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Abstract
Spatial exploration is a complex behavior that can be used to gain information about developmental processes, personality 
traits, or mental disorders. Typically, this is done by analyzing movement throughout an unknown environment. However, in 
human research, until now there has been no overview on how to analyze movement trajectories with regard to exploration. 
In the current paper, we provide a discussion of the most common movement measures currently used in human research on 
spatial exploration, and suggest new indices to capture the efficiency of exploration. We additionally analyzed a large dataset 
(n = 409) of human participants exploring a novel virtual environment to investigate whether movement measures could be 
assigned to meaningful higher-order components. Hierarchical clustering of the different measures revealed three different 
components of exploration (exploratory behavior, spatial shape, and exploration efficiency) that in part replicate components 
of spatial exploratory behavior identified in animal studies. A validation of our analysis on a second dataset (n = 102) indicated 
that two of these clusters are stable across different contexts as well as participant samples. For the exploration efficiency 
cluster, our validation showed that it can be further differentiated into a goal-directed versus a general, area-directed com-
ponent. By also sharing data and code for our analyses, our results provide much-needed tools for the systematic analysis of 
human spatial exploration behavior.
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Introduction

Whenever humans find themselves in an unknown environ-
ment, they use exploration behavior to rapidly acquire infor-
mation about the new location (Meyer, 1998). Exploration 
relies on a multitude of cognitive processes, which among 
others entail memory, motivation, and executive processes 

such as goal selection and action planning (Düzel et al., 
2010; Gottlieb et al., 2013; Johnson et al., 2012; Petzke 
& Schomaker, 2022; Wolbers & Hegarty, 2010). Measures 
of exploration behavior have been shown to be sensitive 
to developmental changes both in childhood and in aging 
(Henderson et al., 1982; Mata et al., 2013; Schulz et al., 
2019; Thurman & Corbetta, 2017), as well as to gender dif-
ferences (Gagnon et al., 2016; Henderson et al., 1982; Mun-
ion et al., 2019). Several studies also observed that explora-
tion reflects individual differences in personality traits such 
as extraversion (Ai et al., 2019; Alessandretti, Lehmann, 
et al., 2018) or novelty seeking (Minassian et al., 2022). It 
may even aid in understanding disorders like autism (Forna-
sari et al., 2013; Pierce & Courchesne, 2001), schizophrenia 
(Perry et al., 2010), bipolar disorder (Henry et al., 2010; 
Young et al., 2007), and dementia (Batrancourt et al., 2019; 
Kearns et al., 2010, 2011).

In human studies, exploration behavior is typically meas-
ured using decision-making tasks, such as a multi-armed 
bandit task in which players need to explore several options 
in order to maximize their gains (Brändle et al., 2021; von 
Helversen et al., 2018). While these tasks are well suited to 

Judith Schomaker and Kerstin Krauel shared senior authorship.

 *	 Valentin Baumann 
	 valentin.baumann@med.ovgu.de

1	 Department of Child and Adolescent Psychiatry 
and Psychotherapy, University of Magdeburg, Leipziger 
Strasse 44, 39120 Magdeburg, Germany

2	 Faculty of Computer Science, University of Magdeburg, 
Leiden, Germany

3	 Institute of Psychology, Department of Health, Medical 
and Neuropsychology, Leiden University, Leiden, 
The Netherlands

4	 Leiden Institute for Brain and Cognition, Leiden, 
The Netherlands

5	 Center for Behavioral Brain Sciences, Magdeburg, Germany

http://crossmark.crossref.org/dialog/?doi=10.3758/s13428-024-02581-3&domain=pdf


	 Behavior Research Methods (2025) 57:6565  Page 2 of 18

observing exploratory behavior in decision-making, explo-
ration as seen from an evolutionary perspective takes place 
in a spatial context instead of an abstract space. This type 
of exploration is measured in spatial exploration paradigms 
and so far has been mostly investigated in animal studies. 
Here, the animal is usually exposed to an unknown environ-
ment, and exploration behavior is quantified by analyzing 
its movement trajectory during exploration (Belzung, 1999; 
Freund et al., 2013; Kalueff et al., 2007; Paulus & Geyer, 
1993; Paulus et al., 1990; Rosenberg et al., 2021).

Studies on human movement behavior often use real-
life observational data of everyday mobility (Alessandretti, 
Sapiezynski, et al., 2018; Bongiorno et al., 2021; Müller 
et al., 2022). However, such data might not be ideal for the 
investigation of exploration behavior, as people often move 
through familiar spaces (for example, the daily commute to 
workplaces or universities) rather than unknown environ-
ments. Experimental paradigms that focus specifically on 
exploration behavior therefore mostly use clearly defined 
real-life environments like single rooms, or mazes or virtual 
environments. In this type of study, there is large hetero-
geneity in terms of the kind of exploration behavior that is 
investigated. In the human literature, exploration is often 
linked to concepts like foraging, searching, wayfinding, 
or navigation (Reader, 2015; Wiener et al., 2009). These 
constructs relate to extrinsically motivated goal-directed 
exploratory behavior, which is often characterized through 
performance metrics like time-to-goal or by comparing 
observed trajectories to optimal routes. In contrast, methods 
for the characterization of free exploration are much scarcer. 
Free exploration has been defined as undirected, intrinsi-
cally motivated exploration behavior (Berlyne, 1960; Got-
tlieb et al., 2013; Hughes, 1997; Wiener et al., 2009). Since 
(in contrast to goal-directed exploration) it lacks obvious 
performance metrics, it is not trivial to quantify. While there 
is a large body of literature on measures of free exploration 
in animals, these measures have not yet been well defined 
for human research. In consequence, there is large hetero-
geneity in the selection of analysis techniques and outcome 
variables between studies, which makes both the comparison 
of different human studies and the translation of observa-
tions between the human and the animal field very difficult. 
To tackle this problem, we aim to provide a comprehensive 
summary of measures that can be used to characterize both 
goal-directed and free spatial exploration in humans.

Importantly, exploration trajectories represent a type of 
time series data. However, the spatial nature of movement 
trajectories implies that typical techniques for the analysis 
of time series data (Fulcher et al., 2013; Lubba et al., 2019) 
often fall short, since they usually focus on one dimension 
across time (e.g., voltage in an electrocardiogram). There-
fore, we first focused on measures that have already been 
used in the context of trajectory analysis and have been 

associated with a specific behavioral meaning. Crucially, 
this implies that we did not look at approaches that classify 
trajectories through machine learning methods (for exam-
ple, as shown in Bian et al., 2018, and Dubois et al., 2021). 
Second, we predominantly selected measures that have 
been used to analyze movement in the context of relatively 
enclosed spaces rather than completely open terrain (thus 
ignoring measures like the mean squared displacement or the 
straightness index, which carry less meaning if movement 
is confined). Furthermore, as many experiments on human 
exploration use virtual rather than real-life environments, 
we also decided to not incorporate measures based on move-
ment speed (as its meaning in virtual environments can be 
very arbitrary). Lastly, to ensure applicability across as many 
contexts and paradigms as possible (e.g., GPS data as well as 
data collected in virtual environments), we focused on meas-
ures that can be computed from two-dimensional trajecto-
ries (Fig. 1A). The collected measures are summarized in 
Table 1, with additional graphical representations in Fig. 1.

One approach towards the characterization of explora-
tion behavior is to measure the extent of exploration, either 
by how much an individual moves or how its movement is 
dispersed across an area (Fig. 1C and D). Another possibility 
is to quantify the tortuosity, or “crookedness,” of the trajec-
tory (Miller et al., 2011, Fig. 1E). Studies also often employ 
measures to assess the efficiency of exploration. While effi-
ciency is a concept mostly found in goal-directed wayfinding 
tasks, we can also translate this concept to free exploration. 
Doing this, we assume that, even for free exploration, there 
is a latent goal for exploration, which is to collect as much 
information about the environment as possible (Johnson 
et al., 2012). The most efficient way to reach this goal is 
to cover as much area as possible with as few recursions 
to already known areas as possible (Fig. 1F). Both virtual 
and real-life environments also usually include landmarks, 
such as buildings or objects. While exploration towards such 
points of interest is currently predominantly measured in 
studies of goal-directed exploration, we propose that intrin-
sic free exploration is shaped by the landmarks present in the 
environment as well. Therefore, we also include measures of 
landmark-oriented exploration here (Fig. 1B). More detail 
on each of the measures is presented in the supplementary 
information (SI, section A). Additionally, we provide Python 
code for their computation, since currently available public 
software packages for analysis of movement data like traja 
(Shenk et al., 2021) or trajr (McLean & Skowron Volponi, 
2018) are more focused on the analysis of movement data 
in general and lack some measures specifically designed to 
quantify exploration behavior (e.g., measures on area explo-
ration or efficiency).

Another problem caused by the lack of a systematic 
approach towards the quantification of exploration behavior 
is that it is currently unknown how the various measures of 
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exploration relate to each other and what facets of explora-
tory behavior they actually capture. This information is criti-
cal to enable informed decisions on how to interpret different 

measures of exploration behavior. In the animal literature, 
various studies have investigated this issue (Jähkel et al., 
2000; Markel’ et al., 1988; Paulus & Geyer, 1993; Paulus 

Fig. 1   Visualization of the different exploration measures proposed in 
the current article (all trajectories from the NEMO dataset). For each 
participant, the raw data give a two-dimensional trajectory (A). Land-
mark Visits and Landmark Revisits can be calculated by defining a 
regular area around the landmark coordinates (e.g., circles with 10-m 
radius, shown in blue), while area exploration can be represented as 
a heatmap showing the frequency of visits to each bin, which is used 

in the Area Covered (C) as well as the Roaming Entropy calcula-
tion (D). Tortuosity as measured by Fractal Dimension or Sinuosity 
increases the more a trajectory deviates from a straight line (E). The 
trajectory resampled to the flight scale reveals Turnarounds (F, turna-
rounds marked by gray circles), which have been suggested to repre-
sent less efficient exploration behavior
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et al., 1999; Tanaka et al., 2012). While there is consider-
able heterogeneity between studies regarding paradigms, 
analysis techniques, and measures used, we identified three 
main components of exploration that consistently emerged 
across these experiments. The first component, which we 
here call locomotor activity, includes measures that repre-
sent pure movement, like the total distance traveled (e.g., 
Path Length). The second component, which we here call 
exploratory activity, refers to measures of the spatial extent 
and the spatial variability of movement (i.e., Roaming 
Entropy). Third, a component which we here call spatial 
shape, includes measures like Fractal Dimension repre-
senting the spatial organization of the trajectory. To tackle 
this second problem, the current study aims to investigate 
whether these main components of exploration behavior can 
also be unveiled in human data.

We therefore investigated whether measures of human 
exploration behavior can be similarly clustered by analyzing 
a recently collected dataset of 409 human participants who 
explored one of two different virtual environments (Ruiten-
berg et al., 2022; Schomaker et al., 2022). For all individual 
movement trajectories in the dataset, the 14 movement meas-
ures summarized above (Table 1), were calculated. To assess 
whether these measures capture different aspects of explora-
tion behavior, we used a hierarchical cluster analysis. Similar 
to factors or principal components in other dimensionality 
reduction methods, each cluster consists of variables that 

are strongly related to each other and thus represent similar 
information (Chavent et al., 2012). However, in contrast to 
factor analysis or principal component analysis, hierarchical 
clustering allows us to reliably investigate relations between 
variables even if there is substantial multicollinearity and 
interdependence between variables or a low number of vari-
ables per factor. In accordance with the related research in 
animals (Jähkel et al., 2000; Kalueff et al., 2007; Markel’ 
et al., 1988; Paulus & Geyer, 1993; Paulus et al., 1999; Tan-
aka et al., 2012), we expected three main clusters to emerge: 
a “Locomotor Activity” cluster (containing Path Length 
and Pausing), an “Exploratory Activity” cluster (contain-
ing Area Covered and Roaming Entropy), and a “Spatial 
Shape” cluster (containing Sinuosity and Fractal Dimen-
sion). Additionally, we explored whether our measures of 
general exploration efficiency (Revisiting, Area Efficiency, 
Turnarounds, and Flight Turnarounds) as well as our meas-
ures of landmark-oriented exploration (Landmarks Visited) 
and landmark exploration efficiency (Landmark Revisiting, 
Landmark Efficiency) would form independent clusters.

For data-driven approaches like hierarchical clustering, 
it is important to validate that the clusters represent mean-
ingful aspects of exploration behavior that also generalize 
to other datasets. Here, we therefore applied the same anal-
ysis to a second, independent dataset of 102 participants 
(Brunec et al., 2022) representing goal-directed exploration 
of a novel environment.

Table 1   Summary of exploration measures

* Measure previously only used in animal studies

Measure Meaning References

Path length Total length of the trajectory (Clemenson et al., 2019; Farran et al., 2022; Meade et al., 
2019)

Pausing Time spent without movement (Gagnon et al., 2016)
Area covered Area covered during exploration (Baumann et al., 2020; Farran et al., 2022), similar to 

Daily Path Area in (Šimon et al., 2019)
Roaming entropy Distribution of the frequency of movement across the 

area
(Brunec et al., 2022; Cen et al., 2022; Clemenson et al., 

2019; Särkelä et al., 2009; Schomaker et al., 2022)
Minimum convex polygon Area of the smallest polygon that contains all data 

points
(Šimon et al., 2019)

Fractal dimension Tortuosity of the trajectory (Henry et al., 2010; Kearns et al., 2010, 2011; Perry et al., 
2009; Yaremych et al., 2019; Young et al., 2007)

Sinuosity* Tortuosity of the trajectory (Brudzynski & Krol, 1997)
Landmark visits Number of landmarks visited (De Alencar et al., 2015; Fornasari et al., 2013)
Landmark revisits Number of returns to already visited landmarks (Fornasari et al., 2013)
Revisiting Average number of returns to already visited places (Gagnon et al., 2016, 2018; Munion et al., 2019)
Turnarounds Number of turns with an angle > 180 degrees (Farran et al., 2022)
Flight turnarounds Number of turns with an angle > 180 degrees (flight 

scale)
(Rhee et al., 2011)

Area efficiency* Efficiency in covering an area Similar to Efficiency in (Rosenberg et al., 2021)
Landmark efficiency* Efficiency in visiting landmarks Similar to Efficiency in (Rosenberg et al., 2021)
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Methods

Sample and procedure

Our first dataset (here called the NEMO dataset) comprised 
data collected from 487 participants during a large-scale 
public science experiment in the NEMO Science Center 
in Amsterdam (Ruitenberg et al., 2022; Schomaker et al., 
2022). Participants’ age ranged from 8 to 77 years (see the 
SI, section B, as well as Schomaker et al., 2022) for a more 
detailed description of the sample). The dataset consists 
of exploration data in two virtual environments that were 
created in Unity (version 2017.2.21f1) and matched in size, 
path length, and number of intersections. Both environ-
ments represent fantasy islands with different objects as 
landmarks (such as a treasure chest), including land and a 
body of water (Fig. 2A and B). Participants could move in 
all four directions using the WASD keys on the keyboard, 
jump using the spacebar, and determine the heading direc-
tion via their mouse. The speed of movement was fixed 
and could not be altered by the participants. Participants 

explored one of the two virtual environments for 150 s 
(environments were allocated at random to each partici-
pant) and were instructed that they could navigate freely but 
should try to stay on the paths (note that it was nevertheless 
possible to also explore the area off the paths). Since no 
other tasks were given, exploration could be considered as 
“intrinsic exploration” as defined by Berlyne (1960). Envi-
ronments were presented on one of six laptops running on 
Windows 10 (Microsoft, 2015). During exploration, the X, 
Y, and Z coordinates of the player position were logged 
with a sampling rate of approximately 15 Hz (but deviations 
from this sampling rate occurred, see “Data Preprocessing” 
in the supplementary information).

In the original study, participants also performed a series 
of other tasks (including a second round of exploration, a 
word learning task, a motor learning task, and a landmark 
memory test). However, this article only focuses on the first 
exploration round. The experimenter stayed in the testing 
room throughout the entire procedure to start the tasks and 
to answer questions. For more detailed information on the 
experimental procedure see the SI, section C.

Fig. 2   Overview of one of the two virtual environments used in 
the NEMO dataset (A). Twenty landmark objects were positioned 
throughout the environment at intersections and road endpoints, 
which participants could explore freely (B). In the SILCTON data-

sets, the map represented a university campus with several buildings 
(C). Here, participants were given the explicit goal of finding eight 
specifically named buildings (D, building position marked by the red 
stars)



	 Behavior Research Methods (2025) 57:6565  Page 6 of 18

The second dataset (here called the SILCTON dataset) 
consisted of data from two experiments by Brunec et al. 
(2022) including 136 university students as participants (no 
detailed age information available). Here, the environment 
consisted of a virtual university campus created with the 
Unity engine (the Virtual Silcton environment, Weisberg & 
Newcombe, 2020). Similar to the NEMO dataset, partici-
pants could move in all four directions using the keyboard 
and could adjust their heading direction by moving the 
mouse. Compared to the NEMO environment, the SILCTON 
environment was roughly 20 times larger, and individuals 
were able to explore much longer (16 min for experiment 
1, 25 min for experiment 2). Similar to the NEMO environ-
ment, movement speed was set to a fixed value and was of 
similar magnitude (median step length in the NEMO envi-
ronment: 0.48, median step length in the SILCTON environ-
ment: 0.50). While the exploration experience was continu-
ous in experiment 2, experiment 1 consisted of four blocks 
of 4 min of exploration, alternating with 1 min of a specific 
task (map sketching, landmark recognition, coloring book, 
continuous exploration—see Brunec et al., 2022) for which 
movement was paused and then continued at the same posi-
tion. Crucially, participants in both SILCTON experiments 
were instructed to search for eight specific buildings on the 
virtual campus (Fig. 2C and D). Therefore, the SILCTON 
dataset, in contrast to the NEMO dataset, represents goal-
directed exploration.

Data preprocessing

Preprocessing for the NEMO dataset

Out of 487 participants in the original NEMO dataset, 55 
were excluded due to either technical problems or other 
issues regarding correct performance of the task (e.g., not 
speaking Dutch or English as their first language, being 
on the phone during the experiment, or getting help from 
a nearby person). This resulted in 432 participants with a 
valid dataset for the first exploration session. From these, we 
excluded seven participants because they fell off the bound-
aries of the map during exploration (y coordinate ≤ 100), 
and another 16 were excluded as they showed dispropor-
tionally low movement activity (only moved in less than 
one fifth of the available time, resulting in less than 30 s 
of movement in total), which may reflect failure to under-
stand the controls or distraction. The final sample con-
sisted of 409 participants (median age = 23.83, SD = 16.47, 
male:female:other = 211:195:3).

Since the original experiment was conducted on different 
laptop setups that did not provide timestamps, we controlled 
whether coordinates were registered regularly. The number 
of logged data points was used to retroactively calculate the 
original individual sampling rates by dividing the number 

of data points logged (e.g., 3000) by the total play time (150 
s, constant across all participants). The resulting sampling 
rates varied among participants, ranging from ~ 50 to ~ 10 
Hz, which was likely caused by the environments running 
on laptops with different computational capabilities. How-
ever, all datasets still had sufficiently high sampling rates 
to detect any meaningful changes in player movement (all 
sampling rates ≥ 10 Hz). Next, we checked for within-session 
variability in sampling rate. As the movement speed was 
fixed throughout the task, we used variability in step length 
as a proxy of variability in sampling rate. To assess variabil-
ity in step length, we computed the coefficient of variation 
of step lengths for each trajectory (using only steps with a 
length > 0). This allowed us to compare the relative variabil-
ity of step lengths across trajectories independently of the 
absolute step length values. No dataset showed a dispropor-
tionally high variability in step lengths (cutoff: coefficient of 
variation > 3 * interquartile range). In addition, we controlled 
for disproportionally high step lengths as an indicator of large 
lags. A “large lag” was defined as a step length greater than 
three times the median step length in the respective trajec-
tory (considering only steps with a length > 0). The exclusion 
criterion was set at a percentage of lag steps > 0.1%, but the 
highest percentage of lag steps found was 0.03%.

Since some measures (i.e., Path Length, Revisiting, 
Roaming Entropy) are sensitive to differences in sampling 
rates, we resampled all trajectories to a common sampling 
rate of 10 Hz (the slowest observed individual sampling rate) 
using the trajr temporal resampling algorithm (McLean & 
Skowron Volponi, 2018). As a final data preprocessing step, 
we trimmed the beginning of all trajectories up to the first 
movement to remove the initial idle time where participants 
still listened to the instructions given by the experimenter 
(median = 16.7 s, SD = 10.73 s).

Preprocessing for the SILCTON dataset

From 130 participants in the original SILCTON dataset (78 
participants from experiment 1 and 52 from experiment 2), 
the authors provided us with the data for 51 participants from 
experiment 1 and 52 participants from experiment 2, thus 
creating a set of 103 trajectories. From these, one subject was 
excluded due to a much shorter logging time (13.7 min versus 
a median exploration time of 26.7 min). Regarding sampling 
rate variability, we applied the same procedure as for the 
NEMO dataset. One participant showed a disproportionally 
high variability in step length. However, since this value still 
was very low (about one fifth of the median step length), we 
excluded no further participants and therefore obtained a final 
dataset of 102 trajectories (male:female = 42:60). Aside from 
gender, the dataset contained no information on age or any 
other individual characteristics. However, most participants 
were university students and all were above the age of 18.
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Extraction of exploration measures

We extracted all exploration measures from the preprocessed 
trajectories. For detailed descriptions and the single meas-
ures, please refer to the SI, section A. Since some measures 
require individualized parameter settings (e.g., bin size in 
the Roaming Entropy calculation), the problem of finding 
sensible parameter values arises. Here, we followed a two-
step process to find adequate parameter values. First, we 
selected an initial starting value, preferably based on either 
previous literature or specific characteristics of the environ-
ment (e.g., the distance traveled in a certain amount of time, 
or distances between landmarks). Second, we evaluated this 
initial parameter by iterating across a range of both smaller 
and larger parameter values and analyzing the resulting 
parameter distributions. From these data, we then selected 
the most optimal value. For more details on the parameter 
selection procedure and the data which informed our final 
parameter settings, see the SI, section D.

For Area Covered and Roaming Entropy, we used a 
bin size representing an area of 14 × 14 (15 × 15 for the 
SILCTON environment) virtual meters (vm). The nor-
malization parameter k in Roaming Entropy was set to the 
total size of the environments (maximal amount of unique 
bins explored by all subjects). For Fractal Dimension, we 
chose 20 step lengths, starting at half the median step length 
and increasing to 10 times the median step length. For the 
calculation of Sinuosity, we chose the original formula by 
Bovet and Benhamou (1988) for trajectories with regular 
step lengths. We therefore computed a re-discretized ver-
sion of each trajectory using the rediscretize() function of 
the traja package (Shenk et al., 2021). The step length for 
re-discretization was set to r = 0.48 (0.50 for the SICLTON 
environment), which corresponded to the respective median 
step length across all trajectories. For Landmark Visits and 
Landmark Revisits, a landmark was considered visited if a 
participant moved within a circular area with radius r = 20 
vm centered around that landmark. For Revisiting, we used 
a radius of r = 14 vm.

We calculated Turnarounds using the 180-degree angle 
cutoff suggested by Farran et al. (2022), with angles rang-
ing from 0 (no change in heading direction) to 180 degrees 
(complete reversal of heading direction). Previously, this 
measure was proposed as a measure of efficiency (Farran 
et al., 2022), as all occasions in which participants reverse 
their heading direction for 180 degrees and thus retrace 
their own path are counted. However, it can be difficult 
to calculate turnarounds from the raw movement data, as 
small movements (i.e., strafing in virtual environments) can 
produce a high number of turnarounds, while the overall 
heading direction remains stable. We propose that a more 
reliable representation of turnarounds can be achieved by 
looking at the trajectory not on the scale of steps, but on 

the scale of flights (Fig. 1F). While a step simply repre-
sents the distance between two consecutive data points, a 
flight summarizes all steps with a continuous movement 
direction, given a predetermined degree of deviation (Rhee 
et al., 2011). Resampling a trajectory to the scale of flights 
removes small-scale movements of the trajectory’s signal. 
In contrast to the original Turnarounds measure, this Flight 
Turnarounds measure therefore should reflect more long-
term changes in heading direction. For Flight Turnarounds, 
we resampled each trajectory to the scale of flights using the 
Ramer–Douglas–Peucker (RDP) algorithm (Hirschmann, 
2016). The maximum distance for line simplification in RDP 
was set to ε = 6, indicating that the estimated flights were 
allowed to deviate from the actual data points by up to six 
virtual meters. All turning angles ≥ 160 degrees were subse-
quently counted as turnarounds. Compared to prior research 
(Farran et al., 2022), we allowed for a wider range of angles 
to be classified as turnarounds by choosing a cutoff of 160 
degrees instead of 180 degrees. This procedure was based 
on the observation that on the flight-based trajectory, very 
few turnarounds that could be visually identified as turna-
rounds actually showed values of precisely 180 degrees, but 
rather varied between 160 and 180 degrees. All preproc-
essing procedures and feature calculations were performed 
in Python (version 3.9.7) using Spyder (version 5.1.5). For 
more details on the single measures, see the SI (section A).

Statistical analysis

We standardized all variables prior to conducting the hierar-
chical clustering analysis to remove any effects of variable 
scale. For each dataset, we then ran a hierarchical clustering 
algorithm using the R package ClustOfVar (Chavent et al., 
2012). As a similarity measure, ClustOfVar uses squared 
Pearson correlations, so the similarity of variables is quan-
tified independently of the direction of their correlations. 
The number of clusters was determined by visual inspection 
of the dendrogram as well as the plot of the height of the 
aggregation levels. For the latter, we additionally applied the 
kneedle algorithm as an objective elbow detection method 
(Satopaa et al., 2011).

Since the age distribution in the NEMO dataset was 
quite spread out (8 to 75 years—see the SI, section B), we 
additionally investigated whether the clustering result was 
dependent on participant age. Therefore, we ran the cluster-
ing procedure two more times for both a younger and an older 
age group. We chose age ranges in a way that allowed us to 
keep a roughly equal number of participants in each subgroup 
(“young group”: 8–14 years, n = 213; “old group”: 15–75 
years, n = 207). We found no relevant age group-related 
changes to the cluster structure (see the SI, section E).

All statistical analyses were run in R (version 3.6.3) using 
RStudio (version 2022.7.1.554). Original data and the code 
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to recreate preprocessing, feature extraction, and the statisti-
cal analyses are available on https://​github.​com/​valen​tinba​
umann/​explo​ratio​nMeas​ures.

Results

Cluster analysis (NEMO)

For the NEMO dataset, visual inspection of the similarity 
matrix (Fig. 3), the dendrogram (Fig. 4A), and the height 
of aggregation levels (Fig. 4B) indicated that our clustering 
procedure resulted in three main clusters, with the possibil-
ity of a very small fourth cluster. The kneedle algorithm 
suggested a number of four clusters. Cluster 1 contained 
the variables Path Length, Pausing, Area Covered, Roaming 
Entropy, and Minimum Polygon. Similarly to the SILCTON 

dataset, we labeled this the “Exploratory Activity” cluster. 
Cluster 2 comprised Sinuosity and Fractal Dimension and 
was again labeled the “Spatial Shape” cluster. Cluster 3 con-
sisted of Revisiting, Landmark Revisits, Flight Turnarounds, 
Area Efficiency, and Landmark Efficiency. We labeled this 
cluster “Exploration Efficiency.”

The fourth cluster included Turnarounds as a single meas-
ure. Interestingly, contrary to its intended meaning as an index 
of efficiency, it did not show any significant correlation to the 
measures in Cluster 3 (Fig. 3). As the original computation of 
Turnarounds might be problematic to its focus on small-scale 
movement (see Sect. "Extraction of exploration measures" 
Extraction of exploration parameters), we further investigated 
whether both Turnarounds and Flight Turnarounds correctly 
measured the intended behavior of path retracing. We observed 
that the original Turnarounds computation often was not able 
to capture all turning points, while the proposed alterative of 

Fig. 3   Similarity matrix for all investigated measures of exploration 
behavior in the NEMO dataset (note that while ClustofVar uses the 
squared Pearson correlation as similarity measure, the plot shows the 
standard Pearson correlation for better interpretability). The rectangu-
lar boxes represent the three main clusters determined by our hierar-
chical cluster analysis, plus a potential fourth cluster consisting of the 

original Turnarounds measure. We inverted the measures Pausing, 
Revisiting, and Landmark Revisits as well as Turnarounds and Flight 
Turnarounds for this plot to ensure consistent meaning in respect to 
the other measures (higher score = higher exploratory behavior/higher 
efficiency)

https://github.com/valentinbaumann/explorationMeasures
https://github.com/valentinbaumann/explorationMeasures
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Flight Turnarounds showed much better performance (Fig. 5). 
Consequently, we decided to dismiss Turnarounds from further 
analysis and accepted the three main clusters of “Exploratory 

Activity,” “Spatial Shape,” and “Exploration Efficiency” as the 
clustering result. The loadings of each measure on the three 
final clusters are shown in Table 2. Note that we repeated the 

Fig. 4   Results of the hierarchical clustering shown as a dendrogram 
(A) and as a plot of the aggregation levels (B) for then NEMO data-
set. Measures that join at a lower height in a dendrogram are more 
strongly related to each other than measures that join at greater 
height. On visual inspection of the dendrogram (A), three main clus-
ters emerge (left branch: cluster “Exploration Efficiency,” middle 
branch: cluster “Exploratory Activity,” right branch: cluster “Spatial 
Shape”). Using the elbow method and the kneedle algorithm, the plot 

of the height of the aggregation levels versus the number of variables 
suggests a number of three to four clusters (B). However, note that 
the original Turnarounds measure does not seem to be closely related 
to any of the other measures (A, also see Fig. 3). While this measure 
could be interpreted as a singular fourth cluster, we decided to not 
include it in our further analysis as it does not represent its intended 
meaning (Fig. 5 and main text)
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entire clustering procedure without the original Turnarounds 
measure to obtain clean cluster loadings without the influence 
of Turnarounds.

Cluster analysis (SILCTON)

Next, we ran the same procedure for the SILCTON dataset. 
Note that, similar to the previous analysis, we left out the 
Turnarounds measure. Again, we inspected the similarity 
matrix (Fig. 6), the dendrogram (Fig. 7A), and the height 
of aggregation levels (Fig. 7B). The dendrogram suggested 
four main clusters, with the possibility of a very small fifth 
cluster. While on visual inspection the plot of the aggre-
gation levels showed no clearly visible elbow, the kneedle 
algorithm suggested a number of four clusters. We therefore 
selected four clusters as the final solution.

Cluster 1 contained the variables Path Length, Paus-
ing, Area Covered, and Roaming Entropy. Similarly to the 
NEMO dataset, we labeled this the “Exploratory Activity” 
cluster. Cluster 2 comprised Sinuosity and Fractal Dimen-
sion and again was labeled the “Spatial Shape” cluster. 
Cluster 3 consisted of Revisiting, Landmark Revisits, Area 
Efficiency, and Minimum Polygon. We labeled this cluster 
“Area Efficiency.” Cluster 4 contained both Landmarks Vis-
ited and Landmark Efficiency. As these variables mostly 
targeted goal-directed exploration, we labeled this cluster 
“Goal Efficiency.” In contrast to the NEMO dataset, Flight 
Turnarounds did not cluster with other efficiency measures, 
but was related to the “Spatial Shape” cluster. However, 
the low correlations of Flight Turnarounds with Sinuosity 
(r = 0.16) and Fractal Dimension (r = 0.15) suggested that 
this relationship was rather loose.

Fig. 5   Comparison of Turnarounds using the original method by Far-
ran et  al. (2022) and our proposed improved method (Flight Turna-
rounds). The goal of both methods is to quantify how often partic-
ipants turn around and retrace their previous path by analyzing the 
turning angles. Turning angles classified as turnarounds are shown 
as gray dots. Our data show that the original Turnarounds method 

cannot reliably detect turnarounds that are relatively easy to discern 
visually (A), while Flight Turnarounds correctly identifies all five 
turnarounds (B). At the same time, Turnarounds can be generated by 
comparatively small-scale movement that is not indicative of actual 
path retracing (C), which is not an issue when angles are computed 
on the flight scale. nTA = number of turnarounds
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Discussion

In this study, we aimed to establish a systematic approach 
towards the characterization of free exploration behavior 
in humans. We first identified the most common move-
ment measures currently used in human research on spatial 
exploration from the literature and introduced refinements 
of existing measures to capture exploration efficiency more 
accurately.

Next, we analyzed the different measures of exploration 
behavior using the NEMO dataset (n = 409) to evaluate 
components of human exploration behavior. Hierarchical 
clustering revealed three main clusters of exploration meas-
ures (Fig. 4). The first cluster included the measures Path 
Length, Pausing, Area Covered, Roaming Entropy, Minimum 
Polygon, and Landmarks Visited. Since all of these measures 
reflected the extent of movement activity related to explora-
tion of the area, we labeled this cluster “Exploratory Activ-
ity.” High intercorrelations of the single measures (Fig. 3) as 
well as high correlations with the synthetic cluster variable 
(Table 2) indicate that this cluster is highly homogeneous, 
which suggests that all measures reliably represent the same 
aspect of exploration. Interestingly, the extent of exploration 
towards points of interests (Landmarks Visited) was strongly 
related to exploratory behavior in general (Table 2) and did 
not form a cluster on its own. One reason for this might be 

that in our environments, the landmarks were very evenly 
distributed across the area, so a higher level of landmark 
exploration also necessarily implied greater area exploration. 
Another possible explanation is that since the NEMO dataset 
represents free exploration, participants were not specifically 
focused on moving towards preselected points of interest, 
but rather explored the area as a whole.

The second cluster represented the spatial shape of the 
trajectory (straight line vs. tortuous shape, as measured by 
Fractal Dimension and Sinuosity) and was therefore labeled 
the “Spatial Shape” cluster. Similar to the first cluster, the 
two measures load very high on the synthetic variable 
(Table 2) and show high intercorrelations (Fig. 3), again 
suggesting a reliable and homogeneous representation of this 
facet of exploration behavior.

Our third observed cluster incorporated all measures 
associated with the efficiency of movement through an area 
or towards certain points of interests (Area Efficiency, Revis-
iting, Flight Turnarounds, Landmark Revisits, Landmark 
Efficiency). In contrast to the very homogeneous “Explora-
tory Activity” and “Shape” clusters, we observed this clus-
ter, termed “Exploration Efficiency,” to be more heterogene-
ous, as suggested by lower correlations among the cluster’s 
measures as well as by lower correlations of the cluster’s 
measures and the synthetic cluster variable (Fig.  4 and 
Table 2). This indicates that these measures only partially 
reflect a common aspect of exploration, with a substantial 
contribution of other sources of variance. Interestingly, most 
measures also seem to contain their own unique variance 
components, as suggested by the relatively low correlations 
among themselves (Fig. 4). One explanation for this might 
be that, within the group of participants, some individuals 
could have shown different aspects of efficiency depend-
ing on whether their aim was to cover ground (i.e., Area 
Efficiency, Revisiting) or to seek out points of interest (i.e., 
Landmark Efficiency, Landmark Revisits).

As a data-driven method, hierarchical clustering is heavily 
dependent on the input data. We therefore validated our clus-
tering result using a second set of trajectories (the SILCTON 
dataset). Here, in contrast to the NEMO data, we observed 
four instead of three main clusters of exploration. The first 
cluster included the measures Path Length, Pausing, Area 
Covered, and Roaming Entropy. As this was very close to the 
first cluster of the NEMO dataset, we again labeled this the 
“Exploratory Activity” cluster. Similarly, the “Spatial Shape” 
cluster contained the same two measures as in the previous 
analysis (Sinuosity and Fractal Dimension). Again, high inter-
correlations of these measures (Fig. 6) as well as high correla-
tions with the respective synthetic cluster variable (Table 3) 
indicate that these two measures are highly homogeneous and 
reliably represent the same aspect of exploration.

The third cluster in the SICLTON dataset comprised 
the Area Efficiency, Revisiting, Landmark Revisits, and 

Table 2   Cluster loadings for each exploration behavior measure 
(NEMO)

Pearson correlations of exploration measures and the three synthetic 
cluster variables generated by the hierarchical clustering procedure. 
Bold-faced numbers indicate the measures belonging to the respec-
tive cluster. Note that we inverted the measures Pausing, Revisiting, 
Landmark Revisits, and Flight Turnarounds for this table to ensure 
consistent meaning in respect to the other efficiency measures (higher 
score = higher efficiency), while the original Turnarounds measure 
was excluded

Measure “Exploratory 
Activity”

“Shape” “Exploration 
Efficiency”

Path length 0.95  − 0.20  − 0.49
Pausing 0.91  − 0.20  − 0.42
Area covered 0.97  − 0.36  − 0.10
Roaming entropy 0.96  − 0.41  − 0.14
Minimum polygon 0.93  − 0.34  − 0.10
Landmarks visited 0.89  − 0.30  − 0.14
Fractal dimension  − 0.35 0.99  − 0.17
Sinuosity  − 0.28 0.99  − 0.14
Landmark revisits  − 0.40 0.01 0.82
Revisiting 0.31  − 0.16 0.60
Flight turnarounds  − 0.27 0.01 0.88
Area efficiency  − 0.09  − 0.35 0.68
Landmark efficiency  − 0.37  − 0.11 0.69



	 Behavior Research Methods (2025) 57:6565  Page 12 of 18

Minimum Polygon measures. As Area Efficiency was the 
highest-loading variable on the synthetic cluster score 
(Table 3), and since most of the measures seemed to be 
related to the general efficiency of exploration, we termed 
this cluster the “Area Efficiency” cluster. In contrast, the 
fourth cluster incorporated both Landmark Visits and Land-
mark Efficiency, which measure the exploration of land-
marks rather than the exploration of a general area. This is in 
contrast to the NEMO dataset, where all efficiency measures 
emerged as a single cluster and might reflect a difference in 
the type of exploration task. Since the NEMO experiment 
represents free exploration, it is possible that these partici-
pants focused on the exploration of the general area, rather 
than on specific landmarks. In contrast, the participants in 
the SILCTON dataset were instructed to search for certain 
landmarks, and therefore might have adopted a more goal-
oriented exploration style.

Despite the task instruction, the two experiments also dif-
fered in the time spent exploring as well as their area sizes. 
However, we consider this a less likely explanation for the 
differentiation between efficiency types. For one, in addition 
to the longer exploration time, the SILCTON experiment 
also offered a much larger environment to explore, creating 
a similar ratio between the available exploration time and 
the time needed to achieve a specific goal as in the NEMO 
environment. Second, we observed the same differentiation 
of Area Efficiency and Goal Efficiency when we ran sepa-
rate analyses for the two different SILCTON experiments 
(see the SI, section F). As these two also differed greatly in 
the time spent exploring (experiment 1: 16 min, experiment 
2: 25 min), this result indicates that the effect seems to be 
attributable to the difference in exploration task rather than 
exploration time.

Fig. 6   Similarity matrix for all investigated measures of exploration 
behavior in the SILCTON dataset, showing the four clusters. Note 
that while ClustofVar uses the squared Pearson correlation as simi-
larity measure, the plot shows the standard Pearson correlation for 
better interpretability. We inverted the measures Pausing, Revisit-
ing, and Landmark Revisits for this plot to ensure consistent mean-

ing in respect to the other measures (higher score = higher explora-
tory behavior/higher efficiency). Note that this time we did not invert 
Flight Turnarounds, as the clustering suggested it represented a 
measure of Spatial Shape rather than Exploration Efficiency (more 
turnarounds = more tortuous pathing)
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Interestingly, the measures Flight Turnarounds and Mini-
mum Polygon also clustered differently between the NEMO 
and SILCTON datasets. This might have been caused by the 
strong dependence of both measure on the specific layout 

of the environment. For example, the NEMO environment 
offered a relatively large number of dead ends and there-
fore many possibilities where retracing a large proportion 
of the own path was possible (see Fig. 1). Therefore, Flight 

Fig. 7   Results of the hierarchical clustering shown as a dendrogram 
(A) and as a plot of the aggregation levels (B) for the SILCTON data-
set. Four main clusters emerge (outer left branch: cluster “Explora-
tory Activity,” middle left branch: cluster “Goal Efficiency,” mid-
dle right branch: “Area Efficiency,” outer right branch: cluster 
“Spatial Shape”). Note that while the Flight Turnarounds measure 

was grouped with Sinuosity and Fractal Dimension, it did not seem 
to be closely related to these variables or to any of the other measures 
(A, also see Fig. 6). Using the elbow method and the kneedle algo-
rithm, the plot of the height of the aggregation levels versus the num-
ber of variables also suggests a number of four clusters (B)
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Turnarounds in this case represented a measure of efficiency 
(fewer turnarounds—less retracing—higher efficiency). In 
contrast, the street network in the SILCTON environment 
showed more loops (see Fig. 2D). Here, participants poten-
tially did not directly turn around that often, but rather used 
the loops to return to previously visited places. Interestingly, 
in the SILCTON dataset, Flight Turnarounds was, albeit 
quite loosely, associated with the Spatial Shape cluster. This 
indicates that, depending on the environment layout, Flight 
Turnarounds can either represent the efficiency of exploration, 
or act as an indicator of the spatial shape of the trajectory.

Similarly, the change in the Minimum Polygon measure 
from the Exploratory Activity cluster in the NEMO dataset 
to the Area Efficiency cluster in the SILCTON experiment 
could also be caused by the measure’s sensitivity to the spe-
cific environment layout. Importantly, Minimum Polygon 
is defined by the location of the outermost data points and 
therefore is heavily influenced by the overall shape of the 
trajectory. In contrast, measures like Area Covered are not 
dependent on whether the explored area extends very thinly, 
but across a large space (creating a larger polygon area), or 
if the same amount of space is explored in a very compact 
manner (creating a smaller polygon area).

Taken together, analysis of the SILCTON dataset validated 
the clusters Exploration Efficiency and Spatial Shape as very 
stable constructs, which appear to persist across different age 
ranges as well as different environment layouts, exploration 
times, and exploration tasks. Additionally, these clusters seem 
to translate well between rodents and humans, as they cor-
respond well to the different facets of exploration previously 
observed in the animal literature (Jähkel et al., 2000; Markel’ 

et al., 1988; Paulus & Geyer, 1993; Paulus et al., 1999; Tanaka 
et al., 2012). Exploration Efficiency emerged as a third major 
component of exploration behavior. However, depending on 
the exploration task, our validation analysis showed the need 
to further differentiate between goal-directed and free explora-
tion. Lastly, our data suggested that the interpretation of the 
measures Flight Turnarounds and Minimum Polygon can be 
heavily influenced by the respective environment layout.

Contrary to our prediction, we observed that Path Length 
and Pausing did not form a Locomotor Activity cluster on their 
own, but instead were part of the “Exploratory Activity” clus-
ter. This is not only in contrast to the aforementioned animal 
studies investigating the factor structure of exploration behavior, 
but also to other animal studies reporting a different reaction 
to behavioral or pharmacological interventions in measures 
of locomotor versus exploratory activity (Brudzynski & Krol, 
1997; Kakade & Dayan, 2002; Leyland et al., 1976; Minassian 
et al., 2015; Paulus et al., 1998). One reason that we did not 
identify a specific locomotor activity cluster could be that ani-
mal studies sometimes not only include measures of locomotor 
activity representing movement across space (i.e., Path Length 
and Pausing), but also elements of activity at a single position 
without spatial movement. For example, this could include rear-
ing (standing on hind legs) or poking behavior (object interac-
tion by poking objects with the head, Paulus & Geyer, 1993), 
which represent types of behavior that we did not quantify in the 
present dataset or that may not be relevant in human research. 
Furthermore, since our dataset describes the exploration of a vir-
tual environment, it is important to keep in mind that recent stud-
ies showed that the translation between different presentation 
methods and between virtual environments and the real world 

Table 3   Cluster Loadings for each exploration behavior measure (SILCTON)

Pearson correlations of exploration measures and the four synthetic cluster variables generated by the hierarchical clustering procedure. Bold-
faced numbers indicate the measures belonging to the respective cluster. Note that we inverted the measures Pausing, Revisiting and Landmark 
Revisits for this table to ensure a consistent meaning in respect to the other efficiency measures (higher score = higher efficiency). Note that this 
time we did not invert Flight Turnarounds, as the clustering suggested it represented a measure of Spatial Shape rather than Exploration Effi-
ciency (more turnarounds = more tortuous pathing)

Measure “Exploratory Activity” “Shape” “Area Efficiency” “Goal Efficiency”

Path Length .96 –.04 –.04 –.08
Pausing .92 –.03 –.01 –.07
Area Covered .91 –.17 .43 –.06
Roaming Entropy .97 .03 .12 –.12
Fractal Dimension –.10 .98 –.20 –.09
Sinuosity –.10 .98 –.24 –.14
Flight Turnarounds .17 .31 –.11 –.05
Landmark Revisits –.23 –.10 .73 –.07
Revisiting .27 .04 .56 .03
Area Efficiency –.03 –.28 .87 .06
Minimum Polygon –.47 –.27 .70 –.04
Landmarks Visited .33 –.12 –.03 .90
Landmark Efficiency –.48 –.10 .02 .90
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can be challenging (Clemenson et al., 2020; Hejtmanek et al., 
2020; but also see Zisch et al., 2022). This might be especially 
important with respect to the generalization of locomotor and 
efficiency measures, as movement activity in the current study 
reflects something qualitatively different from movement activ-
ity in real-life studies (i.e., button presses versus more effortful 
real-life locomotion). Alternatively, the lack of discriminatory 
power for the Path Length and Pausing measures in our study 
could be explained by the length of the observation period in 
combination with the size of the explored environment. In ani-
mal experiments, environments typically are quite small, while 
at the same time exploration sessions were much longer in the 
aforementioned animal studies (up to 60 min). In contrast, our 
virtual environments were comparatively large in relation to the 
available exploration time. It is therefore possible that the ani-
mals in these studies had more time for “idle movement” not 
directly related to exploration, since full coverage of the area 
could be achieved more quickly due to the smaller area. On the 
other hand, for our participants the time was likely too short 
to show any movement activity not related to exploration. We 
therefore conclude that if the observation period is relatively 
short in relation to the size of the to-be-explored environment, 
measures of locomotor activity like Path Length might give an 
accurate representation of exploratory activity as well. However, 
for longer periods of exploration, this measure may reflect mere 
locomotor activity, as observed in the animal literature.

Summary and future directions
Overall, our data showed that currently used measures of 

human exploration behavior describe three core aspects of 
exploration: the extent of exploration, the spatial shape of 
the trajectory, and the efficiency of exploration. Crucially, 
in the case of exploration efficiency, we show that there is 
a further differentiation into a goal-centered versus a more 
general, area-centered component. The characterization of 
these overarching components of exploration behavior fur-
ther supports more systematic and specific ways to analyze 
human spatial exploration behavior. By sharing data and 
code for our analyses, we provide the necessary tools, as 
well as the opportunity to further cross-validate and general-
ize the present findings to other datasets and/or populations.
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