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What are microglia? 

The discovery of microglia evolved over 75 years, driven by the advancement of histology 
methods used to characterize brain tissue. They were first described under the term 
‘neuroglia’ by Virchow in 18461,2. Following the identification of astrocytes by Van 
Lenhossék in 1891, Cajal proposed the existence of a “third element” in 19133. It was not 
until 1919 that Del Río-Hortega successfully distinguished microglia from 
oligodendrocytes4. Microglia were recognized for their unique phagocytic capacity, 
inferred from the presence of lipid-filled granules, as well as their remarkable structural 
plasticity. To this day, the fundamental link between microglial morphology and function 
continues to shape microglial research5.      

It took almost a century longer before the field agreed on the origin of microglia6–10. Unlike 
neurons and other glia, microglia originate from the myeloid lineage and are seeded from 
the yolk sac during early embryonic development. After infiltrating the developing central 
nervous system (CNS), microglia persist into adulthood and maintain their population 
through local proliferation, rather than replenishment by bone-marrow derived monocytes 
as is characteristic of other tissue-resident macrophages11–13.  

As the name suggests, microglia are the smallest of all neuroglia and generally exhibit a 
ramified morphology, characterized by a small soma and elongated processes that interact 
with synapses, dendrites, and debris14 (Figure 1.1). Due to their uniform disposition 
throughout the CNS, with a higher density in grey compared to white matter, and their 
highly motile processes, microglia are swift to scan for and react to disruptions in the 
brain’s microenvironment1. In pathological conditions, microglia retract their processes 
and mobilize their cell bodies, adopting an amoeboid morphology (Figure 1.1). These 
amoeboid microglia become increasingly prevalent in the aging brain, reflecting their role 
in responding to injury and neurodegeneration15.    
 

 

Figure 1.1 | Microglial morphology as presented in the human mature CNS. This morphology wheel displays 
snapshots of dynamic and interchangeable microglial shapes. The shapes are not in relative scale. Adapted from 
Karperien et al.14.   



General introduction 
 

9 
 

What is the function of microglia? 

Microglia are pivotal mediators that bridge the neural and immune system, facilitating 
crosstalk between these two complex networks16. By responding to signals from both 
systems, microglia help maintain homeostasis, coordinate immune responses within the 
CNS, and influence neural activity. Microglial properties that are critical for enabling these 
biological functions include surveillance, phagocytosis, and release of soluble factors, such 
as chemokines and cytokines5.        
 Microglia are highly versatile in the receptors they express to regulate these effector 
functions, some of which are also commonly used as microglial markers (*). Examples 
include triggering receptors expressed on myeloid cells-2 (TREM2)*, ionized calcium-
binding adapter molecule 1 (IBA1)*, CD11b that makes up complement receptor-3 (CR3) 
together with CD18, colony-stimulating factor 1 receptor (CSF1R), the fractalkine receptor 
CX3CR1*, purinoreceptor P2RY12*, and transmembrane receptor TMEM119*5.   

Only fairly recently, microglia were found to actively engulf pre- and postsynaptic 
components in the developing brain of mice17,18. This process, called synaptic pruning, is 
critical for neural circuit maturation and is monitored, among others, by CX3CR1 on 
microglia. Deficits in synaptic pruning by microglia may lead to altered brain circuits and 
behavior underlying neurodevelopmental disorders, particularly those that manifest in 
adolescence19. Patients with adult-onset leukoencephalopathy with axonal spheroids and 
pigmented glia (ALSP) challenge this concept20. ALSP is a microgliopathy arising from 
mutations in the CSF1R gene, causing white matter atrophy that affects behavior, cognition 
and motor function. Microglia viability and population maintenance in the brain are heavily 
dependent on CSF1R, as blockade of this receptor eliminates 99% of CNS microglia21. Yet, 
microglia-depleted mice do not show behavioral or cognitive abnormalities, nor do ALSP 
patients present with neurodevelopmental deficits, suggesting that microglia may be 
dispensable for healthy neurodevelopment. CSF1R is, however, expressed across the 
myeloid lineage, and its deficiency affects other monocytes and macrophage populations, 
including those in the CNS, which complicates the determination of specific microglia 
mediated defects22,23.          

Since the development of Csf1rΔFIRE/ΔFIRE mice, which affect CSF1R expression selectively in 
microglia and tissue-resident macrophage populations in the skin, heart, kidney and 
peritoneum, microglial deficiency defects could be discriminated from those of other CNS-
resident macrophages24. Indeed, Csf1rΔFIRE/ΔFIRE mice are healthy, fertile and show no 
(neuro)developmental issues24,25, but a critical role for microglia becomes apparent later in 
life26. Myelination emerges as a key process influenced by microglia in an age-dependent 
manner. Up until 1 month of age, developmental myelination, maturation of myelinating 
oligodendrocytes, and axon myelination (in terms of numbers) were unaffected in 
Csf1rΔFIRE/ΔFIRE mice. However, structural changes in myelin ensheathment began to appear 
at 1 month and worsened with age, ultimately impairing cognitive flexibility. In the absence 
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of microglia, myelin outfolding began at the age of 1 month, leading to hypermyelination 
at 3-4 months, which eventually progressed to demyelination from 4.5 to 6 months of age. 
This microglia-dependent regulation of myelin growth and integrity was also observed in 
the frontal white matter of ALSP patients, showing severe myelin outfoldings, altered 
thickness, and degeneration. The underlying mechanism involved a microglia-
oligodendrocyte signaling axis dependent on TGF-β1 and implicated lipid metabolism in 
myelin growth and recycling, including cholesterol esters and triglycerides26,27.   

 

What is the role of microglia in neuroinflammation? 

With the ever-growing life expectancy, degeneration of the human brain is becoming 
increasingly prevalent28,29. A common denominator across neurodegenerative diseases is 
the accumulation of macromolecules, either within cells or in the surrounding extracellular 
space. These accumulations indicate inefficient clearance mechanisms, such as 
phagocytosis, and result in (protein) dyshomeostasis. Examples include 
hyperphosphorylated tau and amyloid-β in Alzheimer’s disease (AD), α-synuclein in 
Parkinson’s disease, huntingtin in Huntington’s disease and foamy microglia in Multiple 
Sclerosis (MS)30,31. Other factors commonly associated with neurodegeneration include 
CNS inflammation and a leaky blood-brain barrier, which makes the brain highly 
susceptible for further damage32–34. Tackling such diseases, however, present great 
challenges as they involve targeting the most complex organ of the human body.  

As professional phagocytic immune cells, there is no doubt that microglia are active 
contributors to the progression of neurodegenerative diseases, highlighting their 
significant therapeutic potential15. Microglia govern the activation of an inflammatory 
response to eliminate harmful substances and prevent further damage34. In doing so, 
microglia excrete cytokines and chemokines that attract more glial cells and adaptive 
immune cells. However, if the response becomes chronic, prolonged inflammation can lead 
to neuroinflammation, a common hallmark of multiple neurodegenerative diseases. Given 
the established link between microglia and neurodegeneration, the perception of 
neuroinflammation has shifted from being merely an associated phenomenon to a central 
factor in the development of neurodegenerative diseases34. This is specifically underlined 
by the use of nonsteroidal anti-inflammatory drugs (NSAIDs) that reduce the risk of 
developing AD by 50%35. It is hypothesized that with ageing, microglia adopt a 
senescence-associated secretory phenotype perpetuating low-grade neuroinflammation 
and eventually contributing to neurodegeneration36.       

It is challenging to disentangle the beneficial and detrimental roles microglia may play in 
neuroinflammation and -degeneration. The rise of single-cell analysis of transcription or 
surface markers offers an unprecedented level of resolution providing tools to unravel 
these complex roles and identify key proteins associated with them as potential targets for 
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modulation37–42. However, the association of gene expression signatures with specific 
microglial roles does not necessarily indicate exclusive functions of these proteins. 
Therefore, it is important to understand the function of proteins across the full spectrum 
of microglial states.         
 The terminology used to describe microglial states is currently under debate and 
no general consensus has been reached5. It is important to note that in this thesis the term 
‘activated’ is used to describe microglia that are treated with stimulant(s). This does not 
imply non-stimulated microglia are inactive, on the contrary, non-stimulated microglia also 
actively participate in cytokine secretion and phagocytosis. The term ‘activation’ is simply 
used to refer to the process in which microglia adopt a distinct functional state in response 
to the stimulant used relative to non-stimulated microglia. 

     

Lipid metabolism in microglia 

The role of microglia in the CNS typically centers on phagocytosis, whether of synapses, 
myelin, dead cells or pathogens. However, in certain diseases, like MS, inefficient clearing 
of lipids or lipid-rich structures gives rise to a third microglial/macrophage morphology: 
the foamy phenotype30,43,44. Foamy microglia resemble lipid-laden macrophages, a 
phenotype observed in various diseases, including Gaucher disease, atherosclerosis, and 
obesity. This morphology is commonly characterized by a dysregulated lipid metabolism43. 
Foamy microglia are a hallmark of MS30,45 and are associated with increased disease 
severity44, highlighting the role of microglial lipid metabolism as a key mediator.  

Lipid metabolism not only provides energy or structural features to cells, but may also 
make up signaling networks46. The growing recognition of lipids as critical regulators of 
microglia functional states underscores the therapeutic potential of lipid signaling systems 
for neurodegenerative diseases46–48. The endocannabinoid system is such a sophisticated 
lipid signaling network that governs numerous biological processes, such as behavior, 
cognition, pain, but also neuroinflammation49. Its function is regulated by two lipids, i.e. 
endocannabinoids, 2-arachidonoylglycerol (2-AG)50,51 and N-arachidonoylethanolamine 
(AEA)52, that activate cannabinoid receptors CB1 (CB1R) and CB2 (CB2R). As most abundant 
endocannabinoid within the CNS53, 2-AG forms the primary precursor for the production 
of inflammatory lipid mediators, thereby linking the endocannabinoid system to 
neuroinflammation54–58. The endocannabinoid system is compartmentalized across brain 
regions and cell types, with microglia expressing a specific set of endocannabinoid system 
proteins: CB2R, diacylglycerol lipase (DAGL) β, monoacylglycerol lipase (MAGL) and  
α,β-hydrolase-domain containing protein 12 (ABHD12)57 (Figure 1.2a,b). DAGLβ 
hydrolyzes phospholipid-derived diacylglycerol (DAG) into 2-AG, that in turn can be 
cleaved by both MAGL and ABHD12 to form arachidonic acid (AA)57,59. AA is the 
predominant substrate for oxidation, producing a wide array of inflammatory mediators, 
i.e. oxylipins or eicosanoids60. 
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Human mutations in ABHD12 are found to cause Polyneuropathy, Hearing loss, Ataxia, 
Retinitis pigmentosa, and Cataract (i.e. PHARC)61–66. PHARC patients suffer from 
neurodegeneration and ABHD12-/- mice display activated microglia, implicating ABHD12 
is potentially crucial for microglial function67. In addition to 2-AG, ABHD12 hydrolyzes 
lysophospholipids67,68 and oxidized phosphatidylserine69, substrates that accumulate upon 
ABHD12 inactivation. To date, it remains unclear what mechanisms underpin microglia 
activation and ultimately PHARC symptoms as a consequence of ABHD12 inactivation.   

 

 
Figure 1.2 | Endocannabinoid system in microglia. (a) Membrane phospholipid PIP2 is hydrolyzed by PLCγ2 into 
DAG, that in turn is degraded by DAGLβ to generate the endocannabinoid 2-AG. 2-AG can activate CB2 receptors 
on microglia or inactivated via hydrolysis by MAGL or ABHD12 into AA. The oxidation of AA by enzymes from the 
COX, LOX or CYP family leads to the formation of oxylipins. (b) Synthesis route described in (a).  
2-AG: 2-arachidonoylglycerol. AA: arachidonic acid. ABHD12: α, β-hydrolase domain-containing protein 12.  
CB2: cannabinoid receptor type 2. COX: cyclooxygenase. CYP: cytochrome P450. DAG: diacylglycerol.  
DAGLβ: diacylglycerol lipase β. LOX: lipoxygenase. PIP2: phosphatidylinositol 4,5-bisphosphate.  
PLCγ2: phospholipase Cγ2.     

 

Aim and outline 

The aim of this thesis is to investigate the role of lipid metabolism in microglial functions. 

Chapter 2 describes the novel application of activity-based protein profiling (ABPP) to 
characterize lipid hydrolase activities across microglial activation states. Using various  
pro- and anti-inflammatory stimuli on N9 microglia, a lipid hydrolase activity map was 
generated. Cluster analysis highlighted endocannabinoid enzymes DAGLβ and ABHD12 as 
key players in microglial activation. Targeted lipidomics further established a link between 
the endocannabinoid system and the modulation of microglial activation. Inhibiting DAGLβ 
or ABHD12 activity demonstrated anti-inflammatory effects by reducing LPS-induced 
cytokine secretion.          
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Chapter 3 further elaborates on DAGLβ’s role in microglial cytokine secretion. As a 2-AG 
producing enzyme, DAGLβ contributes to the formation of downstream lipid arachidonic 
acid (AA) and pro-inflammatory oxylipins. Genetic inactivation of DAGLβ reduced cellular 
2-AG and AA, but only suppressed Il6 mRNA at low LPS doses, likely due to compensatory 
upregulation of other 2-AG producing enzymes DAGLα and ABHD6. Pharmacological 
inhibition of DAGLβ confirmed anti-inflammatory effects by reducing IL-6 secretion. 

Chapter 4 explores ABHD12’s role in microglial cytokine secretion. ABHD12 was shown to 
regulate 2-AG and AA levels, linking ABHD12 activity to oxylipin-driven inflammation. 
ABHD12 inhibition reduced TNF-α and IL-6 secretion in LPS-stimulated microglia, an effect 
attributed to CB2R activation and reduced PGE2 levels. In primary microglia, ABHD12 
inactivation reduced IL-6 levels, which was linked to lowered PGE2 concentrations.    

Chapter 5 expands on the role for ABHD12 in microglial effector functions, specifically 
phagocytosis of myelin debris. TGF-β1 induced ABHD12 activity, which was concomitant 
with enhanced myelin uptake, while ABHD12 inhibition impaired lysosomal function, 
elevating lysosomal pH and causing myelin buildup. This led to lysosomal stress, as 
demonstrated by the induction of lysosomal stress marker GPNMB, highlighting a critical 
role for ABHD12 in lysosomal health and myelin recycling.     

Chapter 6 examines ABHD12’s global effects on microglial metabolism by applying global 
proteomics and targeted lipidomics. ABHD12 inactivation disrupted phospholipid 
homeostasis, increased ER stress, and impaired lysosomal and mitochondrial function. 
Enhanced ROS metabolism resulted in heightened susceptibility of microglia to ferroptosis, 
emphasizing ABHD12’s role in maintaining cellular homeostasis, particularly that of the ER.  

Chapter 7 investigates the TREM2-PLCγ2-MAGL axis in human iPSC-derived microglia. 
TREM2 activation with small molecule SM 3969 enhanced PLCγ2 activity, 2-AG metabolism, 
and anti-inflammatory transcriptomic responses. The AD protective variant PLCγ2P522R 
reduced inflammation while preserving the transcriptomic response to TREM2, 
highlighting a potential therapeutic strategy of targeting TREM2 in AD. 

Chapter 8 summarizes the work described in this thesis and discusses future directions. 
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