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A.1 Proofs

A.1.1 Proofs for Section 3.3

Before giving the intended results, we note that we introduced mP as the averaged
Bregman divergence associated with γ(x) = x − 1 − ln(x). For the proof, it will be
useful to also define the Bregman divergence associated with γ(x) = x−1−ln(x) itself,
which is the so-called Itakura-Saito divergence. For f, g ∈ M (Ω,R>0), it is given by

ISP (f, g) =
∫

Ω

(
f

g
− 1 − ln f

g

)
dP.

By definition, it holds that

m2
P (f, g) = 1

2IS

(
f,

f + g

2

)
+ 1

2IS

(
g,

f + g

2

)
.

Furthermore, for Q ∈ C, we have ISP (q, p) = D(P∥Q). We now state some auxiliary
results before giving the proofs for Section 3.3.

Lemma A.1. For x, y ∈ R>0, we have

|ln(x) − ln(y)| = g(m2
γ(x, y)),

where g denotes the function

g(t) = 2t + 2 ln
(

1 + (1 − exp (−2t))1/2
)

.

The function g is concave and satisfies g(t) ≥ 2t.
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Proof. Let m = x+y
2 . Our goal is to determine the function g function such that

|ln(x) − ln(y)| = g(m2
γ(x, y)).

We first rewrite the right-hand side

g(m2
γ(x, y)) = g

(
ln (m) − 1

2 ln (x) − 1
2 ln (y)

)
= g

(
1
2 ln

(
m2

x · y

))

= g

1
2 ln


(

m
y

)2

x
y




= g

1
2 ln


( 1+ x

y

2

)2

x
y


 .

Plugging this back in and replacing x
y by w leads to

|ln (w)| = g

(
1
2 ln

(( 1+w
2
)2

w

))

Then we solve the equation
1
2 ln

(( 1+w
2
)2

w

)
= t,

which gives
w = 2 exp (2t) − 1 + 2 · (exp (4t) − exp (2t))1/2

g (t) = ln
(

2 exp (2t) − 1 + 2 · (exp (4t) − exp (2t))1/2
)

= 2t + ln
(

2 − exp (−2t) + 2 · (1 − exp (−2t))1/2
)

= 2t + 2 ln
(

1 + (1 − exp (−2t))1/2
)

.
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The derivatives of g are

g′(t) = 2 + 2(1 − exp (−2t))−1/2 exp (−2t)
1 + (1 − exp (−2t))1/2

= 2
(1 − exp(−2t))1/2

g′′(t) = − exp (−t/2)
21/2 (sinh t)3/2

.

We see that g′′(t) < 0 and conclude that g is concave. Finally, we have

g (t) = 2t + 2 ln
(

1 + (1 − exp (−2t))1/2
)

≥ 2t,

because 1 − exp (−2t) ≥ 0.

Lemma A.2. Let (fn)n∈N be a sequence of elements of M(Ω,R>0), then

lim sup
m,n→∞

mP (fm, fn) = 0 ⇔ lim sup
m,n→∞

∫
Ω

∣∣∣∣ln(fm

fn

)∣∣∣∣ dP = 0.

Proof. By Lemma A.1, we have for m, n ∈ N,

m2
P (fn, fm) =

∫
Ω

m2
γ(fn, fm) dP

≤ 1
2

∫
Ω

∣∣∣∣ln(fm

fn

)∣∣∣∣ dP,

as well as ∫
Ω

∣∣∣∣ln( fn

fm

)∣∣∣∣ dP =
∫

Ω
g(m2

γ(fn, fm)) dP

≤ g

(∫
Ω

m2
γ(fn, fm) dP

)
= g

(
m2

P (fn, fm)
)

.

The result then follows by continuity of g.

Lemma A.3. For Q1, Q2 ∈ C such that P ≪ Qi for i ∈ {1, 2}, we have

m2
P (q1, q2) ≤ D(P∥Q1 ⇝ C) + D(P∥Q2 ⇝ C)

2 .

197



A.1 Proofs

Proof. Let Q̄ denote the midpoint between Q1 and Q2. Then we have

D(P∥Q1 ⇝ C) + D(P∥Q2 ⇝ C)
2

=
supQ∈C D(P∥Q1 ⇝ Q) + supQ∈C D(P∥Q2 ⇝ Q)

2

≥ D(P∥Q1 ⇝ Q̄) + D(P∥Q2 ⇝ Q̄)
2 = m2

P (q1, q2).

Proof of Proposition 3.4. This follows as a direct corollary of Lemma A.2.

We now deviate slightly from the order of the results in Section 3.3 and first state
the proof of Proposition 3.6, so that we can use its results in the proof of Theorem 3.5.

Proof of Proposition 3.6. The implications (3) → (2) → (1) are obvious, so we show
here only the implication (1) → (3). Assume that P ′ is a measure such that −∞ <

D(P∥P ′ ⇝ C) < ∞. Then there exists a sequence of measures Qn ∈ C such that

D(P∥P ′ ⇝ Qn) → D(P∥P ′ ⇝ C)

for n → ∞. Without loss of generality we may assume that −∞ < D(P∥P ′ ⇝ Qn) <

∞ for all n. The result follows because

D(P∥P ′ ⇝ C) = D(P∥P ′ ⇝ Qn) + D(P∥Qn ⇝ C)

and all involved quantities are finite.

Proof of Theorem 3.5 (1). Let (Qn)n∈C denote a sequence in C such that

lim
n→∞

D(P∥Qn ⇝ C) = inf
Q∈C

D(P∥Q⇝ C) = 0,

where the last equality follows from Proposition 3.6. Without loss of generality, we
may assume that D(P∥Qn ⇝ C) < ∞ for all n, so that P ≪ Qn for all n. It then
follows from Lemma A.3 that for m, n ∈ N we have

m2
P (qm, qn) ≤ D(P∥Qm ⇝ C) + D(P∥Qn ⇝ C)

2 .

It follows that (qn)n∈N is a Cauchy sequence with respect to mP , so that (qn)n∈N

converges to some function q̂ in mP . The latter follows from the completeness of
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(M (Ω, (0, ∞)) , mP ), i.e. Proposition 3.4.
Furthermore, suppose that (Q′

n)n∈C is another sequence in C such that

lim
n→∞

D(P∥Q′
n ⇝ C) = 0.

Then, by the same reasoning as before, Q1, Q′
1, Q2, Q′

2, Q3, Q′
3, . . . is also a Cauchy

sequence that converges and since a Cauchy sequence can only converge to a single
element this implies the desired uniqueness.

Proof of Theorem 3.5 (2). The equality∫
Ω

ln p′

q̂
dP = lim

n→∞

∫
Ω

ln p′

qn
dP

follows from Theorem 3.5 (1) together with the fact that convergence of qn in mP

implies convergence of the logarithms in L1(P ).

Proof of Theorem 3.5 (3). Let (Qn)n∈C denote a sequence in C such that

lim
n→∞

D(P∥Qn ⇝ C) = 0.

Without loss of generality, we may assume that D(P∥Qn ⇝ C) < ∞ for all n and
that qn converges to q̂ P -almost surely. The latter is valid, because convergence in
mP implies convergence of the logarithms in L1(P ) by Lemma A.2, which gives the
existence of an almost surely converging sub-sequence.

Let Q̃ = (1 − t)Q1 + tQ for fixed Q ∈ C and fixed 0 < t < 1. Let Qn,s denote the
convex combination Qn,s = (1 − sn)Qn + snQ̃ and sn ∈ [0, 1]. By Theorem 3.5 (1),
we know that there exists some Q̂ such that qn → q̂ in mP .

Since Qn,s ∈ C by convexity, we have that D(P∥Qn ⇝ Qn,s) ≤ D(P∥Qn ⇝ C).
We also have

D(P∥Qn ⇝ Qn,s) = snD(P∥Qn ⇝ Q̃) + snISP (q̃, qn,s)

+ (1 − sn)ISP (qn, qn,s)

≥ snD(P∥Qn ⇝ Q̃) + snISP (q̃, qn,s).

Hence
snD(P∥Qn ⇝ Q̃) + snISP (q̃, qn,s) ≤ D(P∥Qn ⇝ C).
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Division by sn gives

D(P∥Qn ⇝ Q̃) + ISP (q̃, qn,s) ≤ D(P∥Qn ⇝ C)
sn

.

Choosing sn = D(P∥Qn ⇝ C)1/2, this gives

D(P∥Qn ⇝ Q̃) + ISP (q̃, qn,s) ≤ s
1/2
n .

Then we get

ISP (q̃, qn,s) ≤ D(P∥Q̃⇝ Qn) + s
1/2
n .∫

Ω

(
q̃

qn,s
+ ln qn,s

qn

)
dP ≤ P (Ω) + Q̃(Ω) − Qn(Ω) + s

1/2
n .

Writing qn as qn,s−snq̃
1−sn

, we see

ln qn,s

qn
= ln qn,s

qn,s−snq̃
1−sn

= ln(1 − sn) − ln qn,s − snq̃

qn,s

= ln(1 − sn) − ln
(

1 − sn
q̃

qn,s

)
≥ ln(1 − sn) + sn

q̃

qn,s
.

Hence

ln(1 − sn) + (1 + sn)
∫

Ω

q̃

qn,s
dP ≤ P (Ω) + Q̃(Ω) − Qn(Ω) + s

1/2
n .

As limn→∞ sn = 0, taking the limit inferior as n → ∞ on both sides gives

lim inf
n→∞

∫
Ω

q̃

qn,s
dP ≤ P (Ω) + Q̃(Ω) − lim inf

n→∞
Qn(Ω).

An application of Fatou’s lemma gives∫
Ω

dP

dQ̂
dQ̃ ≤ P (Ω) + Q̃(Ω) − lim inf

n→∞
Qn(Ω).
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Since Q̃ = (1 − t)Q1 + tQ we get the inequality∫
Ω

dP

dQ̂
d ((1 − t) Q1 + tQ)

≤ P (Ω) + (1 − t)Q1(Ω) + tQ(Ω) − lim inf
n→∞

Qn(Ω),

(1 − t)
∫

Ω

dP

dQ̂
dQ1 + t

∫
Ω

dP

dQ̂
dQ

≤ P (Ω) + (1 − t)Q1(Ω) + tQ(Ω) − lim inf
n→∞

Qn(Ω).

Finally we let t tend to one and obtain the desired result.

Proof of Proposition 3.7. Let Q ∈ C arbitrarily. Then there exists a sequence (wi)n
i=1

in [0, 1] with
∑

i wi = 1 such that Q =
∑n

i=1 wiQi. It follows that

D

(
P∥ 1

n

∑
i

Qi ⇝ Q

)
=
∫

Ω
ln
∑

i wiQi

1
n

∑
i Qi

dP

≤
∫

Ω
ln

maxi wi

∑
i Qi

1
n

∑
i Qi

dP

= ln(n) + ln(max
i

wi) ≤ ln(n).

The proposition follows by taking the supremum over Q on both sides.

Proof of Proposition 3.8. Since Q∗ is the normalized maximum likelihood distribution
we have supQ supω ln dQ

dQ∗ < ∞. In particular

sup
Q∈C

D(P∥Q∗ ⇝ Q) = sup
Q∈C

∫
Ω

ln dQ

dQ∗ dP

≤ sup
Q∈C

sup
ω

ln dQ

dQ∗ (ω) < ∞.

Proof of Proposition 3.10. We can write

D(P∥Qθ ⇝ Q∗) = D(P∥Qθ ⇝ Q) + D(P∥Q⇝ Q∗).

By assumption all terms are finite so that minimising D(P∥Qθ ⇝ Q∗) over θ must be
equivalent to minimising D(P∥Qθ ⇝ Q) over θ. The same argument holds for step 5 in
Algorithm 1. The result then follows from (Brinda, 2018, Theorem 3.0.13). Whereas
the algorithm described there works by choosing θk to minimize

∫
Ω log((1−αk)qθk−1 +
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αkqθ) dP , the proof relies on (Li, 1999, Lemma 5.9), which indeed uses minimization
of D(P∥(1 − αk)Qθk−1 + αkQθ ⇝ Q) as described here.

Proof of Theorem 3.9. For any a ∈ R we have

f0 (i) + a · f1 (i) = f0 (i) ·
(

1 + a · f1 (i)
f0 (i)

)
. (A.1)

Since f1(i)
f0(i) → 0 for i → ∞ we have that f0 (i) + a · f1 (i) ≥ 0 for i sufficiently large.

Therefore, we can apply Fatou’s lemma to the function and obtain∑
f0 (i) · q∗ (i) + a ·

∑
f1 (i) · q∗ (i)

=
∑

(f0 (i) + a · f1 (i)) · q∗ (i)

=
∑

lim inf
n→∞

(f0 (i) + a · f1 (i)) · qn (i)

≤ lim inf
n→∞

∑
i

(f0 (i) + a · f1 (i)) · qn (i)

= lim inf
n→∞

(∑
i

f0 (i) · qn (i) + a ·
∑

i

f1 (i) · qn (i)
)

= lim inf
n→∞

(λ0 + a · λ1) = λ0 + a · λ1.

Hence
a ·
(∑

f1 (i) · q∗ (i) − λ1

)
≤ λ0 −

∑
f0 (i) · q∗ (i) . (A.2)

This inequality should hold for all a ∈ R, which is only possible if∑
f1 (i) · q∗ (i) − λ1 = 0.∑

f1 (i) · q∗ (i) = λ1.

A.1.2 Proofs for Section 3.4

Proof of Proposition 3.12. Assume that E1, E2, E3, . . . is a sequence of e-variables
such that ∫

Ω
ln
(

En

E′

)
dP → sup

E

∫
Ω

ln
(

E

E′

)
dP
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for n → ∞. Then En,m = (Em + En) /2 are also e-variables and by convexity∫
Ω

ln
(

Em,n

E′

)
dP → sup

E

∫
Ω

ln
(

E

E′

)
dP ,

which implies that m2
γ (Em, En) → 0 for m, n → ∞. By completeness En converges

to some e-variable E∞. Using Lemma A.2 we see that mγ (En, E∞) → 0 implies that∫
Ω

ln
(

Em

E′

)
dP →

∫
Ω

ln
(

E∞

E′

)
dP

so that

sup
E

∫
Ω

ln
(

E

E′

)
dP =

∫
Ω

ln
(

E∞

E′

)
dP .

Hence

sup
E

∫
Ω

ln
(

E

E∞

)
dP = 0

Therefore E∞ is a strongest e-statistic.
Assume that both E1 and E2 are strongest e-variables. Then they are both stronger

than the average Ē = (E1 + E2) /2. Hence

0 ≤ m2
γ (E1, E2) = 1

2

∫ (
ln
(

Ē

E1

)
+ ln

(
Ē

E2

))
dP ≤ 0.

Therefore E1 = E2 P -almost surely.

Proof of Theorem 3.13. Firstly, since Ê > 0 holds P -almost surely, we have that Ê is
stronger than any E′ ∈ EC with P (E′ = 0) > 0.

Secondly, let E ∈ EC be an e-statistic for which E > 0 holds P -almost surely.
Furthermore, let Qn be a sequence of measures in C such that D(P∥Qn ⇝ C) → 0.
We can define a sequence of sub-probability measures Rn by Rn(F ) =

∫
F

E dQn,
which satisfies dRn/dQn = E. We see

∫
Ω

ln
(

Ê

E

)
dP =

∫
Ω

ln
(

dQn

dQ̂

)
dP + D(P∥Rn)

+ (P (Ω) − Rn(Ω))

≥
∫

Ω
ln
(

dQn

dQ̂

)
dP.
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The last expression goes to zero as n → ∞, so we see that Ê is stronger than E.

Proof of Proposition 3.14. Using the fact that ln(x) ≤ x − 1 for x > 0, we see

D(P∥Q∗ ⇝ Q) =
∫

Ω
ln dQ

dQ∗ dP

≤
∫

Ω

(
dQ

dQ∗ − 1
)

dP

=
∫

Ω

dP

dQ∗ dQ − 1 ≤ 0,

where the last inequality follows from the fact that dP/dQ∗ is an e-statistic.

Proof of Theorem 3.16. Without loss of generality, assume that
∫

Ω
q′
/q dP = 1 + ϵ for

some ϵ > 0. For the sake of brevity, we write cβ := ∥q′
/q∥1+β

1+β . We now define a
function g : [0, 1] → R≥0 as

g(α) := D (P∥(1 − α)Q + αQ′ ⇝ C) .

Notice that g(0) = δ and g(α) ≥ 0, since (1 − α)Q + αQ′ ∈ C. This function and its
derivatives will guide the rest of the proofs, and we now list some properties that we
will need:

g′(α) := d
dα

g(α) =
∫

Ω

q − q′

(1 − α)q + αq′ dP, (A.3)

so that

g′(0) =
∫

Ω

(
1 − q′

q

)
dP = −ϵ, (A.4)

g′′(α) := d2

dα2 g(α) =
∫

Ω

(
q′ − q

(1 − α)q + αq′

)2
dP, (A.5)

so that

g′′(0) =
∫

Ω

(
1 − q′

q

)2
dP = 1 − 2(1 + ϵ) + c1

and

0 ≤ g′′(α) ≤ 1
(1 − α)2 g′′(0). (A.6)
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We now prove (3.10). We start with the case β = 1 and will use the result for β = 1
to prove the case for β < 1. The proof for the case β > 1 comes later; it requires a
completely different proof.

Case β = 1. The general idea is simple: at α = 0 the function g(α) is equal to
δ and has derivative −ϵ. Its second derivative is positive and bounded by constant
times g′′(0) ≤ c1 for all α ≤ 1/2. Thus, if ϵ is larger then a certain threshold, g(α)
will become negative at some α ≤ 1/2, but this is not possible since g is a description
gain and we would arrive at a contradiction. The details to follow simply amount to
calculating the threshold as a function of δ.

By Taylor’s theorem, we have for any α ∈ [0, 1/2] that

g(α) = g(0) + g′(0)α + max
0≤α◦≤α

g′′(α◦)
2 α2

≤ g(0) + g′(0)α + 2g′′(0)α2

≤ δ − ϵα + 2α2c1,

where we use the properties derived above. This final expression has a minimum in
α∗ = min{ϵ/4c1, 1/2}. By nonnegativity of g, we know that δ − ϵα∗ + 2α∗2c1 ≥ 0. This
gives ϵ ≤ (8c1δ)1/2 in the case that α∗ = ϵ/4c1 < 1/2, and ϵ ≤ 2δ + c1 otherwise. In the
latter case, it holds that c1 < ϵ/2, so the bound can be loosened slightly to find the
simplification ϵ ≤ 4δ. This concludes the proof for β = 1, which we now use to prove
Case β < 1.

Case β < 1. For any a > 0, it holds that∫
Ω

q′

q
dP =

∫
Ω

q′

q
1{q′/q≤a} dP +

∫
Ω

q′

q
1{q′/q>a} dP. (A.7)

We write q′′ := q′1{q′/q≤a} and we will bound the first term on the right-hand side
of (A.7) using the proof above with Q′ replaced by Q′′. Since Q′′ is not necessarily
an element of C, we need to verify nonnegativity, which follows because for each
α ∈ (0, 1), we have that D(P∥(1−α)Q+αQ′′ ⇝ C) ≥ D(P∥(1−α)Q+αQ′ ⇝ C) ≥ 0.
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Furthermore, it holds that∥∥∥∥q′′

q

∥∥∥∥2

2
=
∫

Ω

(
q′′

q

)2
dP

=
∫

Ω

(
q′′

q

)1+β (
q′′

q

)1−β

dP

≤ a1−βcβ

The results above therefore give∫
Ω

q′′

q
dP ≤ 1 + max{(8a1−βcβδ)1/2, 2δ}.

For the second term on the right-hand side of (A.7), we use a Markov-type bound, i.e.

∫
Ω

q′

q
1{q′/q>a} dP ≤

∫
Ω

q′

q

(
q′
/q

a

)β

1{q′/q>a} dP

≤ a−βcβ .

Putting this together gives∫
Ω

q′

q
dP ≤ 1 + max{(8a1−βcβδ)1/2, 4δ} + a−βcβ .

Since this holds for any a, we now pick it to minimize this bound. To this end, consider

d
da

(8a1−βcβδ)1/2 + a−βcβ

= (1 − β)(8cβδ)1/2

2 a−(1+β)/2 − βa−(1+β)cβ .

Setting this to zero, we find

a∗ =
(

βc
1/2
β

(1 − β)(2δ)1/2

) 2
1+β

.
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The proof is concluded by noting that

(8a∗1−βcβδ)1/2 =

8
(

βc
1/2
β

(1 − β)(2δ)1/2

)2 1−β
1+β

cβδ


1/2

= 2c
1/(β+1)
β (2δ)β/(β+1)

(
β

1 − β

) 1−β
1+β

and

a∗−βcβ =
(

βc
1/2
β

(1 − β)(2δ)1/2

)−2β
1+β

cβ

= c
1/(β+1)
β

(
β

1 − β

)−2β
1+β

(2δ)β/(1+β).

Case β > 1. We now prove the result for β ∈ (1, ∞); the proof for β = ∞ follows
by a minor modification of (A.9). If ϵ ≤ 0 there is nothing to prove, so without loss
of generality we can write ϵ = γδ for some γ > 0; we will bound γ. Whereas the
previous proof exploited the fact that the second derivative g′′(α) was bounded above
in terms of δ and hence ‘not too large’, the proof below uses the condition that cβ

is finite to show first, (a), that g′′(α) can also be bounded below in terms of (γ, δ).
Therefore, if ϵ exceeds a certain threshold, as α moves away from the α∗ at which g(α)
achieves its minimum in the direction of the furthest boundary point (i.e. if α∗ < 1/2,
we consider α ↑ 1, if α∗ ≥ 1/2 we consider α ↓ 0), g(α) will become larger than Kδ or δ

respectively, and we arrive at a contradiction. (b) below gives the detailed calculation
of this threshold.

Proof of (a). Fix some 0 ≤ α̃ < 1 (we will derive a bound for any such α̃ and
later optimize for α̃; for a sub-optimal yet easier derivation take α̃ = 1/2). By Taylor’s
theorem, we have 0 ≤ g(α̃) = δ − α̃ϵ + (1/2)α̃2g′′(α◦) for some 0 ≤ α◦ ≤ α̃. Plugging
in ϵ = γδ we find that

g′′(α◦) ≥ 2
α̃2 (α̃γ − 1)δ.

This gives a lower bound on g′′(α◦) for some α◦ in terms of (γ, δ). We now turn this
into a weaker lower bound on all α. First, using (A.6) and then α◦ ≤ α̃ and then the
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above lower bound, we find

g′′(0) ≥ max
α∈[0,α̃]

(1 − α)2g′′(α) ≥ (1 − α◦)2g′′(α◦)

≥ (1 − α̃)2g′′(α◦) ≥ 2fα̃(γ, δ), (A.8)

where fα̃(γ, δ) := ((1− α̃)/α̃)2(α̃γ −1)δ is a function that is linear in γ and δ. We have
now lower bounded g′′(0) in terms of γ, δ. We next show that, under our condition
that cβ < ∞, this implies a (weaker) lower bound on g′′(α) for all α. For this, fix any
C > 1. We have for all 0 < α ≤ 1:

g′′(α) ≥
∫

Ω
1q′≤Cq ·

(
q′ − q

(1 − α)q + αq′

)2
dP

≥
∫

Ω
1q′≤Cq ·

(
q′ − q

(1 − α)q + αCq

)2
dP

=
∫

Ω
1q′≤Cq ·

(
q′ − q

q

)2
dP · 1

(1 + α(C − 1))2

≥ 1
(1 + (C − 1))2

(
g′′(0) −

∫
Ω

1q′>Cq

(
q′

q
− 1
)2

dP

)

≥ 1
C2

(
2fα̃(γ, δ) − C1−βcβ

)
, (A.9)

where in the fourth line we used the definition of g′′(0), and in the fifth line we
used (A.8) and a Markov-type bound on the integral, i.e. we used that

∫
Ω 1q′>Cq ·

(q′/q − 1)2 dP is bounded by∫
Ω

1q′>Cq ·
(

q′

q

)2
dP ≤

∫
Ω

(
q′
/q

C

)β−1

·
(

q′

q

)2
dP

= C1−βcβ .

By differentiation we can determine the C that maximizes the bound (A.9). This gives
C1−β = fα̃(γ, δ)(4/cβ(1+β)). and with this choice of C, (A.9) becomes

g′′(α) ≥ fα̃(γ, δ)(β+1)/(β−1)c
2/(1−β)
β h(β) (A.10)

where h(β) = (4/(1 + β))2/(β−1) · 2(β − 1)/(1 + β). We are now ready to continue to:
Proof of (b). Let α∗ ∈ [0, 1] be the point at which g(α) achieves its minimum. If
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α∗ ≤ 1/2, a second-order Taylor approximation of g(1) around α∗ gives that

Kδ ≥ g(1) ≥ 1
2(1 − α∗)2 min

α∈[α∗,1]
g′′(α)

≥ 1
8fα̃(γ, δ)(β+1)/(β−1)c

2/(1−β)
β h(β),

so that after some manipulations

fα̃(γ, δ)(1+β)/(β−1) ≤ 8K ′c
2/(β−1)
β · h(β)−1δ, (A.11)

with K ′ = K. If α∗ > 1/2, we perform a completely analogous second-order Taylor
approximation of g(0) around α∗, which will then give (A.11) again but with K ′

replaced by 1. We thus always have (A.11) with K ′ = max{K, 1}. Unpacking fα̃ in
(A.11) and rearranging gives:

γ ≤ α̃

(1 − α̃)2 · V + 1
α̃

with

V = c
2/(1+β)
β ·

(
8K ′

h(β)

) β−1
1+β

δ
−2

1+β .

We now pick the α̃ that makes both terms on the right equal, so that the right-hand
side becomes equal to 2/α̃. This is the solution to the equation (α̃/(1−α̃))2V = 1 which
must clearly be obtained for some 0 < α̃ < 1, so this α̃ satisfies our assumptions.
Basic calculation gives

γ ≤ 2
α̃

= 2 ·
(

V
1/2 + 1

)
and unpacking V we obtain

ϵ = γδ ≤ c∗ · δ
β

1+β + 2δ.

where

c∗ = c
1/(1+β)
β ·

(
8K ′

h(β)

) β−1
2(1+β)

.

Unpacking h(β) gives the desired result.
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A.2 RIPr Strict Sub-Probability Measure

In this appendix, we discuss a general way to construct a measure P and convex set
of distributions C such that the reverse information projection of P on C is a strict
sub-probability measure. For simplicity, we take Ω = N and F = 2N, though the idea
should easily translate to more general settings.

Proposition A.4. Let g : N → R>0 be a function, and let C denote the set of measures
{Q :

∑
i g (i) q(i) ≤ ν} for some ν > 0. Then for any P that is not in C we have that

E (i) = g(i)/ν is the optimal e-statistic.

Proof. The extreme points in C are the measure with total mass 0 and measures of the
form ν

g(i) δi, i.e. measures concentrated in single points. An e-statistic E must satisfy

∑
j

E (j) ν

g (i)δi (j) ≤ 1

or, equivalently, E (i) ν
g(i) ≤ 1. Hence E ≤ g/ν so the optimal e-statistic is g/ν.

Let g : N → R>0 be any function that satisfies

lim
n→∞

g(n) = 0.

Furthermore, let P denote a probability measure on the natural numbers such that

∑
i

p(i)
g(i) = c

for some c ∈ R>0. Fix ν∗ ∈ (0, 1/c) and let Cν∗ denote the set of measures {Q :∑
i g (i) q(i) ≤ ν∗}. Note that we do not yet require all measures in Cν∗ to be prob-

ability measures so that the set Cν∗ is compact. It follows that there exists a unique
element of Cν∗ that minimizes

∑
i p(i) ln (p(i)/q(i)).

The optimal e-statistic is Eν∗ = g/ν∗, and we may define the measure Qν∗ by

qν∗(i) = p(i)
Eν∗(i) = ν∗p(i)/g(i),

and we can check that Qν∗ ∈ Cν∗ . Hence Qν∗ minimizes
∑

i p(i) ln (p(i)/q(i)).
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This is a strict sub-probability measure:

∑
i

qν∗(i) = ν∗
∑

i

p(i)
g(i)

= ν∗c

< 1,

where we use that ν∗ < 1/c.
The next step is to prove that the information projection does not change if we

restrict to the set of probability measures in Cν∗ , which we denote by C̃ν∗ . To this
end, note first that for ν < ν∗, we have that

∑
g (i) qν(i) < ν∗, so that for all ν < ν∗

there exists nν ∈ N such that the probability measure defined by

qν(i) +

1 −
∑

j

qν(j)

 δnν
(i)

is an element of C̃ν∗ . Hence

D(P∥C̃ν∗) ≤ D

P

∥∥∥∥∥∥Qν +

1 −
∑
j∈N

qν(j)

 δnν


=
∑
i∈N

p(i) ln

 p(i)
Qν(i) +

(
1 −

∑
j∈N qν(j)

)
δnν

(i)


= −p(nν) ln

(
p(nν)
qν(nν)

)
+ p(nν) ln

(
p(nν)

qν(nν) + 1 −
∑

j∈N qν(j)

)

+
∑
i∈N

p(i) ln
(

p(i)
qν(i)

)
.

The first term can be written as

p(nν) ln
(

p(nν)
qν(nν)

)
= qν(nν) p(nν)

qν(nν) ln
(

p(nν)
qν(nν)

)
= qν(nν)g (nν)

ν
ln
(

g (nν)
ν

)
Then notice that for ν → ν∗, we must have that nν → ∞. Using that c ln (c) → 0 for
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c → 0 we see the first term tends to 0 for ν → ν∗. Similarly, the second term can be
written as

p(nν) ln
(

p(nν)
qν(nν) + 1 −

∑
j∈N qν(j)

)

=

qν(nν) + 1 −
∑
j∈N

qν(j)

 p(nν)
qν(nν) + 1 −

∑
j∈N qν(j)

· ln
(

p(nν)
qν(nν) + 1 −

∑
j∈N qν(j)

)
.

We also have
p(nν)

qν(nν) + 1 −
∑

i qν(i) → 0

for ν → ν∗ and using that c ln (c) → 0 for c → 0 we get the second term tends to 0 for
ν → ν∗. Therefore we see

D(P∥C̃ν∗) ≤ lim
ν→ν∗

D

(
P

∥∥∥∥∥Qν +
(

1 −
∑

i

qν(i)
)

δnν

)

≤
∑

i

p(i) ln
(

p(i)
qν∗(i)

)
= inf

Q∈Cν∗

∑
i

p(i) ln
(

p(i)
q(i)

)
.

The inequality trivially also holds the other way around, so we find that

D(P∥C̃ν∗) = inf
Q∈Cν∗

∑
i

p(i) ln
(

p(i)
q(i)

)
.

It follows that Qν∗ is a strict sub-probability measure, and at the same time it is the
reverse information projection of P onto C̃ν∗ .

A.3 Convexity

One of the main assumptions made throughout the main text is that the set of measures
C is convex, i.e. closed under finite mixtures. However, one can also consider stronger
notions of convexity, such as σ-convexity and Choquet-convexity. In this appendix,
we investigate whether considering different levels of convexity can change the reverse
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information projection.

Definition A.5. A set C′ of measures is said to be σ-convex if Q1 , Q2 , Q3 · · · ∈ C′

implies that
∑∞

i=1 wiQi ∈ C′ when wi ≥ 0 and
∑∞

i=1 wi = 1. The σ-convex hull of a
set of measures C, denoted by σ-conv(C), is the smallest σ-convex set containing C.

In order to avoid topological complications we will restrict the discussion of Choquet-
convexity to Polish spaces, i.e. spaces for which there exists a complete metric that
generates the topology. That is, assume that Ω is a Polish space equipped with the
Borel σ-algebra. Let Θ be another Polish space and let {Qθ : θ ∈ Θ} denote a param-
eterized set of probability measures on Ω such that θ →

∫
Ω f dQθ is Borel measurable

for any measurable function f : Ω → R. Then for any probability measure ν on Θ the
Choquet-convex mixture µν can be defined by∫

Ω
f dµν =

∫
Θ

(∫
Ω

f dµθ

)
dν,

for any measurable function f : Ω → R.

Definition A.6. A set C′ of measures is said to be Choquet-convex if it is closed
under Choquet convex mixtures. The Choquet-convex hull of a set of measures C is
the smallest Choquet-convex set that contains C.

So far, we have assumed that all of the measures in C are finite. However, a
countable or Choquet convex mixture of finite measures may not be finite. It follows
that our results on the existence of the RIPr might not be applicable to the σ-convex
and Choquet-convex hull of C. We therefore assume for the remainder of this section
that all involved measures are sub-probability measures, in which case this problem
does not arise. With all of this in place, it is relatively straightforward to construct
examples where the RIPr of P on a convex set does not exist, whereas the RIPr of P

on its σ-convex hull does exist.

Example A.1. Let P denote a geometric distribution on N0 and let C denote the set
of probability measures on N0 with finite support. Then D(P∥Q⇝ C) = −∞ for any
Q ∈ C. Therefore the reverse information projection of P on C is not defined according
to the definitions given in Chapter 3. However, the σ-convex hull of C consists of all
probability measures on N0, which implies that the reverse information projection on
the σ-convex hull is well-defined and equals P .

However, as the following results show, if the RIPr of P on C does exist, then it
must coincide with the RIPr of P on σ-conv(C).
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Lemma A.7. Let P and Q be sub-probability measures and let Q1, Q2, . . . be a se-
quence of sub-probability measures such that D(P∥Q⇝ Q1) > −∞, and let w1, w2, . . .

be a sequence of positive numbers with sum 1. Then

D

(
P

∥∥∥∥Q⇝

∑n
i=1 wi · Qi∑n

i=1 wi

)
→ D

(
P

∥∥∥∥∥Q⇝
∞∑

i=1
wi · Qi

)

for n → ∞.

Proof. Firstly, note that

ln
d
∑n+1

i=1 wiQi

dQ
≥ ln

d
∑n

i=1 wiQi

dQ

and ∫
Ω

ln
d
∑n

i=1 wiQi

dQ
dP ≥

∫
Ω

ln dw1Q1

dQ
dP

= D(P∥Q⇝ Q1) + ln w1

+ (Q1(Ω) − Q(Ω))

> −∞.

Since
∑n

i=1 wiqi →
∑∞

i=1 wiqi pointwise, applying the monotone convergence the-
orem to the sequence (

ln
d
∑n

i=1 wiQi

dQ
− ln dw1Q1

dQ

)
n∈N

gives that ∫
Ω

ln
d
∑n

i=1 wiQi

dQ
− ln dw1Q1

dQ
dP

→
∫

Ω
ln

d
∑∞

i=1 wiQi

dQ
− ln dw1Q1

dQ
dP.

We get ∫
Ω

ln
d
∑n

i=1 wiQi

dQ
dP →

∫
Ω

ln
d
∑∞

i=1 wiQi

dQ
dP
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for n → ∞. Finally, we see that

D

(
P

∥∥∥∥Q⇝

∑n
i=1 wi · Qi∑n

i=1 wi

)
=
∫

Ω
ln

d
∑n

i=1 wiQi

dQ
dP − (Qn(Ω) − Q(Ω)) − ln

n∑
i=1

wi

→
∫

Ω
ln

d
∑∞

i=1 wiQi

dQ
dP − (Q∞(Ω) − Q(Ω))

= D(P∥Q⇝ Q∞),

where Q∞ :=
∑∞

i=1 wiQi and we use that ln
∑n

i=1 wi → 0 and Qn(Ω) → Q∞(Ω). To
see the latter, note that

Qn(Ω) =
∫

Ω

∑n
i=1 qi(ω)wi∑n

i=1 wi
dµ(ω),

and 0 ≤
∑n

i=1
qi(ω)wi/

∑n

i=1
wi ≤ q∞(ω)/w1, where the RHS integrates, so that the desired

convergence follows from the dominated convergence theorem.

Theorem A.8. Let P be a finite measure and C a convex set of sub-probability mea-
sures such that D(P∥Q ⇝ C) = 0. If Q1, Q2, . . . is a sequence of measures in C such
that D(P∥Qn ⇝ C) → 0, then D(P∥Qn ⇝ σ-conv(C)) → 0.

Proof. Fix Q∗ ∈ C such that D(P∥Q∗ ⇝ C) ≤ ε and let Q̄ =
∑∞

i=1 wiQi ∈ σ-conv(C)
arbitrarily. Let s ∈ (0, 1) and consider Q̃ := s · Q∗ + (1 − s) · Q̄ =

∑∞
i=0 w̃iQi, where

Q0 := Q∗, w̃0 = s and w̃i = (1−s) ·wi for i = 1, 2, . . . . Note that D(P∥Q∗ ⇝ Q0) = 0,
so it follows from Lemma A.7 that

lim
n→∞

D

(
P

∥∥∥∥Q∗ ⇝

∑n
i=0 w̃iQi∑n

i=0 w̃i

)
= D(P∥Q∗ ⇝ Q̃).

The left hand side is, by definition of Q∗, bounded by ε since
∑n

i=0
w̃iQi/

∑n

i=0
w̃i ∈ C,

so that we find D(P∥Q∗ ⇝ Q̃) ≤ ε. Furthermore, by concavity of the log,

ε ≥ D(P∥Q∗ ⇝ Q̃)

≥ s · D(P∥Q∗ ⇝ Q0) + (1 − s) · D(P∥Q∗ ⇝ Q̄)

= (1 − s) · D(P∥Q∗ ⇝ Q̄).

Taking the limit of s → 0, we see D(P∥Q∗ ⇝ Q̄) ≤ ε. Finally, the result follows by
taking the supremum over Q̄.
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We conjecture that if C is a σ-convex set of sub-probability measures and C′ is the
Choquet-convex hull of C then D(P∥Q⇝ C) = D(P∥Q⇝ C′) for any sub-probability
measures P and Q such that P, Q, and the sub-probability measures in C all have
densities with respect to a common σ-finite measure.
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B.1 Application in Practice: k Separate I.I.D. Data
Streams

In the simplest practical applications, we observe one block at a time, i.e. at time n,
we have observed X(1), . . . , X(n), where each X(i) = (Xi,1, . . . , Xi,k) is a block, i.e. a
vector with one outcome for each of the k groups. This is a rather restrictive setup, but
we can easily extend it to blocks of data in which each group has a different number
of outcomes. For example, if data comes in blocks with mj outcomes in group j, for
j = 1 . . . k, X(i) = (Xi,1,1, . . . , Xi,1,m1 , Xi,2,1, . . . , Xi,2,m2 , . . . , Xi,k,1, . . . , Xi,k,mk

), we
can re-organize this having k′ =

∑k
j=1 mj groups, having 1 outcome in each group,

and having an alternative in which the first m1 entries of the outcome vector share
the same mean µ′

1 = . . . = µ′
m1

= µ1; the next m2 entries share the same mean
µ′

m1+1 = . . . = µ′
m1+m2

= µ2, and so on.
Even more generally though, we will be confronted with k separate i.i.d streams

and data in each stream may arrive at a different rate. We can still handle this case by
pre-determining a multiplicity m1, . . . , mk for each stream. As data comes in, we fill
virtual ‘blocks’ with mj outcomes for group j, j = 1 . . . k. Once a (number of) virtual
block(s) has been filled entirely, the analysis can be performed as usual, restricted
to the filled blocks. That is, if for some integer B we have observed Bmj outcomes
in stream j, for all j = 1 . . . k, but for some j, we have not yet observed (B + 1)mj

outcomes, and we decide to stop the analysis and calculate the evidence against the
null, then we output the product of e-variables for the first B blocks and ignore any
additional data for the time being. Importantly, if we find out, while analyzing the
streams, that some streams are providing data at a much faster rate than others, we
may adapt m1, . . . , mk dynamically: whenever a virtual block has been finished, we
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may decide on alternative multiplicities for the next block; see Turner et al. (2024) for
a detailed description for the case that k = 2.

B.2 Proofs for Section 4.2

In the proofs we freely use, without specific mention, basic facts about derivatives
of (log-) densities of exponential families. These can all be found in, for example,
Barndorff-Nielsen (1978).

B.2.1 Proof of Proposition 4.6

Proof. Since Sgro(M) was already shown to be an E-variable in Lemma 4.4, the ‘if’
part of the statement holds. The ‘only-if’ part follows directly from Corollary 2 to
Theorem 1 in (Grünwald et al., 2024), which states that there can be at most one
E-variable of the form pµ(Xk)/r(Xk) where r is a probability density for Xk.

B.2.2 Proof of Proposition 4.7

Proof. Define g(µ0) := Ep⟨µ0⟩

[
Spseudo(M)

]
and B(µi) := A (λ(µi) + λ(µ0) − λ(µ∗

0)).

g(µ0) = Ep⟨µ0⟩

[
k∏

i=1

pµi
(Xi)

pµ∗
0

(Xi)

]
=

k∏
i=1

EY ∼pµ0

[
pµi

(Y )
pµ∗

0
(Y )

]

=
k∏

i=1

∫
exp (λ(µ0)y − A (λ(µ0))) · exp (λ(µi)y − A (λ(µi)))

exp (λ(µ∗
0)y − A (λ(µ∗

0)))dρ(y)

=
k∏

i=1

∫
exp ((λ(µi) + λ(µ0) − λ(µ∗

0)) y − A (λ(µi)) − A (λ(µ0)) + A (λ(µ∗
0))) dρ(y)

=
k∏

i=1
exp (A (λ(µ∗

0)) − A (λ(µi)) − A (λ(µ0))) exp (B(µi))

·
∫

exp ((λ(µi) + λ(µ0) − λ(µ∗
0)) y − B(µi)) dρ(y)

=
k∏

i=1
exp (A (λ(µ∗

0)) − A (λ(µi)) − A (λ(µ0))) exp (B(µi)) · 1

= exp
(

kA (λ(µ∗
0)) −

k∑
i=1

A (λ(µi)) − kA (λ(µ0)) +
k∑

i=1
B(µi)

)
. (B.1)
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Taking first and second derivatives with respect to µ0, we find

d

dµ0
g(µ0) = g(µ0) · d

dµ0

(
k∑

i=1
B(µi) − kA (λ(µ0))

)
(B.2)

and

d2

dµ2
0

g(µ0) =
(

d

dµ0
g(µ0)

)
· d

dµ0

(
k∑

i=1
B(µi) − kA (λ(µ0))

)

+ g(µ0) · d2

dµ2
0

(
k∑

i=1
B(µi) − kA (λ(µ0))

)

=g(µ0)
(

k∑
i=1

(µi + µ0 − µ∗
0) − kµ0

)2

+ g(µ0)
(

k∑
i=1

varPµi+µ0−µ∗
0
[X] − kvarPµ0

[X]
)

=g(µ0)
(

k∑
i=1

varPµi+µ0−µ∗
0
[X] − kvarPµ0

[X]
)

= g(µ0) · f(µ0).

(B.3)

where the second equality holds because of (B.2), (d/dλ(µ))A(λ(µ)) = EPµ
[X] and

(d2/dλ(µ)2)A(λ(µ)) = varPµ
[X]. (B.3) is continuous with respect to µ0. Therefore, if

f(µ∗
0) > 0 holds, it means that there exists an interval M∗ ⊂ M with µ∗

0 in the interior of
M∗ on which (B.1) is strictly convex. Then there must exist a point µ′

0 ∈ M∗ satisfying
EP⟨µ′

0⟩

[
Spseudo(M)

]
> EP⟨µ∗

0 ⟩

[
Spseudo(M)

]
= 1, i.e. Spseudo(M) is not an E-variable.

Conversely, f(µ∗
0) < 0 means that there exists an interval M∗ ⊂ M with µ∗

0 in the interior
of M∗, on which (B.1) is strictly concave. The result follows.

B.2.3 Proof of Theorem 4.8

To prepare for the proof of Theorem 4.8, let us first recall Young’s [1912] inequality:

Lemma B.1. [Young’s inequality] Let p, q be positive real numbers satisfying 1
p +

1
q = 1. Then if a, b are nonnegative real numbers, ab ≤ ap

p + bq

q .

The proof of Theorem 4.8 follows exactly the same argument as the one used by
Turner et al. (2024) to prove this statement in the special case that M is the Bernoulli
model.

Proof. We first show that Sgro(iid) as defined in the theorem statement is an E-variable.
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For this, we set p∗
0(X) = 1

k

k∑
i=1

pµi
(X). We have:

EXk∼P⟨µ0⟩

[
Sgro(iid)

]
= EX1∼Pµ0

[
pµ1(X1)
p∗

0(X1)

]
· . . . · EXk∼Pµ0

[
pµk

(Xk)
p∗

0(Xk)

]
. (B.4)

We also have

1
k
EX1∼Pµ0

[
pµ1(X1)
p∗

0(X1)

]
+ · · · + 1

k
EXk∼Pµ0

[
pµk

(Xk)
p∗

0(Xk)

]

= 1
k
EX∼Pµ0

 pµ1(X)
1
k

k∑
i=1

pµi
(X)

+ · · · + pµk
(X)

1
k

k∑
i=1

pµi
(X)

 = 1. (B.5)

We need to show that (B.4) ≤ 1, for which we can use (B.5). Stated more simply, it is

sufficient to prove
k∏

i=1
ri ≤ 1 with 1

k

k∑
i=1

ri ≤ 1, ri ∈ R+. But this is easily established:

1
k

k∑
i=1

ri = k − 1
k

·
∑k−1

i=1 ri

k − 1 + rk

k
≥

(∑k−1
i=1 ri

k − 1

) k−1
k

r
1
k

k

=
(

k − 2
k − 1 ·

∑k−2
i=1 ri

k − 2 + rk−1

k − 1

) k−1
k

r
1
k

k

≥

(∑k−2
i=1 ri

k − 2

) k−2
k

r
1
k

k−1r
1
k

k

...

≥
(

r1 + r2

2

) 2
k

k∏
i=3

r
1
k
i ≥

k∏
i=1

r
1
k
i (B.6)

where the first inequality holds because of Young’s inequality, by setting 1
p := k−1

k , 1
q :=

1
k , ap :=

∑k−1
i=1

ri

k−1 , bq := rk in Lemma B.1. The other inequalities are established in the

same way. It follows that
k∏

i=1
r

1
k
i ≤ 1 and further

k∏
i=1

ri ≤ 1.

This shows that Sgro(iid) is a e-variable. It remains to show that Sgro(iid) is indeed
the GRO e-variable relative to H0(iid); once we have shown this, it follows by Lemma
2 that it is the unique such e-variable and therefore by Lemma 1 that P ∗

0 achieves the
minimum in Lemma 1. Since we already know that Sgro(iid) is an e-variable, the fact
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that it is the GRO e-variable relative to H0(iid) follows immediately from Corollary
2 of Theorem 1 in Grünwald et al. (2024), which states that there can be at most one
e-variable of form pµ(Xk)/r(Xk) where r is a probability density. Since Sgro(iid) is
such an e-variable, Lemma 1 gives that it must be the GRO e-variable.

B.2.4 Proof of Proposition 4.11

Proof. The observed values of X1, X2, . . . , Xk are denoted as xk (:= x1, . . . , xk). With
Xk(xk−1, z) := z −

∑k−1
i=1 xi and C(z) as in (4.12) and pµ;[Z] (z) and ρ(xk−1) as in

(4.11), we get:

pµ

(
xk−1∣∣Z = z

)
=

pµ

(
xk
)

pµ;[Z] (z)

=
exp

(
k∑

i=1
(λ(µi)xi − A(λ(µi)))

)
∫

C(z)
exp

(
k−1∑
i=1

(λ(µi)yi − A(λ(µi)) + λ(µk)Xk(yk−1, z)) − A(λ(µk)))
)

dρ(yk−1)

=
exp

(
λ(µk)z +

k−1∑
i=1

(λ(µi) − λ(µk))xi)
)

∫
C(z)

exp
(

λ(µk)z +
k−1∑
i=1

(λ(µi) − λ(µk))yi

)
dρ(yk−1)

=
exp

(
k−1∑
i=1

(λ(µi) − λ(µk))xi

)
∫

C(z)
exp

(
k−1∑
i=1

(λ(µi) − λ(µk))yi

)
dρ(yk−1)

.

B.3 Proofs for Section 4.3

B.3.1 Proof of Theorem 4.12

Proof. We prove the theorem using an elaborate Taylor expansion of F (δ), defined
below, around δ = 0. We first calculate the first four derivatives of F (δ). Thus we

define and derive, with µi = µ0 + αiδ and fy(δ) =
k∑

i=1
pµi

(y) defined as in the theorem
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statement,

F (δ) :=EP⟨µ0⟩+αδ

[
log Spseudo(M) − log Sgro(iid)

]
=EPµ

log
k∏

j=1

(
1
k

k∑
i=1

pµi
(Xj)

)
− log p⟨µ0⟩(Xk)


=EPµ

 k∑
j=1

log fXj
(δ) −

k∑
j=1

log pµ0(Xj)

− k log k

(a)=
k∑

j=1
EX∼Pµj

[log fX(δ) − log pµ0(X)] − k log k

(b)=

F1(δ)︷ ︸︸ ︷∫
y∈X

fy(δ) log fy(δ)dρ(y) +

F2(δ)︷ ︸︸ ︷(
−
∫

y∈X
fy(δ) log pµ0(y)dρ(y)

)
−k log k, (B.7)

where we define F1(δ) to be equal to the leftmost term in (B.7) and F2(δ) to be equal
to the second, and (a) and (b) both hold provided that

for all j ∈ {1, . . . , k}: EXj∼Pµj

[
| log fXj

(δ) − log pµ0(Xj) |
]

< ∞ (B.8)

is finite. In Appendix B.6 we verify that this condition, as well as a plethora of related
finiteness-of-expectation-of-absolute-value conditions hold for all δ sufficiently close to
0. Together these not just imply (a) and (b), but also (c) that we can freely exchange
integration over y and differentiation over δ for all such δ when computing the first k

derivatives of F1(δ) and F2(δ), for any finite k and (d) that all these derivatives are
finite for δ in a compact interval including 0 (since the details are straightforward but
quite tedious and long-winded we deferred these to Appendix B.6). Thus, using (c),
we will freely differentiate under the integral sign in the remainder of the proof below,
and using (d), we will be able to conclude that the final result is finite.

For each derivative, we first compute the derivative of F1(δ) and then that of F2(δ).

F ′
1(δ) =

∫
f ′

y(δ)dρ(y) +
∫

f ′
y(δ) log fy(δ)dρ(y) = 0,

F ′
2(δ) = −

∫
f ′

y(δ) log pµ0(y)dρ(y) = 0, so F ′(0) = F ′
1(0) + F ′

2(0) = 0, (B.9)

where the above formulas hold since f ′
x(0) = 0 for all x ∈ X , which can be obtained
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by

f ′
x(δ◦) =

k∑
j=1

dpµj (x)
dµj

dµj

dδ
(δ◦),

f ′
x(0) =dpµ0(x)

dµ0

k∑
j=1

dµj

dδ
(0) = dpµ0(x)

dµ0

k∑
j=1

αj = 0, (B.10)

where we used that all µj are equal to µ0 at δ = 0. We turn to the second derivatives:

F ′′
1 (δ) =

∫
f ′′

y (δ)dρ(y) +
∫ (

f ′′
y (δ) log fy(δ) +

(
f ′

y(δ)
)2

fy(δ)

)
dρ(y)

=
∫ (

f ′′
y (δ) log fy(δ) +

(
f ′

y(δ)
)2

fy(δ)

)
dρ(y)

F ′′
1 (0) =

∫ (
f ′′

y (0) log fy(0) +
(
f ′

y(0)
)2

fy(0)

)
dρ(y);

=
∫

f ′′
y (0) log pµ0(y)dρ(y) +

∫
y∈X

(
f ′′

y (0) log k
)

dρ(y) (B.11)

=
∫ (

f ′′
y (0) log pµ0(y)

)
dρ(y),

where
∫

f ′′
y (δ)dρ(y) = 0 because

∫
fy(δ)dρ(y) = k, in which k is a constant that does

not depend on δ. Then F ′′
2 (δ) is given by

F ′′
2 (δ) = −

∫
f ′′

y (δ) log pµ0(y)dρ(y) ; F ′′
2 (0) = −

∫
f ′′

y (0) log pµ0(y)dρ(y), so

F ′′(0) =F ′′
1 (0) + F ′′

2 (0) = 0. (B.12)

Now we compute the third derivative of F (δ), denoted as F (3)(δ).

F
(3)
1 (δ) =

∫ (
f (3)

y (δ) log fy(δ) +
f ′′

y (δ)f ′
y(δ)

fy(δ) +
2f ′′

y (δ)f ′
y(δ)fy(δ) − (f ′

y(δ))3

(fy(δ))2

)
dρ(y)

F
(3)
1 (0) =

∫
f (3)

y (0) log fy(0)dρ(y) =
∫

f (3)
y (0) log pµ0(y)dρ(y) +

∫
f (3)

y (0) log kdρ(y)

=
∫

f (3)
y (0) log pµ0(y)dρ(y)

F
(3)
2 (δ) = −

∫
f (3)

y (δ) log pµ0(y)dρ(y)
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F
(3)
2 (0) = −

∫
f (3)

y (0) log pµ0(y)dρ(y), so F (3)(0) = F
(3)
1 (0) + F

(3)
2 (0) = 0,

which holds since f ′
y(0) = 0 and

∫
fy(0)dρ(y) = k.

The fourth derivative of F (δ) can be computed as follows:

F
(4)
1 (δ) =

∫ (
f (4)

y (δ) log fy(δ) +
f

(3)
y (δ)f ′

y(δ)
fy(δ)

)
dρ(y)

+
∫

3 ·

(
f

(3)
y (δ)f ′

y(δ) + (f ′′
y (δ))2

)
fy(δ) − f ′′

y (δ)
(
f ′

y(δ)
)2

(fy(δ))2 dρ(y)

−
∫ 3

(
fy(δ)f ′

y(δ)
)2 · f ′′

y (δ) − 2
(
f ′

y(δ)
)4 · fy(δ)

(fy(δ))4 dρ(y) ; (B.13)

F
(4)
1 (0) =

∫ (
f (4)

y (0) log fy(0) +
3
(
f ′′

y (0)
)2

fy(0)

)
dρ(y)

=
∫

f (4)
y (0) log pµ0(y)dρ(y) + log k

∫
y∈X

f (4)
y (0)dρ(y) +

∫
y∈X

3
(
f ′′

y (0)
)2

fy(0) dρ(y)

=
∫

f (4)
y (0) log pµ0(y)dρ(y) +

∫
y∈X

3
(
f ′′

y (0)
)2

fy(0) dρ(y),

and F
(4)
2 (δ) can be computed by

F
(4)
2 (δ) = −

∫
f (4)

y (δ) log pµ0(y)dρ(y), F
(4)
2 (0) = −

∫
f (4)

y (0) log pµ0(y)dρ(y), so

F (4)(0) =F
(4)
1 (0) + F

(4)
2 (0) =

∫ 3
(
f ′′

y (0)
)2

fy(0) dρ(y) > 0.

Based on the above derivatives, we can now do a fourth-order Taylor expansion of
F (δ) around δ = 0, which gives:

EPµ

[
log Spseudo(M) − log Sgro(iid)

]
= 1

4!F
(4)(0)δ4 + o(δ4)

=1
8

∫
y∈X

(
f ′′

y (0)
)2

fy(0) dρ(y) · δ4 + o
(
δ4) ,
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where fy(0) =
∑k

i=1 pµ0(y) = kpµ0(y) and f ′′
y (0) =

(
k∑

i=1
α2

i

)
· d2

dµ2 pµ(y) |µ=µ0=
d2

dµ2 pµ(y) |µ=µ0 .

B.3.2 Proof of Theorem 4.13

Proof. We obtain the result using an even more involved Taylor expansion than in the
previous theorem. As in that theorem, we will freely differentiate (with respect to δ)
under the integral sign — that this is allowed is again verified in Appendix B.6.

Let µ, α, C(z), ρ(xk−1), Pµ etc. be as in the theorem statement. We have:

f(δ) := EPµ

[
log Spseudo(M) − log Scond

]
=EPµ

[
log

pµ

(
Xk
)

p⟨µ0⟩ (Xk) − log
pµ

(
Xk−1 | Z

)
p⟨µ0⟩ (Xk−1 | Z)

]

=EPµ

[
log

pµ

(
Xk
)

p⟨µ0⟩ (Xk) − log
pµ

(
Xk
)

p⟨µ0⟩ (Xk) + log

∫
C(z) pµ

(
xk
)

dρ(xk−1)∫
C(z) p⟨µ0⟩ (xk) dρ(xk−1)

]
=D

(
P⟨µ0⟩+αδ;[Z]∥P⟨µ0⟩;[Z]

)
.

We will prove the result by doing a Taylor expansion for f(δ) around δ = 0. It is
obvious that f(0) = 0 and the first derivative f ′(0) = 0 since f(0) is the minimum
of f(δ) over an open set, and f(δ) is differentiable. We proceed to compute the
second derivative of f(δ), using the notation gz(δ) = p⟨µ0⟩+αδ;[Z](z) as in the theorem
statement, with g′

z and g′′
z denoting first and second derivatives.

f ′(δ) =
∫

g′
z(δ) log gz(δ)

gz(0)dρ[Z](z) +
∫

g′
z(δ)dρ[Z](z) =

∫
g′

z(δ) log gz(δ)
gz(0)dρ[Z](z).

f ′′(δ) =
∫

g′′
z (δ) log gz(δ)

gz(0)dρ[Z](z) +
∫ (g′

z(δ))2

gz(δ) dρ[Z](z),

where in the first line, the second equality follows since the second term does not change
if we interchanging differentiation and integration and the fact that

∫
gz(δ)dz = 1 is

constant in δ. We obtain

f ′′(0) =
∫ (g′

z(0))2

gz(0) dρ[Z](z), (B.14)
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and, with xk set to Xk(xk−1, z) and recalling that µ = ⟨µ0⟩ + αδ and µj = µ0 + αjδ,

g′
z(δ) =

∫
C(z)

d

dδ
p⟨µ0⟩+αδ(xk)dρ(xk−1)

=
∫

C(z)

k∑
j=1

∏
i∈{1,...,k}\j

pµi
(xi)

dpµj (xj)
dδ

dρ(xk−1)

=
∫

C(z)

k∑
j=1

pµ1,...,µj−1,µj+1,...,µk
(x1, . . . , xj−1, xj+1, . . . , xk)

dpµj
(xj)

dµj

dµj

dδ
dρ(xk−1)

=
∫

C(z)

k∑
j=1

pµ(xk)
d log pµj (xj)

dµj
αjdρ(xk−1)

=
∫

C(z)

k∑
j=1

pµ(xk) (I(µj)xj − µjI(µj)) αjdρ(xk−1)

where I(µj) is the Fisher information. The final equality follows because, with λ(µj)
denoting the canonical parameter corresponding to µj , we have dλ(µj)/dµj = I(µj)
and dA(β)/dβ) |β=λ(µj)= µj ; see e.g. (Grünwald, 2007, Chapter 18). Now

g′
z(0) =

∫
C(z)

k∑
j=1

p⟨µ0⟩(xk) (I(µ0)xj − µ0I(µ0)) αjdρ(xk−1)

=
∫

C(z)
p⟨µ0⟩(xk)I(µ0)

k∑
j=1

xjαjdρ(xk−1) (B.15)

=I(µ0) ·
∫

C(z)
p⟨µ0⟩(xk)

k∑
j=1

xjαjdρ(xk−1) (B.16)

where the second equality follows from
k∑

j=1
αj = 0. Because Xk i.i.d. ∼ Pµ0 under P⟨µ0⟩

and the integral in (B.15) is over a set of exchangeable sequences, (For understanding
the statement, we can consider the simple case k = 2, X1 and X2 can be exchangeable
because they are ‘symmetric’ for given C(z).) we must have that (B.15) remains valid
if we re-order the αj ’s in round-robin fashion, i.e. for all i = 1..k, we have, with
αj,i = α(j+i−1) mod k,

g′
z(0) = I(µ0) ·

∫
C(z)

p⟨µ0⟩(xk)
k∑

j=1
xjαj,idρ(xk−1).
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Summing these k equations we get, using that
k∑

i=1
αi = 0, that kg′

z(0) = 0 so that

g′
z(0) = 0. From (B.14) we now see that

f ′′(0) = 0.

Now we compute the third derivative of f(δ), denoted as f (3)(δ):

f (3)(δ) =
∫ (

g(3)
z (δ) log gz(δ)

gz(0) + g′′
z (δ)g′

z(δ)
gz(δ)

)
dρ[Z](z)

+
∫ (2g′′

z (δ)g′
z(δ)gz(δ) − (g′

z(δ))3

(gz(δ))2

)
dρ[Z](z)

So since g′
z(0) = 0 we must also have

f (3)(0) = 0.

The fourth derivative of f(δ) is now computed as follows:

f (4)(δ) =
∫ (

g(4)
z (δ) log gz(δ)

gz(0) + g
(3)
z (δ) · g′

z(δ)
gz(δ)

)
dρ[Z](z)

+
∫

3 ·

(
g

(3)
z (δ) · g′

z(δ) + (g′′
z (δ))2

)
gz(δ) − g′′

z (δ) · (g′
z(δ))2

(gz(δ))2 dρ[Z](z).

Then

f (4)(0) =
∫ 3 (g′′

z (0))2

gz(0) dρ[Z](z) > 0.

We now have all ingredients for a fourth-order Taylor expansion of f(δ) around δ = 0,
which gives:

EPµ

[
log Spseudo(M) − log Scond

]
= 1

8

∫ (g′′
z (0))2

gz(0) dρ[Z](z) · δ4 + o
(
δ4)

which is what we had to prove.

B.4 Proofs for Section 4.4

In this section, we prove all the statements in Table 4.1.
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B.4.1 Bernoulli Family

We prove that for M equal to the Bernoulli family, we have Spseudo(M) = Sgro(M) =
Sgro(iid) ≻ Scond.

Proof. We set µ∗
0 = 1

k

k∑
i=1

µi.

Sgro(iid) := pµ(Xk)
k∏

j=1

(
1
k

k∑
i=1

pµi
(Xj)

) = pµ(Xk)
k∏

j=1

(
1
k

k∑
i=1

(
µ

Xj

i (1 − µi)1−Xj

)) (B.17)

= pµ(Xk)
k∏

j=1
((µ∗

0)Xj (1 − µ∗
0)1−Xj )

= pµ(Xk)
k∏

j=1
pµ∗

0
(Xj)

= Spseudo(M) (B.18)

where the third equality holds since Xi ∈ {0, 1}. So Spseudo(M) is an E-variable and
Spseudo(M) = Sgro(M) according to Theorem 4.6. Then the claim follows using (4.9)
together with the fact that when Z = 0 or Z = 2, we have Scond = 1, while this is not
true for the other e-variables, so that Scond ̸= Sgro(M) = Spseudo(M) = Sgro(iid). The
result then follows from (4.9).

B.4.2 Poisson and Gaussian Family With Free Mean and Fixed
Variance

We prove that for M equal to the family of Gaussian distributions with free mean and
fixed variance σ2, we have Spseudo(M) = Sgro(M) = Scond ≻ Sgro(iid). The proof that
the same holds for M equal to the family of Poisson distributions is omitted, as it is
completely analogous.

Proof. Note that if we let Z :=
∑k

i=1 Xi, then we have that Z ∼ N (
∑k

i=1 µi, kσ2) if
Xk ∼ Pµ. Let µ∗

0 be given by (4.8) relative to fixed alternative Pµ as in the definition
of Spseudo(M) underneath (4.8). Since kµ∗

0 =
∑k

i=1 µi, we have that Z has the same
distribution for Xk ∼ P⟨µ∗

0⟩. This can be used to write

Scond =
pµ

(
Xk | Z

)
p⟨µ∗

0⟩ (Xk | Z) =
pµ

(
Xk
)

p⟨µ∗
0⟩ (Xk)

p⟨µ∗
0⟩(Z)

pµ(Z) =
pµ

(
Xk
)

p⟨µ∗
0⟩ (Xk) = Spseudo(M).
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Therefore, Spseudo(M) is also an e-variable, so we derive that Spseudo(M) = Sgro(M)

by Theorem 4.6. Furthermore, we have that the denominator of Sgro(iid) is given by
a different distribution than p⟨µ∗

0⟩, so that Sgro(iid) ̸= Sgro(M) = Spseudo(M) = Scond.
The result then follows from (4.9).

B.4.3 The Families for Which Spseudo(M) Is Not an E-variable

Here, we prove that Spseudo(M) is not an e-variable for M equal to the family of beta
distributions with free β and fixed α. It then follows from (4.9) that Spseudo(M) ≻
Sgro(M). (4.9) also gives Sgro(M) ⪰ Sgro(iid) and Sgro(M) ⪰ Scond. The same is
true for M equal to the family of geometric distributions and the family of Gaussian
distributions with free variance and fixed mean, as the proof that Spseudo(M) is not an
e-variable is entirely analogous to the proof for the beta distributions given below. In
all of these cases, one easily shows by simulation that in general, Sgro(M) ̸= Sgro(iid)

and Sgro(M) ̸= Scond, so then Sgro(M) ≻ Sgro(iid) and Sgro(M) ≻ Scond follow.

Proof. First, let Qα,β represent a beta distribution in its standard parameterization,
so that its density is given by

qα,β(u) = Γ(α + β)
Γ(α)Γ(β)uα−1(1 − u)β−1, α, β > 0; u ∈ [0, 1].

To simplify the proof, we assume α = 1 here. Then

q1,β(u) = Γ(1 + β)
Γ(β) (1 − u)β−1 = 1

1 − u
exp

(
β log(1 − u) − log 1

β

)
where the first equality holds since Γ(1 + β) = βΓ(β). Comparing this to (4.1), we see
that β is the canonical parameter corresponding to the family {Q1,β : β > 0}, and we
have

λ(µ) = β, t(u) = log(1 − u), A(β) = log 1
β

.

To prove the statement, according to Proposition 4.7, we just need to show, for any
µ1, . . . , µk that are not all equal to each other, that, with X = t(U) = log(1 − U) and

µ∗
0 = 1

k

k∑
i=1

µi defined as in (4.8), we have

k∑
i=1

varPµi
[X] − kvarPµ∗

0
[X] > 0. (B.19)
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Straightforward calculation gives

varPµi
[X] = varQ1,βi

[X] = d2

d2βi
(log 1

βi
) = 1

β2
i

in particular varPµ∗
0
[X] = 1

(β∗
0)2

(B.20)
where βi corresponds to µi, i.e. EQ1,βi

[(X)] = µi. We also have:

EPβ∗
0

[(X)] = µ∗
0 = 1

k

k∑
i=1

µi = 1
k

k∑
i=1

EPβi
[(X)] . (B.21)

While EPβi
[(X)] = d

dβi
(log 1

βi
) = − 1

βi
, therefore 1

β∗
0

= 1
k

k∑
i=1

1
βi

. We obtain, together

with (B.20) and (B.21), that

k∑
i=1

varPµi
[(X)] − kvarPµ∗

0
[(X)] =

k∑
i=1

1
(βi)2 − k

(
1
k

k∑
i=1

1
βi

)2

. (B.22)

Jensen’s inequality now gives that (B.22) is strictly positive, whenever at least one of
the µi is not equal to µ∗

0, which is what we had to show.

B.5 Graphical Depiction of RIPr-Approximation
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Figure B.1: Exponential distribution. On the right, n represents number of iterations with
Li’s algorithm, starting at iteration 2

We illustrate RIPr-approximation and convergence of Li’s algorithm with four dis-
tributions: exponential, beta with free β and fixed α, geometric and Gaussian with
free variance and fixed mean, each with one particular (randomly chosen) setting of
the parameters. The pictures on the left in Figure B.1– B.4 give the probability den-
sity functions (for geometric distributions, discrete probability mass functions) after
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Figure B.2: beta with free β and fixed α. On the right, n represents number of iterations
with Li’s algorithm, starting at iteration 2
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Figure B.3: geometric distribution. On the right, n represents number of iterations with
Li’s algorithm, starting at iteration 3

n = 100 iterations of Li’s algorithm. The pictures on the right illustrate the speed of
convergence of Li’s algorithm. The pictures on the right do not show the first (or the
first two, for geometric and Gaussian with free variance) iteration(s), since the worst-
case expectation supµ0∈M[Sgro(M)] is invariably incomparably larger in these initial
steps. We empirically find that Li’s algorithm converges quite fast for computing the
true Sgro(M). In each step of Li’s algorithm, we searched for the best mixture weight
α in P(m) over a uniformly spaced grid of 100 points in [0, 1], and for the novel com-
ponent P ′ = Pµ′,µ′ by searching for µ′ in a grid of 100 equally spaced points inside the
parameter space M where the left- and right- endpoints of the grid were determined
by trial and error. While with this ad-hoc discretization strategy we obviously cannot
guarantee any formal approximation results, in practice it invariably worked well: in
all cases, we found that max

µ0∈M
EPµ0,µ0

[Sgro(M)] ≤ 1.005 after 15 iterations. For compar-
ison, we show the best approximation that can be obtained by brute-force combining
of just two components, for the same parameter values, in Table B.1.
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Figure B.4: Gaussian with free variance and fixed mean. On the right, n represents
number of iterations with Li’s algorithm, starting at iteration 3

Distributions (µ1, µ2) α (µ01, µ02) sup
µ0∈M

EX1,X2∼Pµ0,µ0
[S]

beta ( 1
6 , 1

10 ) 0.57 (0.12, 0.16) 1.00071
geometric (5, 2) 0.39 (2.52, 4.21) 1.00035

Exponential ( 1
2 , 1

9 ) 0.53 (0.13, 0.51) 1.00083
Gaussian with free variance

and fixed mean (2, 6) 0.41 (5.82, 3.36) 1.00035

Table B.1: Analogue of Table 4.2 for µ1, µ2 corresponding to the parameters used in
Figures B.1–B.4

B.6 Further Details

In this section, we verify that all conditions are met for the implicit use of Fubini’s
theorem and differentiation under the integral sign in the proofs of Theorem 2 and 3,
and that all derivatives of interest are bounded.

B.6.1 Theorem 2

In the chapter, notation is as follows:

µj = µ0 + δαj

λ(µj) = nat. param. λ corresponding to mean µ = µj

pµ(y) = eλ(µ)y−A(λ(µ))

fy(δ) =
k∑

j=1
pµi(y).

232



B | Appendix to Chapter 4

As this will simplify the notation for the derivatives, we write gy(λ) = eλy−A(λ), so
that

fy(δ) =
k∑

j=1
gy(λ(µj)) and pµ0(y) = gy(λ(µ0)). (B.23)

To stress dependence on δ, we write µj(δ) instead of µj in the following.

Step 1 We first establish the finiteness condition (B.8). We note that

log
k∑

j=1
gy(λ(µj(δ))) ≤ log(max

j
gy(λ(µj(δ)))k)

= max
j

log(gy(λ(µj(δ)))) + log k

≤ max
j

log(max{gy(λ(µj(δ))), 1}) + log k

≤
∑

j

log(max{gy(λ(µj(δ))), 1}) + log k

≤
∑

j

|λ(µj(δ))y − log A(λ(µj(δ)))| + log k.

and

log
k∑

j=1
gy(λ(µj(δ))) = log 1

k

k∑
j=1

gy(λ(µj(δ))) + log k

≥ 1
k

k∑
j=1

log gy(λ(µj(δ))) + log k

= 1
k

k∑
j=1

λ(µj(δ))y − A(λ(µj(δ))) + log k.

Putting these together, we see that

| log fy(δ)| ≤

max

∑
j

|λ(µj(δ))y − A(λ(µj(δ)))| + log k,

∣∣∣∣∣∣1k
k∑

j=1
(λ(µj(δ))y − A(λ(µj(δ)))) + log k

∣∣∣∣∣∣


≤
∑

j

|λ(µj(δ))y − A(λ(µj(δ)))| + log k, (B.24)
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and, more trivially,

| log gy(λ(µ0))| ≤ |λ(µ0)y − A(λ(µ0)| . (B.25)

We know that λ(µj(δ)) and A(λ(µj(δ))) are smooth, hence finite functions for µj(δ)
in the interior of the mean-value parameter space M (see (Barndorff-Nielsen, 1978,
Chapter 9, Theorem 9.1 and Eq. (2))). Since M is open and for all j = 1..k, µj(0) =
µ0 ∈ M, it follows that | log f(y)(δ) − log gy(λ(µ0))| can be written as a smooth, in
particular finite function of |y| for all δ in a compact subset of R with 0 in its interior.
Since |y| ≤ 1 + y2 has finite expectation under all Pµ with µ ∈ M, finiteness of (B.8)
follows by (B.23).

Step 2 We now proceed to establish that we can differentiate with respect to δ for
δ in a compact subset of R with 0 in its interior. The proof will make use of (B.24)
and (B.25). We denote derivatives of functions fy and gy as

gs
y(λ) = ds

dλs
gy(λ) and fs

y (δ) = ds

dδs
fy(δ).

We will argue that, for any s ∈ N, the family { ds

dδs fy(δ) log fy(δ)−fy(δ) log gy(λ(µ0)) :
δ ∈ ∆} is uniformly integrable for any compact ∆ ⊂ R, so that we are allowed to
interchange differentiation and integration (see e.g. Williams, 1991, Chapter A16).

Using standard results for exponential families, we have, for λ in the interior of the
canonical parameter space,

g(1)
y (λ) = (y − µ(λ))gy(λ)

g(2)
y (λ) = −I(λ)gy(λ) + (y − µ(λ))2gy(λ),

where µ(λ) denotes the mean-value parameter corresponding to λ and I(λ) the corre-
sponding Fisher information.

Continuing this using the fact that (ds/dλs)A(λ) is continuous for all s, gives

g(s)
y (λ) = gy(λ) · hy,s(λ) with hy,s(λ) =

s∑
t=1

h[t,s](λ)(y − µ(λ))t (B.26)

for some smooth functions h[1,s], h[2,s], . . . , h[s,s] of λ (we do not need to know precise
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definitions of these functions). Similarly

f (1)
y (δ) =

∑
j

g(1)
y (λµj(δ)) · (λ(µj(δ)))′

where λ(µj(δ))′ = d
dδ λ(µj(δ)). We know that λ′(µj(δ)) and further derivatives are

smooth functions for µj(δ) in the interior of the mean-value parameter space M (see
(Barndorff-Nielsen, 1978, Chapter 9, Theorem 9.1 and Eq. (2))). Since this space
is open and for all j = 1..k, µj(0) = µ0 ∈ M, it follows that λ′(µj(δ)) are smooth
functions of δ for δ in a compact subset of R with 0 in its interior. Thus, analogously
to what we did above with g(s), we get that

f (s)
y (δ) =

∑
j

s∑
t=1

g(t)
y (λ(µj(δ))) · rt,s(µj) (B.27)

for some smooth functions rt,s, the details of which we do not need to know. In
particular this gives, with

b(s)
y := f

(s)
y (δ)
fy(δ)

that ∣∣∣b(s)
y

∣∣∣ ≤
∑

j gy(λ(µj(δ))) · (
∑s

t=1 |hy,t(λ(µj(δ))) · rt,s(µj(δ))|)∑
j gy(λ(µj(δ)))

≤
∑

j

s∑
t=1

|hy,t(λ(µj(δ))) · rt,s(µj(δ))|.

Inspecting the proof in the main text, we informally note that all terms without
logarithms in the first four derivatives of F0(δ) and F1(δ) can be written as products
fy(δ) · b

(s1)
y (δ) · . . . · b

(su)
y (δ) for the b

(s)
y we just bounded in terms of polynomials in |y|;

similarly, the terms involving logarithms can be bounded in terms of such polynomials
as well using (B.24) and (B.25), suggesting that all terms inside all integrals can be
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such bounded. This is indeed the case: formalizing the reasoning, we see that∫ ( ds

dδs
fy(δ) log fy(δ) − fy(δ) log gy(λ(µ0))

)2
dρ(y) =

∫ (
f (s)

y (log fy(δ) − log gy(λ(µ0))) + fy(δ)
∑

u

cu · b(s2)
y (δ) · . . . · b(su)

y (δ)
)2

dρ(y)

=
∫

(f (s)
y (log fy(δ) − log gy(λ(µ0))))2 +

(
fy(δ)

∑
u

cu · b(s1)
y (δ) · . . . · b(su)

y (δ)
)2

+ fy(δ)f (s)
y (log fy(δ) − log gy(λ(µ0)))

∑
u

cu · b(s1)
y (δ) · . . . · b(su)

y (δ)dρ(y).

By (B.24) and (B.25) and the bound on |b(s)
y | given above, all the terms within

the integral can be bounded by polynomials in y (or |y|), so the integral is given
by linear functions of moments of ρ and Pµ. Therefore, using also that ρ is it-
self a probability measure and a member of the exponential family under consider-
ation (equal to Pµ with λ(µ) = 0), the integral can be uniformly bounded over δ

in a compact subset of the mean-value parameter space. It follows that the fam-
ily { ds

dδs fy(δ) log fy(δ) − fy(δ) log gy(λ(µ0)) : δ ∈ ∆} is uniformly integrable (see e.g.
Williams, 1991, Chapter 13.3), so integration and differentiation may be interchanged
freely (see e.g. Williams, 1991, Chapter A16). It also follows that the quantity on the
right-hand side in the theorem statement is bounded.

B.6.2 Theorem 3

As in the proof of Theorem 3, let f(δ) = EPµ

[
log pµ(Xk)

p⟨µ0⟩(Xk) − log pµ(Xk|Z)
p⟨µ0⟩(Xk|Z)

]
.

To validate the proof in the main text we merely need to show that f(δ) is finite,
and that we can interchange differentiation and expectation with respect to δ in a
compact interval containing δ = 0. Thus, we want to show that, for any s ∈ N, we
have that

ds

dδs
f(δ) = E

[
ds

dδs

(
log pµ(Xk)

p⟨µ0⟩(Xk) − log pµ(Xk | Z)
p⟨µ0⟩(Xk | Z)

)]
.

To show this, first note that both EPµ

[
log pµ(Xk)

p⟨µ0⟩(Xk)

]
and EPµ

[
log pµ(Xk|Z)

p⟨µ0⟩(Xk|Z) | Z
]

are
KL divergences between members of exponential families (the fact that conditioning
on a sum of sufficient statistics results in a new, derived full exponential family is
shown by, for example, Brown (1986)), which are finite as long as δ is in a sufficiently
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small interval containing 0 in its interior (since then µ is in the interior of the mean-
value parameter space). This already shows that f(δ) is finite, and it also allows us
to rewrite

f(δ) = EPµ

[
log pµ(Xk)

p⟨µ0⟩(Xk)

]
− EPµ

[
log pµ(Xk | Z)

p⟨µ0⟩(Xk | Z)

]
.

Furthermore, (Brown, 1986, Theorem 2.2) in combination with Theorem 9.1. and
Chapter 9, Eq.2. of Barndorff-Nielsen (1978) shows that for any full exponential
family, for any finite k > 0, the k-th derivative of the KL divergence with respect to
its first argument, given in the mean-value parameterization, exists, is finite, and can
be obtained by differentiating under the integral sign, at any µ in the interior of the
mean-value parameter space. We are therefore allowed to interchange expectation and
differentiation for such terms separately for all δ in any compact interval containing
0. Thus, starting with the previous display, we can write

ds

dδs
f(δ) = ds

dδs
EPµ

[
log pµ(Xk)

p⟨µ0⟩(Xk)

]
− ds

dδs
EPµ

[
log pµ(Xk | Z)

p⟨µ0⟩(Xk | Z)

]
= EPµ

[
ds

dδs
log pµ(Xk)

p⟨µ0⟩(Xk)

]
− EPµ

[
ds

dδs
log pµ(Xk | Z)

p⟨µ0⟩(Xk | Z)

]
= EPµ

[
ds

dδs
log pµ(Xk)

p⟨µ0⟩(Xk)

]
− EPµ

[
ds

dδs
log pµ(Xk)

p⟨µ0⟩(Xk) + log
pµ;[Z](Z)

p⟨µ0⟩;[Z](Z)

]
=

EPµ

[
ds

dδs
log pµ(Xk)

p⟨µ0⟩(Xk)

]
− EPµ

[
ds

dδs
log pµ(Xk)

p⟨µ0⟩(Xk)

]
+ EPµ

[
ds

dδs
log

pµ;[Z](Z)
p⟨µ0⟩;[Z](Z)

]
= EPµ

[
ds

dδs
log

pµ;[Z](Z)
p⟨µ0⟩;[Z](Z)

]
,

where in the last line we use that all involved terms are finite. This is what we had to
show.
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C.1 Details for Section 5.4.4

We need to establish that Σp(µ)−Σ(θ◦)
q (µ) = Σ(0)

q (µ)−Σ(θ◦)
q (µ) is positive semidefinite

for all µ ∈ Rd.
Thus, take any µ∗ ∈ Rd. By (5.26), we have that q

(θ◦)
µ∗ = f

(θ◦)
λ◦,β◦ and pµ∗ =

q
(0)
µ∗ = f

(0)
λ∗,β∗ for some λ◦, β◦ and λ∗, β∗ that are related to each other via the normal

equations (5.27). Based on the sufficient statistics (5.25), we can thus write, for
θ ∈ {0, θ◦}, that

Σ(θ)
q (µ∗) =

(
A(θ) B(θ)

(B(θ))T C(θ)

)

where A(θ◦) is the variance of
∑

Y 2
i according to distribution F

(θ◦)
λ◦,β◦ and C(θ◦) is the

d × d covariance matrix of the tj(Y n) according to this distribution and

B(θ◦) =
(

cov
(∑

Y 2
i , t1(Y n)

)
, . . . , cov

(∑
Y 2

i , td(Y n)
))

where the covariances are again under this distribution. Similarly, A(0) is the variance
of
∑

Y 2
i according to distribution F

(0)
λ∗,β∗ and B(0), C(0) are defined accordingly.

Positive semidefiniteness of Σ(0)
q (µ∗) − Σ(θ◦)

q (µ∗) is easily seen to be implied1 if we
can show that C(0) − C(θ◦) is positive definite and that

(A(0) − A(θ◦)) − (B(0) − B(θ◦))T (C(0) − C(θ◦))−1(B(0) − B(θ◦)) ≥ 0. (C.1)

To show that C(0) −C(θ◦) is positive definite, note that C(θ◦) (as is readily established,
for example, by twice differentiating log Z

(θ◦)
q (λ, β; µ∗) at λ = 0, β = 0) is simply

1For an explicit derivation see https://math.stackexchange.com/questions/2280671/
definiteness-of-a-general-partitioned-matrix-mathbf-m-left-beginmatrix-bf.
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the standard covariance matrix in linear regression scaled by 1/σ◦2, i.e. C(θ◦) =
σ◦2∑xixT

i which by the maximal rank assumption is positive definite. Similarly
C(0) = σ∗2∑xixT

i so that, since by assumption θ◦ ̸= 0 and using the normal equations
(5.27), we have that C(0) − C(θ) = cC(θ) for c = σ∗2 − σ◦2 > 0 is also positive definite.

It only remains to show (C.1). As again easily established (for example, by
twice differentiating log Z

(θ◦)
q (λ, β; µ∗) at λ = 0, β = 0), we have that A(θ◦) =

2σ◦2 (2(
∑

ν◦2
i ) + nσ◦2) and similarly we find A(0) = 2σ∗2 (2(

∑
ν∗2

i ) + nσ∗2) and
B

(θ◦)
j = −2σ◦2 (

∑
ν◦

i xi,j) and similarly B
(0)
j = −2σ∗2 (

∑
ν∗

i xi,j). By the normal
equations (5.27) we find that B

(0)
j − B

(θ◦)
j = −2(σ∗2 − σ◦2)

∑
ν∗

i xi,j . After some
matrix multiplications (where we may use the cyclic property of the trace of a matrix
product) we get that (C.1) is equivalent to

(A(0) − A(θ)◦
) − 4(σ∗2 − σ◦2)

∑
ν∗2

i ≥ 0.

But this is easily verified: it is equivalent to

2σ∗2
(

2
(∑

ν∗2
i

)
+ nσ∗2 − 2

(∑
ν∗2

i

))
−2σ◦2

(
2
(∑

ν◦2
i

)
+ nσ◦2 − 2

(∑
ν∗2

i

))
≥ 0

which in turn is equivalent to

2nσ∗4 − 2nσ◦4 + 4(
∑

ν∗2
i −

∑
ν◦2

i )σ◦2 ≥ 0

which by the normal equations is equivalent to

σ∗4 − σ◦4 + 2(σ∗2 − σ◦2)σ◦2 ≥ 0

but this must be the case since by the normal equations, σ∗2 > σ◦2.
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D.1 Additional Simulations

D.1.1 Effect of Truncation on Power

Figure D.1 shows the same plot as Figure 1 in Chapter 6 but without truncation for
the probabilities in the e-statistics, i.e. ε = 0.
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Figure D.1: Sample sizes for different methods as in Figure 1 in Chapter 6 but with ε = 0
for the e-statistics.

D.1.2 Robustness With Respect to Misspecification

We test the robustness of the randomization based e-statistics with respect to mis-
specification of the conditional distribution of X in the same way as in the simulation
study of Berrett et al. (2020). All simulations in this section are under the null hy-
pothesis, i.e. β = 0. Rejection rates of the e-statistics are again computed with a
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maximal sample size of 2000 and with optional stopping, i.e. rejection if the level 1/α

is exceeded at least once, and with truncation level ε = 0.05. For comparison, the
conditional randomization test is applied to a sample of fixed size, for sizes 200, 1000,
and 2000, and additionally with the unconditional absolute correlation |cor(X, Y )| as
test statistic, as in Berrett et al. (2020), for sample sizes 200 and 2000.

First, instead of sampling X with conditional mean µZ as defined in (6.14), we set
the mean to

µZ − ξµ3
Z (cubic misspecification),

µZ + ξµ2
Z (quadratic misspecification),

tanh(ξµZ)/ξ (hyperbolic tangent),

which are the same misspecifications as in Berrett et al. (2020, Section 6.1.1). They
are illustrated in Figure D.2 for different values of ξ, the range of which has been
selected for each misspecification type in such a way that the relative misspecification
compared to the true mean approximately matches the one in the simulations by
Berrett et al. (2020). When the parameter ξ equals zero, understood as limit ξ →
0 for the hyperbolic tangent, the model is correctly specified. Panel (a) of Figure
D.3 shows that both the CRT and the e-statistics are robust with respect to slight
misspecifications of the conditional mean. The CRT based on the likelihood is much
more robust than the other two tests, due to the fact that re-estimating the logistic
regression model with simulated X is invariant under affine transformations of X and
Z and hence able to correct much of the misspecification. The e-statistic based test
is less robust than this variant of the CRT, since it does not re-estimate the logistic
model with simulated X, but still substantially more robust than the CRT based on
unconditional correlation, which already with n = 200, as compared to n = 2000 for
the e-values, has rejection rates strongly exceeding the nominal level as ξ increases.

In panel (b) of Figure D.3, the rejection rates of the tests are shown when the
distribution of Xp is estimated on an independent unlabeled data set, for different
sizes of this data set. The estimation of the conditional distribution is by linear
regression, with the maximum likelihood estimator for the conditional variance. Here
the e-statistics have rejection rates below the nominal level, even for unlabeled sample
size as small as 50. Also the CRT with logistic likelihood as test statistic has rejection
rate close to the nominal level.

Finally, in panel (c) of Figure D.3 the rejection rates are depicted for the case when
the same data is used both for estimating the distribution of X and for testing. The
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Figure D.2: Misspecification in the conditional mean of X given Z for the three different
functions from Section D.1.2. Upper row of plots: X | Z generated as in Berrett et al. (2020,
Section 6.1.1). Lower row: X | Z generated as in Section 6.4 with q = 4. The dashed line
shows the (height adjusted) density of the conditional expectation of X given Z. The values
for ξ given in the legend refer to the misspecifications in the same order as the panel colums
(cubic/quadratic/tanh), with the first triple giving ξ for X | Z as simulated by Berrett et al.
(2020) (upper three figures), and the second triple the values of ξ applied when X | Z is
generated as in Section 6.4 (lower three figures).

estimation is as described in the previous paragraph. For the CRT, the distribution
of X is estimated on the same data to which the test is applied, like in the simulation
study of Berrett et al. (2020). For the e-statistics, a slightly different approach is taken,
tailored to sequential settings. We start with a potentially small unlabeled sample,
and each time a new instance is observed, the estimate of the distribution of X is
updated with all the data available so far. Again, all tests except for the correlation
based CRT with sample size 2000 have rejection rate close to the nominal level.
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Figure D.3: (a) Rejection rates of e-values and conditional randomization test (with sample
sizes n = 200, 1000, 2000 and likelihood as test statistic, and n = 200, 2000 and correlation
as test statistic) at the level α = 0.05, under different misspecifications for the conditional
mean of X. (b) Rejection rates when the distribution of X is estimated on a separate sample,
for varying sample sizes. (c) Rejection rates when the same data is used both for estimating
the conditional distribution of X and applying the test, as described in the text.

D.2 Proofs of Main Results

D.2.1 Proof of Theorem 6.1

Proof. Let P ∈ H0 arbitrarily. The proof relies on the simple insight that we can
separate the expectation with respect to (Yn, Zn) from that with Xn,

EP [ECI
hn

(Xn, Yn, Zn) | Dn−1]

= EP

[
EP

[
hn(Xn, Yn, Zn)∫

X hn(x, Yn, Zn) dQZn
(x)

∣∣∣∣Yn, Zn, Dn−1
] ∣∣∣∣Dn−1

]
= EP

[∫
X hn(x′, Yn, Zn) dQZn

(x′)∫
X hn(x, Yn, Zn) dQZn(x)

∣∣∣∣Dn−1
]

= 1,

where in the last step we use that PXn|Yn,Zn
= PXn|Zn

= QZn .
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D.2.2 Proof of Proposition 6.2

Proof. Define X̃0 = Xn. The random variables X̃0, . . . , X̃M are exchangeable, so

ĚCI
hn;j(Dn) := hn(X̃j , Yn, Zn)∑M

i=0 hn(X̃i, Yn, Zn)/(M + 1)
, j = 0, . . . , M,

have the same expected value as ĚCI
hn

(Dn) = ĚCI
hn;0(Dn). Since

∑M
i=0 ĚCI

hn;i(Dn) ≡
M + 1, this implies EP [ĚCI

hn
(Dn) | Dn−1] = 1.

D.2.3 Proof of Theorem 6.3

Proof. Let f = fX,Y,Z(x, y, z) be the density of (X, Y, Z) with respect to a measure
σ × µ × ν on X × Y × Z. Then the conditional density fY |X,Z equals

fY |X,Z(y | x, z) = f(x, y, z)∫
Y f(x, s, z) dσ(s)

.

The density of QZ must equal the conditional density fX|Z , which is given by

fX|Z(x | z) =
∫

Y f(x, s, z) dσ(s)∫
X
∫

Y f(r, s, z) dσ(s) dµ(r)
,

so that, with h(x, y, z) = fY |X,Z(y|x, z),∫
X

h(x, y, z) dQz(x) =
∫

X

f(r, y, z)∫
X
∫

Y f(r′, s, z) dσ(s) dµ(r′)
dµ(r) = fY |Z(y | z).

Hence the e-statistic with this choice of h is equal to

ECI
fY |X,Z

(Xi, Yi, Zi) =
fY |X,Z(Yi | Xi, Zi)

fY |Z(Yi | Zi)
= fX,Y,Z(Xi, Yi, Zi)

fY |Z(Yi | Zi)fX|Z(Xi | Zi)fZ(Zi)
.

The denominator is the density of an element of H0 as in (6.1). Theorem 1 by Grünwald
et al. (2024) states that this e-statistic must therefore be the GRO e-statistic for a
single data point (Xi, Yi, Zi) and the same argument can be applied to the product of
these e-statistics. Finally, a slight rewriting shows that the e-statistic corresponds to
the ratio of the joint conditional density of (X, Y ) given Z divided by the product of
its marginals. For all i, the expected value of log ECI

fY |X,Z
(Xi, Yi, Zi) conditional on Z

is therefore equal to the conditional mutual information of X and Y given Z.
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D.2.4 Proof of Proposition 6.4

Proof. Since the distribution QZ is well-specified, we denote gY |Z for the density∫
gY |X,Z dQZ . Then the quantity of interest is given by

Ef

[
log ECI

gY |X,Z
(x, y, z)

]
= Ef

[
log

gY |X,Z(y | x, z)
gY |Z(y | z)

]
= If (X; Y | Z) + Ef

[
log

gY |X,Z(y | x, z)
gY |Z(y | z) − log f(x, y, z)

fX|Z(x | z)fY |Z(y | z)fZ(z)

]
= If (X; Y | Z) + Ef

[
log

gY |X,Z(y | x, z)
gY |Z(y | z) − log

fY |X,Z(y | x, z)
fY |Z(y | z)

]
= If (X; Y | Z) + Ef [KL(fY |Z∥gY |Z)] − Ef [KL(fY |X,Z∥gY |X,Z)].

The desired result follows from the nonnegativity of KL divergence.

D.2.5 Proof of Theorem 6.6

Proof. Fix N ∈ N and α ∈ (0, 1). Conditional on Yi, Zi, i = 1, . . . , N , the randomness
of the process Sn = Sn(Xn) =

∏n
i=1 ẼCI

hn
, n = 1, . . . , N , solely stems from X1, . . . , XN ,

and we will write Yi, Zi with lower case letters yi, zi to reflect that all statements are
conditional on their values. So the e-value at time n writes as

ẼCI
hn

= hn(Xn, yn, zn | Xn−1, yn−1, zn−1)∫
X hn(x, yn, zn | Xn−1, yn−1, zn−1) dQ̂zn(x)

.

The condition hn > 0 ensures that this e-value is well-defined. For n > N , set hn ≡ 1,
so that Sn = SN for n > N . If XN has distribution Q̂N

ZN , then the process (Sn)n∈N is
a nonnegative martingale with respect to the filtration Fn = σ(X1, . . . , Xn), because

E
[
Sn|Xn−1] =

∫
X

hn(x, yn, zn | Xn−1, yn−1, zn−1)∫
X hn(x, yn, zn | Xn−1, yn−1, zn−1) dQ̂Zn

(x)
dQ̂Zn(x) = 1

almost surely. Hence by Ville’s inequality, P (∃ n ≤ N : Sn ≥ 1/α) ≤ α. Let

A = {xn ∈ X n : ∃ n ≤ N s.t. Sn(xn) ≥ 1/α} .

Then, since QN
ZN (A) = P (∃ n ≤ N : Sn ≥ 1/α | Y N = yN , ZN = zN ),

P (∃ n ≤ N : Sn ≥ 1/α | Y N , ZN ) ≤ Q̂N
zN

(A)+dTV(QN
ZN , Q̂N

ZN ) ≤ α+dTV(QN
ZN , Q̂N

ZN ).
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D.2.6 Proof of Proposition 6.7

Proof. The subgaussianity assumption (i) implies that

P
(
|u⊤((X, Z) − E[(X, Z)])| ≥ η) ≤ 2 exp(−η2/(2∥u∥2σ2)

)
, η > 0, u ∈ Rp+q, (D.1)

and that E[∥(X, Z)∥k] < ∞ for all k ∈ N. As a consequence of the latter and of
assumption (i)(a), Theorem 1 of Qian and Field (2002) implies that the MLE θ̂n

exists with asymptotic probability one and satisfies ∥θ̂n −θ∥ = O(n−1/2 log(log(n))1/2)
almost surely.

We now study the properties of the function θ 7→ log(pθ(y | x, z)) for θ ∈ Rp+q.
The derivative of log(pθ(y | x, z)) with respect to θj equals

d

dθj
log(pθ(y | x, z)) =

yxj − xjpθ(1 | x, z) if j ≤ p

yzj−p, −zj−ppθ(1 | x, z) else.

Consequently, for any θ, θ′ ∈ Rp+q,

| log(pθ(y | x, z)) − log(pθ′(y | x, z))| ≤ ∥(x, z)∥∥θ − θ′∥. (D.2)

This implies that

1
n

∣∣∣ n∑
i=1

log(pθ̂i−1
(Yi | Xi, Zi))− log(pθ(Yi | Xi, Zi))

∣∣∣ ≤ 1
n

n∑
i=1

∥θ̂i−1 − θ∥∥(Xi, Zi)∥

≤

(
1
n

n∑
i=1

∥θ̂i−1 − θ∥2

)1/2(
1
n

n∑
i=1

∥(Xi, Zi)∥2

)1/2

.

Since ∥(Xi, Zi)∥2, i ∈ N, are independent with expectation E[∥(X, Z)∥2] < ∞, the law
of large number implies that

∑n
i=1 ∥(Xi, Zi)∥2/n → E[∥(X, Z)∥2] < ∞ almost surely,

and
∑n

i=1 ∥θ̂i−1 − θ∥2/n → 0 since ∥θ̂n − θ∥ → 0 almost surely as n → ∞. It remains
to show an analogous convergence result for the denominator in SCI

n . Define

rn =
∫

pθ(Yn | x, Zn) dQZn
(x)∫

pθ̂n−1
(Yn | x, Zn) dQZn

(x)
.

We want to show that lim infn↣∞
∑n

i=1 log(ri)/n ≥ 0 almost surely. To this end,
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write

rn =
∫

pθ(Yn | x, Zn) dQZn
(x)∫

pθ(Yn | x, Zn) dQZn
(x) +

∫
(pθ̂n−1

(Yn | x, Zn) − pθ(Yn | x, Zn)) dQZn
(x)

≥
∫

pθ(Yn | x, Zn) dQZn
(x)∫

pθ(Yn | x, Zn) dQZn
(x) +

∫
|pθ̂n−1

(Yn | x, Zn) − pθ(Yn | x, Zn)| dQZn
(x)

.

Since log(1 + x) ≤ x, we have log(1/(1 + x)) = − log(1 + x) ≥ −x, for x > −1. So

log(rn) ≥ −
∫

|pθ̂n−1
(Yn | x, Zn) −

∫
pθ(Yn | x, Zn)| dQZn(x)∫

pθ(Yn | x, Zn) dQZn(x)

The function θ 7→ pθ(y | x, z) is Lipschitz continuous, because for k = 1, . . . , p + q,

∣∣∣ d

dθk
pθ(y | x, z)

∣∣∣ =

|xk|pθ(1 | x, z)(1 − pθ(1 | x, z)) ≤ |xk| if k = 1, . . . , p

|zk−p|pθ(1 | x, z)(1 − pθ(1 | x, z)) ≤ |zk−p| else.

This implies that

log(rn) ≥ −
∥θ̂n−1 − θ∥

∫
∥(x, Zn)∥ dQZn

(x)∫
pθ(Yn | x, Zn) dQZn

(x)
.

To bound this from below, we now show that the denominator
∫

pθ(Yn | x, Zn) dQZn
(x)

is small only with a small probability. Let κn = n−δ/2 for δ > 0. Define the events

An =
{

min
y=0,1

pθ(y | Xn, Zn) ≤ κn

}
.

Let logit(p) = log(p/(1 − p)). Then,

min
y=0,1

pθ(y | x, z) ≤ κn ⇐⇒ |θ⊤(x, z)| ≥ |logit(κn)|,

and therefore, since |logit(p)| ≥ | log(2p)| for p ∈ (0, 1/2],

An ⊆ {|θ⊤(Xn, Zn)| ≥ | log(2κn)|} = {|θ⊤(Xn, Zn)| ≥ δ log(n)},

The above derivations yield P (An) ≤ P (|θ⊤(Xn, Zn)| ≥ δ log(n)), and (D.1) implies,
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with B = ∥θ∥,

P (|θ⊤(X, Z)| ≥ δ log(n)) ≤ P
(
|θ⊤((X, Z) − E[(X, Z)])| ≥ δ log(n)) − |θ⊤E[(X, Z)]|

)
≤ 2 exp(−δ2 log(n)2/(8B2σ2)),

for n large enough such that δ log(n)/2 ≥ |θ⊤E[(X, Z)]|. In a next step, we use this
to bound miny=0,1

∫
pθ(y | x, Zn) dQZn

(x). First, note that for y ∈ {0, 1},∫
pθ(y | x, Zn) dQZn

(x) =
∫

pθ(y | x, Zn)1{pθ(y | x, Zn) ≥ 1 − κn} dQZn
(x)

+
∫

pθ(y | x, Zn)1{pθ(y | x, Zn) < 1 − κn} dQZn(x)

≤ QZn(pθ(y | Xn, Zn) ≥ 1 − κn) + 1 − κn.

It follows that for η > 0, if
∫

pθ(y | x, Zn) dQZn
(x) ≥ 1 − n−η, then QZn

(pθ(y |
Xn, Zn) ≥ 1 − κn) ≥ κn − n−η. Recall that κn = n−δ/2 with δ > 0 unspecified so
far. For n large enough such that n−η/2 ≤ 1/4, choosing δ = η/2 implies κn − n−η =
n−η/2(1/2 − n−η/2) ≥ n−η/2/4. Consequently, for large n, by Markov’s inequality,

P

(∫
pθ(y | x, Zn) dQZn

(x) ≥ 1 − n−η

)
≤ P

(
QZn

(pθ(y | Xn, Zn) ≥ 1 − κn) ≥ n−η/2/4
)

≤ 4nη/2E[QZn(pθ(y | Xn, Zn) ≥ 1 − κn)]

= 4nη/2P (pθ(y | Xn, Zn) ≥ 1 − κn). (D.3)

But it has already been shown that

P (pθ(y | Xn, Zn) ≥ 1−κn) = P (pθ(1−y | Xn, Zn) ≤ κn) ≤ 2 exp(−δ2 log(n)2/(8B2σ2))

for large n, which in (D.3) gives an upper bound of

8 exp
(
− log(n)(η2 log(n)/(32B2σ2) − η/2)

)
.

Since η2 log(n)/(32B2σ2) − η/2 → ∞ as n → ∞, it holds that η2 log(n)/(32B2σ2) −
η/2 > 1 for n large enough, and we can conclude

∞∑
n=1

P

(
min

y=0,1

∫
pθ(y | x, Zn) dQZn

(x) ≤ n−η

)
< ∞.
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Thus the Borel-Cantelli Lemma implies that miny=0,1
∫

pθ(y | x, Zn) dQZn(x) ≤ n−η

holds for only finitely many n with probability one. Now

1
n

n∑
i=1

log(ri) ≥ − 1
n

n∑
i=1

∥θ̂i−1 − θ∥
∫

∥(x, Zi)∥ dQZi
(x)∫

pθ(Yi | x, Zi) dQZi
(x)

≥ −M

n
−

n∑
i=1

iη∥θ̂i−1 − θ∥
∫

∥(x, Zi)∥ dQZi
(x)

= −M

n
− 1

n

n∑
i=1

iη∥θ̂i−1 − θ∥E[∥(Xi, Zi)∥ | Zi]

≥ −M

n
−

(
1
n

n∑
i=1

i2η∥θ̂i−1 − θ∥2

)1/2(
1
n

n∑
i=1

E[∥(Xi, Zi)∥ | Zi]2
)1/2

,

(D.4)

where

M =
∞∑

i=1
1
{∫

pθ(Yi | x, Zi) dQZi
(x) ≤ i−η

}
∥θ̂i−1 − θ∥

∫
∥(x, Zi)∥ dQZi

(x)∫
pθ(Yi | x, Zi) dQZi

(x)

is the sum of log(ri) over all almost surely finitely many i s.t.
∫

pθ(Yi | x, Zi) dQZi
(x) ≤

i−η. Since (Xi, Zi), i ∈ N, are independent and identically distributed with

E[E[∥(X, Z)∥|Z]2] ≤ E[∥(X, Z)∥2] < ∞,

the law of large numbers implies

1
n

n∑
i=1

E[∥(Xi, Zi)∥ | Zi]2 ≤ 1
n

n∑
i=1

E[∥(Xi, Zi)∥2 | Zi] → E[∥(X, Z)∥2] < ∞

almost surely as n → ∞. On the other hand, n2η∥θ̂n−1 − θ∥2 = O(n2η−1 log(log(n)))
almost surely, so that for η < 1/2, we have n2η∥θ̂n−1 − θ∥2 → 0 almost surely as
n → ∞. Finally, since M only takes finite values, also M/n → 0 for n → ∞. Hence
(D.4) converges to 0 almost surely. It follows that

lim inf
n→∞

1
n

(
log(SCI

n ) − log
(

n∏
i=1

pθ(Yi | Xi, Zi)∫
pθ(Yi | x, Zi) dQZi(x)

))
≥ 0

250



D | Appendix to Chapter 6

almost surely. Since

1
n

n∑
i=1

log
(

pθ(Yi | Xi, Zi)∫
pθ(Yi | x, Zi) dQZi

(x)

)
→ I(X; Y | Z) > 0, n → ∞,

almost surely, by the law of large numbers, this proves the theorem.

D.3 Anytime-Valid E-Statistics

In this section, we discuss an alternative way to define anytime-valid tests using e-
statistics and show that, in the setting of Chapter 6, this method coincides with the
method discussed in Section 6.2.2. In Section 6.2.2, we mentioned that a sequence
of conditional e-statistics gives rise to a test martingale (Sn(Dn))n∈N, which satisfies
EP [Sτ (Dτ )] ≤ 1 for any stopping time τ and P ∈ H0. Rather than taking the latter as
a consequence, Koolen and Grünwald (2022) take this as the definition of what they
call anytime-valid e-statistics. That is, they call a nonnegative process (En(Dn))n∈N

an anytime-valid e-statistic if EP [Eτ (Dτ )] ≤ 1 for any stopping time τ and P ∈ H0.
The same object is referred to as e-process in Ramdas et al. (2022), and it can be shown
that the class of anytime-valid e-statistics (or e-processes) is strictly larger than the
class of test martingales. A priori it is not obvious whether the GRO criterion, which
maximizes the expected growth rate without referring to any particular stopping time,
also yields powerful e-statistics when specific stopping rules τ are applied. Therefore,
Koolen and Grünwald (2022) propose, for fixed alternative distribution H1 = {P ∗}
and stopping time τ , to look for the anytime-valid e-statistic that maximizes

(En)n∈N 7→ EP ∗ [log Eτ (Dτ )]. (D.5)

It turns out that there are settings in which the optimal anytime-valid e-statistic is
actually equal to the GRO test martingale. One of the settings in which this happens
is given in their Theorem 12. We present a slightly rephrased version of this theorem
here.

Theorem D.1 (Koolen and Grünwald (2022)). Assume that the data is given by an
i.i.d. stream (Di)i∈N and that the alternative is given by H1 = {P ∗}, where P ∗ admits
a density p∗. Suppose further that the GRO e-statistic is given by the likelihood ratio
p∗/q, where q is the density of an element of H0. Then the process (p∗(Di)/q(Di))i∈N
also maximizes (D.5) for any stopping time τ .
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In the proof of our Theorem 6.3 (see Section D.2.3), we show that the GRO e-
variable is exactly of the form described in Theorem D.1. It therefore follows that
the test martingale that we give in (6.7) is actually also the optimal anytime-valid
e-statistic. We therefore chose to focus on the GRO property in Chapter 6.
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E.1 Proofs

E.1.1 Proof of Proposition 7.4

Proposition 7.4. For Xn−1 ∈ X n−1 and Xn ∈ X , define Fn(γn−1(Xn−1), Xn) =
γn((γn−1(Xn−1), Xn)), where, with a slight abuse of notation, we use (γn−1(Xn−1), Xn)
to refer to the concatenation of γn−1(Xn−1) and Xn. We will show that Fn has the
claimed properties. First, we will show that the vectors (γn−1(Xn−1), Xn) and Xn

are in the same orbit, so that also γn((γn−1(Xn−1), Xn)) = γn(Xn). To this end, let
g′ ∈ Gn−1 denote the group element such that g′Xn−1 = γn−1(Xn−1). Then it holds
that

{g(γn−1(Xn−1), Xn) : g ∈ Gn} = {g(g′Xn−1, Xn) : g ∈ Gn}

= {gın(g′)Xn : g ∈ Gn}

= {gXn : g ∈ Gn},

where we used (iii) of Definition 7.2 for the second equality and called Xn the con-
catenation of Xn−1 and Xn. This shows the first claim. For the second claim,
that Fn( · , Xn) is one-to-one for each fixed Xn, we show that we can reconstruct
γn−1(Xn−1) from Xn and γn(Xn).

Pick any gXn
∈ Gn such that (gXn

γn(Xn))n = Xn. We furthermore know that
there exists some g ∈ Gn such that gXn = γn(Xn). Note that gXn

g does nothing to
the final coordinate of Xn, so by item (iii) of Definition 7.2 there is a g∗

n−1 ∈ Gn−1
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such that gXngXn = ı(g∗
n−1)Xn. Then we see

{ı(gn−1)gXnγn(Xn) : gn−1 ∈ Gn−1} = {ı(gn−1)gXngXn : gn−1 ∈ Gn−1}

= {ı(gn−1)ı(g∗
n−1)Xn : gn−1 ∈ Gn−1}

= {ı(gn−1)Xn : gn−1 ∈ Gn−1}.

It follows from item (ii) of Definition 7.2 that Gn−1projn−1(gXnγn(Xn)) = Gn−1Xn−1.
It therefore follows that γn−1(projn−1(gXnγn(Xn))) = γn−1(Xn−1).

E.1.2 Proof of Theorem 7.8

Theorem 7.8. The proof can be divided in two main steps: (1) to show that, condition-
ally on γn(Xn), Rn is uniformly distributed for each n and (2) to show that R1, R2, . . .

are also independent. The second step is completely analogous to the proof of Theorem
3 by Vovk (2002). For each n, define the σ-algebra Gn = σ(γn(Xn), Xn+1, Xn+2, . . . ).
Notice that Gn contains—among others—all Gn-invariant functions of Xn because γn

is a maximally invariant function of Xn—any other Gn-invariant function of Xn is
a function of γn(Xn). Let g′ ∈ Gn such that γn(Xn) = g′Xn, then we have that
{g ∈ Gn : A((gXn)n, γn(Xn))n < αn} = {g ∈ Gn : A((gγn(Xn)n, γn(Xn))n < αn}g′.
Here, we define Bg = {bg : b ∈ B} for a subset B ⊆ Gn. By the invariance of µn—it
is the Haar probability measure—, it follows that

µn({g ∈ Gn : A((gXn)n, γn(Xn))n < αn})

= µn({g ∈ Gn : A((gγn(Xn))n, γn(Xn))n < αn}).

An analogous identity can be derived for the second term in (7.3). We have αn | Gn
D=

A((Uγn(Xn))n, γn(Xn))n | Gn.
We will denote F (b) := µ({g ∈ Gn : A((gγn(Xn))n, γn(Xn))n < b}) and define

G(δ) = sup{b ∈ R : F (b) ≤ δ}. If αn | Gn is continuous, then F is the CDF of that
distribution, otherwise it is the CDF minus the probability of equality. In any case,
F is is increasing and right-continuous. For any δ ∈ (0, 1), we have that F (G(δ)) = δ′

for some δ′ ≤ δ, with equality if F is continuous in G(δ). Then we can write

P(Rn ≤ δ | Gn) = P(Rn ≤ δ′ | Gn) + P(δ′ < Rn ≤ δ | Gn). (E.1)

For any θ ∈ (0, 1], we have that Rn = F (αn) + θ(F (α+
n ) − F (αn)) ≤ δ′ if and only if

either F (αn) < δ′ or F (α+
n ) − F (αn) = 0, which happens precisely when αn < G(δ).
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We therefore see

P(Rn ≤ δ′ | Gn) = P(αn < G(δ′) | Gn) = F (G(δ′)) = δ′.

If F is continuous in G(δ), then this shows that P(Rn ≤ δ | Gn) = δ, since δ′ = δ in
that case. If F is not continuous in G(δ), then we have that

P(δ′ < Rn ≤ δ | Gn) = P(δ′ < F (αn) + θ(F (α+
n ) − F (αn)) ≤ δ | Gn).

Notice that δ′ < F (αn) + θ(F (α+
n ) − F (αn)) ≤ δ if and only if αn = G(δ) and

θ < (δ − δ′)/(F (α+
n ) − F (αn)), so that we can write

P(δ′ < Rn ≤ δ | Gn) = P(αn = G(δ) | Gn)P
(

θ ≤ δ − δ′

F (G(δ′)+) − F (G(δ′)) | Gn

)
= (F (G(δ′)+) − F (G(δ′))) δ − δ′

(F (G(δ′)+) − F (G(δ′)))
= δ − δ′.

Putting everything together, we see that P(Rn ≤ δ | Gn) = δ. This shows the first
part, that Rn has a conditional uniform distribution on [0, 1].

For the second part of the proof, we show that the sequence R1, R2, . . . is also an
independent sequence. We have that Rn is Gn−1-measurable because it is invariant
under transformations of the form Xn 7→ (gXn−1, Xn) for g ∈ Gn−1 (see also Vovk,
2004, Lemma 2). We proceed (implicitly) by induction:

P(Rn ≤ δn, . . . , R1 ≤ δ1 | Gn) = E [1 {Rn ≤ δn, . . . , R1 ≤ δ1} | Gn]

= E [E [1 {Rn ≤ δn, . . . , R1 ≤ δ1} | Gn−1] | Gn]

= E [1 {Rn ≤ δn} E [1 {pn−1 ≤ δn−1, . . . , R1 ≤ δ1} | Gn−1] | Gn]

= E [1 {Rn ≤ δn}] δn−1 · · · δ1

= δn · · · δ1.

It follows by the law of total expectation that

P(Rn ≤ δn, . . . , R1 ≤ δ1) = δn · · · δ1,

which shows that R1, R2, . . . , Rn are independent and uniformly distributed on [0, 1]
for any n ∈ N. This implies that the distribution of R1, R2, . . . coincides with U∞
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by Kolmogorov’s extension theorem (see e.g. Shiryaev, 2016, Theorem II.3.3). This
shows the claim of the theorem.

E.1.3 Proof of Proposition 7.9

The proof of Proposition 7.9 follows directly from Lemma E.1. It states that, with
probability one, enough of the original data can be recovered using the smoothed ranks
and the orbit representative. We state Lemma E.1, prove Proposition 7.9 and then
prove Lemma E.1.

Lemma E.1. Suppose, for each n ∈ N, that A( · , γn(Xn)) is a one-to-one function
of Xn, then there exists a map Dn : [0, 1]n × X n → [0, 1]n × X n s.t. for any Q ∈ H0,
Q̃(Dn(Rn, γn(Xn)) = (θ̃n, Xn)) = 1. Here, θ̃n = (θ̃n)n∈N is the sequence given by
θ̃n = θn1 {µn({g ∈ Gn : A((gXn)n, γn(Xn))n = αn}) ̸= 0}.

Proposition 7.9. Consider, without loss of generality, the case that A(Xn, γn(Xn)) =
Xn. Because of the independence of Rn and γn under P and the assumption that the
marginal distribution of γn under Q∗ and under P are equal, Mn = dP̃ (Rn,γn(Xn))

dQ̃∗(Rn,γn(Xn))
.

Using the sequence of functions (Dn)n∈N from Lemma E.1 and that the external
randomization is independent of Xn, the claim follows.

Lemma E.1. As in the proof of Theorem 7.8, we will denote F (b) = µn({g ∈ Gn :
A((gXn)n, γn(Xn))n < b}) and define G(δ) = sup{b ∈ R : F (b) ≤ δ}. Furthermore,
we will write Pαn|γn(Xn) for the distribution of αn given γn(Xn) and denote its support
by

supp(Pαn|γn(Xn)) := {x ∈ R | for all I open, if x ∈ I then Pαn|γn(Xn)(I) > 0},

If b ∈ int(supp(Pαn|γn(Xn))), then there exists an open interval B with b ∈ B and
B ⊆ supp(Pαn|γn(Xn))). For all c ∈ B with c > b, we have that F (c) − F (b) =
Pαn|γn(Xn)([b, c)) > 0, since [b, c) contains an open neighborhood of an interior point
of the support. It follows that F (c) > F (b). In words, there are no points c to the
right of b such that F (c) > F (b). Consequently, we have

G(F (b)) = sup{a ∈ R : F (a) ≤ F (b)} = b.

In a similar fashion, we can conclude that the same identity holds whenever b ∈
supp(Pαn|γn(Xn))\int(supp(Pαn|γn(Xn))). Notice furthermore that G(Rn) = G(F (αn)+
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θn(F (α+
n ) − F (αn))) = G(F (αn)) whenever θn < 1, which happens with probabil-

ity one. Together with the fact that Pαn|γn(Xn)(supp(Pαn|γn(Xn))) = 1, this gives
Pαn|γn(Xn)(G(Rn) = αn) = 1, so also P(G(Rn) = αn) = 1. If (F (G(Rn)+) −
F (G(Rn))) = µn({g ∈ Gn : (gαn)n = αn}) = 0, set θ̃n = 0. If µn({g ∈ Gn : (gαn)n =
αn}) > 0, then it follows that P(θn = (Rn − F (G(Rn)))/(F (G(Rn)+) − F (G(Rn)))) =
1, so set θ̃n = (Rn − F (G(Rn)))/(F (G(Rn)+) − F (G(Rn))). Since A(·, γn(Xn)) is
one-to-one by assumption, its inverse maps αn to Xn. By Proposition 7.4, there also
exists a map from Xn and γn(Xn) to γn−1(Xn−1). At this point, we can repeat the
procedure above to recover Xn−1 from (Rn−1, γn−1(Xn−1)), from which we can then
recover γn−2(Xn−2), etc. Together, all of the maps involved give the function as in
the statement of the proposition.

E.1.4 Proof of Theorem 7.10

Theorem 7.10. We first show (7.6). Assume that P̃ is such that Rn ⊥ γn(Xn) for all
n. Let Q∗ denote the distribution under which the marginal of γn(Xn) coincides with
that under P , and such that Xn | γn(Xn) D= Uγn(Xn) | γn(Xn), where U ∼ µn is
uniform on Gn and independent from γn(Xn). First note that

Q̃∗

(
τ∏

i=1
fi(Ri) = dP

dQ∗ (Xτ )
)

≥ Q̃∗

(
∀t :

t∏
i=1

fi(Ri) = dP

dQ∗ (Xt)
)

= 1 − Q̃∗

(
∃t :

t∏
i=1

fi(Ri) ̸= dP

dQ∗ (Xt)
)

= 1 − Q̃∗

( ∞⋃
t=1

{
t∏

i=1
fi(Ri) ̸= dP

dQ∗ (Xt)
})

≥ 1 −
∞∑

t=1
Q̃∗

({
t∏

i=1
fi(Ri) ̸= dP

dQ∗ (Xt)
})

= 1.

In the last inequality, we used Lemma E.1. By assumption, we have P̃ ≪ Q̃∗, so we
also have P̃

(∏τ
i=1 fi(Ri) = dP

dQ∗ (Xτ )
)

= 1. We have shown that Mτ is a modification
of the likelihood ratio evaluated at Xτ . We now show that the latter is optimal.

Denote ℓn = dP
dQ∗ (Xn) and let f(α) = E

P̃
[ln((1 − α)ℓτ + αE′

τ )]; a concave func-
tion. We will show that the derivative of f in 0 is negative, which implies that f
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attains its maximum in α = 0. This in turn implies our claim. Indeed,

f ′(0) = E
P̃

[
E′

τ − ℓτ

ℓτ

]
=

∞∑
i=1

E
P̃

[
E′

i

ℓi
1 {τ = i}

]
− 1

=
∞∑

i=1
E

Q̃∗ [E′
i1 {τ = i}] − 1

= E
Q̃∗ [E′

τ ] − 1 ≤ 0,

where we use that differentiation and integration can be interchanged, because

|f ′(α)| =
∣∣∣∣ E′

τ − ℓτ

(1 − α)ℓτ + αE′
τ

∣∣∣∣ ≤ max
{

1
1 − α

,
1
α

}
,

so that the dominated convergence theorem is applicable. Finally, this gives that
E

P̃
[ln
∏τ

i=1 f(Ri)] = E
P̃

[ln E′
τ ] ≥ E

P̃
[ln E′

τ ]. The proof of (7.5) follows from the
same argument, but using ℓ′

n = dP
dQ∗ (Rn).

E.2 Linear Models and Isotropy Groups

The rotational symmetry described in Section 7.5.2 is that of symmetry around the
origin, which we argued is equivalent to testing whether Xi ∼ N (0, σ) for some σ ∈ R+.
Of course, there are many applications where it is not reasonable to assume that the
data is zero-mean and it is more interesting to test whether the data is spherically
symmetric around some point other than the origin. One particular instance of such
noncentered sphericity is to test whether, for each n, the data can be written as
Xn = µ1n + ϵn, where µ ∈ R, the error ϵn is spherically symmetric and 1n is the n-
vector of all ones. If µ is known, we can test for spherical symmetry of Xn −µ1n under
O(n) and the problem reduces to that of the previous section. It is still possible treat
the more realistic case where µ is unknown because the null model is still symmetric
under a family of rotations. Notice the following: for any On ∈ O(n) it holds that
OnXn = µOn1n + Onϵn. Unless µ = 0, it follows that Xn D= OnXn every time
that On1n = 1n. That is, the null distribution of Xn is invariant under the isotropy
group of 1n, i.e. Gn = {On ∈ O(n) : On1n = 1n}. Invariance under the action of
Gn has previously appeared in the literature as centered spherical symmetry (Smith,
1981). Through the lens of test martingales, testing sequentially for centered spherical
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symmetry is equivalent to testing whether the data was generated by any Gaussian.
This holds because any probability distribution on R∞ for which the marginal of the
first n coordinates is centered spherically symmetric for any n can be written as a
mixture of Gaussians (Smith, 1981; Eaton, 1989, Theorem 8.13).

Using some geometry, a test is readily obtained. Note that we can write Xn =
Xn

1n
+ Xn

⊥1n
, where Xn

1n
= ⟨Xn,1⟩

n 1n is the projection of Xn onto the span of 1n,
and Xn

⊥1n
the projection onto its orthogonal complement. We have that gXn =

Xn
1n

+ gXn
⊥1n

for any g ∈ Gn. Consequently, the orbit of Xn under Gn is given by the
intersection of Sn−1(∥Xn∥) and the hyperplane Hn(Xn) defined by Hn(Xn) = {x′n ∈
Rn : ⟨x′n, 1n⟩ = ⟨Xn, 1n⟩}. There is a unique line that is perpendicular to Hn(Xn)
and passes through the origin 0n = (0, . . . , 0); it intersects Hn(Xn) in the point
0Hn

:= ⟨Xn,1n⟩
n 1n. For any x′n ∈ Sn−1(∥Xn∥) ∩ Hn(Xn), Pythagoras’ theorem gives

that ∥x′n−0Hn
∥2 = ∥Xn∥2−∥0Hn

−0n∥2. In other words, Sn−1(∥Xn∥)∩Hn(Xn) forms
an (n − 2)-dimensional sphere of radius (∥Xn∥2 − ∥0Hn

− 0n∥2)1/2 around 0Hn
. If one

considers the projection of this sphere on the n-th coordinate, then the highest possible
value is given by ∥Xn∥, and the lowest value therefore by ⟨Xn,1n⟩

n − 1
2 (∥Xn∥− ⟨Xn,1n⟩

n ).
The relative value of Xn is therefore given by X̃n := Xn− ⟨Xn,1n⟩

n + 1
2 (∥Xn∥− ⟨Xn,1n⟩

n ).
As a result, Rn is the relative surface area of the (n − 2)-dimensional hyper-spherical
cap with co-latitude angle φ = π − cos−1(X̃n/(∥Xn∥2 − ∥0Hn

− 0n∥2)1/2), so that
equation (7.9) can again be used to determine Rn. With this construction, we recover
what Vovk (2023) refers to as the “full Gaussian model”, which is an online compression
model that is defined in terms of the summary statistic σn = (⟨Xn, 1n⟩, ∥Xn∥).

This model can be extended to the case in which there are covariates, i.e. Xn =
(Yn, Zd

n) for some Yn ∈ R and Zd
n ∈ Rd. Denote Zn for the matrix with row-vectors

Zd
n and, as is a standard assumption in regression, assume that Zn is full rank for

every n. The model of interest is Y n = Znβ + ϵn where β ∈ Rd and ϵn is spherically
symmetric for each n. Similar to the reasoning above, this model is invariant under
the intersection of the isotropy groups of the column vectors of Zn, i.e. Gn = {On ∈
O(n) : OnZn = Zn}. The orbit of Xn under Gn is given by the intersection of
Sn−1(∥Xn∥) with the intersection of the d hyperplanes defined by the columns of Zn,
so that for αn(Y n, Zn) = Y n, computing Rn is analogous. Interestingly, however, it
does not always hold that testing for invariance under Gn is equivalent to testing for
normality with mean Znβd. A sufficient condition for the equivalence to hold is that
limn→∞(Z ′

nZn)−1 = 0, which is essentially the condition that the parameter vector β

can be consistently estimated by means of least squares (Eaton, 1989, Section 9.3).
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F.1 Invariance and Sufficiency

The relationship between invariance and sufficiency has been thoroughly investigated
(Hall et al., 1965, 1995; Berk, 1972; Nogales and Oyola, 1996). Consider a G-invariant
hypothesis testing problem such that a sufficient statistic is available. If the action of
G on the original data space induces a free action on the sufficient statistic—that is, if
the sufficient statistic is equivariant—, there must be a maximally invariant function
of the sufficient statistic. With this structure in mind, the results presented thus
far suggest two approaches for solving the hypothesis testing problem. The first is
to reduce the data using the sufficient statistic, and to test the problem using the
maximally invariant function of the sufficient statistic. The second approach is to use
the maximally invariant function of the original data. These two approaches yield two
potentially different growth-optimal e-statistics, and one question arises naturally: are
both approaches equivalent? In this section we show that this is indeed the case, under
certain conditions.

We now introduce the setup formally. At the end of this section we revisit our
guiding example, the t-test, and show how the results of this section apply to it. Let
Θ be the parameter space, and let δ = δ(θ) be a maximally invariant function of θ

for the action of G on Θ. Let sn : X n → Sn be a sufficient statistic for θ ∈ Θ.
Consider again the hypothesis testing problem in the form presented in (8.1). Assume
further that G acts freely and continuously on the image space Sn of the sufficient
statistic Sn = sn(Xn). Denote by (g, s) 7→ gs the action of G on Sn. We assume
that sn is equivariant, that is, sn is compatible with the action of G in the sense
that, for any Xn ∈ X n and any g ∈ G, the identity gsn(Xn) = sn(gXn) holds. Let
MX ,n = mX ,n(Xn) and MS,n = mS,n(Sn) be two maximally invariant functions for the
actions of G on X n and Sn, respectively. Because of their invariance, the distributions
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of MX ,n and MS,n depend only on the maximally invariant parameter δ. Hall et al.
(1965, Section II.3) proved that, under regularity conditions, if SX ,n = sX ,n(Xn)
is sufficient for θ ∈ Θ, then the statistic MS,n = mS,n(sn(Xn)) is sufficient for δ.
In that case, we call MS,n invariantly sufficient. Here we state the version of their
result, attributed by Hall et al. (1965) to C. Stein, that suits best our purposes (see
Remark F.1).

Theorem F.1 (C. Stein). If there exists a right Haar measure on the group G and
G is σ-finite, the statistic MS,n = mS,n(sn(Xn)) is invariantly sufficient, that is, it is
sufficient for the maximally invariant parameter δ.

With this theorem at hand, and the fact that the KL divergence does not decrease
by the application of sufficient transformations, we obtain the following proposition.

Proposition F.2. Let sn : X n → Sn be sufficient statistic for θ ∈ Θ. Assume that G

acts freely on Sn and that sn(gXn) = gsn(xn) for all Xn ∈ X n and g ∈ G. Let mS,n

be a maximal invariant for the action of G on Sn, and let MS,n = mS,n(sn(Xn)).
Then,

KL
(

PMX ,n

δ1
, PMX ,n

δ0

)
= KL

(
PMS,n

δ1
, PMS,n

δ0

)
.

Proof. The function MS,n = mS,n(sn(Xn)) is invariant, and consequently its distribu-
tion only depends on the maximally invariant parameter δ. Since MX ,n is maximally
invariant for the action of G on X n, there is a function f such that MS,n = f(MX ,n).
By Stein’s theorem, Theorem F.1, MS,n is sufficient for δ. Consequently, f is a suffi-
cient transformation. Hence, from the invariance of the KL divergence under sufficient
transformations, the result follows.

Via the factorization theorem of Fisher and Neyman, the likelihood ratio for the
maximal invariant MX ,n coincides with that of the invariantly sufficient MS,n. As a
consequence, we obtain the answer to the motivating question of this section: per-
forming an invariance reduction on the original data and on the sufficient statistic are
equivalent.

Corollary F.3. Under the assumptions of Proposition F.2, if Sn = sn(Xn),

qMX ,n(mX ,n(Xn))
pMX ,n(mX ,n(Xn)) = qMS,n(mS,n(Sn))

pMS,n(mS,n(Sn)) .

Hence, if assumptions of Corollary 8.3 also hold, the likelihood ratio for the invariantly
sufficient statistic MS,n is (relatively) GROW.
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Example F.1 (continues=ex:t-test). We have seen that a maximally invariant func-
tion of the data is MX ,n = mX ,n(Xn) = (X1/ |X1| , . . . , Xn/ |X1|) while the t-statistic
MS,n = mS,n(Xn) ∝ µ̂n/σ̂n is a maximally invariant function of the sufficient statistic
sn(Xn) = (µ̂n, σ̂n). Stein’s theorem (Theorem F.1) shows that the t-statistic MS,n is
sufficient for the maximally invariant parameter δ = µ/σ. Corollary F.3 shows that
the likelihood ratio for the t-statistic is relatively GROW.

Remark. In the present form, the assumptions in Theorem F.1 avoid issues that
may arise with almost-invariant functions (see Lehmann and Romano, 2005, Section
6.5). Almost-invariant functions are functions that are invariant under the action of
a group almost surely up to a null set that may depend on the group element in
question. Under the assumptions in Theorem F.1, every almost invariant function is
equivalent to an invariant one (Lehmann and Romano, 2005, Theorem 6.5.1). In turn,
the assumptions in Theorem F.1 are implied by Assumption 8.1, so that the same is
true in the general setting of Chapter 8. See also Hall et al. (1965, discussion in p.
581).

F.2 Detailed Comparison to Sun and Berger (2007)
and Liang and Barron (2004)

As the example in Section 8.5.1 illustrates, it is sometimes possible to represent the
same H0 and H1 via (at least) two different groups, say Ga and Gb. Group Ga

is combined with parameter of interest in some space ∆a and priors Π∗δa
j on ∆a

achieving (8.18) relative to group Ga, for j = 0, 1; group Gb has parameter of in-
terest in ∆b and priors Π∗δb

j achieving (8.18) relative to group Gb; yet the tuples
Ta = (Ga, ∆a, {Π∗δa

j }j=0,1) and Tb = (Gb, ∆b, {Π∗δb
j }j=0,1) define the same hypothe-

ses H0 and H1. That is, the set of distributions {P∗
g}g∈Ga obtained by applying

Proposition 8.7 with group Ga (representing H0 defined relative to group Ga) coin-
cides with the set of distributions {P∗

g}g∈Gb
obtained by applying Proposition 8.7 with

group Gb (representing H0 defined relative to group Gb); and analogously for the set
of distributions {P∗

g}g∈Ga and the set of distributions {P∗
g}g∈Gb

. In the example, Ga

was GL(d) and the priors Π∗δa
0 , Π∗δa

1 were degenerate priors on 0 and γ as in (8.23),
respectively; Gb was the lower triangular group with a specific prior as indicated in
the example. In such a case with multiple representations of the same H0 and H1,
using the fact that the notion of "GROW" does not refer to the underlying group,
Corollary 8.8 can be used to identify the GROW e-statistic as soon as the assump-
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tions of Proposition 8.7 hold for at least one of the tuples Ta or Tb. Namely, if the
assumptions hold for just one of the two tuples, we use Corollary 8.8 with that tuple;
then T ∗ as defined in the corollary must be GROW, irrespective of whether T ∗ based
on the other tuple is the same (as it was in the example above) or different. If the
assumptions hold for both groups, then, using the fact that the GROW e-statistic is
essentially unique (see Theorem 1 of GHK for definition and proof), it follows that
T ∗(Xn) as defined in Corollary 8.8 must coincide for both tuples.

Superficially, this may seem to contradict Sun and Berger (2007) who point out that
in some settings, the right Haar prior is not uniquely defined, and different choices for
right Haar prior give different posteriors. To resolve the paradox, note that, whereas
we always formulate two models H0 and H1, Sun and Berger (2007) start with a single
probabilistic model, say P, that can be written as in (8.3) for some group G. Their
example shows that the same P can sometimes arise from two different groups, and
then it is not clear what group, and hence what Haar prior to pick, and their quantity
of interest, the Bayesian posterior, can depend on the choice.

In contrast, our quantity of interest, the GROW e-statistic T ∗
n , is uniquely defined

as soon as there exists one group G with H0 and H1 as in (8.1) for which the as-
sumptions of Theorem 8.2 hold; or more generally, as soon as there exists one tuple
T = (G, ∆, {Π∗δ

j }j=0,1) for which the assumptions of Proposition 8.7 hold, even if
there exist other such tuples.

To reconcile uniqueness of the GROW e-statistic T ∗
n with nonuniqueness of the

Bayes posterior, note that the former is a ratio between Bayes marginals for different
models H0 and H1 at the same sample size n. In contrast, the Bayes predictive
distribution based on a single model P is a ratio between Bayes marginals for the
same P at different sample sizes n and n − 1. The role of ‘same’ and ‘different’
being interchanged, it turns out that this Bayes predictive distribution can depend on
the group on which the right Haar prior for P is based. Since the Bayes predictive
distribution can be rewritten as a marginal over the Bayes posterior for P, it is then
not surprising that this Bayes posterior may also change if the underlying group is
changed.

The consideration of two families H0 and H1 vs. a single P is also one of the main
differences between our setting and the one of Liang and Barron (2004), who provide
exact min-max procedures for predictive density estimation for general location and
scale families under Kullback-Leibler loss. Their results apply to any invariant proba-
bilistic model P as in (8.3) where the invariance is with respect to location or scale (and
more generally, with respect to some other groups including the subset of the affine
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group that we consider in Section 8.4.2). Consider then such a P and let pMn(mn(Xn))
be as in (8.5). As is well-known, provided that n′ is larger than some minimum value,
for all n > n′, r(Xn′+1, . . . , Xn | X1, . . . , Xn′) := pMn(mn(Xn))/pMn′ (mn′(Xn′)) de-
fines a conditional probability density for Xn′+1, . . . , Xn; this is a consequence of the
formal-Bayes posterior corresponding to the right Haar prior becoming proper after n′

observations, a.s. under all P ∈ P. For example, in the t-test setting, n′ = 1. Liang
and Barron (2004) show that the distribution corresponding to r minimizes the Pn′ -
expected KL divergence to the conditional distribution Pn | Xn′ , in the worst case
over all P ∈ P. Even though their optimal density r is defined in terms of the same
quantities as our optimal statistic T ∗

n , it is, just as Berger and Sun (2008), considered
above, a ratio between likelihoods for the same model at different sample sizes, rather
than, as in our setting, between likelihoods for different models, both composite, at
the same sample sizes. Our setting requires a joint KL minimization over two families,
and therefore our proof techniques turn out quite different from their information- and
decision-theoretic ones.

F.3 Anytime-Valid Testing Under Optional Stopping
and Optional Continuation

Consider the setting of Section 8.2.2. Let X = (Xn)n∈N be a random process, where
each Xn is an observation that takes values on a space X . Let (Mn)n∈N be a sequence
where, for each n, Mn = mn(Xn) is a maximally invariant function for the action of
G on X n.

Suppose that data X1, X2, . . . are gathered one by one. Here, a sequential test is
a sequence of zero-one-valued statistics ξ = (ξn)n∈N adapted to the natural filtration
generated by X1, X2, . . . . We consider the test defined by ξn = 1

{
T Mn ≥ 1/α

}
for

some value α. We note that Wald-style—Sequential Probability Ratio Tests—tests
are different because they would output "no decision" until a particular sample size n.
Afterwards, they would output 1 ("reject the null") or 0 ("there is no evidence to reject
the null") forever. In contrast, in the present setting ξn = 1 means "if you stop now, for
whatever reason, it is safe to reject the null". Below we prove the anytime validity of ξ.
Additionally, we show that, for certain stopping times τ ≤ ∞, the optionally stopped
e-statistic T Mτ remains an e-statistic. This fact validates the use of the stopped T Mτ

for optional continuation because we can multiply the e-statistics T Mτ across studies
while retaining type-I error control. This result is not new and we add it merely for
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completeness; it follows by standard arguments as Ramdas et al. (2023) or GHK.

Proposition F.4. Let T ∗ = (T Mn)n∈N, where, for each n, T Mn is the likelihood ratio
for the maximally invariant function Mn = mn(Xn) for the action of G on X n. Let
ξ = (ξn)n∈N be the sequential test given by ξn = 1

{
T Mn ≥ 1/α

}
. Then, the following

two properties hold:

1. The sequential test ξ is anytime valid at level α, that is,

for any random time N , sup
θ0∈Θ0

Pθ0 {ξN = 1} ≤ α.

2. Suppose that τ ≤ ∞ is a stopping time with respect to the filtration induced by
M = (Mn)n∈N. Then the optionally stopped e-statistic T Mτ is also an e-statistic,
that is,

sup
θ0∈Θ0

EP
θ0

[T Mτ ] ≤ 1. (F.1)

It is natural to ask whether (F.1) also holds for stopping times that are adapted
to the full data (Xn)n∈N but not to the reduced (Mn)n∈N. In our t-test example, this
could be a stopping time τ∗ such as “τ∗ := 1 if |X1| ̸∈ [a, b]; τ∗ = 2 otherwise” for
some 0 < a < b. The answer is negative: after proving Proposition F.4, we show that,
for appropriate choice of a and b, this τ∗ is a counterexample. This means that such
nonadapted τ∗ cannot be safely used under optional continuation. However, using
such a stopping time has no repercussions for optional stopping, since the time N in
part 1 of the proposition above is not even required to be a stopping time—N is not
restricted by the filtration induced by M and it is even allowed to depend on future
observations.

Proof of Proposition F.4. From Proposition 8.6, we know that T ∗ = (T Mn)n∈N is a
nonnegative martingale with expected value equal to one. Let ξ = (ξn)n be the
sequential test given by ξn = 1

{
T Mn ≥ 1/α

}
. The anytime-validity at level α of ξ,

is a consequence of Ville’s inequality, and the fact that the distribution of each T Mn

does not depend on g. Indeed, these two, together, imply that

sup
g∈G

Pg{T Mn ≥ 1/α for some n ∈ N} ≤ α.
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This implies the first statement. Now, let τ ≤ ∞ be a stopping time with respect to
the filtration induced by M . If the stopping time τ is almost surely bounded, T Mτ

is an e-statistic by virtue of the optional stopping theorem. However, since T ∗ is a
nonnegative martingale, Doob’s martingale convergence theorem implies the existence
of an almost sure limit T ∗

∞. Even when τ might be infinite with positive probability,
Theorem 4.8.4 of Durrett (2019) implies that T Mτ is still an e-statistic.

F.3.1 Importance of the Filtration for Randomly Stopped E-
Statistics

Consider the t-test as in Example 8.1. Fix some 0 < a < b, and define the stopping
time τ∗ := 1 if |X1| ̸∈ [a, b]. τ∗ = 2 otherwise. Then τ∗ is not adapted to (hence not
a stopping time relative to) (Mn)n as defined in that example, since M1 ∈ {−1, 1}
coarsens out all information in X1 except its sign. Now let δ0 := 0 (so that H0

represents the normal distributions with mean µ = 0 and arbitrary variance). Let
T ∗,δ1

n (Xn) be equal to the GROW e-statistic T Mn(Xn) as in (8.6); here we make
explicit its dependence on δ1. For H1, to simplify computations, we put a prior Π̃δ

1

on ∆1 := R. We take Π̃δ
1 to be a normal distribution with mean 0 and variance κ.

We can now apply Corollary 8.9 (with prior Π̃δ
0 putting mass 1 on δ = δ0 = 0), which

gives that T̃n = t̃n(Xn) is an e-statistic, where

t̃n(xn) =
∫ 1√

2πκ2
exp

(
− δ2

1
2κ2

)
· T ∗,δ1

n (xn)dδ1

coincides with a standard type of Bayes factor used in Bayesian statistics. By exchang-
ing the integrals in the numerator, this expression can be calculated analytically. The
Bayes factor T̃1 for x1 = x1 is found to be equal to 1 for all x1 ̸= 0, and the Bayes
factor for (x1, x2) is given by:

T̃2 =
√

2κ2 + 1 · (x2
1 + x2

2)
κ2(x1 − x2)2 + (x2

1 + x2
2) .

Now we consider the function

f(x) := EX2∼N(0,1)[t̃2(x, X2)].

f(x) is continuous and even. We want to show that, with τ∗ as above, T̃τ∗ is not
an E-variable for some specific choices of a, b and κ. Since, for any σ > 0, the null
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contains the distribution under which the Xi are i.i.d. N(0, σ), the data may, under
the null, in particular be sampled from N(0, 1). It thus suffices to show that

EX1,X2∼N(0,1)[T̃τ∗ ] = PX1∼N(0,1){|X1| ̸∈ [a, b]} + EX1∼N(0,1)[1|X1|∈[a,b]f(X1)] > 1.

From numerical integration we find that f(x) > 1 on [a, b] and [−b, −a] if we take
κ = 200, a ≈ 0.44 and b ≈ 1.70. The above expectation is then approximately equal
to 1.19, which shows that, even though T̃n is an e-statistic at each n by Corollary 8.9
(it is even a GROW one), T̃τ∗ is not an e-statistic (its expectation is 0.19 too large),
providing the claimed counterexample.

F.4 Further Derivations, Computations and Proofs

In this appendix, we prove the technical lemmas whose proof was omitted from the
main text. In Section F.4.1, we prove the lemmas used in the proof of Theorem 8.2.
In Section F.4.2, we show the computations omitted from Section 8.4.1.

F.4.1 Proof of Technical Lemmas 8.11, 8.12, and 8.13 for The-
orem 8.2

Proof of Lemma 8.11. Let {εi}i be a sequence of positive numbers decreasing to zero.
Let {Ki}i∈N and {Li}i∈N be two arbitrary sequences of compact symmetric subsets
that increase to cover G. Fix i ∈ N. The set KiLi is compact and by our assumption
there exists a sequence {Jl}l∈N and such that ρ{Jl}/ρ{JlKiLi} → 1 as l → ∞. Pick
l(i) to be such that ρ{Jl(i)}/ρ{Jl(i)KiLi} ≥ 1−εi. The claim follows from a relabeling
of the sequences.

Proof of Lemma 8.12. Let h ∈ N . Then we can write∫
1 {g ∈ NL} qg(h|m)dρ(g) =

∫
1 {g ∈ NL} q1(g−1h|m)dρ(g)

=
∫

1
{

g ∈ (NL)−1} q1(gh|m)dλ(g) = ∆(h−1)
∫

1
{

g ∈ (NL)−1h
}

q1(g|m)dλ(g)

=∆(h−1)Q1{H ∈ (NL)−1h | M = m}
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The same computation can be carried out for p. Consequently

ln
∫

1 {g ∈ NL} qg(h|m)dρ(g)∫
1 {g ∈ NL} pg(h|m)dρ(g)

= ln Q1{H ∈ (NL)−1h | M = m}
P1{H ∈ (NL)−1h | M = m}

≤ − ln P1{H ∈ (NL)−1h | M = m}.

By our assumption that h ∈ N , we have that (NL)−1h = L−1N−1h ⊇ L−1 = L. This
implies that the last quantity of the previous display is smaller than − ln P1{H ∈
L | M = m}. The result follows.

Proof of Lemma 8.13. The result follows from a rewriting and an application of Jensen’s
inequality. Indeed,

− ln
∫

pg(h|m)dΠ(g)∫
qg(h|m)dΠ(g)

= − ln

∫
qg(h|m) pg(h|m)

qg(h|m) dΠ(g)∫
qg(h|m)dΠ(g)

= − ln
∫

pg(h|m)
qg(h|m) dΠ(g|h, m)

≤ −
∫

ln pg(h|m)
qg(h|m) dΠ(g|h, m) =

∫
ln qg(h|m)

pg(h|m)dΠ(g|h, m),

as it was to be shown.

F.4.2 Derivation and Computation for Section 8.4.1

We now provide Proposition F.5, giving the derivation underlying Lemma 8.10 in
the main text about the likelihood ratio T ∗

S,n for δ0 = 0, followed by details about
numerical computation.

Proposition F.5. Let X ∼ N(γ, I), and let mS ∼ W (m, I) be independent random
variables. Let LL′ = S be the Cholesky decomposition of S, and let M = 1√

m
L−1X.

If P0,n is the probability distribution under which X ∼ N(0, I), then, the likelihood
pM

γ,m/pM
0,m ratio is given by

pM
γ,m(M)

pM
0,m(M)

= e− 1
2 ∥γ∥2

∫
e⟨γ,T A−1M⟩dPm+1,I(T )

where A ∈ L+ is the Cholesky factor AA′ = I + MM ′, and PT
m+1,I is the probability

distribution on L+ such that TT ′ ∼ W (m + 1, I).

Proof. Let Σ = ΛΛ′ be the Cholesky decomposition of Σ. The density pX
γ,Λ of X with
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respect to the Lebesgue measure on Rd is

pX
γ,Λ(X) = 1

(2π)d/2 det(Λ)
etr
(

−1
2(Λ−1X − γ)(Λ−1X − γ)′

)
,

where, for a square matrix A, we define etr(A) to be the exponential of the trace of
A. Let W = mS. Then, the density pW

γ,Λ of W with respect to the Lebesgue measure
on Rd(d−1)/2 is

pW
γ,Λ(W ) = 1

2md/2Γd(n/2) det(Λ)m
det(S)(m−d−1)/2etr

(
−1

2(ΛΛ′)−1W

)
.

Now, let W = TT ′ be the Cholesky decomposition of W . We seek to compute the
distribution of the random lower lower triangular matrix T . To this end, the change of
variables W 7→ T is one-to-one, and has Jacobian determinant equal to 2d

∏d
i=1 td−i+1

ii .
Consequently, the density pT

γ,Λ(T ) of T with respect to the Lebesgue measure is

pT
γ,Λ(T ) = 2d

2md/2Γd(m/2)
det(Λ−1T )metr

(
−1

2(Λ−1T )(Λ−1T )′
) d∏

i=1
t−i
ii .

We recognize dν(T ) =
∏d

i=1 t−i
ii dT to be a left Haar measure on L+, and consequently

p̃T
γ,Λ(T ) = 2d

2md/2Γd(m/2)
det(Λ−1T )metr

(
−1

2(Λ−1T )(Λ−1T )′
)

is the density of T with respect to dν(T ). After these rewritings, The density p̃X,T
γ,Λ (X, T )

of the pair (X, T ) with respect to dX × dν(T ) is given by

p̃X,T
γ,Λ (X, T ) = 2d

K

det(Λ−1T )m

det(Λ) etr
(

−1
2(Λ−1T )(Λ−1T )′ − 1

2(Λ−1X − γ)(Λ−1X − γ)′
)

with K = (2π)d/22md/2Γd(n/2). The change of variables (X, T ) 7→ (T −1X, T ) has
Jacobian determinant equal to det(T ). If M = T −1X, then, the density p̃M,T

γ,Λ of
(M, T ) with respect to dM × dν(T ) is given by

det(Λ−1T )m+1

K ′′ etr
(

−1
2(Λ−1T )(Λ−1T )′ − 1

2(Λ−1TM − γ)(Λ−1TM − γ)′
)

.

We now marginalize T to obtain the distribution of the maximal invariant M . Since
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the integral is with respect to the left Haar measure dν(T ), we have that∫
T ∈L+

p̃M,T
γ,Λ (M, T )dν(T ) =

∫
T ∈L+

p̃M,T
γ,I (M, Λ−1T )dν(T ) =

∫
T ∈L+

p̃M,T
γ,I (M, T )dν(T ),

and consequently,

pM
γ,Λ(M) = 2d

K

∫
T ∈L+

det(T )m+1etr
(

−1
2TT ′ − 1

2(TM − γ)(TM − γ)′
)

dν(T )

= 2d

K
e− 1

2 ∥γ∥2
∫

T ∈L+
det(T )m+1etr

(
−1

2T (I + MM ′)T ′ + γ(TM)′
)

dν(T ).

The matrix I +MM ′ is positive definite and symmetric. It is then possible to perform
its Cholesky decomposition (I+MM ′) = AA′. With this at hand, the previous display
can be written as

pM
γ,Λ(M) = e− 1

2 ∥γ∥2

K

∫
T ∈L+

det(T )m+1etr
(

−1
2(TA)(TA)′ + γ(TM)′

)
dν(T ).

We now perform the change of variable T 7→ TA−1. To this end, notice that dν(A−1) =
dν(T )

∏d
i=1 a

−(d−2i+1)
ii , and consequently

pM
γ,Λ(M) = 2d

K

e− 1
2 ∥γ∥2 ∏d

i=1 a2i
ii

det(A)m+d+2

∫
T ∈L+

det(T )m+1etr
(

−1
2TT ′ + γ(TA−1M)′

)
dν(T )

=
Γd

(
m+1

2
)

πd/2Γd

(
m
2
) ∏d

i=1 a2i
ii

det(A)m+d+2 e− 1
2 ∥γ∥2

PT
m+1

[
e⟨γ,T A−1M⟩

]
,

so that that at γ = 0 the density pM
0,Λ(M) takes the form

pM
0,Λ(M) =

Γd

(
m+1

2
)

πd/2Γd

(
m
2
) ∏d

i=1 a2i
ii

det(A)m+d+2 ,

and consequently the likelihood ratio is

pM
γ,Λ(M)

pM
0,Λ(M)

= e− 1
2 ∥γ∥2

∫
e⟨γ,T A−1M⟩dPm+1(T ).

Remark (Numerical computation). Computing the optimal e-statistic is feasible nu-
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merically. We are interested in computing∫
e⟨x,T y⟩dPm+1(T ),

where T is a L+-valued random lower triangular matrix such that TT ′ ∼ W (m+1, I),
and x, y ∈ Rd. Define, for i ≥ j, the numbers aij = xiyj . Then ⟨x, Ty⟩ =

∑
i≥j aijTij .

By Bartlett’s decomposition, the entries of the matrix T are independent and T 2
ii ∼

χ2((m + 1) − i + 1), and Tij ∼ N(0, 1) for i > j. Hence, our target quantity satisfies∫
[e⟨x,T y⟩]Pm+1(T ) =

∫
e
∑

i≥j
aijTij dPm+1(T ) =

∫ ∏
i≥j

eaijTij dPm+1(T ).

On the one hand, for the off-diagonal elements satisfy, using the expression for the
moment generating function of a standard normal random variable,

EP
m+1[eaijTij ] = exp

(
1
2a2

ij

)
.

For the diagonal elements the situation is not as simple, but a numerical solution is
possible. Indeed, for aii ≥ 0, and ki = (m + 1) − i + 1

EP
m[eaiiTii ] = 1

2
ki
2 Γ
(

ki

2
) ∫ ∞

0
x

ki
2 −1 exp

(
−1

2x + aii

√
x

)
dx

= 1F1

(
ki

2 ,
1
2 ,

a2
ii

2

)
+

√
2aiiΓ

(
ki+1

2
)

Γ
(

ki

2
) 1F1

(
ki + 1

2 ,
3
2 ,

a2
ii

2
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where 1F1(a, b, z) is the Kummer confluent hypergeometric function. For aii < 0,
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and U is Kummer’s U function.
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