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Drug-induced liver injury (DILI) is one of the prevailing causes of fulminant
hepatic failure. It is estimated that three idiosyncratic drug reactions out
of four result in liver transplantation or death. Additionally, DILI is the most
common reason for withdrawal of an approved drug from the market. Therefore,
the development of methods for the early identification of hepatotoxic drug
candidates is of crucial importance. This review focuses on the current state
of cheminformatics strategies being applied for the early in silico prediction
of DILI. Herein, we discuss key issues associated with DILI modelling in terms
of the data size, imbalance and quality, complexity of mechanisms, and the
different levels of hepatotoxicity to model going from general hepatotoxicity
to the molecular initiating events of DILI.



INTRODUCTION

INTRODUCTION

Drug-induced liver injury (DILI) refers to hepatotoxicity resulting from adverse
reactions caused by drugs or their reactive metabolites and toxic chemical
entities. DILI is a major concern as it is one of the leading causes of acute
liver failure in the world, accounting for more than 50% of cases in the US'.
Additionally, a recent study showed that DILI is responsible for more than 20%
of the withdrawals of approved drugs from the market due to toxicity>*. This
is an on-going problem, there have been at least eight withdrawals of drugs
due to DILI from 1997 to 2016 alone: tolcapone, troglitazone, trovafloxacin,
bromfenac, nefazodone, ximelagatran, lumiracoxib and sitaxentan®. Moreover,
hepatotoxicity is also a major reason for the failure of candidates in the drug
discovery process®. These reasons underscore the need for the accurate
prediction of the risk of DILI for bioactive compounds. DILI itself is complex, it
comprises a broad set of effects which can be further characterised in several
ways, either by the type of hepatotoxicity (physiological effect) or by whether
the effect is dose-dependent or not.

With regard to hepatotoxicity, three types or patterns may be observed. Firstly,
hepatocellular injury which is the result of biochemical perturbations of the
cell culminating in severe cellular malfunction or cell death, the latter resulting
in formation of scaring tissue. It comprises steatosis, necrosis and cirrhosis
and is characterised by the release of hepatocellular enzymes such as alanine
transferase (ALT) and aspartate transaminase (AST). Secondly, cholestatic
injury is the result of an impairment of the biliary system caused either by
bile stasis (i.e. the accumulation of bile in the bile ducts), portal inflammation
or proliferation or injury of bile ducts. It is usually characterised by elevated
levels of alkaline phosphatase (ALP) and y-glutamyl transpeptidase (GGT).
Finally, mixed hepatocellular-cholestatic injury, which occurs rarely in other
forms of acute liver disease, usually shows prominent hepatocyte necrosis and
inflammation as well as marked bile stasis. It is characterised by the elevation
of both ALT and ALP.

DILI itself may also be categorised into two subtypes. The first type, called
intrinsic DILI (itDILI), is dose-dependent and is modulated by the presence of
key compound substructures and its effects are reversed after discontinuation
of drug administration. These reasons make it quite predictable’. The
second type is idiosyncratic DILI (iDILI), which is very rare as it only occurs
in 1:1,000 to 1:100,000 patients exposed to the drug®. iDILI is associated
with poor prognosis and does not show any dose-response relationship.
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Because it is host-dependent®'®, iDILI can be the result of either immunological
effects (i.e. allergic reactions) or metabolic effects which makes it more
unpredictable' and a considerable challenge for drug development and safety.

These problems emphasise the importance of the early detection of hepatotoxic
compounds in the drug discovery process in order to reduce attrition rates
and to increase drug safety. However, a major obstacle to the development of
comprehensive tools for the early detection of iDILI is primarily the lacking
predictivity of the existing animal studies and secondly its complexity, ranging
from the variety of its effects but also from the diversity of factors affecting
susceptibility to iDILI. Additionally, drug metabolism and pharmacokinetics
(DMPK) aspects, including local and intracellular concentration, are difficult to
evaluate and predict. Effects of iDILI include elevations in serum transaminases,
jaundice, acute liver failure or chronic liver dysfunction. Factors affecting iDILI
include age, gender, ethnicity, genetic polymorphism, use of other medication
or pre-existing liver disease'?®. Additionally, the development and mechanisms
of iDILI are poorly understood making its early detection, and therefore its
prediction, a challenge™™®. A detailed summary of these mechanisms lies
outside the scope of this review and the reader is referred to the works of Fraser
et al.”® and of Noureddin and Kaplowitz"” for comprehensive information on
DILI mechanisms. Nonetheless, a wide range of predictive models have been
established for the prediction of DILI and can be divided among quantitative
adverse outcome pathways (qAOPs)™, metabolomics', cheminformatics'2,
pharmacokinetic-pharmacodynamics (PK-PD) modelling?, dynamical pathway
modelling with ordinary differential equation (ODE) models?? and multi-scale
approaches modelling DILI with systems biology approaches?.

The focus of this work is to characterize the application and scope of published
cheminformatics models for DILI and to highlight their relevance, with a
particular focus on machine learning.

APPROACHES TO PREDICTING DILI RISK

Better understanding of the underlying mechanisms of DILI, as well as better
annotation of the risk associated with drug structures is key for the development
of more accurate and valuable predictive models?®. Additionally there is no
evidence that the mechanisms through which iDILI occurs are different than
itDILI?#?5, Thus, the focus of DILI research has been to identify reported
clinical cases of hepatotoxicity. For instance, such information was compiled
by Ludwig and Axelsen?®, who created a list of 150 compounds associated with
their adverse events. This compilation did not account for the difference(s)
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between itDILI and iDILI but was one of the first exhaustive lists of hepatotoxic
drugs to link phenotypic outcomes in human.

A more recent study classified a list of 611 compounds using high content image
screening (HCS) on human cells and compared the findings to conventional
assays?. The compounds were classified as either “severely”, “moderately” or
non-toxic and laid the foundation for the use of in vitro data as a surrogate for
the prediction of clinical outcomes. Other sources of hepatotoxicity-related
compounds come from medicines regulatory agencies and post-marketing
data. For instance, Suzuki et al. compiled adjudicated cases of DILI reported
from the literature resulting from drugs that had been suspended or withdrawn
from the market?® and Chen et al. annotated compounds based on information
provided by the United States Food and Drug Administration (FDA)* The first
version of the latter organised compounds into three categories: no-DILI
Concern compounds, for which no hepatotoxicity had been observed, Less-
DILI Concern, which caused only mild hepatotoxicity (i.e. steatosis, cholestasis
and increase in liver aminotransferases) and Most-DILI concern, which were
associated with severe hepatotoxicity*. In a later revision, called DILIRank?, the
data were curated based on causality evidence. This allowed for the separation
of compounds for which association with hepatotoxicity was not supported
by sufficient data and allowed for the creation of a new class of compounds
(i.e. Ambiguous DILI Concern) consisting of the compounds of the Most and
Less DILI Concern classes of the previous version of DILIRank for which no
strong evidence of causality was observed.

Fourches et al. used text-mining approaches on the titles and abstracts of a
collection of articles to identify 902 compounds associated with drug-induced
liver effects®®. Based on these different approaches to annotate compounds,
Kotsampasakou et al. aggregated the data from 9 datasets and applied
extensive curation techniques®. Multiple datasets have been published®?
either derived from clinical and/or post-marketing sources, from in vitro/in
vivo experiments or aggregated from different types of sources (Figure 5.1 and
Table 5.1). However, the published data suffer from two major limitations: data
size and imbalance in both the positive and negative DILI group compounds
which would bias the outcome of the analysis.

LIMITED DATASET SIZES HAMPERS PROPER MODEL VALIDATION
As a consequence of the nature of the datasets described above, the majority of

existing published models for DILI are binary classification models (Table 2).
Of these, only one, by Cheng and Dixon, focused exclusively on the prediction
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Year Origin of data Number of data points
o 2019 in vitro 10t
2015 M in vivo I 10°
2011 10?
2007 -- 10
2003 Features --10°
bioactivit: : e i
1 e "' Prediction mojeculat descriptors Ratio positives/negatives
\““""' ', mhoIeCLtJIar fingerprints 1.00
i enotype .
"," Rg",?a’%’omxic Pules o?lphumb I 0.75
@ B multiple scales = structural alerts o 51050
— M ternary [ toxicogenomics/transcriptomics . 9’55
= M undirected graphs --0.00
=. ) .
## Species Type of model Cross-validated accuracy
~~ W animal artificial neural network 1.00
B human boosted trees l 0.75
M mouse decision tree o
B mouse/rat deep learning 0.50
M rat k-nearest neighbors --0.00
linear discriminant analysis --0.25
linear regression
naive Bayes

partial least square

random forest

rule-based X
& support vector machine

Figure 5.1. Visual summary of in silico models for liver toxicity prediction.

of reported itDILI in humans using a set of 382 compounds related to 25 2D
molecular descriptors selected with a Monte-Carlo regression algorithm’. The
leave-10%-out cross-validated random forest model developed had very high
specificity and reasonable sensitivity (0.90 and 0.78 respectively). Although
similar performance was observed with the test set, its size was quite limited
as it only included 23 positive compounds and 31 negatives. Similarly Cruz-
Monteagudo et al. developed general hepatotoxicity binary classification
models from a set of 74 compounds using Radial Distribution Function (RDF)
descriptors®3. Even though the performance of the best performing model was
consistent between the cross-validation and external validation sets (0.86 and
0.82 respectively), the validation set was small comprising only 13 hepatotoxic
compounds and no negatives.

Although the metrics indicate that Cheng and Dixon's and Cruz-Monteagudo et
al.'s models performed well, one has to consider that a phenotypic readout such
as general hepatotoxicity is the integrated result of many signalling pathways
(e.g. oxidative stress and NRF2 pathway®’, unfolded protein response, DNA
damage response and mitochondrial toxicity”). For each pathway, protein-
protein interactions, as well as gene expression or gene and protein degradation
could be disturbed, adding up to a multitude of different modes of actions by
which a compound could induce toxicity. Thus, building general hepatotoxicity
models from a rather small number of diverse compounds increases the
difficulty to make reliable generalisations based on compound structures when
considering all the possible toxicity modes of action that could be triggered.
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Table 5.1. Published classifications of drugs for DILI risk.
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Table 5.1 (continued).
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Xu et al. exemplified such a phenomenon and showed that an increase of the size
of the training set improved not only the accuracy of models but also reduced
their variability®®. Additionally, the limited size of external test sets (Table 5.1)
makes the interpretation of the validation of hepatotoxicity prediction models
difficult since only a small fraction of hepatotoxicity mechanisms may be
validated. The ideal validation set should comprise at least as many compounds
as there are ways to disturb the processes involved in these pathways. However,
the aggregation of such a dataset is, at this time, not possible. Nevertheless,
sizes of both training sets and evaluation sets have been increasing (Table
5.2), notably through the aggregation and careful data curation of multiple
datasets®' but also through the United States Environmental Protection Agency's
(EPA) ToxCast36-38 and the multi-agency Tox21%4% open-data initiatives and the
European eTOX%-%2 and eTRANSAFE consortia. These consortia have gathered
pharmaceuticals, data curators, modelers and software developers aiming at
building a shared and mineable database of preclinical (€TOX) and clinical
(ETRANSAFE) toxicity data to enable more effective read-across and predictive
modelling of safety endpoints.

DATASET IMBALANCE LIMITS PROPER MODEL EVALUATION

The second limitation of published datasets is the imbalance of the validation
sets (e.g. in 336559 in Table 5.2). These datasets, where either only hepatotoxic
compounds are represented or fewer than 190% of compounds are non-
hepatotoxicants, do not allow for a proper estimation of the specificity of the
models. From the perspective of the training set, the imbalance of the data
has been a major challenge to overcome in the prediction of hepatotoxicity:
we identified eight articles in which the ratio of non-hepatotoxic compounds
considered represented less than 40% of the training set”'*427874 The opposite
trend was observed in six articles where hepatotoxic compounds represented
less than 40% of the training set®?7%79, Although building a robust model on an
imbalanced dataset is possible, the performance decreases significantly when
the number of individuals in the minority class approaches, or becomes, less
than 10%. Whilst imbalanced sets affect the robustness of a model, they may
better represent the distribution of compounds or dugs observed in real life.
This is relevant for the work of Lu et al., who predicted the general hepatotoxicity
of compounds based on the profiles of their predicted metabolites’®, where
64 hepatotoxic and 3,339 non-hepatotoxic compounds were considered - the
minority class representing about 2% of the entire dataset. The strategies
generally adopted to counteract the systematic prediction of compounds to
belong to the majority class are (i) undersampling of the majority class, (ii)
oversampling of the minority class®’, (iii) bagging®, (iv) boosting, (v) cost-
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Table 5.2. Reported computational models for the prediction of DILI.
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Table 5.2 (continued).
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Table 5.2 (continued).
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sensitive learning and (vi) hybrid methods®23, In their work, Lu et al. used the
Synthetic Minority Oversampling Technique (SMOTE) algorithm®® to correct
for this data imbalance yielding a cross-validated balanced accuracy of 8.60
when predicting hepatotoxicity from predicted metabolites®’. The application
of such meta-classifiers in the prediction of hepatotoxicity is quite recent since
only five other works have used them since 2015™737984-86 Tt js worth noting
that a comparison of the behaviour of meta-classifiers has been performed
on few selected imbalanced drug-induced cholestasis datasets?®’. Bagging
has the worst performance as it does not balance or weight the two classes,
threshold selection performed better than bagging but gave lower sensitivity
than when using stratified bagging, cost sensitive classifier or Meta-Cost®,
The authors emphasised the versatility of the stratified bagging technique
despite its computational cost when extensive resampling has to be performed.

EARLY DILI PREDICTION STRATEGIES

Among the different in silico models that have been developed for the prediction
of hepatotoxicity, four main groups of models can be identified base d on the
features, properties or data the prediction models are built upon: (i) structural
alerts, (ii) rules of thumb, (iii) molecular descriptors and (iv) in vitro data. These
are described in detail below.

STRUCTURAL ALERTS. INSIGHTS INTO MECHANISMS OF ACTION

Structural alerts are specific substructures of molecules generally associated
with hepatotoxicity. Structural alerts are generally developed by experts in
toxicology who consider not only toxicological data but also the underlying
mechanisms of toxicity, as well as chemical reactivity and biotransformation
through metabolism.

One of the first approaches to determining such alerts for DILI utilised a
four-stage process*'. A dataset of 1,266 compounds associated with in vivo
human DILI was aggregated from the literature. Candidate structural classes
were derived from these compounds by experts through well-characterised
and previously published relationships between compound structures and
hepatoxicity. Then these classes were refined by the development of structure-
activity relationships (SAR) for which sufficient evidence was available. Finally,
the 38 structural alerts classes identified, such as tetracyclines and thiophenes,
were validated against an in-house dataset from Pfizer consisting of 626
compounds (412 hepatotoxicants and 214 non-hepatotoxicants). The compounds
were classified as either hepatotoxic for humans and/or animals or with weak or
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no evidence of hepatotoxicity. Although its sensitivity and accuracy were close
to random (0.46 and 0.56 respectively) and its specificity quite reasonable
(0.77), this approach was not designed for screening purposes. Nevertheless,
it should be noted that alerts were prioritised based on their applicability
to the Pfizer compound collection. Additionally, compounds that showed
unambiguous toxicity during in vitro screening were not prioritised for in vivo
studies, and thus were not considered in this study, potentially explaining the
very low sensitivity.

In a second approach a set of 244 hepatotoxic compounds was aggregated
from the literature and from failed clinical candidates and drugs withdrawn from
the market™., From these, 74 structural alerts were derived from mechanistic
information, of which 56 were related to reactive and toxic metabolites
metabolism. The remaining 18 alerts were based on high cut-off similarity
queries, as no mechanistic information could be derived. The authors did not
evaluate the predictive performance of these structural alerts but deployed
them within the VERDI cheminformatics platform from Vertex pharmaceuticals.

In a third approach™, a diverse set of 951 compounds was compiled through
curation of the dataset from Fourches et al.®%. The protein binding potency
of each compound was predicted and structural similarity-based clusters of
compounds were identified. These categories were then manually curated
and related to other well characterised structural alerts. Finally, each alert
was thoroughly examined to derive a mechanistic hypothesis for the observed
hepatotoxicity. In total 16 structural alerts were characterised. The authors
did not validate such alerts on external datasets as their aim was to provide a
scheme to identify mechanistically supported structural alerts.

Applying a similar process, Pizzo et al. compiled a dataset of 950 compounds
of which 510 were hepatotoxicants and identified 13 structural alerts manually
and 75 through automatic identification, 11 and 40 of which were respectively
associated with hepatotoxicity®®. The authors then developed an expert-
based decision tree based on these structural alerts to predict binary general
hepatotoxicity. The model developed was subsequently validated against an
external dataset of 181 compounds (69 hepatotoxicants), of which 41% could
not be predicted as did not contain any structural alert. Although sensitivity and
accuracy were satisfactory for such an approach (0.80 and 0.68 respectively)
the model performed poorly in terms of specificity (0.33). Through thorough
examination the authors derived a mechanistic hypothesis for the manually
derived structural alerts. In addition to the p-lactam substructures, retinoids,
oestrogen steroids identified by Hewitt et al."®, the authors characterised
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N-containing heterocyclic aromatic compounds, sulphonamides, nucleoside
analogues, tricyclic antidepressants, aromatic amines, macrolide antibiotics,
anti-bacterial agents, cationic amphiphilic drugs to be mostly associated
with hepatotoxicity and nitrosourea compounds not to be associated with
hepatotoxicity.

Finally, aggregating DILI associated compounds from LiverTox®® with literature
findings, Liu et al. performed substructure searches using literature-based
structural alerts®. Alerts were ranked by their probability of chance occurrence to
classify compounds as being hepatotoxic, non-hepatotoxic, or possible hepatotoxic.
This led to the identification of 12 statistically relevant alerts that, unfortunately,
were not validated on an external set for prospective prediction. In addition to
steroids that were already well characterised hepatotoxicants, sulphonamides,
hydrazines, arylacetic acids, anilines, sulfinyls, acyclic bivalent sulphurs,
acyclic diaryl ketones, halogen atoms bonded to a sp3 carbon, aminocyclopropyls,
aminophenols and phenothiazines were identified as being toxic to the liver.

Other studies on the development of quantitative structure-activity relationship
(QSAR) models have also focused on the identification of molecular patterns
related to hepatotoxicity. Structural fingerprints of compounds (e.g. Kletkota-
Roth™ or extended connectivity fingerprints'®) have been calculated for a
training set. Association of the presence of one pattern with hepatotoxicity was
evaluated either based on the feature importance of each bit of such fingerprints
or on their frequency. The importance of fingerprint bits has been notably
derived from extended connectivity fingerprints with a maximum diameter of
6 (ECFP6) using naive Bayes models*®’® and a random forest®® with 12 different
fingerprints. This analysis pointed not only to substructures associated with
hepatotoxicity but also those associated with non-hepatotoxic compounds.
Frequency focused determination of substructures of interest was performed
either by determining the information gain of using such substructures or by
using logistic regression, and deriving odds ratios and/or p-values associated
with these moieties®30:4598103165

The real benefit of using structural alerts is that they may be associated with well
characterised mechanisms (e.g. biotransformation to reactive metabolites or
alteration in membrane structure integrity, adduction to proteins) and with
specific organ level toxicity effects™. This reason makes them valuable when
determining the toxicity of new drugs and postulating key mechanisms involved.
In addition to expert-derived structural alerts, the identification of key substructures
associated with DILI is of crucial importance since it allows for further research
on, and understanding of, the associated underlying mechanisms.
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Nevertheless, a key concept of applying structural alerts is that the absence
of a matching alert for a compound is not proof of it not being hepatotoxic'.
Moreover, the presence of structural alerts should not be seen as a clear
indication of the DILI potential of a drug. To emphasise this, Stepan et al.
retrospectively examined the 200 most prescribed and sold drugs in the US
in 2009 and 68 other drugs that had been recalled or were associated with
black box warning due to iDILI™®, Although structural alerts were present in
78%-86% of hepatotoxic drugs, approximately half of the top 200 drugs for
2009 also contained one or more structural alerts, mitigating the use of alerts
in for the screening of the toxicity of a compound. According to the authors,
“the major differentiating factor appeared to be the daily dose”, as drugs with
high daily doses were mostly associated with toxicity.

RULES OF THUMB: FAVORING INTERPRETABILITY OVER PERFORMANCE

To expand on Stepan et al.'s observation about daily dose, few rules of thumb
based on two or three molecular features of compounds have been derived. Chen
et al. identified that from a dataset of 164 US FDA-approved oral medications, a
high risk of DILI was associated with lipophilic drugs (Log P = 2) given at high
dosage (daily dose = 100 mg; odds ratio 14.85, p value < 8.001)””. This ‘rule
of two' was validated using Greene et al.'s dataset of 179 oral medications*..
Of the compounds being positive for such a rule, 85% were associated with
hepatotoxicity. However, this high positive predicted value was associated with
very low sensitivity (0.29) but very high specificity (8.91), which overall gives an
accuracy (0.51) close to that of a random prediction. When applying this ‘rule
of two' to five datasets??39414851 accounting for a total of 1,036 compounds, the
authors noticed that the association between toxicity and high lipophilicity was
statistically significant for only three of them (those of Chen et al., Greene et al.
and Zhu et al.). Moreover they found that all compounds with a daily dose higher
than 100 mg per day were significantly associated with DILI risk'", The authors
also collected hepatic metabolism information for 398 drugs and observed that
drugs, which are more than 50% metabolised in the liver, were more prone
to be hepatotoxic (odds ratios between 1.80 and 2.67). Combining significant
hepatic metabolism with high daily dose allowed for the correct identification
of 78% of hepatotoxic compounds and 60% of non-hepatotoxicants, giving
this prediction method an overall accuracy of 0.68. Factoring high lipophilicity
with reactive metabolite (RM) formation and high daily dose for a dataset of
192 drugs, the authors were then able to develop a prediction method with a
specificity of 1.00 but sensitivity of 0.3878. The assessment of the association
between daily dose, lipophilicity, RM formation and DILI risk by logistic
regression analysis confirmed the significant importance of these features™
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and allowed for the development of a DILI score significantly correlated with
the severity of liver injury in human for three different datasets*?%4'.

Another rule of thumb was derived by Leeson, who investigated the predictivity
of physicochemical properties of compounds related to their dose®2. More
specifically, the differences between dose, lipophilicity and the fraction of sp3
hybridised carbons atoms (Fsp3) in relationship to whether drugs with the most
and no DILI concern were acids, bases or neutral (from the Chen et al. dataset)*
were examined. As the mean Fsp3 values of bases, which were enriched in the
non-hepatotoxicants class, are greater than for acids'®®, the author was able
to integrate Fsp3 to the ‘rule of two', yielding accurate predictions for 82% of
compounds and with high and balanced sensitivity and specificity (8.79 and
0.85 respectively).

Despite the simplicity of these rules of thumb that have high specificity,
their major flaw is that their applicability is limited to the datasets they are
built upon™. The datasets may have different causality assessment scales to
derive DILI annotation which vary from one dataset to the other, or reported
hepatotoxicity evidence maybe is vague'??'?%, This limitation of the data was
stressed by Leeson who identified that among the 155 oral drugs belonging to
the top 200 prescribed medications in the US in 2009 that were annotated
by Chen et al*, 59% belonged to the Less DILI category, hence questioning
the significance of such a class®2.

QUANTITATIVE STRUCTURE-ACTIVITY AND TOXICITY RELATIONSHIPS. ENHANCED
PERFORMANCE

Because the acquisition of some of the parameters mentioned above is only
possible from in vitro and in vivo studies QSAR or structure-toxicity relationship-
based models have been developed using molecular properties to allow for the
early screening of compounds for which no data exist. Examples of experimental
properties which may not be available for models include metabolism activity,
maximum daily dose or peak concentration in serum after drug administration
(Cmax). There are several different types of cheminformatics model: models
predicting general hepatotoxicity, histopathological phenotypes (e.g. increase
in serum biomarkers, cholangitis) or specific modes of action mediated through
protein-ligand interactions.
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General hepatotoxicity

Derived from the first phenotypic observations of hepatotoxicity and used to
provide a general estimation for compound prioritisation in drug discovery,
QSAR models were first built using general binary DILI annotations. For
instance, Cheng and Dixon developed one of the first hepatotoxicity QSAR
models derived from molecular descriptors, without regard to dose-dependence.
In addition to those descriptors, the similarities to the 382 compounds in the
training set (149 hepatotoxicants and 233 non-hepatotoxicants) were also
used as explanatory variables. Monte Carlo feature selection was applied to
reduce the number of descriptors to 25, of which 6 were physicochemical
properties. A random forest model was developed and validated on a test set
of 54 compounds. Its performance was very encouraging with good accuracy,
fair sensitivity and high specificity (0.81, 0.70 and 08.90 respectively). However,
such an approach, with such a limited description of the molecular structure
and similarity profiles to the training set, did not allow for extrapolation to
other compound classes.

Since then, a wide variety of general QSAR models predicting hepatotoxicity
have been derived using different types of molecular descriptors, molecular
fingerprints and machine learning algorithms (Table 5.2). The most recent
work predicting general hepatotoxicity solely from molecular descriptors
is from He et al.”®. The authors combined a total of 14 datasets for which
hepatotoxicity labels originated from animal and cell experiments, clinical
reports, drug labels, medical monographs and the scientific literature. In
addition, compounds that were classified by fewer than two of eight effective
classifiers were discarded, allowing for the creation of a large, balanced and
high-quality dataset of 1,254 compounds (636 positives and 638 negatives).
Using a set of 85 physicochemical and topological properties an ensemble
model based from the eight base classifiers was obtained with high and
balanced performance evaluated with 10-fold cross-validation (sensitivity
0.82, specificity 0.75, accuracy 0.78 and balanced accuracy 0.78) and on
an external test set of 204 compounds (sensitivity 0.77, specificity 0.66,
accuracy 0.73 and balanced accuracy 0.72). To further validate their model to
identify non-hepatotoxicants, the authors assembled a dataset of 312 negative
compounds. Their classification ensemble model correctly predicted 215 of
these compounds, giving a reasonable accuracy of 0.70.

The relevance of building classification models from molecular descriptors
alone, in comparison with molecular fingerprints, was questioned by Li et
al.’®3, The relative performances of k-nearest neighbour (k-NN), support vector
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machine (SVM), random forest (RF), naive Bayesian (NB) and decision tree
(DT) models built from seven PaDEL molecular fingerprints'* and molecular
descriptors were compared for a dataset of 980 DILI-positive and 751 DILI-
negative compounds. Models based solely on molecular descriptors had
the lowest average performance with low accuracy (0.62 to 0.73), specificity
(0.13 to 0.70) and AUC (0.0.63 to 0.78). The combination of public MACCS
fingerprints in an SVM vyielded the best classification performance on an
external test set of 88 hepatotoxicants and 63 non-hepatotoxicants (0.83
accuracy, 0.93 sensitivity, .68 specificity and 0.88 AUC) despite their limited
dimensionality of 166 bits. Only one model, also developed with public MACCS
fingerprints but using k-NN, had higher specificity than the previous one (0.70)
but lower accuracy, sensitivity and AUC (0.76, 8.81 and 0.82 respectively). This
emphasised the usefulness of ensemble models, which was the strategy used
by Wu et al.”", who combined four PaDEL molecular fingerprints with k-NN, RF,
SVM and artificial neural network (ANN) base classifiers in consensus voting
models and also identified the public MACCS fingerprints and SVM-based
based classifier to perform well on an external test set of 166 positive and
498 negative compounds (0.75 sensitivity, 8.93 specificity, 8.88 accuracy and
0.70 Matthews correlation coefficient [MCC]). Their consensus models were
based on the number of times a compound was predicted to be hepatotoxic
by base classifiers. The best performing consensus model, which was that
based on three positive predictions out of the 4 base classifiers, was selected
(0.77 sensitivity, 0.97 specificity, .92 accuracy and 0.78 MCC respectively).

Ai et al.® adopted the same strategy as Wu et al. but filtered out bits of the
fingerprints that were correlated and did not apply them to the dataset (e.g. all
molecules contain carbon atoms so this information was removed). The five
best performing base classifiers in terms of AUC, which interestingly did not
include any based on public MACCS fingerprints, were then combined in an
ensemble model by averaging their predicted hepatotoxicity probability (0.84
accuracy, 0.87 sensitivity, 8.75 specificity and 8.90 AUC on the external test set).

Wang et al."®? recently combined the Ai et al.'s approach with the work of He et
al. by developing an ensemble model based on the eight PaDEL fingerprints
that performed best on their dataset as well as an ensemble model based on
seven simple molecular properties (ALogP, molecular weight and numbers of
aromatic rings, hydrogen-bond donors, acceptors, rotatable bonds and rings).
The five base classifiers used for both these ensemble models were random
forest and boosting tree models. The average probabilities for each ensemble
were then summed and the weighted average of the two (i.e. 0.7 for fingerprint-
based and 0.3 for molecular property-based) were used to classify compounds.
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The performance of the model was comparable, although slightly lower, than
that obtained by Ai et al. but specificity was very good (0.82 accuracy, 0.65
sensitivity, 0.96 specificity, 0.80 AUC).

Phenotypically-focused models

To compensate for the complexity of predicting general hepatotoxicity, models
focused on finer phenotypes have been devised. In this sense, Myshkin et
al. derived an ontology database of hepatotoxic pathology from human and
animal publicly available toxicity data®2. This database was organised by
the type of pathology and by organ substructure and function impairment.
From this ontology, different toxicity datasets were identified among which
were datasets related to liver necrosis, liver weight gain and liver steatosis,
comprising of 300, 305 and 172 instances respectively. For each endpoint,
random forest QSAR models were derived using augmented atom pairs'?. The
best performing models were then evaluated on external test sets (490, 539 and
478 respectively). Results were encouraging with 8.63, 0.74 and 0.60 specificity
for liver necrosis, weight gain and liver steatosis respectively, 0.87, .86 and
0.75 sensitivity, 0.66, 0.76 and 0.62 accuracy and 0.35, 0.51 and 0.23 Matthews
correlation coefficient. The authors then characterised the applicability domain
of their models based on a Tanimoto distance between compounds in the
training and test set. The models were quite sensitive as sensitivity decreased
for compounds in the 30-59% compound dissimilarity range. Interestingly, the
model based on weight gain was very robust as sensitivity remained above 0.72
for the entire 30-99% range. It is worth mentioning that these three models
performed better than a general hepatotoxicity model (0.58 sensitivity, 0.71
specificity, 8.64 accuracy and 0.29 Matthews correlation coefficient) which
showed a high sensitivity of 8.82 for the 30-39% Tanimoto dissimilarity range,
highlighting the relatively high diversity of compounds in the validation set.

Another work by Takeshita focused on the prediction of alanine transferase (ALT)
elevation in rats from repeated-dose toxicity studies’s. Two logistic regression
models, with seven and nine explanatory variables out of an initial 3,636
DRAGON molecular descriptors respectively'?®, were derived to classify 176
compounds. Compounds which had either a lowest observed effect level (LOEL)
associated to ALT elevation, (40 positives and 136 negatives) or an elevation in
ALT at a dose below 1000 mg/kg (23 strong and 153 weak compounds) were
included. Because of the imbalance of their datasets, the authors used the
SMOTE algorithm?®®. Although classification performance on the training set
was limited between toxic and non-toxic compounds (8.65 sensitivity, 8.581
specificity and 0.600 accuracy), the logistic model showed better discrimination
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between weak and strong compounds (0.78 sensitivity, 8.74 specificity and
0.75 accuracy). External validation on a dataset of 59 compounds (23 strong
and 36 weak compounds) showed decreased performance (0.60 sensitivity
and specificity and accuracy between 0.40 and 0.50). Nevertheless, the
significant difference between 52 out of a set of 197 molecular descriptors
from the training and test sets was observed by the authors, emphasising the
need for applicability domain determination.

Focusing only on in vivo hepatocellular hypertrophy in rats, Ambe et al. developed
deep learning (DL), RF and SVM classification models™®. The authors collected
rat toxicity data following chronic exposure of more than 27 days from two
sources. Models were trained on half of the data of the two datasets (173 and
251 compounds respectively) as well as on half of their combination (405
compounds) and respectively evaluated on their other halves. DL models were
clearly overfitted to the data. Their ROC AUC was 1.80 and accuracy, sensitivity,
specificity were 0.96 when evaluated on training set, but dropped when the test
set was evaluated. However, the DL model based on the combined dataset did
not show such behaviour with more equivalent performance between training
and test set. This observation could be the combined result of the two-fold
increase in the size of the dataset and the reduction of features from 433 and
417 to 385, corresponding to a decrease in dimensionality by 7.7% to 11.1%.
The applicability domain of the models was determined using distance in the
molecular space to the training set'?” and resulted in 19, 38 and 50 compounds
lying outside for two test sets and their combined version respectively. Using a
consensus model based on the majority principle, similar predictive performance
was achieved. Of the 107 compounds incorrectly predicted by the consensus
model, 78 were predicted incorrectly by all three models. These incorrectly
predicted compounds were mostly false positives and the authors exemplified
the case of flufenoxuron, a benzoylphenyl urea-based insecticide which is not
a hepatocellular hypertrophy inducer in rats but is in mouse carcinogenicity
studies. This the need for the development of models in other species not only
for better prediction, but also translation between species and understanding
of any species-specific mechanisms involved.

Mulliner et al. investigated species specific effects by creating hierarchical
seven endpoint hepatopathology trees for human and preclinical findings®:.
An additional tree was developed for preclinical findings obtained at doses
lower than 500 mg/kg in order to reduce the leverage of high dose toxicants
during model development. The endpoints were organised in three different
levels: general hepatotoxicity, morphological and clinical chemistry findings,
hepatocellular and hepatobiliary injuries. A total of 3,712 compounds were
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aggregated with overall concordance between human and animal hepatotoxicity
of 77%. Individual SVM classification models were developed for each endpoint
using a genetic algorithm for feature selection. All human endpoints were
reasonably well predicted with accuracies between 0.73 and 0.78 for internal
validation. For preclinical endpoints, only general hepatotoxicity could be
modelled confidently for toxicity above 580 mg/kg (ROC AUC of 8.73 and
lower than 0.67 for others in internal validation). Conversely all endpoints with
the exception of hepatobiliary injuries could be modelled for toxicity below
such a threshold (accuracies between 0.75 and 0.83 in internal validation). An
external validation on 269 proprietary compounds with 14 to 28-day rat study
data showed decreased performance for all models (accuracies between 0.38
and 0.64 and ROC AUC between 0.51 and 0.68). The reduction in performance
observed between internal and external validation for preclinical data was
expected to be similar for human endpoints, more especially when applying
these models on early research drug candidates which do not exhibit similar
molecular properties as drugs.

A similar work by Lépez-Massaguer et al.'®® relied on an ontology to classify
compounds for three endpoints as well as predict the LOEL of compounds
from the eTOX database®®. This database was derived from multiple types of
publicly available and confidential preclinical data, in multiple species, for
various administration routes and for different exposure times. Aggregating rat
in vivo microscopy and hepatopathology findings, the authors gathered 164, 94
and 82 positive compounds for the three endpoints (i.e. degenerative lesions
[DEG], inflammatory liver changes [INF] and non-neoplasic proliferative lesions
[PRO]). It is worth noting that the negative compounds that were selected had
been tested at concentrations higher than 1900 mg/kg and had no observed
treatment-related and liver-related histopathology findings (168, 164 and 164 for
DEG, INF and PRO respectively). Sensitivities and specificities of random forest
classification models were balanced after both cross and external validation
for PRO (0.70 and 0.50 sensitivities and 0.69 and 0.62 specificities at cross
and external validation respectively) and DEG (0.68 and 0.67 sensitivities
and 0.55 and 0.59 specificities at cross and external validation respectively)
while were unbalanced for INF (0.84 and ®. 67 sensitivities and 0.44 and
0.54 specificities at cross and external validation respectively). Partial least
square regression models showed poor fit with low goodness-of-fit (ranging
from 0.26 to 0.58), poor predictive performance (Q? ranging from -0.84 to
0.07) and high standard deviation (ranging from 1 to 2 log units). This work
emphasised the possibility of stringent selection of negative compounds as
well as aggregation of multiple sources of data containing compounds with
different routes of administration and exposure times.
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Relying on an hepatopathology-based ontology, as was carried out in the two
previous approaches, Liu et al. introduced a severity grade in their hierarchical
approach®®. The authors organised their ontology into three levels: level 1
denoted general hepatotoxicity, level 2 corresponded to the severity of the
hepatotoxicity and level 3 associated with adverse events (e.g. acute liver
failure, cholestasis or AST elevation). A total of 2,017 compounds associated
with 403 clinical grade 3 adverse events were collected from SIDER**#* and
LiverTox®®, amongst other, databases. Individual classification random forest
models were built for 22 endpoints. The level 1 classification model, predicting
general hepatotoxicity, showed good sensitivity and ROC AUC but low specificity
(0.81, 0.75 and 0.50 respectively). Models based on DILI severity showed more
balanced sensitivities and specificities (0.70-0.71 and 0.63-0.70 respectively)
resulting in comparable or slightly higher ROC AUC (0.75-0.78). Adverse events
prediction models showed balanced sensitivity and specificity ranging from
0.65 to 8.83 and from 0.63 to 0.79 respectively, as well as reasonable accuracy
(0.67-08.78) and a high ROC AUC (0.71to 0.87). The 27 models were integrated
in a tiered prediction model with high sensitivity (8.82). Because of the limited
size of the external validation dataset, adverse events prediction at level 3 was
a qualitative assessment of the models. Nevertheless, ticrynafen, which had
been withdrawn from the market for association with hepatitis, was predicted
by level 3 models to be associated with hepatitis, acute hepatic failure, and
hepatocellular injury.

Prediction of specific modes of action

Biological mechanism-focused models have been gaining increasing interest
in recent years, under the auspices and needs of the ToxCast and Tox21
initiatives. An example is the work of Wu et al.’®?, who integrated quantitative
high-throughput screening bioassay activity data to develop 17 QSAR models.
The profiles of mode of action (MOA) of drugs were predicted with a set of
777 2D molecular descriptors using random forest models. The accuracies of
prediction models ranged between 0.63 and 0.67, which was quite encouraging
considering the imbalance in the data. Nevertheless, when predicting general
hepatotoxicity from the predicted MOA profiles, 5 fold cross-validation on a
dataset of 222 compounds (155 hepatotoxicants and 178 non-hepatotoxicants
with test set included) gave an accuracy of 8.76 and internal validation on 111
drugs gave accuracy of 0.708. This performance was higher than when using
a standard QSAR model (accuracy of 8.66 for cross-validation). Interestingly,
the general hepatotoxicity model derived from the top four performing MOA
profiles prediction models had slightly higher accuracy on the internal validation
set while slightly lower through cross-validation (8.71 and 0.70 respectively).
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These models could be regarded as underperforming as compared to recent
general hepatotoxicity QSAR models, however, it should be noted that only a
small number of MOAs were considered in this study with regard to the different
mechanisms involved in DILI.

Some other studies on the prediction of MOA profiles have been more focused
on specific phenotypes. For instance, an impairment of the function of export
pumps and transport proteins in the liver would result in the progress of a
cholestatic phenotype. The export pumps comprise the biliary salt export pump
(BSEP), the breast cancer resistance protein (BCRP) and the P-glycoprotein
(P-gp). The transport proteins are the organic-anion-transporting polypeptides
(OATPs). OATPs are members of the solute carrier (SLC) family and transport
organic anions. Few models have been developed to predict the inhibition of
such proteins. A prospective analysis® was carried out to identify OATP1B1
and OATP1B3 inhibitors out of DrugBank'®. This screening was based on a
training dataset of 1,708 compounds (190 inhibitors and 1,518 non-inhibitors)
for OATP1B1 and of 1,725 compounds (124 inhibitors and 1,601 non-inhibitors)
for OATP1B3, respectively. An external test set containing 201 compounds
for OATP1B1 (64 inhibitors and 137 non-inhibitors) and 209 compounds for
OATP1B3 (40 inhibitors and 169 non-inhibitors) was used to assess the validity
of the model along with 5-fold and 10-fold cross-validation. Two random forests
and four support vector machine classifiers, using MetaCost® as metaclassifier
to deal with the imbalance of the dataset, were generated for each transporter.
As the performance of the models was relatively equivalent - accuracy values
and ROC AUC for the test set in the range of 0.81-0.86 and of 0.81-0.92,
respectively - a consensus scoring approach was used, summing up the
prediction scores of each classification model. The screening of DrugBank
(6,279 compounds) resulted in the identification and biological testing of
the 9 compounds with highest predicted probability of being OATPB1 and
O1TPB3 dual inhibitors and 1 selective inhibitor of OATP1B3. Only the latter
was incorrectly predicted, yielding an accuracy of 90% for OATP1B1 and 80%
for OATP1B3, respectively.

To compare the prediction of an inhibitory effect of transport proteins to a
phenotypic readout, the relative performance of meta classifiers on unbalanced
datasets was studied for OATP1B1 and OATP1B3 inhibition, human cholestasis
and animal cholestasis based on molecular descriptors®”'?°, Although imbalance
ratios between negatives and positives ranged from 2:1 to 20:1, the balanced
accuracies of models with sensitivity higher than 8.5 ranged from 0.67 to 0.83
for OATPB1, 0.63 to 0.86 for OATP1B3 and 0.64 to 0.78 for human cholestasis
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on test set and from 0.53 to 0.65 for animal cholestasis. This emphasised the
difficulty in predicting a phenotypic outcome solely from compound structure.

Other work focused on the prediction of BSEP and MRP4 inhibition from
both statistical and structure-based approaches™S. In this study, 57 and 171
compounds along with inhibitory effect on MRP4 and BSEP were gathered
respectively. Bayesian models were trained on simple molecular descriptors
and either extended-connectivity fingerprints maximum diameter 6 (ECFP6)
or functional-class fingerprints maximum diameter 6 (FCFP6). For MRP4,
although the models performed well in terms of specificity, they did not show
high sensitivity. Nevertheless, the MRP4 pharmacophore model built on 9
compounds was able to correctly classify 30 of the 42 actives in the test
set and 22 of the 35 inactives, leading to a sensitivity of 8.71 and specificity
of 0.63. The BSEP inhibition prediction model showed more balanced and
higher performance (sensitivity of .82 and 0.77, specificity of 8.77 and 0.84
respectively) but the pharmacophore model had a higher selectivity whilst poor
specificity of 8.37. The lower performance of the MRP4 classification model
was probably due to the 3:1 ratio between active and inactive compounds in
the training dataset and to the small size of the dataset comprising only 86
compounds. This work emphasised not only the usefulness of structure-based
modelling when it comes to the prediction of inhibitory effects of compounds
but also the requirement for well-balanced datasets.

This difficulty to predict a phenotypic outcome of a compound using an
imbalanced dataset was tackled using metaclassifiers and considering the
predicted inhibitory effect of compounds on transport proteins as descriptors®®.
Cholestasis-focused data were aggregated by mining and manually curating
the literature for human drug-induced cholestasis. A total of 578 compounds
were identified, of which 131 were cholestasis positives and 447 were DILI
negatives. A k NN classifier with MetaCost metaclassifier for data imbalance
correction was generated and evaluated through both 10-fold cross-validation
and external testing on a dataset covering multiple levels of hepatotoxicity
and including hepatobiliary injury®. Inclusion of BSEP, BCRP, P-glycoprotein,
and OATP1B1 and OATP1B3 inhibition predictions increased accuracy (0.66
to 0.70) and ROC AUC (0.66 to 0.73) of the model through 108-fold cross
validation but decreased for the test set (0.61 to 0.56 and 0.62 to 0.58
respectively). The authors speculated that this was the result of a different
class assignments between the training and test sets and argued that almost
20% of the compounds in the external validation set had contradictory labels
with the training set (71 out of 419 shared compounds). Nevertheless, the
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authors showed that accuracy and specificity reach their peak only after the
inclusion of BSEP predictions, but that when only using BSEP predictions, the
model showed a slight increase in accuracy and specificity of the model but
decreased sensitivity. This suggested that BSEP inhibition conveys most, but
not all, of the relevant information when modelling cholestasis.

An effort to merge multiple publicly available datasets was undertaken to apply
the models obtained to other datasets and investigate how export pump and
transporter inhibition correlate to general hepatotoxicity®'. In this work, the
authors gathered nine previously published datasets for model training (966
compounds) and three datasets for validation (996 compounds). Three random
forests classifiers were built using two sets of molecular descriptors to predict
transporter inhibition®"32, Accuracy and ROC AUC of the models ranged from
0.57 to 0.69 and from 0.59 to 0.73 respectively in spite of the heterogeneity of
such a dataset, ranging from in vitro cell-based assay readouts to FDA reports
and post-marketing safety data. Nevertheless, the introduction of BSEP, BCRP,
P-glycoprotein, and OATP1B1 and OATP1B3 inhibition binary prediction as
descriptors slightly decreased the model performance. The authors argued that
this could be the result of mispredictions of such transporter inhibition models
resulting in noise added to the feature matrix and that the inhibition of only one
transporter would not alter the function of hepatocytes. With regards to such
possible misclassifications, the use of a hard threshold at 10 uM to classify a
compound as being an inhibitor can lead to misclassification of compounds
with IC50 around such a threshold, thus artificially lowering the performance
of the model. Additionally, such a threshold is not in accordance with the
300 uM value that was suggested to be used for BSEP inhibition™. QSAR
models modelling BSEP inhibition based on the latter threshold showed very
good performance®™*, Finally, the endpoint to be predicted denotes general
phenotypic hepatotoxicity and correlates only with transporter inhibition which
is associated mostly with cholestasis.

It should also be noted that the BSEP, BCRP, P-glycoprotein, and OATP1B1
and OATP1B3 do not represent the entirety of transporters. One could also
cite the canicular and basolateral multidrug resistance-associated proteins
(MRP1 to MRP6), the organic solute transporters (OSTa/OSTf), the multidrug
and toxin extrusion transporter 1 (MATE1), the ATP-binding cassette subfamily
G member 5/8 (ABCG5/G8), the multidrug resistance protein 3 (MDR3), the
ATPase-aminophospholipid transporter (ATP8B1), the sodium taurocolate
co-transporting polypeptide (NTCP), the organic cation transporters 1 and 3
(OCT1/3), the organic anion transporters 2 and 7 (OAT2/7) and other organic
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anion transporting polypeptides (e.g. OATP2B1)136. However, to date, very few
inhibition data have been collected for these targets, making such a modelling
exercise rather difficult if not unfeasible.

Finally, Gadaleta et al. developed MOA prediction models in the context of
steatosis™®. Data from 24 in vitro HTS assays from the ToxCast program were
compiled. The agonistic and/or antagonistic activity toward six transcription
factors (namely the pregnane X receptor [PXR], liver X receptor [LXR], aryl
hydrocarbon receptor [AhR], nuclear factor (erythroid-derived 2)-like 2 [Nrf2],
PPARa and PPARYy) were modelled using DRAGON molecular descriptors and
random forest models. For each MOA, four models were developed based on
different strategies in feature selection and class balancing (i.e. majority class
undersampling or balanced bagging) and integrated in a consensus model.
External validation of the consensus models showed very good performance
for all MOAs (accuracy between 0.74 and 0.96) but for agonistic activity on
PPARY (accuracy of 8.66) for compounds in the applicability domains. A second
validation was carried out by screening 90 chemicals with in vitro steatosis
data (six positives, 84 negatives) without experimental data for the molecular
initiating events (MIE) endpoints considered and gave perfect sensitivity and
AUC of 0.72. This exemplified how modelling the MIE can be successfully
integrated in a virtual screening strategy for identifying chemicals causing
hepatic steatosis.
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Discussion

Predicting DILI is a vital task, but is fraught with difficulties and complexities
brought about from the data available to model, the number and varieties
of phenotypic endpoint and mechanisms and the requirements of the end
user. In the last decade, many QSAR and few rule-of-thumb models have
been developed for the prediction of DILI with the majority of them focused
on classification of compounds based on general hepatotoxicity annotation
(Table 5.2).The good performance of models that have been developed is very
encouraging, highlighting that machine learning methods are able to cope
with complexities of the datasets, even though the data is inherently variable,
limited in size and imbalanced. This is even more exciting considering that
hepatotoxicity is an umbrella term for many different and complex phenotypes
that are the integrated result of various mechanisms, and in spite of the paucity
of phenotypically- and mechanistically-based large datasets. It is worth noting
that only one regression model correlating to the severity of clinical outcome
has been published so far’®. The same applies to multinomial classification
modelling: only one three-level DILI classification model has been published®.
Nevertheless, as no golden standard for DILI annotation has been established,
each annotation uses its own criteria and sources to label compounds', leading
to contradictory hepatotoxicity labelling of compounds by different authors,
thus making the integration of multiple datasets a difficult endeavour®?', This
stresses the requirement for sensitive biomarkers able to accurately differentiate
medical symptoms of DILI. However, the downside of using more complex
machine learning algorithms is that they lack transparency and accountability.

Additionally, differences in molecular similarity among datasets’??%19319¢ g5 well
as their evaluation with different metrics makes fair comparison between models
a challenge™. Among molecular descriptors, there seems to be a growing trend
in using molecular fingerprints only, rather than relying on physicochemical or
topological descriptors, although simple rules of thumbs have been devised
from them. To date only one study has used graph-based molecular structural
encoding, thus avoiding the molecular descriptor calculation and selection
step, combined with deep learning algorithms®8. Some other studies have
focused on matched molecular pairs - i.e. molecules that are structurally very
similar - with opposing hepatotoxicity annotations39424547,

Standard physicochemical and topological descriptors, as well as substructure-
based fingerprints in QSAR models (structural alerts excluded), are poor
predictors of the reactivity of the molecules and its relationship to the
metabolism and hence generally do not perform well to predict DILI. In
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addition, the development of prediction models able to correctly predict
toxicity cliffs (i.e. where a very small change in the structure of a molecule
can alter activity enormously) is a challenging field™'3%. Tackling toxicity cliffs
both through better data compilation and more detailed structure evaluation
would definitely help better understanding the mechanisms underlying DILI.
Hybrid models integrating molecular descriptors with in vitro data, whether
being transcriptomics®, cell-imaging® or bioactivity data®®’"®¢ have also
been developed to enrich the information content and interpretability of the
models but with rather limited predictive performance. Only a few models
have included in vivo pharmacokinetic processes, such as absorption and
metabolism inhibition of CYP450 proteins, the formation of GSH adducts
and protein covalent-binding data*®'®, Additionally, models focused on the
determination of MIE and MOA show very good performance and are of
critical importance for better understanding of DILI mechanisms. Yet, it is
striking that no ensemble read-across approach, combining systems biology
network analysis for the prediction of molecular targets™!, MIE or MOA along
with transcriptomics'?3, cell-imaging and metabolomics, has been devised
to this date. Such an approach, similar to the DILIsym'* systems toxicology
strategy, could address the limitations of QSAR™® such as the modelling of
chemical mixtures or inorganic compounds (e.g. cisplatin) as well as enhance
models developed this far with the prediction of the exposure. Furthermore,
computational structure-based mechanistic hypothesising is very limited by
the lack of three-dimensional structures of proteins at stake. Additionally, since
dose is an important predictor for DILI, the prediction of the toxicological point
of departure™® (POD) is challenge to be addressed. Finally, the most difficult
challenge is to address inter-species variability, and the concordance between
human and animal toxicity®®9%'’ that initiatives, such as the eTRANSAFE
consortium®364, focus on.
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