that, although the behavioral
evidence indicated no evidence for separate learning rates,
the neural data might be more sensitive to such a difference.
Hence, in the GLMs, we estimated separate parameters for
the modulatory effect of RPEs on BOLD responses for the
SPD and ACC trials. In Figure S3, we show the effect of
RPE on BOLD responses in the MASSP ROIs, which lead to
the same overall conclusions as the joint model that assumed
no difference between SPD and ACC trials in learning rates
or RPE processing.

The results so far indicated involvement of the Tha (as a
single region covering all nuclei) in the speed-accuracy trade-
off. In a second joint model, we zoomed in on the individual
thalamic nuclei using a thalamus atlas (65). Here, we focused
only on regions larger than 150 mm3 in both hemispheres:
the anteroventral (AV), centromedian (CM), lateral posterior
(LP), mediodorsal (MD), pulvinar, ventral anterior (VA),
ventral lateral (VL), and the ventral posterolateral (VPL)
nucleus. In the atlas, the MD is split into a lateral and
medial part (MDl, MDm), the pulvinar in an anterior, inferior,
lateral, and medial part (PuA, PuI, PuL, PuM), and the VL
in an anterior and posterior part (VLa, VLp). Figure 5A
illustrates the ROIs that were included. The joint model
based on thalamic nuclei highlighted that the brain-behavior
correlations with speed-accuracy trade-off settings were found
bilaterally within the AV, CM, MDm, PuA and PuM, as well
as in the right LP, VLa, and VLp (Figure 5B, see Table S2).
Again, these correlations are with urgency, and appear to
dominate in the right hemisphere. In the thalamic regions,
we found evidence for a relation with value difference only in
the right VPL (Figure 5C). Evidence for reward prediction
error processing was found in the CM, PuI, and VPL (Figure
5D).

In a third and final joint model, we zoomed in on the
striatum. Unlike the thalamus, the human striatum is a
relatively homogeneous structure, without clear internal cy-
toarchitectural or immunohistochemical boundaries between
the dorsal and ventral striatum (e.g., 66). However, it has
long been argued to be functionally specialised in multiple

zones (e.g., 67), with distinct afferent projections (66, 68).
Here, we used the recently developed second iteration of
MASSP (69) to delineate the striatum into three separate
parts: the nucleus accumbens (nAcc), putamen (Pu∗), and
caudate (Cau) (Figure 6A). We would like to point out that
the nAcc in MASSP was delineated using a perpendicular
line at the base of the internal capsule, which may result
in the inclusion of an area that is not fully restricted to
the nAcc. This approximation of the border of the nAcc
is required, since visualisation of the border can only be
achieved using post mortem histology. The joint model fit to
the timeseries of these subregions is shown in Figure 6B-D
(see Table S3) for numerical estimates). The brain-behavior
association relating to speed-accuracy trade-off settings was
strongest in the dorsal striatum (Pu and Cau), and only
credible in the right (but not left) nAcc. As expected, reward
prediction error processing was clearest in the nAcc, but also
detectable in both the Pu and the Cau (Figure 6C). A positive
association between the size of the BOLD responses and the
size of value differences was found in the Pu, and interestingly,
a negative association in the Cau (and no association in the
nAcc) (Figure 6D).

Finally, we confirmed empirically that joint models
provided more statistical power compared to a two-stage
approach. To demonstrate the two-stage approach, we first
estimated the behavioral model. Based on the median of
the posterior parameters and the experimental paradigm,
we generated trial-by-trial stimulus and reward prediction
error values, which were used to generate design matrices
for the neural GLMs. We then estimated the neural GLMs
as well. In a second stage, we fit a multivariate Gaussian
distribution on the subject-level median behavioral and
neural parameters, using a Bayesian estimation routine.
This way, we still estimate a distribution of correlation
coefficients, but not jointly with the neural and behavioral
models. Figure 3 compares the two-stage brain-behavior
correlation distributions with the joint model correlation
distributions for the five ROIs with largest correlations in

∗Note that both the thalamic atlas and the second iteration of MASSP include ’Pu’ as an abbreviation;
the former referring to the Pulvinar, the latter to the Putamen. In this manuscript, Pu refers to the
Putamen, and PuA, PuI, PuL and PuM to the various Pulvinar regions.
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Fig. 3. Comparison of two-stage (TS, red) posterior correlation coefficients (between
the behavioral and neural SAT effects) with joint (Ω, black) posterior correlation
coefficients for five MASSP ROIs. Vertical dotted lines indicate correlations of 0.
Correlation coefficients in the legend indicate the median of the distributions.

Figure 4. This demonstrates clearly attenuated effect sizes in
the two-stage approach, with approximately 20%-40% smaller
median correlation coefficients in the latter case.

Discussion

In this study, we use joint models to understand the brain-
behavior relations between subcortical regions and decision-
making and learning. With tailored methods, including
ultra-high field 7 T fMRI, decision making and instrumental
learning were jointly studied in a single paradigm and cor-
responding cognitive model, in a Bayesian hierarchical joint
modeling framework in which brain-behavior relationships
were reciprocally informed by all modalities of data. The
resulting joint models revealed that the Str (and particularly
the dorsal Str) was involved in choice strategy settings;
however, contrary to previous reports, they demonstrated a
relation with urgency, rather than response caution. Next,
they revealed value-related processing, but not reward
prediction error processing, in the substantia nigra. Finally,
within the Str, value-related processing was demonstrated to
show BOLD responses with opposite polarities in the caudate
and putamen.

Our results indicate that subcortical regions may con-
tribute to strategic control of choice behavior through urgency,
rather than response caution settings, which has been argued
previously (70, 71). At the group level, thresholds were
higher in ACC trials compared to SPD trials, as is commonly
found. However, the effect of the manipulation on urgency,
not threshold, covaried with neural signals. In part, this
may arise from the use of the RL-ARD, which is able to
dissociate urgency from response caution adjustments, which
themselves correlate (e.g., Figure 4). The implication of
urgency adjustments corroborates earlier studies based on
neural recordings the basal ganglia in monkeys (19, 72), as
well as fMRI evidence using an expanded judgment task (73).
The dominance of the right hemisphere in these relations is
consistent with previous studies (70, 71, 73), and may be
related to the right-lateralised response inhibition networks
(74–76).

While our model-based approach is able to dissociate
between urgency and threshold, the concept of urgency itself
is not singular, as multiple cognitive processes may contribute
to or correlate with urgency signals. Understanding these
processes may help explain why we found urgency-related
signals in so many different regions. For one, urgency is known
to be related to arousal (77). In Supporting Information (Fig

S4), we tested whether the SPD cues had a different effect
compared to ACC cues on heart rate variability and respi-
ratory volume per time (as potential correlates of arousal),
but found no evidence for any difference. However, subtle
arousal-related differences could have remained undetected.
Future studies could include pupillometry (78) to test whether
the identified urgency signals reflect pupil-link arousal in
relevant subcortical areas. For example, the CM plays an
important role in modulating arousal (79) (and covaries with
reward prediction errors; 80, 81). Second, the MD has been
implicated in various types of memory processing, including
object-reward association memory (e.g. 82–86). The role of
the MD may be to prepare the memory processes required for
the subsequent value-based decision, and such preparations
could start earlier under speed stress. Some evidence also
suggests a role for the AV in modulating cortical plasticity and
memory formation (87). The involvement of the RN and VTA
in urgency has, to our knowledge, not been demonstrated
before, but may be related to earlier studies that demonstrate
these regions’ involvement in conflict resolution, which is
potentially caused by the conflicting instructions of the speed
and accuracy requirements (60, 88). Third, urgency may
cause attentional processes as well. In earlier behavioral
work, we tested for effects of SAT cues on attention in
this paradigm (7), but model comparisons preferred models
without attention effects. It might be that the effects of
attentional processes on behavior were too subtle to be picked
up, but their effects on the present neural data are more
marked. Fourth, it has recently been proposed that people’s
decision processes in accuracy-emphasised trials contain one
additional phase of cognitive processing compared to speed-
emphasised trials, suggesting that there may be qualitatively
different decision processes in speed and accuracy trials
(89). Additionally, as noted in the introduction, evidence
accumulation signals have been found in a wide variety or
cortical and subcortical regions before (19–38). The discovery
of brain regions that correlated with urgency settings, and
their function, can help us theorise about potential confounds
of urgency that are difficult to derive based on behavioral
studies alone. Model-based analyses should be combined with
clever experimental design and manipulations to disentangle
the influences of various confounding factors to estimated
brain-behavior relations.

Our results further indicated value-related processing in
the Str, but with opposite polarities in the Cau compared to
the Pu. This striking result might reflect a gradient of func-
tional specialisation related to value differences. Alternatively,
recent research has shown that neural activity in the dorsal
Str can elicit vasoconstriction and negative BOLD responses,
implying that our finding of negative BOLD responses could
nonetheless indicate increased neural activity (90). Note
that value differences, in the present design, are confounded
by other factors, which importantly includes difficulty: A
choice based on two stimuli which differ in their value is
easier compared to stimuli with similar values. Additional
confounding factors include salience and arousal effects (see
also 91). Disentangling the influence of these factors requires
specific experimental designs in future studies.

We further found various subcortical regions in which
BOLD responses covaried with reward prediction error
sizes. While amygdalar and striatal involvement in reward
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Fig. 5. Joint model fit to the thalamus ROIs. A. Illustration of the ROIs, viewed from the front-left (top) and bottom (bottom). Meshes were generated by first warping all
individual-level delineations to MNI-space, and subsequently running the marching cube algorithm on the across-participant mean in MNI-space. For comparison, the MASSP
delineation of the thalamus is illustrated in transparent white. B. Group-level correlation matrix, which is split into behavior-behavior relations (outlined by a blue rectangle),
brain-brain relations (red), and brain-behavior relations (green). Subregions belonging to the same nuclei are clustered along the diagonal with black squares. Only credible
correlations are shown; non-credible correlations are displayed as empty squares. Relations are considered credible when the 95% credible interval of the correlation coefficient
does not cover 0. All parameters are related to the speed-accuracy trade-off contrast: Its effect on urgency (u), threshold (B), and the BOLD contrast in the ROIs. C and D.
Group-level estimates of within-participant brain-behavior relations of value learning and reward prediction errors. Barplots show the percentage signal change per unit change
in value difference (C) and reward prediction errors (D), for each region of interest. Green and orange bars depict the left and right hemisphere, respectively. Error bars indicate
95% credible intervals.

6 — www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Miletić et al.
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prediction error coding are well-documented (e.g. 80, 81),
the Cl and GPe received less attention in the literature.
Recently, electrophysiological recordings in rodents identified
a neural subpopulation encoding reward prediction errors
in the GPe (92). To some extent, these may arise also
from covariates, such as perceived saliency (93, 94). The
Cl involvement might indicate a functional role similar to
the Amg in terms of arousal and salience detection (95). It
is becoming increasingly clear that dopamine signals can be
detected in a wider range of behaviors than classical reward
prediction errors, and can also signal sensory and motor
features (for review, 43). Under the generalised prediction
error framework (96), they are argued to also indicate errors
in the sensory world model, and are used to improve the
world model. Consequently, a wide set of brain regions are
likely involved in the processing of these predictions errors.

Contrary to some previous reports, we did not find
evidence for dopaminergic midbrain involvement in reward
prediction error encoding. A long history of animal recordings
has implicated especially the VTA in reward prediction error
processing (e.g. 39–42, 97), which has partially been sup-
ported in humans using fMRI (98–102), but not consistently
(see 103, for a meta-analysis). A variety of factors has been
argued to contribute to this discrepancy, including variability
in the anatomical masks (102) and limited statistical power,
as detailed in the introduction section. On the contrary, in

the present study, the joint models were sufficiently powerful
to identify value-related processing in the SN. Perhaps
the discrepancy between the electrophysiology and BOLD
findings is the result of a much more fundamental difference
in methodology: While electrophysiology suggests reward
prediction errors in the dopaminergic midbrain are encoded
in spiking activity, BOLD responses have long been argued
to correlate more strongly with synaptic activity (104–106),
which could indicate local processing as well as input to
a region. It has often been argued, for example, that the
striatal BOLD responses are a result of dopamine release
caused by dopaminergic midbrain neural spiking (107, 108).
Intriguingly, since reward prediction errors are defined as the
difference between obtained and expected reward, a region
that calculates prediction errors needs expected reward (or
value) as an input. This may explain why the SN BOLD
responses were sensitive to value processing, but not reward
prediction errors.

Subcortical regions play a prominent role in neurological
disorders including Parkinson’s disease (109) as well as
psychiatric disorders like drug addiction (110) and social
anxiety disorder (111–113). Parkinson’s disease, for example,
is associated with a specific loss of dopaminergic cells in
the substantia nigra. Our results indicate a role for the
substantia nigra in value processing. Earlier work suggests
that the loss of dopaminergic cells in PD can lead to an
increased propensity to learn from positive compared to
negative outcomes, which can be reversed with dopaminergic
medication (114). Learning biases are also crucial in
addiction (115) and anxiety (e.g., 116, 117). Abnormal value
computation may lead to an over-reliance on positive or
negative outcomes. Task paradigms that disentangle reward
and punishment learning can be used in future applications
to test whether maladaptive value computation in disorders
is associated with BOLD responses in the substantia nigra.
Additionally, many of the subcortical regions we studied are
(potential) targets for deep brain stimulation (DBS) in a
variety of neurological and psychiatric disorders (e.g., 118).
Other regions are also of potential interest, including the
bed nucleus of the stria terminalis as a potential target for
obsessive-compulsive disorder and the lateral habenula for
major depression. Joint modeling approaches with specialised
task designs can also be used to further understand these
regions’ functions in health and disease, especially in light of
their ability to capture interindividual differences.

Especially in the context of translation to the clinic, it is
important to consider the emotional and social components in
tasks and models. In our current approach, we only relied on
cognitive processes such as evidence accumulation and reward
learning, but disorders such as social anxiety and autism
include social and affective components, which can manifest
as altered processing of social rewards (119). Combined with
more complex paradigms, RL-EAMs and joint models can
be further extended to better understand the brain-behavior
relations in such disorders.

Despite a generally good fit of the RL-ARD, some
misfit remains in the first trials. Factors such as increased
uncertainty (120) could cause the relatively slow responses
in the initial trials of each block. Additionally, it could
be that the additional time participants take in the initial
trials (relative to model predictions) reflect extra cognitive
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processes involved in interpreting the abstract stimuli and
forming memory traces. These memory traces are likely
necessary for stimulus identification in later trials, where RTs
are primarily governed by evidence accumulation based on Q-
values. This hypothesis can be tested in a future experiment
where the same stimulus sets are used across multiple blocks
with new reward contingencies. The additional time should
then be observed only in the first block in which a stimulus
appears. It would then also be possible to assess whether
the observed RT increase is better explained by heightened
response caution or by an increase in non-decision time.

In conclusion, this study revealed various human sub-
cortical underpinnings of decision making and learning.
It uncovered new brain-behavior relations (e.g., thalamic
nuclei in urgency settings, GPe in reward prediction error
processing), and refined previous work (e.g., functionally
specialised zones along the anterior-posterior axis of the Str
in value processing). It also demonstrates feasibility and
value of the combination of joint modeling and tailored fMRI
methods in progressing our understanding of the human
subcortex in cognitive processes.

Materials and Methods

Participants. Thirty-seven healthy volunteers (mean age 27 years
old [SD 6 years, range 19–39 years old], 20 females) were recruited
via local advertisement. The study was approved by the Ethics
Review Board of the Faculty of Social and Behavioral Sciences of
the University of Amsterdam (reference: 2021-BC-13146) and the
Regional Committees for Medical and Health Related Research
Ethics of Central Norway (reference: 116630). All participants
gave written informed consent prior to the onset of the study. All
participants were screened for MRI safety, had normal or corrected-
to-normal vision, and no history of psychiatric and neurological
illness. All participants participated in five scanning sessions as
part of a larger project; here, we report and analyse two of these
sessions.

Paradigm. The experimental paradigm made use of an instrumental
learning task (114) with a cue-based speed–accuracy trade-off
manipulation (7, see Figure 1). In every trial of the task, the
participants made a decision between two abstract symbols, each
associated with a fixed reward probability that is unknown to the
participants. One choice option always had a higher probability
of being rewarded than the alternative option. The participants
received feedback in the form of points after each choice, which
the participants can use to learn which symbols have the highest
reward probabilities.

Prior to each trial, the participants were presented with a cue
to instruct them to emphasise either response speed (‘SPD’) or
accuracy (‘ACC’) on the upcoming trial. Speed and accuracy cues
were randomly interleaved. On speed trials, participants had to
respond within 700 ms to be eligible for a reward; on accuracy
trials, participants had to respond within 1.5 s. After each choice,
participants received two types of feedback: Firstly, the outcome of
the choice (+0 or +100 points), and secondly, the actually obtained
reward. If the participants responded in time (1.5 s in ‘ACC’ trials,
0.7 s in ‘SPD’ trials), their reward was equal to the outcome of the
choice. If they responded too late, the participants were penalised
with −100 points, irrespective of the outcome of the choice. The
presentation of both the outcome of the choice and the actual
reward allowed participants to both learn from the outcome of
their choice as well as from their response timing.

In total, participants performed 342 trials divided over three
runs. Each trial took 8.28 s (corresponding to 6 volumes; see below).
Each run consisted of 3 new stimuli sets, that differed in their
reward probabilities (80%/20%, 70%/30%, 60%/40%, respectively,
for the three stimuli sets within each block) and therefore difficulty.
Event timing was jittered to decorrelate the BOLD response design

matrix, by pseudo-randomly sampling the duration of each fixation
cross from 0.5 s, 1 s, 1.5 s and 2 s. Additionally, 10% null trials
were included, during which the screen remained empty for 8.28 s.

Mixed effects models. We first tested for the effects of the SAT
and difficulty manipulations on RT and accuracy using mixed
effects models (e.g., 121). Linear models were used for RT, and
generalised models with a binomial distribution for accuracy. In
both models, difficulty (continuous) and cue (SAT, two levels) were
included as both random and fixed effects. Their interaction was
included as a fixed, but not random effect, since the maximal model
did not converge. Degrees of freedom for the linear mixed effects
model were estimated using Satterthwaite’s method. We used the
implementation in R packages ‘lme4‘ and ‘lmerTest‘ (122, 123).

Cognitive model specification. The behavioral data were modeled
with the reinforcement learning advantage racing diffusion (RL-
ARD) model (7), which is an instance of the broader class of
combined reinforcement learning evidence accumulation models
(RL-EAMs; 6). The RL-ARD conceptualises decision making
as a race between accumulators, each accumulating evidence for
one choice option. The first accumulator to reach a common
threshold-level of evidence a triggers the motor processes that
execute the decision. The time to respond equals the time to reach
the threshold, plus an intercept t0 that corresponds to the time
required for early perception encoding and response execution.

In the RL-ARD, each accumulator accumulates the advantage
of one choice option over another option. Specifically, the rate
of evidence accumulation (the drift rate v) of each accumulator
depends on three terms: an evidence-independent base rate u
(urgency); the advantage of one choice option of the other option,
weighted by free parameter wd; and the total amount of evidence,
weighted by free parameters ws. ‘Evidence’ in this model is based
on Q-values, which represent the participant’s internal belief about
how rewarding each choice option is. For two-choice tasks such as
in the present study, the drift rates for the two accumulators are:

v1−2 = u + wd(Q1 − Q2) + ws(Q1 + Q2)
v2−1 = u + wd(Q2 − Q1) + ws(Q1 + Q2)

[1]

where Qi is the Q-value for choice alternative i, which are updated
after every trial according to a simple delta rule:

Qi,t+1 = Qi,t + α(r − Qi,t) [2]
where t is the trial number, r is the obtained reward (in this specific
experimental paradigm, the ‘outcome’), and α a free parameter
known as the learning rate.

To model the effect of the SAT manipulation, we allowed both
the V0 and a parameters to vary freely between the speed and
accuracy conditions, based on our earlier work (7).

In total, the RL-ARD has eight free parameters: two evidence-
independent base rate uacc and uspd, weights on the difference
and sum of the evidence wd and ws, non-decision time t0, learning
rate α, and two thresholds aspd and aacc. Instead of estimating a
u parameter for each condition separately, we estimated the across-
condition mean u and difference uspd−acc parameters (hence,
uspd = u + uspd−acc and uacc = u − uspc−acc), and similarly,
we estimated an across-condition mean a and difference aspd−acc

parameter. The direct estimation of the between-condition
differences in these parameters facilitates estimation of covariance
with neural model parameters, which are detailed below.

MRI data acquisition. In multiple sessions, participants were scanned
in a MAGNETOM ‘Terra’ 7 T MRI system (Siemens Healthineers,
Germany) with a 32-channel phased array head coil (Nova Medical
Inc, USA). The first session contained two anatomical scans: A
multi-echo gradient recalled echo (GRE) and an MP2RAGE, both
at 0.75 mm isotropic resolution. For the MP2RAGE, we used the
following parameters: repetition time (TR) = 4.3 s, inversion times
(TI1,2) = 840 ms and 2370 ms, flip angles (FA1,2) = 5◦ and 6◦, echo
time (TE) = 1.99 ms, field of view (FOV) = 240 × 240 × 168 mm,
bandwidth = 250 Hz/px. For the GRE, the following parameters
were used: TR = 31.0 ms, TE1-4 = 2.51, 7.22, 14.44 and 23.23 ms,
FA = 12◦, FOV = 240 × 240 × 168 mm. In the remainder of this
anatomical session, resting state data was collected that is not of
interest for the current study.
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The second session contained three functional runs with
the task paradigm. A single echo echo planar imag-
ing (EPI) sequence was used designed by the CMRR
(https://www.cmrr.umn.edu/multiband/), with parameters based
on our previous studies (48, 124) to tailor the sequence for the
subcortex: 1.5 mm isotropic resolution, TE 14 ms, TR 1.38 s,
partial Fourier 6/8, in-plane acceleration (GRAPPA) 3, multi-
band 2, bandwidth 1446 Hz/px, phase encoding direction A>P,
FOV = 192 × 192 × 132 mm. In contrast to our previous work,
we included a multiband factor of 2 in the protocol. Pilot testing
indicated that on this MRI system, the increase in statistical power
obtained through the increase in number of volumes (due to the
lower TR with multiband acquisition) outweighed the loss in SNR
(even in subcortical areas) for statistical testing purposes.

Each run consisted of 754 volumes (17 minutes 56 seconds).
Immediately after each run, we collected 5 volumes of the same
protocol with opposite phase encoding direction (P>A), which was
used for susceptibility distortion correction purposes. Finally, at
the end of the functional session, a low-resolution 1 mm MP2RAGE
scan was acquired for co-registration purposes, using the same
parameters as in the anatomical session.

During functional runs, physiological data on the participant’s
heart rate and respiration were acquired using a photoplethys-
mograph (with sampling frequency 200 Hz) and respiratory belt
(with sampling frequency 50 Hz), respectively. In six runs (two in
one participant, one in another participant, and three in a third
participant), recording of physiological data failed due to technical
reasons.

Anatomical masks. We used the multi-contrast anatomical sub-
cortical structure parcellation (MASSP) algorithm (63) to obtain
participant-specific anatomical masks of 17 subcortical structures.
MASSP relies on multiple contrasts; here, we used quantified
susceptibility (QSM) values, the longitudinal relaxation rates (R1),
and effective transverse relaxation rates (R2*). R1 values were
computed based on the MP2RAGE data using a look-up table
(125). R2* values were computed by least squares fitting of a
mono-exponential decay function to the four echoes of the GRE
data. QSM values were obtained using the phase maps of the last
three echoes of the GRE data (126) with TGV-QSM (127). In both
cases, LCPCA denoising (128) was performed beforehand on the 8
images of the GRE (4 magnitude and 4 phase). Prior to estimating
R2* and QSM, the GRE data were brought into MP2RAGE-space
by co-registration of the first GRE echo (magnitude image) to the
second inversion of the MP2RAGE, using a rigid transformation
in ANTs.

The MASSP algorithm combines shape, location, and R1,
R2*, QSM value priors to delineate the following 17 subcortical
structures in an individual’s data: Amygdala (Amg), claustrum
(Cl), fornix (fx), the external and internal segments of the
globus pallidus (GPe, GPi), internal capsule (ic), periaqueductal
grey (PAG), pedunculopontine nucleus (PPN), red nucleus (RN),
substantia nigra (SN), subthalamic nucleus (STN), striatum (Str),
thalamus (Tha), ventral tegmental area (VTA), and the lateral,
third, and fourth ventricles (LV, 3V, 4V). For all regions except fx,
3V and 4V, separate masks were obtained for both hemispheres.
Here, we only focus on the gray matter structures, and thus
excluded the internal capsule, fornix, and ventricles from the
ROI analyses below; totalling 12 ROIs bilaterally.

Like in (129), we trained the MASSP algorithm on renormalised
versions of the quantitative contrasts using a fuzzy C-means
clustering of intensities, and linearly interpolating between cluster
centroids. We also registered the data to the MASSP atlas
in two successive steps. These alterations compared to the
original MASSP implementation (63) led to small parcellation
improvements for some structures.

To segment the thalamus into individual nuclei, we used the
thalamic segmentation tool segmentThalamicNuclei.sh as part of
freesurfer 7.2.0. The segmentation applies a probabilistic atlas
that was built using a combination of in vivo and ex vivo data
(65). The segmentation is performed in subject space with the T1w
contrast after running the freesurfer pipeline (recon-all) as part of
fmriprep (see below). The tool outputs discrete segmentations at a
resolution of 0.5 mm, which were resampled to 1.5 mm resolution
with linear interpolation.

fMRI preprocessing. Results included in this manuscript come
from preprocessing performed using fMRIPrep 20.2.0 ((130, 131);
RRID:SCR 016216), which is based on Nipype 1.5.1 ((132, 133);
RRID:SCR 002502). For brevity in the main article, full details
are included in the Supporting Information.

Neural model specification: Whole-brain generalised linear models
(GLMs). The timeseries of the neural data were modeled using
GLMs. In these GLMs, we modeled each voxel’s timeseries y as:

y = β0 + βtrialxcue + βspd−accxcue,spd−acc+
βtrialxresponse + βleft−rightxleft−right+
βtrialxstimulus + β∆valuex∆value+
βtrialxfeedback + βRP ExRP E + e

e ∼ N (0, σ)

[3]

where every β is a parameter to be estimated, x are the timeseries of
the experiment events convolved with the canonical double-gamma
haemodynamic response function (HRF; 134), and σ the residual
variance. Note that we estimated a single βtrial parameter to
account for the shared effects of the presentations of cues, stimuli,
and feedback, as well as the effects of motor responses (e.g., the
effects of visual processing and overall motor preparation). In
experimental paradigm, the effects of these event types cannot be
disentangled from one another due to their rapid succession within
a trial. Note, however, that the contrasts of interest are orthogonal
to these events and can be estimated well.

Mirroring the cognitive model, we estimated a between-cue
difference for the BOLD responses relating to the cue. Specifically,
the regressor xcue,spd−acc was also modeled on the onset of the
cue but shows a negative deflection for ‘ACC’ cues and a positive
deflection for ‘SPD’ cues. As such, the corresponding βcue,spd−acc

reflects the difference in ‘SPD’ over ‘ACC’ cues. Similarly, the
βleft−right parameter reflects the BOLD-contrast resulting from
left compared to right motor responses. The corresponding
xleft−right regressor was modeled on the onsets of the button
presses.

The regressors xstimulus and x∆value relate to the stimulus
and stimulus value differences, respectively. The amplitude of the
stimulus value regressor varied parametrically across trials, with
the trial-by-trial amplitude determined based on the difference
in Q-values (internal value representations) as estimated by the
RL-ARD model. Similarly, the regressors xfeedback and xRP E

relate to the effects of the feedback and the reward prediction error,
respectively, which were simulated obtained from the RL-ARD.
Both the value difference and reward prediction error regressors
were demeaned per run, to orthogonalise them with respect to
the stimulus and feedback regressors. We included the temporal
derivatives of all task regressors (note that these are not shown
in Equation 3, but are included in Equation S1 in the Supporting
Information).

As control analyses, we first fit the GLM using a traditional
two-stage mass-univariate approach, where a GLM is fit per voxel.
In this approach, we first fit the RL-ARD to the behavioral data,
and extracted trial-by-trial regressors per subject by simulating
them from the RL-ARD model. Specifically, the model was used
to simulate the task paradigm for 100 times, each time with a
different set of RL-ARD parameters (randomly sampled from
the posterior distributions). On each trial of the simulation, the
difference in values of the two stimuli was calculated, and the
mean of the stimulus value differences at each trial across the
100 simulations was used to determine the regressor’s amplitude.
These stimulus value differences were then demeaned per run. The
trial-by-trial height of the parametrically varying reward prediction
error regressor was determined based on the same simulation of the
RL-ARD (except now using the reward prediction error instead of
the value differences), and this regressor was also demeaned per
run.

To model physiological noise, we included a set of 18 regressors
obtained using RETROICOR (135): 3th order phase Fourier
expansion of the heart rate signal, 4nd order phase expansion
of the respiration signal, and a 2nd order phase Fourier expansion
of the interaction between heart rate and respiration (136). Two
additional regressors were used to model heart rate variability
(HRV; 137), and respiratory volume per time unit (RVT; 138, 139).
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These physiological regressors were estimated using the PhysIO
toolbox (140) implemented in the TAPAS software package
(141). For six runs (one in a single participant, two in another
participant, and three in a third participant), collection of the
physiological data failed due to technical reasons. For these
runs, the first 20 aCompCor components (142) were instead
included in the design matrix. Additionally, for all participants 7
motion-related regressors were included (translation and rotation
in three dimensions, plus the framewise displacement), and a
set of discrete cosines to model low-frequency drifts. To model
residual physiological noise, we also included a regressor with the
mean signal within CSF, estimated by fMRIprep. Finally, we
included a nuisance regressor to model the effect of response times
using the RTDur approach (143). This regressor is generated by
convolving a boxcar function (starting at the onset of each stimulus,
with the response time on that trial as duration) with the same
haemodynamic response function as was used for the task-related
regressors.

Prior to fitting the whole-brain GLM, the data were minimally
smoothed using SUSAN (144, kernel size FWHM = 1.5 mm). Run-
level GLMs were estimated using FSL FEAT (145), and afterwards
the three run-level GLMs per participant were combined with a
fixed effects analysis. Group-level models were estimated using
FSL FLAME1+2 (146). For the speed - accuracy cue contrast,
the design matrix included both an intercept and two model-
based parametrically varying parameters: the between-condition
differences in the threshold parameter (speed - accuracy) and in the
urgency parameter, which were z-scored. All group-level statistical
parametric maps (SPMs) were corrected for the false discovery
rate with the Benjamini-Hochberg procedure (FDR; q < 0.05).
SPMs of the whole-brain results can be found in the Supporting
Information.

Joint models. The main analysis used joint models. In joint
models, the cognitive model (RL-ARD) and the neural model
(GLM) are estimated simultaneously (50, 54–57). Furthermore,
the joint models we employ assumed that the cognitive and neural
parameters are multivariate normally distributed across subjects:
θ, β ∼ MV N(δ, Σ). This assumption allows for estimation group-
level mean parameters δ as well as correlations between parameters
through the variance-covariance matrix Σ, and thereby allows
for estimating which cognitive processes correlate with BOLD
responses in which regions of interest (ROIs).

The variance-covariance matrix of a multivariate normal
grows quadratically with the number of cognitive and neural
parameters estimated. Therefore, we applied multiple restrictions
to the participant-level models to retain feasibility of parameter
estimation (147). Specifically, we made a distinction between
estimating parameters jointly (i.e., both the group-level mean and
the correlations between parameters of neural and cognitive models
across individual) or non-jointly in which the group-level mean
was estimated, but the no correlations were estimated.

Of the cognitive model, we estimated all parameters jointly.
Figures 4-6 focus on only the parameters related to the SAT
manipulation. Of the neural model, we estimated the βcue,spd−acc,
β∆value, and βRP E parameters of interest jointly, as well as the
βCSF and βRT nuisance parameters. We estimated only these
latter nuisance parameters jointly as we hypothesised these could
most strongly correlate with parameters of interest. All other
neural parameters (including the temporal derivatives and the
standard deviation of the errors) were estimated non-jointly.

Joint models were fit to neural data from the ROIs defined by
MASSP and by the thalamus atlas. To obtain the signal per ROI,
first, the mean timeseries within each ROI defined by MASSP
was extracted from the unsmoothed functional data. The mean
timeseries were rescaled to percent signal change, through division
by the mean signal, multiplying by 100 and subtracting 100. To
reduce the total number of parameters in the joint models, we first
filtered the timeseries and design matrix by least square regression
of the same set of confounds as used in the whole-brain GLMs
(except for the CSF and RT regressors, which were estimated in

the joint model), to reduce physiological noise and remove low-
frequency drifts from the signal.

Bayesian estimation. To allow for estimation of whole-brain general
linear models (GLM) of the neural data, we first fit the cognitive
model to the behavioral data only. All model estimations were
performed using a Bayesian particle Metropolis-within-Gibbs
(PMwG) sampler (148, 149). The PMwG sampler strictly adheres
to a hierarchical model in which group-level parameters and
participant-level parameters are estimated simultaneously. The
group level is modeled with a multivariate Gaussian distribution,
which is updated using Gibbs sampling. At the participant level,
chains are updated using a combination of particle sampling and
Metropolis-Hastings. We followed earlier work (149) by using four
sampling stages. The first, pre-burn stage, was used to approximate
the participant-level likelihood landscape for proposal distributions.
The burn stage was run until the mean Gelman’s diagnostic (150)
was below 1.1. The adaptation stage was used to collect samples
to generate a distribution that allows for efficient proposal samples
in the last stage, the sampling stage. This sampling stage was run
until convergence (assessed using Gelman’s diagnostics and visual
inspection of the chains). Samplers were run with three chains.

The priors on the group-level mean were Gaussian distributions.
The mean and standard deviation of these priors of the cognitive
model parameters were based on the posterior distributions
described in (7), which used the same task and model (experiment
2). The prior for u was set to N(2.5, 1), B to N(1.5, 1), t0 to
N(0.15, 1), wd to N(2.25, 1), ws to N(0.5, 1), and α to N(0.12, 1).
The t0, ws, and wd parameters were estimated on the log scale,
and α on the probit scale. The prior for the contrasts of interest,
Bspd−acc and uspd−acc, were set to N(−0.5, 1) and N(0.5, 1),
respectively (note that threshold and urgency should have opposite
signs to allow for faster responding under speed stress: thresholds
should decrease, but urgency should increase). Visual comparisons
confirmed that the posteriors were not strongly influenced by the
priors for the parameters of interest.

For the group-level (co-)variance matrix we used an inverse-
Gamma — inverse-Wishart mixture prior with 2 degrees of freedom
and a scale parameter of 0.3. These settings give rise to uniform
priors on the correlations (151), for parts of the group-level
covariance matrix that were allowed to covary.

To visualise the quality of model fit, we randomly sampled 100
parameter sets from the posterior distributions, and used these
to simulate the experimental design. These posterior predictive
distributions were then used to calculate the credible intervals
by taking the range between the 2.5% and 97.5% quantile of
the averages across participants for each behavioral measure (RT
quantiles and accuracy).

Next, we fit the joint models, in which we used the same priors
for the cognitive models, except we decreased the variance of the
group-level means to 0.7 for Bspd−acc and uspd−acc, and to 0.5 for
the other parameters. The priors for the neural parameters were
set to N(0, 0.1), except for the RT nuisance parameter, which was
set to N(0, 0.001). Note that the amplitude of the RT nuisance
regressor is much larger than the amplitudes of the other neural
regressors, due to its duration being modeled (as opposed to using
a stick function of 0.001 s). This also entails that the absolute
parameter estimates are much smaller, hence, we also used a
smaller variance for this parameter to stabilise estimation.

Joint models were implemented in a customised version of the
EMC2 software package for R (152). The analysis scripts and
data underlying this manuscript can be found at https://osf.io/pc5bm.
A practical tutorial on joint modelling in this framework can be
found in (153).
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