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Drug-induced liver injury (DILI) is one of the prevailing causes of fulminant 
hepatic failure. It is estimated that three idiosyncratic drug reactions out 
of four result in liver transplantation or death. Additionally, DILI is the most 
common reason for withdrawal of an approved drug from the market. Therefore, 
the development of methods for the early identification of hepatotoxic drug 
candidates is of crucial importance. This review focuses on the current state 
of cheminformatics strategies being applied for the early in silico prediction 
of DILI. Herein, we discuss key issues associated with DILI modelling in terms 
of the data size, imbalance and quality, complexity of mechanisms, and the 
different levels of hepatotoxicity to model going from general hepatotoxicity 
to the molecular initiating events of DILI.
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Introduction

Introduction

Drug-induced liver injury (DILI) refers to hepatotoxicity resulting from adverse 
reactions caused by drugs or their reactive metabolites and toxic chemical 
entities. DILI is a major concern as it is one of the leading causes of acute 
liver failure in the world, accounting for more than 50% of cases in the US1. 
Additionally, a recent study showed that DILI is responsible for more than 20% 
of the withdrawals of approved drugs from the market due to toxicity2-4. This 
is an on-going problem, there have been at least eight withdrawals of drugs 
due to DILI from 1997 to 2016 alone: tolcapone, troglitazone, trovafloxacin, 
bromfenac, nefazodone, ximelagatran, lumiracoxib and sitaxentan5. Moreover, 
hepatotoxicity is also a major reason for the failure of candidates in the drug 
discovery process6. These reasons underscore the need for the accurate 
prediction of the risk of DILI for bioactive compounds. DILI itself is complex, it 
comprises a broad set of effects which can be further characterised in several 
ways, either by the type of hepatotoxicity (physiological effect) or by whether 
the effect is dose-dependent or not. 

With regard to hepatotoxicity, three types or patterns may be observed. Firstly, 
hepatocellular injury which is the result of biochemical perturbations of the 
cell culminating in severe cellular malfunction or cell death, the latter resulting 
in formation of scaring tissue. It comprises steatosis, necrosis and cirrhosis 
and is characterised by the release of hepatocellular enzymes such as alanine 
transferase (ALT) and aspartate transaminase (AST). Secondly, cholestatic 
injury is the result of an impairment of the biliary system caused either by 
bile stasis (i.e. the accumulation of bile in the bile ducts), portal inflammation 
or proliferation or injury of bile ducts. It is usually characterised by elevated 
levels of alkaline phosphatase (ALP) and γ-glutamyl transpeptidase (GGT). 
Finally, mixed hepatocellular-cholestatic injury, which occurs rarely in other 
forms of acute liver disease, usually shows prominent hepatocyte necrosis and 
inflammation as well as marked bile stasis. It is characterised by the elevation 
of both ALT and ALP.

DILI itself may also be categorised into two subtypes. The first type, called 
intrinsic DILI (itDILI), is dose-dependent and is modulated by the presence of 
key compound substructures and its effects are reversed after discontinuation 
of drug administration. These reasons make it quite predictable7. The 
second type is idiosyncratic DILI (iDILI), which is very rare as it only occurs 
in 1:1,000 to 1:100,000 patients exposed to the drug8. iDILI is associated 
with poor prognosis and does not show any dose-response relationship.  
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Because it is host-dependent9,10, iDILI can be the result of either immunological 
effects (i.e. allergic reactions) or metabolic effects which makes it more 
unpredictable11 and a considerable challenge for drug development and safety.

These problems emphasise the importance of the early detection of hepatotoxic 
compounds in the drug discovery process in order to reduce attrition rates 
and to increase drug safety. However, a major obstacle to the development of 
comprehensive tools for the early detection of iDILI is primarily the lacking 
predictivity of the existing animal studies and secondly its complexity, ranging 
from the variety of its effects but also from the diversity of factors affecting 
susceptibility to iDILI. Additionally, drug metabolism and pharmacokinetics 
(DMPK) aspects, including local and intracellular concentration, are difficult to 
evaluate and predict. Effects of iDILI include elevations in serum transaminases, 
jaundice, acute liver failure or chronic liver dysfunction. Factors affecting iDILI 
include age, gender, ethnicity, genetic polymorphism, use of other medication 
or pre-existing liver disease12,13. Additionally, the development and mechanisms 
of iDILI are poorly understood making its early detection, and therefore its 
prediction, a challenge14,15. A detailed summary of these mechanisms lies 
outside the scope of this review and the reader is referred to the works of Fraser 
et al.16 and of Noureddin and Kaplowitz17 for comprehensive information on 
DILI mechanisms. Nonetheless, a wide range of predictive models have been 
established for the prediction of DILI and can be divided among quantitative 
adverse outcome pathways (qAOPs)18, metabolomics19, cheminformatics14,20, 
pharmacokinetic-pharmacodynamics (PK-PD) modelling21, dynamical pathway 
modelling with ordinary differential equation (ODE) models22 and multi-scale 
approaches modelling DILI with systems biology approaches23.

The focus of this work is to characterize the application and scope of published 
cheminformatics models for DILI and to highlight their relevance, with a 
particular focus on machine learning.

Approaches to predicting dili risk

Better understanding of the underlying mechanisms of DILI, as well as better 
annotation of the risk associated with drug structures is key for the development 
of more accurate and valuable predictive models20. Additionally there is no 
evidence that the mechanisms through which iDILI occurs are different than 
itDILI24,25. Thus, the focus of DILI research has been to identify reported 
clinical cases of hepatotoxicity. For instance, such information was compiled 
by Ludwig and Axelsen26, who created a list of 150 compounds associated with 
their adverse events. This compilation did not account for the difference(s) 
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between itDILI and iDILI but was one of the first exhaustive lists of hepatotoxic 
drugs to link phenotypic outcomes in human. 

A more recent study classified a list of 611 compounds using high content image 
screening (HCS) on human cells and compared the findings to conventional 
assays27. The compounds were classified as either “severely”, “moderately” or 
non-toxic and laid the foundation for the use of in vitro data as a surrogate for 
the prediction of clinical outcomes. Other sources of hepatotoxicity-related 
compounds come from medicines regulatory agencies and post-marketing 
data. For instance, Suzuki et al. compiled adjudicated cases of DILI reported 
from the literature resulting from drugs that had been suspended or withdrawn 
from the market28 and Chen et al. annotated compounds based on information 
provided by the United States Food and Drug Administration (FDA)4. The first 
version of the latter organised compounds into three categories: no-DILI 
Concern compounds, for which no hepatotoxicity had been observed, Less-
DILI Concern, which caused only mild hepatotoxicity (i.e. steatosis, cholestasis 
and increase in liver aminotransferases) and Most-DILI concern, which were 
associated with severe hepatotoxicity4. In a later revision, called DILIRank29, the 
data were curated based on causality evidence. This allowed for the separation 
of compounds for which association with hepatotoxicity was not supported 
by sufficient data and allowed for the creation of a new class of compounds 
(i.e. Ambiguous DILI Concern) consisting of the compounds of the Most and 
Less DILI Concern classes of the previous version of DILIRank for which no 
strong evidence of causality was observed.

Fourches et al. used text-mining approaches on the titles and abstracts of a 
collection of articles to identify 902 compounds associated with drug-induced 
liver effects30. Based on these different approaches to annotate compounds, 
Kotsampasakou et al. aggregated the data from 9 datasets and applied 
extensive curation techniques31. Multiple datasets have been published32 
either derived from clinical and/or post-marketing sources, from in vitro/in 
vivo experiments or aggregated from different types of sources (Figure 5.1 and 
Table 5.1). However, the published data suffer from two major limitations: data 
size and imbalance in both the positive and negative DILI group compounds 
which would bias the outcome of the analysis.

Limited dataset sizes hampers proper model validation

As a consequence of the nature of the datasets described above, the majority of 
existing published models for DILI are binary classification models (Table 2). 
Of these, only one, by Cheng and Dixon, focused exclusively on the prediction 
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of reported itDILI in humans using a set of 382 compounds related to 25 2D 
molecular descriptors selected with a Monte-Carlo regression algorithm7. The 
leave-10%-out cross-validated random forest model developed had very high 
specificity and reasonable sensitivity (0.90 and 0.78 respectively). Although 
similar performance was observed with the test set, its size was quite limited 
as it only included 23 positive compounds and 31 negatives. Similarly Cruz-
Monteagudo et al. developed general hepatotoxicity binary classification 
models from a set of 74 compounds using Radial Distribution Function (RDF) 
descriptors33. Even though the performance of the best performing model was 
consistent between the cross-validation and external validation sets (0.86 and 
0.82 respectively), the validation set was small comprising only 13 hepatotoxic 
compounds and no negatives.

Although the metrics indicate that Cheng and Dixon's and Cruz-Monteagudo et 
al.'s models performed well, one has to consider that a phenotypic readout such 
as general hepatotoxicity is the integrated result of many signalling pathways 
(e.g. oxidative stress and NRF2 pathway57, unfolded protein response, DNA 
damage response and mitochondrial toxicity17). For each pathway, protein-
protein interactions, as well as gene expression or gene and protein degradation 
could be disturbed, adding up to a multitude of different modes of actions by 
which a compound could induce toxicity. Thus, building general hepatotoxicity 
models from a rather small number of diverse compounds increases the 
difficulty to make reliable generalisations based on compound structures when 
considering all the possible toxicity modes of action that could be triggered. 

2019
2015

2003
2007
2011

Year

binary
hepatotoxic
multiple scales
ternary

Prediction

animal
human
mouse
mouse/rat
rat

Species

in vitro
in vivo

Origin of data

bioactivity
molecular descriptors
molecular fingerprints
phenotype
rules of thumb
structural alerts
toxicogenomics/transcriptomics
undirected graphs

Features

boosted trees
artificial neural network

decision tree
deep learning
k-nearest neighbors
linear discriminant analysis
linear regression
naive Bayes
partial least square
random forest
rule-based
support vector machine

Type of model

104

103

102

101

100

Number of data points

1.00
0.75
0.50
0.25
0.00

Ratio positives/negatives

1.00
0.75
0.50

0.25
0.00

Cross-validated accuracy

Figure 5.1. Visual summary of in silico models for liver toxicity prediction.
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Table 5.1 (continued).
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Xu et al. exemplified such a phenomenon and showed that an increase of the size 
of the training set improved not only the accuracy of models but also reduced 
their variability58. Additionally, the limited size of external test sets (Table 5.1) 
makes the interpretation of the validation of hepatotoxicity prediction models 
difficult since only a small fraction of hepatotoxicity mechanisms may be 
validated. The ideal validation set should comprise at least as many compounds 
as there are ways to disturb the processes involved in these pathways. However, 
the aggregation of such a dataset is, at this time, not possible. Nevertheless, 
sizes of both training sets and evaluation sets have been increasing (Table 
5.2), notably through the aggregation and careful data curation of multiple 
datasets31 but also through the United States Environmental Protection Agency's 
(EPA) ToxCast36-38 and the multi-agency Tox2154,55 open-data initiatives and the 
European eTOX59-62 and eTRANSAFE consortia. These consortia have gathered 
pharmaceuticals, data curators, modelers and software developers aiming at 
building a shared and mineable database of preclinical (eTOX) and clinical 
(eTRANSAFE) toxicity data to enable more effective read-across and predictive 
modelling of safety endpoints. 

Dataset imbalance limits proper model evaluation

The second limitation of published datasets is the imbalance of the validation 
sets (e.g. in 33,65-69 in Table 5.2). These datasets, where either only hepatotoxic 
compounds are represented or fewer than 10% of compounds are non-
hepatotoxicants, do not allow for a proper estimation of the specificity of the 
models. From the perspective of the training set, the imbalance of the data 
has been a major challenge to overcome in the prediction of hepatotoxicity: 
we identified eight articles in which the ratio of non-hepatotoxic compounds 
considered represented less than 40% of the training set7,13,42,70-74. The opposite 
trend was observed in six articles where hepatotoxic compounds represented 
less than 40% of the training set69,75-79. Although building a robust model on an 
imbalanced dataset is possible, the performance decreases significantly when 
the number of individuals in the minority class approaches, or becomes, less 
than 10%. Whilst imbalanced sets affect the robustness of a model, they may 
better represent the distribution of compounds or dugs observed in real life. 
This is relevant for the work of Lu et al., who predicted the general hepatotoxicity 
of compounds based on the profiles of their predicted metabolites70, where 
64 hepatotoxic and 3,339 non-hepatotoxic compounds were considered - the 
minority class representing about 2% of the entire dataset. The strategies 
generally adopted to counteract the systematic prediction of compounds to 
belong to the majority class are (i) undersampling of the majority class, (ii) 
oversampling of the minority class80, (iii) bagging81, (iv) boosting, (v) cost-
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Table 5.2. Reported computational models for the prediction of DILI. 
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Table 5.2 (continued).
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sensitive learning and (vi) hybrid methods82,83. In their work, Lu et al. used the 
Synthetic Minority Oversampling Technique (SMOTE) algorithm80 to correct 
for this data imbalance yielding a cross-validated balanced accuracy of 0.60 
when predicting hepatotoxicity from predicted metabolites69. The application 
of such meta-classifiers in the prediction of hepatotoxicity is quite recent since 
only five other works have used them since 201513,73,79,84-86. It is worth noting 
that a comparison of the behaviour of meta-classifiers has been performed 
on few selected imbalanced drug-induced cholestasis datasets87. Bagging 
has the worst performance as it does not balance or weight the two classes, 
threshold selection performed better than bagging but gave lower sensitivity 
than when using stratified bagging, cost sensitive classifier or Meta-Cost88. 
The authors emphasised the versatility of the stratified bagging technique 
despite its computational cost when extensive resampling has to be performed.

Early dili prediction strategies

Among the different in silico models that have been developed for the prediction 
of hepatotoxicity, four main groups of models can be identified base d on the 
features, properties or data the prediction models are built upon: (i) structural 
alerts, (ii) rules of thumb, (iii) molecular descriptors and (iv) in vitro data. These 
are described in detail below.

Structural alerts: insights into mechanisms of action

Structural alerts are specific substructures of molecules generally associated 
with hepatotoxicity. Structural alerts are generally developed by experts in 
toxicology who consider not only toxicological data but also the underlying 
mechanisms of toxicity, as well as chemical reactivity and biotransformation 
through metabolism. 

One of the first approaches to determining such alerts for DILI utilised a 
four-stage process41. A dataset of 1,266 compounds associated with in vivo 
human DILI was aggregated from the literature. Candidate structural classes 
were derived from these compounds by experts through well-characterised 
and previously published relationships between compound structures and 
hepatoxicity. Then these classes were refined by the development of structure-
activity relationships (SAR) for which sufficient evidence was available. Finally, 
the 38 structural alerts classes identified, such as tetracyclines and thiophenes, 
were validated against an in-house dataset from Pfizer consisting of 626 
compounds (412 hepatotoxicants and 214 non-hepatotoxicants). The compounds 
were classified as either hepatotoxic for humans and/or animals or with weak or 
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no evidence of hepatotoxicity. Although its sensitivity and accuracy were close 
to random (0.46 and 0.56 respectively) and its specificity quite reasonable 
(0.77), this approach was not designed for screening purposes. Nevertheless, 
it should be noted that alerts were prioritised based on their applicability 
to the Pfizer compound collection. Additionally, compounds that showed 
unambiguous toxicity during in vitro screening were not prioritised for in vivo 
studies, and thus were not considered in this study, potentially explaining the 
very low sensitivity. 

In a second approach a set of 244 hepatotoxic compounds was aggregated 
from the literature and from failed clinical candidates and drugs withdrawn from 
the market112. From these, 74 structural alerts were derived from mechanistic 
information, of which 56 were related to reactive and toxic metabolites 
metabolism. The remaining 18 alerts were based on high cut-off similarity 
queries, as no mechanistic information could be derived. The authors did not 
evaluate the predictive performance of these structural alerts but deployed 
them within the VERDI cheminformatics platform from Vertex pharmaceuticals.

In a third approach113, a diverse set of 951 compounds was compiled through 
curation of the dataset from Fourches et al.30. The protein binding potency 
of each compound was predicted and structural similarity-based clusters of 
compounds were identified. These categories were then manually curated 
and related to other well characterised structural alerts. Finally, each alert 
was thoroughly examined to derive a mechanistic hypothesis for the observed 
hepatotoxicity. In total 16 structural alerts were characterised. The authors 
did not validate such alerts on external datasets as their aim was to provide a 
scheme to identify mechanistically supported structural alerts.

Applying a similar process, Pizzo et al. compiled a dataset of 950 compounds 
of which 510 were hepatotoxicants and identified 13 structural alerts manually 
and 75 through automatic identification, 11 and 40 of which were respectively 
associated with hepatotoxicity96. The authors then developed an expert-
based decision tree based on these structural alerts to predict binary general 
hepatotoxicity. The model developed was subsequently validated against an 
external dataset of 101 compounds (69 hepatotoxicants), of which 41% could 
not be predicted as did not contain any structural alert. Although sensitivity and 
accuracy were satisfactory for such an approach (0.80 and 0.68 respectively) 
the model performed poorly in terms of specificity (0.33). Through thorough 
examination the authors derived a mechanistic hypothesis for the manually 
derived structural alerts. In addition to the β-lactam substructures, retinoids, 
oestrogen steroids identified by Hewitt et al.113, the authors characterised 
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N-containing heterocyclic aromatic compounds, sulphonamides, nucleoside 
analogues, tricyclic antidepressants, aromatic amines, macrolide antibiotics, 
anti-bacterial agents, cationic amphiphilic drugs to be mostly associated 
with hepatotoxicity and nitrosourea compounds not to be associated with 
hepatotoxicity.

Finally, aggregating DILI associated compounds from LiverTox50 with literature 
findings, Liu et al. performed substructure searches using literature-based 
structural alerts95. Alerts were ranked by their probability of chance occurrence to 
classify compounds as being hepatotoxic, non-hepatotoxic, or possible hepatotoxic. 
This led to the identification of 12 statistically relevant alerts that, unfortunately, 
were not validated on an external set for prospective prediction. In addition to 
steroids that were already well characterised hepatotoxicants, sulphonamides, 
hydrazines, arylacetic acids, anilines, sulfinyls, acyclic bivalent sulphurs,  
acyclic diaryl ketones, halogen atoms bonded to a sp3 carbon, aminocyclopropyls, 
aminophenols and phenothiazines were identified as being toxic to the liver.

Other studies on the development of quantitative structure-activity relationship 
(QSAR) models have also focused on the identification of molecular patterns 
related to hepatotoxicity. Structural fingerprints of compounds (e.g. Kletkota-
Roth114 or extended connectivity fingerprints115) have been calculated for a 
training set. Association of the presence of one pattern with hepatotoxicity was 
evaluated either based on the feature importance of each bit of such fingerprints 
or on their frequency. The importance of fingerprint bits has been notably 
derived from extended connectivity fingerprints with a maximum diameter of 
6 (ECFP6) using naïve Bayes models40,75 and a random forest56 with 12 different 
fingerprints. This analysis pointed not only to substructures associated with 
hepatotoxicity but also those associated with non-hepatotoxic compounds. 
Frequency focused determination of substructures of interest was performed 
either by determining the information gain of using such substructures or by 
using logistic regression, and deriving odds ratios and/or p-values associated 
with these moieties13,30,45,98,103,105.

The real benefit of using structural alerts is that they may be associated with well 
characterised mechanisms (e.g. biotransformation to reactive metabolites or 
alteration in membrane structure integrity, adduction to proteins) and with 
specific organ level toxicity effects116. This reason makes them valuable when 
determining the toxicity of new drugs and postulating key mechanisms involved. 
In addition to expert-derived structural alerts, the identification of key substructures 
associated with DILI is of crucial importance since it allows for further research 
on, and understanding of, the associated underlying mechanisms.
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Nevertheless, a key concept of applying structural alerts is that the absence 
of a matching alert for a compound is not proof of it not being hepatotoxic117. 
Moreover, the presence of structural alerts should not be seen as a clear 
indication of the DILI potential of a drug. To emphasise this, Stepan et al. 
retrospectively examined the 200 most prescribed and sold drugs in the US 
in 2009 and 68 other drugs that had been recalled or were associated with 
black box warning due to iDILI118. Although structural alerts were present in 
78%-86% of hepatotoxic drugs, approximately half of the top 200 drugs for 
2009 also contained one or more structural alerts, mitigating the use of alerts 
in for the screening of the toxicity of a compound. According to the authors, 
“the major differentiating factor appeared to be the daily dose”, as drugs with 
high daily doses were mostly associated with toxicity.

Rules of thumb: favoring interpretability over performance

To expand on Stepan et al.'s observation about daily dose, few rules of thumb 
based on two or three molecular features of compounds have been derived. Chen 
et al. identified that from a dataset of 164 US FDA-approved oral medications, a 
high risk of DILI was associated with lipophilic drugs (Log P ≥ 2) given at high 
dosage (daily dose ≥ 100 mg; odds ratio 14.05, p value < 0.001)77. This ‘rule 
of two' was validated using Greene et al.'s dataset of 179 oral medications41. 
Of the compounds being positive for such a rule, 85% were associated with 
hepatotoxicity. However, this high positive predicted value was associated with 
very low sensitivity (0.29) but very high specificity (0.91), which overall gives an 
accuracy (0.51) close to that of a random prediction. When applying this ‘rule 
of two' to five datasets29,39,41,48,51, accounting for a total of 1,036 compounds, the 
authors noticed that the association between toxicity and high lipophilicity was 
statistically significant for only three of them (those of Chen et al., Greene et al. 
and Zhu et al.). Moreover they found that all compounds with a daily dose higher 
than 100 mg per day were significantly associated with DILI risk101. The authors 
also collected hepatic metabolism information for 398 drugs and observed that 
drugs, which are more than 50% metabolised in the liver, were more prone 
to be hepatotoxic (odds ratios between 1.80 and 2.67). Combining significant 
hepatic metabolism with high daily dose allowed for the correct identification 
of 78% of hepatotoxic compounds and 60% of non-hepatotoxicants, giving 
this prediction method an overall accuracy of 0.68. Factoring high lipophilicity 
with reactive metabolite (RM) formation and high daily dose for a dataset of 
192 drugs, the authors were then able to develop a prediction method with a 
specificity of 1.00 but sensitivity of 0.3878. The assessment of the association 
between daily dose, lipophilicity, RM formation and DILI risk by logistic 
regression analysis confirmed the significant importance of these features119 
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and allowed for the development of a DILI score significantly correlated with 
the severity of liver injury in human for three different datasets4,28,41. 

Another rule of thumb was derived by Leeson, who investigated the predictivity 
of physicochemical properties of compounds related to their dose52. More 
specifically, the differences between dose, lipophilicity and the fraction of sp3 
hybridised carbons atoms (Fsp3) in relationship to whether drugs with the most 
and no DILI concern were acids, bases or neutral (from the Chen et al. dataset)4 
were examined. As the mean Fsp3 values of bases, which were enriched in the 
non-hepatotoxicants class, are greater than for acids120, the author was able 
to integrate Fsp3 to the ‘rule of two', yielding accurate predictions for 82% of 
compounds and with high and balanced sensitivity and specificity (0.79 and 
0.85 respectively).

Despite the simplicity of these rules of thumb that have high specificity, 
their major flaw is that their applicability is limited to the datasets they are 
built upon101. The datasets may have different causality assessment scales to 
derive DILI annotation which vary from one dataset to the other121, or reported 
hepatotoxicity evidence maybe is vague122,123. This limitation of the data was 
stressed by Leeson who identified that among the 155 oral drugs belonging to 
the top 200 prescribed medications in the US in 2009 that were annotated 
by Chen et al4, 59% belonged to the Less DILI category, hence questioning 
the significance of such a class52.

Quantitative structure-activity and toxicity relationships: enhanced	  
performance

Because the acquisition of some of the parameters mentioned above is only 
possible from in vitro and in vivo studies QSAR or structure-toxicity relationship-
based models have been developed using molecular properties to allow for the 
early screening of compounds for which no data exist. Examples of experimental 
properties which may not be available for models include metabolism activity, 
maximum daily dose or peak concentration in serum after drug administration 
(Cmax). There are several different types of cheminformatics model: models 
predicting general hepatotoxicity, histopathological phenotypes (e.g. increase 
in serum biomarkers, cholangitis) or specific modes of action mediated through 
protein-ligand interactions.
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General hepatotoxicity

Derived from the first phenotypic observations of hepatotoxicity and used to 
provide a general estimation for compound prioritisation in drug discovery, 
QSAR models were first built using general binary DILI annotations. For 
instance, Cheng and Dixon developed one of the first hepatotoxicity QSAR 
models derived from molecular descriptors, without regard to dose-dependence. 
In addition to those descriptors, the similarities to the 382 compounds in the 
training set (149 hepatotoxicants and 233 non-hepatotoxicants) were also 
used as explanatory variables. Monte Carlo feature selection was applied to 
reduce the number of descriptors to 25, of which 6 were physicochemical 
properties. A random forest model was developed and validated on a test set 
of 54 compounds. Its performance was very encouraging with good accuracy, 
fair sensitivity and high specificity (0.81, 0.70 and 0.90 respectively). However, 
such an approach, with such a limited description of the molecular structure 
and similarity profiles to the training set, did not allow for extrapolation to 
other compound classes.

Since then, a wide variety of general QSAR models predicting hepatotoxicity 
have been derived using different types of molecular descriptors, molecular 
fingerprints and machine learning algorithms (Table 5.2). The most recent 
work predicting general hepatotoxicity solely from molecular descriptors 
is from He et al.108. The authors combined a total of 14 datasets for which 
hepatotoxicity labels originated from animal and cell experiments, clinical 
reports, drug labels, medical monographs and the scientific literature. In 
addition, compounds that were classified by fewer than two of eight effective 
classifiers were discarded, allowing for the creation of a large, balanced and 
high-quality dataset of 1,254 compounds (636 positives and 638 negatives). 
Using a set of 85 physicochemical and topological properties an ensemble 
model based from the eight base classifiers was obtained with high and 
balanced performance evaluated with 10-fold cross-validation (sensitivity 
0.82, specificity 0.75, accuracy 0.78 and balanced accuracy 0.78) and on 
an external test set of 204 compounds (sensitivity 0.77, specificity 0.66, 
accuracy 0.73 and balanced accuracy 0.72). To further validate their model to 
identify non-hepatotoxicants, the authors assembled a dataset of 312 negative 
compounds. Their classification ensemble model correctly predicted 215 of 
these compounds, giving a reasonable accuracy of 0.70.

The relevance of building classification models from molecular descriptors 
alone, in comparison with molecular fingerprints, was questioned by Li et 
al.103. The relative performances of k-nearest neighbour (k-NN), support vector 
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machine (SVM), random forest (RF), naïve Bayesian (NB) and decision tree 
(DT) models built from seven PaDEL molecular fingerprints124 and molecular 
descriptors were compared for a dataset of 980 DILI-positive and 751 DILI-
negative compounds. Models based solely on molecular descriptors had 
the lowest average performance with low accuracy (0.62 to 0.73), specificity 
(0.13 to 0.70) and AUC (0.0.63 to 0.78). The combination of public MACCS 
fingerprints in an SVM yielded the best classification performance on an 
external test set of 88 hepatotoxicants and 63 non-hepatotoxicants (0.83 
accuracy, 0.93 sensitivity, 0.68 specificity and 0.88 AUC) despite their limited 
dimensionality of 166 bits. Only one model, also developed with public MACCS 
fingerprints but using k-NN, had higher specificity than the previous one (0.70) 
but lower accuracy, sensitivity and AUC (0.76, 0.81 and 0.82 respectively). This 
emphasised the usefulness of ensemble models, which was the strategy used 
by Wu et al.71, who combined four PaDEL molecular fingerprints with k-NN, RF, 
SVM and artificial neural network (ANN) base classifiers in consensus voting 
models and also identified the public MACCS fingerprints and SVM-based 
based classifier to perform well on an external test set of 166 positive and 
498 negative compounds (0.75 sensitivity, 0.93 specificity, 0.88 accuracy and 
0.70 Matthews correlation coefficient [MCC]). Their consensus models were 
based on the number of times a compound was predicted to be hepatotoxic 
by base classifiers. The best performing consensus model, which was that 
based on three positive predictions out of the 4 base classifiers, was selected 
(0.77 sensitivity, 0.97 specificity, 0.92 accuracy and 0.78 MCC respectively). 

Ai et al.56 adopted the same strategy as Wu et al. but filtered out bits of the 
fingerprints that were correlated and did not apply them to the dataset (e.g. all 
molecules contain carbon atoms so this information was removed). The five 
best performing base classifiers in terms of AUC, which interestingly did not 
include any based on public MACCS fingerprints, were then combined in an 
ensemble model by averaging their predicted hepatotoxicity probability (0.84 
accuracy, 0.87 sensitivity, 0.75 specificity and 0.90 AUC on the external test set). 

Wang et al.109 recently combined the Ai et al.'s approach with the work of He et 
al. by developing an ensemble model based on the eight PaDEL fingerprints 
that performed best on their dataset as well as an ensemble model based on 
seven simple molecular properties (ALogP, molecular weight and numbers of 
aromatic rings, hydrogen-bond donors, acceptors, rotatable bonds and rings). 
The five base classifiers used for both these ensemble models were random 
forest and boosting tree models. The average probabilities for each ensemble 
were then summed and the weighted average of the two (i.e. 0.7 for fingerprint-
based and 0.3 for molecular property-based) were used to classify compounds. 
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The performance of the model was comparable, although slightly lower, than 
that obtained by Ai et al. but specificity was very good (0.82 accuracy, 0.65 
sensitivity, 0.96 specificity, 0.80 AUC). 

Phenotypically-focused models

To compensate for the complexity of predicting general hepatotoxicity, models 
focused on finer phenotypes have been devised. In this sense, Myshkin et 
al. derived an ontology database of hepatotoxic pathology from human and 
animal publicly available toxicity data92. This database was organised by 
the type of pathology and by organ substructure and function impairment. 
From this ontology, different toxicity datasets were identified among which 
were datasets related to liver necrosis, liver weight gain and liver steatosis, 
comprising of 300, 305 and 172 instances respectively. For each endpoint, 
random forest QSAR models were derived using augmented atom pairs125. The 
best performing models were then evaluated on external test sets (490, 539 and 
478 respectively). Results were encouraging with 0.63, 0.74 and 0.60 specificity 
for liver necrosis, weight gain and liver steatosis respectively, 0.87, 0.86 and 
0.75 sensitivity, 0.66, 0.76 and 0.62 accuracy and 0.35, 0.51 and 0.23 Matthews 
correlation coefficient. The authors then characterised the applicability domain 
of their models based on a Tanimoto distance between compounds in the 
training and test set. The models were quite sensitive as sensitivity decreased 
for compounds in the 30-59% compound dissimilarity range. Interestingly, the 
model based on weight gain was very robust as sensitivity remained above 0.72 
for the entire 30-99% range. It is worth mentioning that these three models 
performed better than a general hepatotoxicity model (0.58 sensitivity, 0.71 
specificity, 0.64 accuracy and 0.29 Matthews correlation coefficient) which 
showed a high sensitivity of 0.82 for the 30-39% Tanimoto dissimilarity range, 
highlighting the relatively high diversity of compounds in the validation set.

Another work by Takeshita focused on the prediction of alanine transferase (ALT) 
elevation in rats from repeated-dose toxicity studies73. Two logistic regression 
models, with seven and nine explanatory variables out of an initial 3,636 
DRAGON molecular descriptors respectively126, were derived to classify 176 
compounds. Compounds which had either a lowest observed effect level (LOEL) 
associated to ALT elevation, (40 positives and 136 negatives) or an elevation in 
ALT at a dose below 1000 mg/kg (23 strong and 153 weak compounds) were 
included. Because of the imbalance of their datasets, the authors used the 
SMOTE algorithm80. Although classification performance on the training set 
was limited between toxic and non-toxic compounds (0.65 sensitivity, 0.581 
specificity and 0.600 accuracy), the logistic model showed better discrimination 
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between weak and strong compounds (0.78 sensitivity, 0.74 specificity and 
0.75 accuracy). External validation on a dataset of 59 compounds (23 strong 
and 36 weak compounds) showed decreased performance (0.60 sensitivity 
and specificity and accuracy between 0.40 and 0.50). Nevertheless, the 
significant difference between 52 out of a set of 197 molecular descriptors 
from the training and test sets was observed by the authors, emphasising the 
need for applicability domain determination.

Focusing only on in vivo hepatocellular hypertrophy in rats, Ambe et al. developed 
deep learning (DL), RF and SVM classification models105. The authors collected 
rat toxicity data following chronic exposure of more than 27 days from two 
sources. Models were trained on half of the data of the two datasets (173 and 
251 compounds respectively) as well as on half of their combination (405 
compounds) and respectively evaluated on their other halves. DL models were 
clearly overfitted to the data. Their ROC AUC was 1.00 and accuracy, sensitivity, 
specificity were 0.96 when evaluated on training set, but dropped when the test 
set was evaluated. However, the DL model based on the combined dataset did 
not show such behaviour with more equivalent performance between training 
and test set. This observation could be the combined result of the two-fold 
increase in the size of the dataset and the reduction of features from 433 and 
417 to 385, corresponding to a decrease in dimensionality by 7.7% to 11.1%. 
The applicability domain of the models was determined using distance in the 
molecular space to the training set127 and resulted in 19, 38 and 50 compounds 
lying outside for two test sets and their combined version respectively. Using a 
consensus model based on the majority principle, similar predictive performance 
was achieved. Of the 107 compounds incorrectly predicted by the consensus 
model, 78 were predicted incorrectly by all three models. These incorrectly 
predicted compounds were mostly false positives and the authors exemplified 
the case of flufenoxuron, a benzoylphenyl urea-based insecticide which is not 
a hepatocellular hypertrophy inducer in rats but is in mouse carcinogenicity 
studies. This the need for the development of models in other species not only 
for better prediction, but also translation between species and understanding 
of any species-specific mechanisms involved.

Mulliner et al. investigated species specific effects by creating hierarchical 
seven endpoint hepatopathology trees for human and preclinical findings53. 
An additional tree was developed for preclinical findings obtained at doses 
lower than 500 mg/kg in order to reduce the leverage of high dose toxicants 
during model development. The endpoints were organised in three different 
levels: general hepatotoxicity, morphological and clinical chemistry findings, 
hepatocellular and hepatobiliary injuries. A total of 3,712 compounds were 
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aggregated with overall concordance between human and animal hepatotoxicity 
of 77%. Individual SVM classification models were developed for each endpoint 
using a genetic algorithm for feature selection. All human endpoints were 
reasonably well predicted with accuracies between 0.73 and 0.78 for internal 
validation. For preclinical endpoints, only general hepatotoxicity could be 
modelled confidently for toxicity above 500 mg/kg (ROC AUC of 0.73 and 
lower than 0.67 for others in internal validation). Conversely all endpoints with 
the exception of hepatobiliary injuries could be modelled for toxicity below 
such a threshold (accuracies between 0.75 and 0.83 in internal validation). An 
external validation on 269 proprietary compounds with 14 to 28-day rat study 
data showed decreased performance for all models (accuracies between 0.38 
and 0.64 and ROC AUC between 0.51 and 0.68). The reduction in performance 
observed between internal and external validation for preclinical data was 
expected to be similar for human endpoints, more especially when applying 
these models on early research drug candidates which do not exhibit similar 
molecular properties as drugs. 

A similar work by López-Massaguer et al.106 relied on an ontology to classify 
compounds for three endpoints as well as predict the LOEL of compounds 
from the eTOX database60. This database was derived from multiple types of 
publicly available and confidential preclinical data, in multiple species, for 
various administration routes and for different exposure times. Aggregating rat 
in vivo microscopy and hepatopathology findings, the authors gathered 164, 94 
and 82 positive compounds for the three endpoints (i.e. degenerative lesions 
[DEG], inflammatory liver changes [INF] and non-neoplasic proliferative lesions 
[PRO]). It is worth noting that the negative compounds that were selected had 
been tested at concentrations higher than 1000 mg/kg and had no observed 
treatment-related and liver-related histopathology findings (168, 164 and 164 for 
DEG, INF and PRO respectively). Sensitivities and specificities of random forest 
classification models were balanced after both cross and external validation 
for PRO (0.70 and 0.50 sensitivities and 0.69 and 0.62 specificities at cross 
and external validation respectively) and DEG (0.68 and 0.67 sensitivities 
and 0.55 and 0.59 specificities at cross and external validation respectively) 
while were unbalanced for INF (0.84 and 0. 67 sensitivities and 0.44 and 
0.54 specificities at cross and external validation respectively). Partial least 
square regression models showed poor fit with low goodness-of-fit (ranging 
from 0.26 to 0.58), poor predictive performance (Q² ranging from -0.84 to 
0.07) and high standard deviation (ranging from 1 to 2 log units). This work 
emphasised the possibility of stringent selection of negative compounds as 
well as aggregation of multiple sources of data containing compounds with 
different routes of administration and exposure times.
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Relying on an hepatopathology-based ontology, as was carried out in the two 
previous approaches, Liu et al. introduced a severity grade in their hierarchical 
approach68. The authors organised their ontology into three levels: level 1 
denoted general hepatotoxicity, level 2 corresponded to the severity of the 
hepatotoxicity and level 3 associated with adverse events (e.g. acute liver 
failure, cholestasis or AST elevation). A total of 2,017 compounds associated 
with 403 clinical grade 3 adverse events were collected from SIDER43,44 and 
LiverTox50, amongst other, databases. Individual classification random forest 
models were built for 22 endpoints. The level 1 classification model, predicting 
general hepatotoxicity, showed good sensitivity and ROC AUC but low specificity 
(0.81, 0.75 and 0.50 respectively). Models based on DILI severity showed more 
balanced sensitivities and specificities (0.70-0.71 and 0.63-0.70 respectively) 
resulting in comparable or slightly higher ROC AUC (0.75-0.78). Adverse events 
prediction models showed balanced sensitivity and specificity ranging from 
0.65 to 0.83 and from 0.63 to 0.79 respectively, as well as reasonable accuracy 
(0.67-0.78) and a high ROC AUC (0.71 to 0.87). The 27 models were integrated 
in a tiered prediction model with high sensitivity (0.82). Because of the limited 
size of the external validation dataset, adverse events prediction at level 3 was 
a qualitative assessment of the models. Nevertheless, ticrynafen, which had 
been withdrawn from the market for association with hepatitis, was predicted 
by level 3 models to be associated with hepatitis, acute hepatic failure, and 
hepatocellular injury. 

Prediction of specific modes of action 

Biological mechanism-focused models have been gaining increasing interest 
in recent years, under the auspices and needs of the ToxCast and Tox21 
initiatives. An example is the work of Wu et al.102, who integrated quantitative 
high-throughput screening bioassay activity data to develop 17 QSAR models. 
The profiles of mode of action (MOA) of drugs were predicted with a set of 
777 2D molecular descriptors using random forest models. The accuracies of 
prediction models ranged between 0.63 and 0.67, which was quite encouraging 
considering the imbalance in the data. Nevertheless, when predicting general 
hepatotoxicity from the predicted MOA profiles, 5 fold cross-validation on a 
dataset of 222 compounds (155 hepatotoxicants and 178 non-hepatotoxicants 
with test set included) gave an accuracy of 0.76 and internal validation on 111 
drugs gave accuracy of 0.70. This performance was higher than when using 
a standard QSAR model (accuracy of 0.66 for cross-validation). Interestingly, 
the general hepatotoxicity model derived from the top four performing MOA 
profiles prediction models had slightly higher accuracy on the internal validation 
set while slightly lower through cross-validation (0.71 and 0.70 respectively). 
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These models could be regarded as underperforming as compared to recent 
general hepatotoxicity QSAR models, however, it should be noted that only a 
small number of MOAs were considered in this study with regard to the different 
mechanisms involved in DILI. 

Some other studies on the prediction of MOA profiles have been more focused 
on specific phenotypes. For instance, an impairment of the function of export 
pumps and transport proteins in the liver would result in the progress of a 
cholestatic phenotype. The export pumps comprise the biliary salt export pump 
(BSEP), the breast cancer resistance protein (BCRP) and the P-glycoprotein 
(P-gp). The transport proteins are the organic-anion-transporting polypeptides 
(OATPs). OATPs are members of the solute carrier (SLC) family and transport 
organic anions. Few models have been developed to predict the inhibition of 
such proteins. A prospective analysis84 was carried out to identify OATP1B1 
and OATP1B3 inhibitors out of DrugBank128. This screening was based on a 
training dataset of 1,708 compounds (190 inhibitors and 1,518 non-inhibitors) 
for OATP1B1 and of 1,725 compounds (124 inhibitors and 1,601 non-inhibitors) 
for OATP1B3, respectively. An external test set containing 201 compounds 
for OATP1B1 (64 inhibitors and 137 non-inhibitors) and 209 compounds for 
OATP1B3 (40 inhibitors and 169 non-inhibitors) was used to assess the validity 
of the model along with 5-fold and 10-fold cross-validation. Two random forests 
and four support vector machine classifiers, using MetaCost88 as metaclassifier 
to deal with the imbalance of the dataset, were generated for each transporter. 
As the performance of the models was relatively equivalent - accuracy values 
and ROC AUC for the test set in the range of 0.81−0.86 and of 0.81−0.92, 
respectively - a consensus scoring approach was used, summing up the 
prediction scores of each classification model. The screening of DrugBank 
(6,279 compounds) resulted in the identification and biological testing of 
the 9 compounds with highest predicted probability of being OATPB1 and 
O1TPB3 dual inhibitors and 1 selective inhibitor of OATP1B3. Only the latter 
was incorrectly predicted, yielding an accuracy of 90% for OATP1B1 and 80% 
for OATP1B3, respectively. 

To compare the prediction of an inhibitory effect of transport proteins to a 
phenotypic readout, the relative performance of meta classifiers on unbalanced 
datasets was studied for OATP1B1 and OATP1B3 inhibition, human cholestasis 
and animal cholestasis based on molecular descriptors87,129. Although imbalance 
ratios between negatives and positives ranged from 2:1 to 20:1, the balanced 
accuracies of models with sensitivity higher than 0.5 ranged from 0.67 to 0.83 
for OATPB1, 0.63 to 0.86 for OATP1B3 and 0.64 to 0.78 for human cholestasis 
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on test set and from 0.53 to 0.65 for animal cholestasis. This emphasised the 
difficulty in predicting a phenotypic outcome solely from compound structure.

Other work focused on the prediction of BSEP and MRP4 inhibition from 
both statistical and structure-based approaches130. In this study, 57 and 171 
compounds along with inhibitory effect on MRP4 and BSEP were gathered 
respectively. Bayesian models were trained on simple molecular descriptors 
and either extended-connectivity fingerprints maximum diameter 6 (ECFP6) 
or functional-class fingerprints maximum diameter 6 (FCFP6). For MRP4, 
although the models performed well in terms of specificity, they did not show 
high sensitivity. Nevertheless, the MRP4 pharmacophore model built on 9 
compounds was able to correctly classify 30 of the 42 actives in the test 
set and 22 of the 35 inactives, leading to a sensitivity of 0.71 and specificity 
of 0.63. The BSEP inhibition prediction model showed more balanced and 
higher performance (sensitivity of 0.82 and 0.77, specificity of 0.77 and 0.84 
respectively) but the pharmacophore model had a higher selectivity whilst poor 
specificity of 0.37. The lower performance of the MRP4 classification model 
was probably due to the 3:1 ratio between active and inactive compounds in 
the training dataset and to the small size of the dataset comprising only 86 
compounds. This work emphasised not only the usefulness of structure-based 
modelling when it comes to the prediction of inhibitory effects of compounds 
but also the requirement for well-balanced datasets.

This difficulty to predict a phenotypic outcome of a compound using an 
imbalanced dataset was tackled using metaclassifiers and considering the 
predicted inhibitory effect of compounds on transport proteins as descriptors86. 
Cholestasis-focused data were aggregated by mining and manually curating 
the literature for human drug-induced cholestasis. A total of 578 compounds 
were identified, of which 131 were cholestasis positives and 447 were DILI 
negatives. A k NN classifier with MetaCost metaclassifier for data imbalance 
correction was generated and evaluated through both 10-fold cross-validation 
and external testing on a dataset covering multiple levels of hepatotoxicity 
and including hepatobiliary injury53. Inclusion of BSEP, BCRP, P-glycoprotein, 
and OATP1B1 and OATP1B3 inhibition predictions increased accuracy (0.66 
to 0.70) and ROC AUC (0.66 to 0.73) of the model through 10-fold cross 
validation but decreased for the test set (0.61 to 0.56 and 0.62 to 0.58 
respectively). The authors speculated that this was the result of a different 
class assignments between the training and test sets and argued that almost 
20% of the compounds in the external validation set had contradictory labels 
with the training set (71 out of 419 shared compounds). Nevertheless, the 
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authors showed that accuracy and specificity reach their peak only after the 
inclusion of BSEP predictions, but that when only using BSEP predictions, the 
model showed a slight increase in accuracy and specificity of the model but 
decreased sensitivity. This suggested that BSEP inhibition conveys most, but 
not all, of the relevant information when modelling cholestasis.

An effort to merge multiple publicly available datasets was undertaken to apply 
the models obtained to other datasets and investigate how export pump and 
transporter inhibition correlate to general hepatotoxicity31. In this work, the 
authors gathered nine previously published datasets for model training (966 
compounds) and three datasets for validation (996 compounds). Three random 
forests classifiers were built using two sets of molecular descriptors to predict 
transporter inhibition84,131,132. Accuracy and ROC AUC of the models ranged from 
0.57 to 0.69 and from 0.59 to 0.73 respectively in spite of the heterogeneity of 
such a dataset, ranging from in vitro cell-based assay readouts to FDA reports 
and post-marketing safety data. Nevertheless, the introduction of BSEP, BCRP, 
P-glycoprotein, and OATP1B1 and OATP1B3 inhibition binary prediction as 
descriptors slightly decreased the model performance. The authors argued that 
this could be the result of mispredictions of such transporter inhibition models 
resulting in noise added to the feature matrix and that the inhibition of only one 
transporter would not alter the function of hepatocytes. With regards to such 
possible misclassifications, the use of a hard threshold at 10 µM to classify a 
compound as being an inhibitor can lead to misclassification of compounds 
with IC50 around such a threshold, thus artificially lowering the performance 
of the model. Additionally, such a threshold is not in accordance with the 
300 µM value that was suggested to be used for BSEP inhibition133. QSAR 
models modelling BSEP inhibition based on the latter threshold showed very 
good performance134,135. Finally, the endpoint to be predicted denotes general 
phenotypic hepatotoxicity and correlates only with transporter inhibition which 
is associated mostly with cholestasis.

It should also be noted that the BSEP, BCRP, P-glycoprotein, and OATP1B1 
and OATP1B3 do not represent the entirety of transporters. One could also 
cite the canicular and basolateral multidrug resistance-associated proteins 
(MRP1 to MRP6), the organic solute transporters (OSTα/OSTβ), the multidrug 
and toxin extrusion transporter 1 (MATE1), the ATP-binding cassette subfamily 
G member 5/8 (ABCG5/G8), the multidrug resistance protein 3 (MDR3), the 
ATPase-aminophospholipid transporter (ATP8B1), the sodium taurocolate 
co-transporting polypeptide (NTCP), the organic cation transporters 1 and 3 
(OCT1/3), the organic anion transporters 2 and 7 (OAT2/7) and other organic 
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anion transporting polypeptides (e.g. OATP2B1)136. However, to date, very few 
inhibition data have been collected for these targets, making such a modelling 
exercise rather difficult if not unfeasible.

Finally, Gadaleta et al. developed MOA prediction models in the context of 
steatosis136. Data from 24 in vitro HTS assays from the ToxCast program were 
compiled. The agonistic and/or antagonistic activity toward six transcription 
factors (namely the pregnane X receptor [PXR], liver X receptor [LXR], aryl 
hydrocarbon receptor [AhR], nuclear factor (erythroid-derived 2)-like 2 [Nrf2], 
PPARα and PPARγ) were modelled using DRAGON molecular descriptors and 
random forest models. For each MOA, four models were developed based on 
different strategies in feature selection and class balancing (i.e. majority class 
undersampling or balanced bagging) and integrated in a consensus model. 
External validation of the consensus models showed very good performance 
for all MOAs (accuracy between 0.74 and 0.96) but for agonistic activity on 
PPARγ (accuracy of 0.66) for compounds in the applicability domains. A second 
validation was carried out by screening 90 chemicals with in vitro steatosis 
data (six positives, 84 negatives) without experimental data for the molecular 
initiating events (MIE) endpoints considered and gave perfect sensitivity and 
AUC of 0.72. This exemplified how modelling the MIE can be successfully 
integrated in a virtual screening strategy for identifying chemicals causing 
hepatic steatosis. 
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Discussion

Predicting DILI is a vital task, but is fraught with difficulties and complexities 
brought about from the data available to model, the number and varieties 
of phenotypic endpoint and mechanisms and the requirements of the end 
user. In the last decade, many QSAR and few rule-of-thumb models have 
been developed for the prediction of DILI with the majority of them focused 
on classification of compounds based on general hepatotoxicity annotation 
(Table 5.2).The good performance of models that have been developed is very 
encouraging, highlighting that machine learning methods are able to cope 
with complexities of the datasets, even though the data is inherently variable, 
limited in size and imbalanced. This is even more exciting considering that 
hepatotoxicity is an umbrella term for many different and complex phenotypes 
that are the integrated result of various mechanisms, and in spite of the paucity 
of phenotypically- and mechanistically-based large datasets. It is worth noting 
that only one regression model correlating to the severity of clinical outcome 
has been published so far78. The same applies to multinomial classification 
modelling: only one three-level DILI classification model has been published99. 
Nevertheless, as no golden standard for DILI annotation has been established, 
each annotation uses its own criteria and sources to label compounds101, leading 
to contradictory hepatotoxicity labelling of compounds by different authors, 
thus making the integration of multiple datasets a difficult endeavour31,121. This 
stresses the requirement for sensitive biomarkers able to accurately differentiate 
medical symptoms of DILI. However, the downside of using more complex 
machine learning algorithms is that they lack transparency and accountability.

Additionally, differences in molecular similarity among datasets79,98,103,108 as well 
as their evaluation with different metrics makes fair comparison between models 
a challenge137. Among molecular descriptors, there seems to be a growing trend 
in using molecular fingerprints only, rather than relying on physicochemical or 
topological descriptors, although simple rules of thumbs have been devised 
from them. To date only one study has used graph-based molecular structural 
encoding, thus avoiding the molecular descriptor calculation and selection 
step, combined with deep learning algorithms58. Some other studies have 
focused on matched molecular pairs - i.e. molecules that are structurally very 
similar - with opposing hepatotoxicity annotations30,42,45,47. 

Standard physicochemical and topological descriptors, as well as substructure-
based fingerprints in QSAR models (structural alerts excluded), are poor 
predictors of the reactivity of the molecules and its relationship to the 
metabolism and hence generally do not perform well to predict DILI. In 
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addition, the development of prediction models able to correctly predict 
toxicity cliffs (i.e. where a very small change in the structure of a molecule 
can alter activity enormously) is a challenging field138,139. Tackling toxicity cliffs 
both through better data compilation and more detailed structure evaluation 
would definitely help better understanding the mechanisms underlying DILI. 
Hybrid models integrating molecular descriptors with in vitro data, whether 
being transcriptomics47, cell-imaging94 or bioactivity data66,71,136, have also 
been developed to enrich the information content and interpretability of the 
models but with rather limited predictive performance. Only a few models 
have included in vivo pharmacokinetic processes, such as absorption and 
metabolism inhibition of CYP450 proteins, the formation of GSH adducts 
and protein covalent-binding data48,140. Additionally, models focused on the 
determination of MIE and MOA show very good performance and are of 
critical importance for better understanding of DILI mechanisms. Yet, it is 
striking that no ensemble read-across approach, combining systems biology 
network analysis for the prediction of molecular targets141, MIE or MOA along 
with transcriptomics142,143, cell-imaging and metabolomics, has been devised 
to this date. Such an approach, similar to the DILIsym144 systems toxicology 
strategy, could address the limitations of QSAR145 such as the modelling of 
chemical mixtures or inorganic compounds (e.g. cisplatin) as well as enhance 
models developed this far with the prediction of the exposure. Furthermore, 
computational structure-based mechanistic hypothesising is very limited by 
the lack of three-dimensional structures of proteins at stake. Additionally, since 
dose is an important predictor for DILI, the prediction of the toxicological point 
of departure146 (POD) is challenge to be addressed. Finally, the most difficult 
challenge is to address inter-species variability, and the concordance between 
human and animal toxicity30,99,147 that initiatives, such as the eTRANSAFE 
consortium63,64, focus on.
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