
Combining mechanistic modeling with machine learning as a strategy
to predict inflammatory bowel disease clinical scores
Shim, J.V.; Rehberg, M.; Wagenhuber, B.; Graaf, P.H. van der; Chung, D.W.

Citation
Shim, J. V., Rehberg, M., Wagenhuber, B., Graaf, P. H. van der, & Chung, D. W. (2025).
Combining mechanistic modeling with machine learning as a strategy to predict
inflammatory bowel disease clinical scores. Frontiers In Pharmacology, 16.
doi:10.3389/fphar.2025.1479666
 
Version: Publisher's Version
License: Creative Commons CC BY 4.0 license
Downloaded from: https://hdl.handle.net/1887/4249662
 
Note: To cite this publication please use the final published version (if applicable).

https://creativecommons.org/licenses/by/4.0/
https://hdl.handle.net/1887/4249662


Combining mechanistic modeling
with machine learning as a
strategy to predict inflammatory
bowel disease clinical scores

Jaehee V. Shim1, Markus Rehberg2, Britta Wagenhuber2,
Piet H. van der Graaf1,3 and Douglas W. Chung1*
1Certara Applied BioSimulation, Sheffield, United Kingdom, 2Sanofi R&D, Translational Disease Modeling,
Frankfurt amMain, Germany, 3Division of Systems Pharmacology and Pharmacy, Leiden Academic
Centre for Drug Research, Leiden University, Leiden, Netherlands

Disease activity scores are efficacy endpoints in clinical trials of inflammatory
bowel disease (IBD) therapies. Crohn’s disease activity index (CDAI), Mayo
endoscopic score (MES) and Mayo score are frequently used in clinical trials.
They rely on either the physician’s observation of the inflammatory state of the
patient’s gastrointestinal tissue alone or combined with the patient’s subjective
evaluation of general wellbeing. Given the importance of these scores in
evaluating the efficacy of drug treatment and disease severity, there has been
interest in developing a computational approach to reliably predict these scores.
A promising approach is using mechanistic models such as quantitative systems
pharmacology (QSP) which simulate the mechanisms of the disease and its
modulation by the drug pharmacology. However, extending QSP model
simulations to clinical score predictions has been challenging due to the
limited availability of gut biopsy measurements and the subjective nature of
some of the evaluation criteria for these scores that cannot be described using
mechanistic relationships. In this perspective, we examine details of IBD disease
activity scores and current progress in building predictivemodels for these scores
(such as biomarkers for disease activity). Then, we propose a method to leverage
simulated markers of inflammation from a QSP model to predict IBD clinical
scores using a machine learning algorithm. We will demonstrate how this
combined approach can be used to (1) explore mechanistic insights
underlying clinical observations; and (2) simulate novel therapeutic strategies
that could potentially improve clinical outcomes.
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Introduction

Inflammatory bowel disease (IBD) is a chronic inflammatory gut disease prevalent in
the United States with approximately 1.6 million residents affected and over two million are
estimated to be suffering in Europe (Gajendran et al., 2018; Ramos and Papadakis, 2019).
IBD is classified into two subtypes (1) Crohn’s disease (CD) which can affect anywhere from
the mouth to the perianal area and (2) ulcerative colitis (UC) primarily affects the large
intestine (Gajendran et al., 2018; Gajendran et al., 2019; Rogers et al., 2021a). Both types of
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IBD can present with complications such as fistulae and strictures
which may require surgery (Kim et al., 2013; Kishi et al., 2022;
Rogers et al., 2021a; Venkatapurapu et al., 2022).

The pathogenesis of IBD involves environmental factors that can
influence the changes in the microbiome and genetic factors that
increase the susceptibility to gut inflammation. The disease
mechanism involves a pathogenic microbiome entering through a
weakened intestinal barrier which then leads to a dysregulated
mucosal immune response ending in relapsing-remitting gut
inflammation (Ahluwalia et al., 2018; Ramos and Papadakis,
2019; Sartor, 2006).

Many approved IBD therapeutics target immunological
dysregulation to reduce gut inflammation and ameliorate
symptoms. Immunomodulatory drugs that have been shown to
clinically improve IBD symptoms include (1) tumor necrosis
factor (TNF) antibodies (infliximab, adalimumab, golimumab),
(2) interleukin (IL) 12/23 antibodies (ustekinumab, mirikizumab,
guselkumab, risankizumab, brazikumab), (3) integrin antibodies
(carotegrast, vedolizumab), and (4) Janus kinase (JAK) inhibitors
(tofacitinib, filgotinib, upadacitinib) (Kobayashi and Hibi, 2023;
Rogers et al., 2021a).

To better understand the disease biology and optimize
therapeutic strategies, there has been significant interest in
developing quantitative systems pharmacology (QSP) models that
can capture the interactions between different immune cells,
cytokines, interleukins, epithelial barrier, and gut microbiome
(Balbas-Martinez et al., 2018; Fendt et al., 2024; Lo et al., 2013;
Pinton, 2022; Pinton, 2023; Rogers et al., 2021b; Rogers et al., 2021a;
Stübler et al., 2023; Venkatapurapu et al., 2022; Wendelsdorf et al.,
2010; Whittaker et al., 2024). Because model connections are
calibrated to available data, typically the model output is in the
form of clinically measurable biomarkers such as fecal calprotectin
(FCP) and serum c-reactive protein (CRP) (Rogers et al., 2021a;
Rogers et al., 2021b; Venkatapurapu et al., 2022). However, in
clinical trials, clinical scores are preferred metrics over
biomarkers such as FCP and serum CRP because, while
biomarkers are useful indicators to infer endoscopically active
IBD, their levels do not necessarily correlate with disease activity
level (Falvey et al., 2015; Wagatsuma et al., 2021). To reliably predict
IBD clinical scores, there needs to be sufficient training data relating
gut inflammation to measurable clinical markers and clinical scores.
The IBD QSP model can generate simulated data on gut
immunocytes and cytokine levels overcoming the limited
quantity of patient data. The simulated patient data can be
utilized to train a machine-learning model to describe the
relationships between gut inflammatory markers and IBD
clinical scores.

Here, we present a computational strategy to reliably generate
comprehensive clinical score predictions for both UC and CD using
gut-level biomarker simulations with a published IBD QSP model
(Rogers et al., 2021a; Rogers et al., 2021b). We will showcase how
such an integrated model can be used to explore (1) potential
mechanistic differences behind responders versus non-responders
of anti-TNFα and anti-IL-23 combination therapy in UC patients
(inspired by a recent study by Feagan et al. (2023)); and (2) if the
same dual combination would be beneficial for the other
IBD subtype, CD.

IBD clinical scores

Clinical scores are utilized in clinical practice and in drug
development to assess disease severity and can be categorized
into (1) overall activity score which is a comprehensive
measurement of disease severity, and (2) endoscopic score which
is solely based on physical symptoms observed during endoscopy.
For each subtype of IBD, there are various standardized scores for
both overall and endoscopic assessment.

For UC, the most popular index for overall disease activity is the
Mayo score (partial Mayo included). For clinical trials conducted
from 2013 to 2017, about half of the trials (49.5%) utilized the Mayo
score as clinical index to evaluate therapeutic responses (Kishi et al.,
2022). Related indices include the Clinical Activity Index (CAI),
Disease Activity Index (DAI), and Simple Clinical Colitis Activity
Index (SCCAI). The most popular choice for the endoscopic index
for UCwas theMayo Endoscopic Score (MES), which was employed
in 69.0% of the clinical trials conducted from 2013 to 2017 (Kishi
et al., 2022). Additional commonly used endoscopic indices are the
Sutherland Endoscopic Sub-score and Ulcerative Colitis Endoscopic
Index of Severity (UCEIS).

In CD, the most used disease activity index in clinical trials
for overall assessment was the Crohn’s Disease Activity Index
(CDAI). Alternatively, the Harvey-Bradshaw Index (simple
CDAI) is also utilized. For the endoscopic evaluation of CD,
the CD Endoscopic Index of Severity (CDEIS) has been noted as
the gold standard. Other options that have been utilized in place
of the CDEIS are the Simple Endoscopic Score for Crohn’s
disease (SES-CD) and the Rutgeert Score (Kim, 2022; Kishi
et al., 2022).

The most popular clinical indices in each category for CD
(CDAI for overall, CDEIS for endoscopic score) and UC (Mayo
for overall, MES for endoscopic score) are reviewed in
more detail.

CDAI

The CDAI was first introduced in 1976 as a part of the National
Cooperative Crohn’s Disease Study and has since been considered
the gold standard for evaluating CD (Kishi et al., 2022; Liu and
Lichtenstein, 2012). To assign a CDAI score, there are eight items
evaluated over 7 days (Freeman, 2008; Kishi et al., 2022; Liu and
Lichtenstein, 2012). Some items are highly subjective such as
abdominal pain score in 1 week and general wellbeing. Other
factors considered are the number of liquid or very soft stools,
the sum of physical findings per week (fever, anal disease,
mucocutaneous lesions, arthritis, external fistula), antidiarrheal
use, abdominal mass, and low hematocrit count. Each of the
evaluation criteria is multiplied by a weighting factor and
summed to derive the score (Freeman, 2008; Kishi et al., 2022).
The CDAI scores below 150 are interpreted as no disease activity,
150–220 as mild, 220–450 as moderate, and >450 as severe
(Nakamura et al., 2018; Shinzaki et al., 2021). For the clinical
trials conducted from 2009 to 2017, the CDAI was reported to
be the most frequently used index in over 50% of trials (Kishi
et al., 2022).
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CDEIS

The CDEIS was developed in 1989 by the Groupe d’Etudes
Therapeutiques des affections Inflammatoires du tube Digestif.
Items considered for the CDEIS scoring include the presence of
superficial or deep ulcerations and the percentage of ulcerated
surface. Scores can range from 0 to 44 and can be interpreted as
healed if the score is 0–3, mild disease 4, moderate disease 5–15, and
severe disease > 15 (Kim, 2022). The CDEIS has been the most
popular choice in clinical trials for 2009–2012 while the SES-CD has
been preferred in more recent trials (Kim, 2022; Kishi et al., 2022).

Mayo

The Mayo score was published in 1987 by Schroeder et al. in a
study to evaluate the therapeutic effects of coated oral 5-
aminosalicylic acid for UC (Kishi et al., 2022; Schroeder et al.,
1987). Since then, theMayo score has been the most utilized index in
clinical trials, but its validity has not been examined thoroughly
(Kishi et al., 2022). Scoring is based on four items which include
stool frequency, rectal bleeding, mucosal appearance at endoscopy
and physician rating of disease activity. Each item is rated between
0 and 3 and the final score is derived by adding up the ratings from
each category (J. D. Lewis et al., 2008). TheMayo score is interpreted
as remission if the score is 0–2, mild if 3-5, moderately active if
6–10 and severely active if 11–12 (CADTH, 2016).

MES

The MES was developed as a component for the Mayo score by
Schroeder et al. in the 1987 study (Schroeder et al., 1987). It is
evaluated in four points, ranging from 0–3, where the MES score of
0 represents normal and 3 represents an ulcerated state (Kim, 2022;
Kishi et al., 2022). The descriptors utilized in the MES assessment
include erythema, vascularity, friability, bleeding, erosions, and
ulcerations (Kim, 2022). While the MES is the most popular
endoscopic index for recent clinical trials, its validity has not
been sufficiently evaluated (Kim, 2022; Kishi et al., 2022).

Challenges of and progress toward
extending the QSP model to predict
IBD clinical scores

Mechanistic modeling of IBD has been valuable in
understanding the disease pathophysiology, exploring therapeutic
targets, and optimizing treatment strategies (Balbas-Martinez et al.,
2018; Kilian et al., 2024; Lo et al., 2013; Pinton, 2022; Pinton, 2023;
Rogers et al., 2021a; Stübler et al., 2023; Venkatapurapu et al., 2022;
Wendelsdorf et al., 2010; Yu et al., 2024). Published IBD models
include (1) microbiome and epithelial barrier dysfunction, (2)
immunological dysregulation in lamina propria and lymph nodes
involving innate immune cells (neutrophils, macrophages, dendritic
cells, natural killer T cells) and adaptive immune cells (B cells and
T cells) (Abraham and Cho, 2009; Cai et al., 2021; Kilian et al., 2024;
Saez et al., 2023; Stübler et al., 2023; Yu et al., 2024). Because many of

the approved drugs target distinct immunological pathways, there is
increasing interest in finding synergistic combinations of existing
drugs to optimize therapeutic outcomes (Dai et al., 2023; Feagan
et al., 2023; Pinton, 2022; Wetwittayakhlang and Lakatos, 2024). For
instance, a recent study by Feagan et al. showed that dual targeting of
TNFα and IL-23 almost doubled the clinical remission rate
compared to single-targeting therapies (Feagan et al., 2023).
Other effective combinations include ustekinumab and
vedolizumab (Dawoud et al., 2022), infliximab and azathioprine
(Sultan et al., 2017), as well as adalimumab and vedolizumab
(Goessens et al., 2021).

Identifying optimal dual targeting strategies has become the
main application of QSP IBD modeling. However, many of the
published models (Abraham and Cho, 2009; Cai et al., 2021; Kilian
et al., 2024; Saez et al., 2023; Stübler et al., 2023; Yu et al., 2024) lack
the extension to predict clinical scores. Having the capacity to
simultaneously simulate changes in gut-level dynamics of
cytokines and immune cells along with clinical scores enables a
mechanistic understanding of treatment response by closely
matching virtual populations with the biomarker and endpoint
response in real-life clinical trials.

Although there is great interest in predicting clinical efficacy,
extending IBD models to clinical scores has been a challenging task.
As previously discussed, these scores include highly subjective
criteria such as “general wellbeing” and “physician’s rating of
disease” proving challenging to “mechanistically link” with
disease biology. Even endoscopic scores have been reported to
vary between physicians (Kishi et al., 2022). Furthermore, there
is limited availability of individual-level patient biopsy data that
contain both gut-level biomarkers and clinical score measurements.

To overcome these difficulties, a recent study (Venkatapurapu
et al., 2022) has employed a hybrid mechanistic-statistical platform
that simultaneously simulates Crohn’s disease progression and
incorporates a simple decision tree-based classifier to generate a
prediction for SES-CD scores using features such as lesions,
biomarkers, and the duration of CD. This platform takes in the
patient information, disease profile and treatment history as the
input for the responder classifier and generates a long-term response
which is then used to identify a matching virtual patient from a
virtual population library generated using mechanistic disease
modeling. The authors successfully demonstrated that this hybrid
method can generate a time series of SES-CD scores along with
biomarkers, gut-level cytokines, and immune cell
population changes.

This approach of combining a classification algorithm with a
mechanistic model is a promising way to extend the prediction
because disease activity indices are typically interpreted in categories
such as no activity/remission, mild, moderate, and severe.
Furthermore, the machine learning component enables learning
from literature-reported correlations between biomarkers and
clinical scores while the mechanistic model requires a specific
data format to be used for calibration. For instance, transcription
factors and cytokine levels from isolated tissue biopsies of active IBD
patients and healthy controls can be used to correlate with disease
severity as potential predictors to be trained and cross-validated in
the machine learning model (Li et al., 2017; Olsen et al., 2011).

Additionally, the most notable benefit of the combined approach
is that it can be applied to already published models that have been
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validated. For instance, Rogers et al. recently published a
comprehensive QSP IBD model that can simulate both CD and
UC conditions (Rogers et al., 2021a; Rogers et al., 2021b). The model
includes important disease biology in the gut and blood involving
T cells, macrophages, dendritic cells, and neutrophils along with
cytokine release. The model also generates clinical biomarker
simulations such as CRP and FCP which are often reported with
clinical scores. The authors followed up with additional virtual
population analyses by simulating the treatment effects of four
different therapeutic targets in CD. They also explored a dual
therapy option, anti-TNFα, and anti-IL-12p40, as a potential
treatment option, and the simulation predicted that a
combination strategy would improve the response compared to
mono-therapies (Rogers et al., 2021b). The model code is publicly
available to be downloaded in the supporting information section of
the Rogers et al. publication.

Given the demonstrated capabilities of the Rogers et al. model,
we linked it to amachine learning algorithm to predict clinical scores
for both subtypes of IBD and performed a proof-of-principle virtual
population analysis.

Clinical score predictions using a
combination of a large-scale QSP
model and statistical learning approach
and example applications

For implementing a clinical score prediction model, we selected
the Mayo score (with MES, which is a part of Mayo) for UC and
CDAI for CD as output, since they are the most popular metrics in
clinical trials. The model was designed to predict the “range of the
scores,” defined by clinicians to categorize the severity of the disease.
To ensure interpretability, we employed multinomial logistic
regression (MLR) in MathWorks (2024), a simple machine-
learning classification algorithm, to generate predictions of
categorical ranges of clinical scores. Feature selection for the
MLR model was guided by the literature evidence between gut
biomarkers and the relevant clinical scores (Table 1).

To generate training data, we developed an algorithm that
assigns appropriate clinical scores to the published virtual
population of the Rogers et al. model based on (1) literature data

of IBD score distribution (Kawashima et al., 2016; Nakamura et al.,
2018; Shinzaki et al., 2021) in relation to either FCP or CRP; and (2)
simulated levels of tissue biomarkers that had both strong
correlations with IBD scores (Holmén et al., 2006) (Table 1) and
known mechanistic links with IBD pathology in the literature
(Langer et al., 2019). This algorithm computes an overall
inflammatory score based on the QSP model-generated steady-
state values of relevant tissue biomarkers and serum CRP and
FCP levels to match published distributions comparing IBD
clinical scores with serum CRP or FCP of individual patients
(Kawashima et al., 2016; Nakamura et al., 2018; Shinzaki et al.,
2021). Once inflammatory scores were assigned to UC and CD
virtual populations, they were used to train the MLR model for the
relevant clinical score. An overview of this computational pipeline is
described in Figure 1.

The performances of trained models were evaluated using
Receiver Operating Characteristic (ROC) curves and sensitivity/
specificity metrics (Figure 1; Supplementary Tables S2-S4). ROC
curves indicate that the trained models are operating at a consistent
level across all classes with moderate to strong predictability specific
to the class. Additionally, sensitivity and specificity measures
(Supplementary Tables S2-S4) for each MLR model further
highlight the strength of the model performance with the average
sensitivity/specificity of the MES model at 0.67/0.84, Mayo model at
0.73/0.88, and CDAI model at 0.80/0.89.

Next, exploratory analyses were performed using anti-TNFα
(adalimumab), anti-IL-23 (mirikizumab), and the combination.
These targets were selected based on the recent study by Feagan
et al. (2023) where simultaneous inhibition of TNFα and IL-23 led to
significant improvement of therapeutic response in UC patients. The
clinical trial data for adalimumab (ECCO, 2024; Puri et al., 2017;
Shinzaki et al., 2021) and mirikizumab (Sandborn et al., 2020; Sands
et al., 2022) were used to calibrate the model further. Once the
clinical score prediction algorithm was built and calibrated,
additional analyses were performed to demonstrate whether this
hybrid approach can be used to explore (1) mechanistic differences
between clinical responders versus non-responders of dual targeting
in the UC virtual population; and (2) whether this combination
could also be beneficial for treating CD.

For the first part of the exploratory analysis, we generated a UC
virtual population (Figure 2A) that matched the patient data

TABLE 1 Gut biomarkers reported to correlate with clinical scores of IBD.

Correlations Th1 Th2 Th17 Treg NK/
NKT

Mac
(M1/
M2)

DC Neutrophil References

UC endoscopic/
clinical activity

IL-17,
IL-21,
IL-22,
TGFβ

% CD25hi FOXP3+
(T cells), TGFβ

IL-17,
IL-21,
IL-22,
TGFβ

IL-8,
TGFβ

IL-8 Holmén et al. (2006),
Iboshi et al. (2017),
Jiang et al. (2014),
Zahn et al. (2009)

UCDAI/Mayo TNFα,
IFNγ

%
CD4+IL13+FOXP3+
(Th2/Treg)

IL-6 %CD4+IL13+FOXP3+
(Th2/Treg)

IFNγ TNFα,
IL-6,
IL-23

IL-6,
IL-23,
IFNγ

IL-6, IL-23 Allegretti et al.
(2023), Li et al.
(2017), Olsen et al.
(2007), 2011

CDAI TNFα IL-6, IL-
17,
TGFβ

TGFβ IL-17,
TGFβ

TNFα,
IL-6,
TGFβ,
IL-8

IL-6 IL-6, IL-8 Olsen et al. (2007),
2011; Stallmach et al.
(2004)
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FIGURE 1
Overview of IBD score prediction platform. A clinical prediction algorithm has been integrated with a published mechanistic model of IBD that can
simulate both CD and UC. For the interpretability of features, a simple classification algorithm, multinomial logistic regression (MLR), has been selected to
build clinical prediction extension. First, the level of inflammation in each virtual patient was computed based on the simulation of relevant tissue
biomarkers and serum CRP or FCP. Next, a relevant clinical score was assigned to each virtual patient using the literature reported relationship of
clinical scores and CRP or FCP. The actual clinical score distribution data utilized for this process are shown on the right. Using this population, the MLR
model was trained to generate clinical score predictions and the performance was evaluated using metrics such as the ROC curve (bottom), sensitivity
and specificity measures (Supplementary Tables S2-S4).
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FIGURE 2
Anti-TNFα and anti-IL23 targeting simulations for UC (A–C) and CD (D–G) virtual population. (A) UC virtual population matching the response data
of dual targeting of anti-TNFα and anti-IL23 in the VEGA trial (49.3% endoscopic healing and 36.6% clinical remission, MES ≤ 1 and Mayo ≤ 2, at week 12).
Orange shaded area represents the population that reached remission in 12 weeks (dark orange dots in CRP/FCP plots represent mean values). The blue-
shaded area represents the population that did not reach remission in 12 weeks (dark blue dots in CRP/FCP plots represent mean values). (B, C)
Mechanistic plots of UC virtual population treated with combination therapy. Each line represents an individual virtual patient. The x-axis is on the scale of
weeks. Simulation shows dual therapy was not as effective in bringing down IL6, IL8, IL17, Th2 and Th17 in non-responders (C) as in responders (B). (D)CD
virtual population matching adalimumab clinical trial data on baseline CDAI (271 ± 56) and treatment response (remission 67% at 12 weeks) based on
Shinzaki et al. (2021). (E) CD virtual populationmatching mirikizumab clinical trial data on baseline CDAI (298 ± 103.7) and treatment response (remission
40.6% at 12 weeks) based on Sands et al. (2022). Both CD virtual populations in (D) and (E)were selected using reported CRP, FCP levels in the trial as well
as the reported CDAI distribution at week 12. (F) Virtual CD population matching adalimumab trial data were subjected to hypothetical combination
therapy (adalimumab and mirikizumab). The model simulation showed 86% remission at week 12, a significant improvement from the adalimumab trial
population (66% remission) (G) Virtual CD populationmatchingmirikizumab trial data were simulated for combination therapy and the result showed 81%
remission at week 12, a notable jump from 41%.
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published in the VEGA trial (Feagan et al., 2023). This trial showed,
that in 12 weeks, 37% of patients treated with combination reached
remission while single targeting only reached 21% (anti-IL23,
Guselkumab) and 22% (anti-TNFα, Golimumab), respectively.
Elaborating on this effort, using mechanistic modeling, we sought
to examine the mechanistic differences between the responder
population who reached remission in 12 weeks versus the non-
responder population (Figures 2B,C). Simulation shows dual
targeting was able to significantly decrease IL6, IL8, and
IL17 and reduce cell populations of Th2 and Th17 better in
responders (Figure 2B) than non-responders (Figure 2C).
Additional responder versus non-responder analysis can be
performed to identify potential biomarkers of response
before treatment.

Next, we evaluated whether anti-TNFα and anti-IL-
23 combination could also benefit CD, given the overlapping
biology with UC. Because this combination has not been
evaluated for CD, we generated two separate CD virtual
populations that match the published clinical data for each
therapy, adalimumab (Shinzaki et al., 2021) (Figure 2D) and
mirikizumab (Sands et al., 2022) (Figure 2E) and evaluated their
combination. The results show that, in both virtual populations,
combination therapy is predicted to significantly improve the
clinical outcome (Figures 2F,G). Simulation shows, for evaluating
12 weeks remission rates, adalimumab and mirikizumab alone were
66% and 41% respectively whereas combination therapy in the same
virtual population for both therapies led to 86% and 81%. This is an
intriguing result that encourages further testing in the clinic. Thus, a
model that can simulate clinical scores enables the exploration of
novel drug combinations while providing a mechanistic explanation.

The simulation results show the potential of combining machine
learning with mechanistic modeling to predict clinical scores and
disease activity indices using publicly available models and data.
Furthermore, matching the clinical response rates in UC simulations
verifies the clinical score calculation and emphasizes its more
general and robust use.

Future directions

A key challenge in validating a predictor of an IBD clinical score
is the lack of publicly available individual patient gut biopsy
measurements of key cytokines and immune cell activity paired
with the actual clinical score. To accommodate for this limitation, we
first simulated a validated virtual population from a published
model, then selected the virtual patients that matched the FCP or
CRP levels of real individual patient data and assigned the associated
clinical scores. While the purpose of this manuscript is to showcase a
proof-of-principle analysis that would enable extending QSP model
prediction to a clinical disease score, an in-depth validation using
patient-level biopsy data in the future would strengthen this
approach. Another validation step can be to predict various
clinical studies with different treatments to validate the MES
response predicted by the model. If the prediction achieves
enough confidence an analysis of patient endotypes may give
important insights to choose the right drug for the right patient.

Another ongoing effort is the CODEX database (Certara, 2024)
which is a collection of biomarkers and clinical scores from published

literature sources formatted for validating mechanistic models. Future
studies will only enrich the database that can be utilized to bolster the
model prediction. On top of these challenges, most clinical scores have
empirical and subjective elements that require regression to relate to a
mechanistic model. Our QSP model-based approach can leverage
population-level distributions of key biomarkers and clinical scores
at baseline, induction, and maintenance periods to enrich the UC and
CD virtual population improving the accuracy and precision of the QSP
model outputs and clinical scores.

Although IBD clinical scores hold the most practical value,
significant efforts distinguishing IBD subtypes based on gene
expression profiles have been measured at disease onset or the
initiation of therapy (Barber et al., 2016). Indeed, integrating
omics data sources to inform mechanistic models have been
demonstrated in other fields such as oncology and cardiotoxicity
(Lazarou et al., 2020; Shim et al., 2023).

Differential gene expression data could serve as inputs to a
clinical score predictor; however, such attempts are challenging to
validate. Additionally, genetic markers are not regularly measured
and may not be robust predictors of response. In addition, such
markers are hard to model mechanistically due to the lack of
understanding how they link to cell or tissue-level
pathophysiology. There has been limited success in other
indications such as rheumatoid arthritis (Dennis et al., 2014;
Guan et al., 2019; Lewis et al., 2019). In future studies, gene
biomarkers may be incorporated into QSP models, alongside
cytokine data, to enhance diagnostic or prognostic capabilities.

Conclusion

We presented the contemporary challenges of adding a clinical
score predictor to a mechanistic model of IBD illustrating how a
combined QSP/machine learning approach could provide a way to
overcome those challenges. A recent hybrid approach combined a
simple decision tree algorithm with a QSP model to generate SES-CD
scores, an endoscopic score of CD, demonstrating the potential of
combiningmachine learning withmechanistic models (Venkatapurapu
et al., 2022). Our work expands the clinical prediction for both UC and
CD combining a QSP model of IBD with a MLR algorithm to generate
relevant clinical scores with interpretable and literature-supported
features. Efforts are underway to leverage additional clinical trial
data from our CODEX (Certara, 2024) clinical outcomes database to
enrich training and testing data sets and improve the accuracy of
this approach.
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