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Preface

This dissertation marks a significant milestone in my academic journey in the field of
statistics. When I first embarked on this journey, I was intrigued by the ability of sta-
tistical tools to uncover complex patterns and provide clarity in the face of uncertainty.
At the same time, I became aware of all the ways in which statistics could be misused,
be it intentional or through ignorance, to reach unwarranted conclusions. This matter
is becoming more pressing with the increasing reliance on data analytics in modern
science and business. One of the most common problems is that researchers often
repeatedly analyze data and change or halt data collection based on interim results.
Such practices invalidate the conclusions drawn by traditional statistical methods. In
response, the field of anytime-valid inference has emerged, which comprises methods
that lead to reliable statistical conclusions regardless of whether inference is made at
the start, during, or at the end of data collection. This thesis contains a number of
results on the construction of such methods.

The intention behind this work is not to portray anytime-valid methods as the ul-
timate or all-encompassing solution. Instead, the aim is to provide a candid overview
of their strengths and weaknesses, along with a comparison to established methods
whenever applicable. It is my hope that this dissertation will equally encourage re-
flection, critique, and new insights; ultimately leading to further advancement of the
field of anytime-valid inference.
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1 | Introduction

Statistical procedure and experimental design are
only two different aspects of the same whole....

R. A. Fisher, The Design of Experiments

At the core of science is a systematic process of inquiry, where observations lead
to hypotheses, experiments provide evidence in favor of or against these hypotheses,
and this in turn shapes our understanding of the world around us. To illustrate the
complexities of this process, imagine that you frequently play table tennis with a friend.
After some time, you get the feeling that you are not equally matched and decide to
test this by playing a game against each other. A choice presents itself: one approach is
to play until a fixed number of rallies has been played, another is to follow the official
rules (first to 11, minimum of two-point difference), and a third option is to play
until, for whatever reason, either of you has had enough. Whichever option is chosen,
the outcome of the match will offer evidence in favor of or against the hypothesis
that you are (not) equally matched. Once again, this requires deliberation. Would
you consider winning by a single point to be evidence in favor of your hypothesis?
Or should the difference in points be more extreme before you believe that you are
not equally matched? In this analogy, the match represents an experiment and the
questions about its outcome mirror the subsequent statistical analysis. The first match
type listed above corresponds to experiments in which the number of data points to be
collected is fixed in advance. The second option relates to experiments where the data
collection plan is decided in advance, but the total number of data points collected is
variable (you could win 11-0, or a closer game might end 12-10). Finally, the third
variant corresponds to experiments without a predetermined sampling plan, that is,
where experimentation may be stopped at any point in time. The analysis of data
collected from this type of experiment lies at the heart of this thesis.
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1.1 Hypothesis Testing

The remainder of this introduction serves to further outline this problem and con-
textualize the results that are given in the subsequent chapters. The structure is as
follows: First, we introduce the general problem of statistical hypothesis testing, lead-
ing up to an explanation showing that experiments with a variable sample size require
different statistical methodology than those with a fixed sample size. Next, we discuss
one of the repercussions of not taking this into account properly. Following this (in
Section 1.3), a review is provided of the first statistical methods that were designed to
be used with a fixed data collection plan, but without a fixed sample size. Then, an
introduction to the theory of hypothesis testing for experiments without any sampling
plan is given. Finally, we give an overview of the content of this thesis.

1.1 Hypothesis Testing

A statistical hypothesis test is a data-driven method that is used to decide whether a
hypothesis of interest, called the null hypothesis, can be falsified. The way in which
hypothesis tests are used is comparable to a proof by contradiction. For example,
suppose that you want to verify the claim that you and your friend are not equally
good at table tennis. You would then take the null hypothesis to be the assumption
that this claim is false, that is, that you are equally good. After collecting data (playing
a match), a hypothesis test is used to determine whether the null hypothesis is still
plausible in light of the results. If the outcome of the test is that the null hypothesis
can be falsified, then the data are so incompatible with the null hypothesis that you
should no longer believe it to be correct. This would happen if, for example, one of
you wins by a landslide. You can then proceed as if your original claim were true,
that is, as if you are not equally good at table tennis. This is commonly referred to
as “rejecting” the null hypothesis. The other possibility is that the data do not give
sufficient reason to doubt the null hypothesis (for example, if the match is very close),
in which case you fail to reject the null hypothesis. This does not mean that the null
hypothesis is true: absence of evidence is not evidence of absence. In this case, you
can therefore not be sure about your original claim.

Of course, the conclusion drawn by a hypothesis test is useful only if it does not
lead to too many mistakes. To quantify how often a hypothesis test is wrong, the
null hypothesis is translated to a probabilistic model, which we denote by H0. This
translation allows probabilistic statements about the data to be made. For example,
in the table tennis example above, the null hypothesis postulates that you and your
friend are equally good. One way of modeling this is by saying that both of you are
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Chapter 1 | Introduction

equally likely to win each point. If this model were actually true, then the probability
that the difference in points is at least four in a match with a total of five points is
equal to 0.375, or 37.5%. This follows because there are five ways in which the score
could end up being 4-1 and only one way in which the score could be 5-0, and similarly
for 1-4 and 0-5. Under H0, all of these scores have associated probability 1

2
5, so the

total probability of this happening is 12 × 1
2

5 = 0.375.

Such statements allow us to only consider hypothesis tests such that, if H0 were
actually true, the probability of seeing data for which the test would reject H0 is not
too high. What qualifies as too high should be determined by the experimenters be-
forehand and is referred to as the significance level α; common values include 0.1, 0.05
and 0.01. False rejections of the null hypothesis are also called type-I errors, so the
above can be summarized as follows: the probability of making a type-I error should
be smaller than α. If this is true for a certain hypothesis test, we say that the test is
valid at the significance level α. Returning to the example, if a match with five rallies
is played, one might define a hypothesis test by rejecting the null hypothesis whenever
the difference in points is four or more. This test has a type-I error probability of 0.375
according to the above reasoning. That is, even if the null hypothesis were true, this
test would reject it with a probability of 37.5%. Therefore, it is not a valid hypothesis
test at any significance level α < 0.375. To obtain a smaller type-I error probability,
one can consider a test that only rejects the null hypothesis if the difference in points
is more extreme than four. In fact, it is a standard result in statistics that, for a fixed
sample size of n, rejecting when the difference in points exceeds 1.96 ×

√
n gives a

type-I error probability of approximately 0.05. For n = 5, this amounts to rejecting
the null hypothesis whenever the difference in points is greater than 1.96 ×

√
5 ≈ 4.4,

which only happens when the score is 5-0 in favor of either player.

The type-I error probability of this test is calculated under the assumption that
the sample size is fixed beforehand and that the data are only analyzed once. Such
methods will be referred to as fixed-sample methods. Now, suppose that the null
hypothesis is true but that you have a certain incentive to reject it nonetheless. If the
sample size n has not been fixed beforehand, you could adopt a technique known as
optional stopping: continue to play—increase the sample size—until the difference in
points first exceeds 1.96 ×

√
n. It follows from a standard result in probability theory

that this will surely happen infinitely often. Hence, you are certain to come to a point
at which the difference in points exceeds 1.96 ×

√
n. By stopping at such a point, the

hypothesis test will suggest to reject the null hypothesis, even though it is true. The
intuition is that, even if you and your friend are equally matched, one of you will at

3



1.2 Optional Stopping in Academia

some point reach a long enough lucky streak to be able to reject the null hypothesis.
This immediately disqualifies the use of fixed-sample methods whenever n is not fixed
in advance. The problem is neither that the method for data collection is invalid nor
that the hypothesis test is incorrect. They are simply not compatible. The test is
designed for a fixed sample size, while the experiment follows a sequential sampling
plan. The latter would be valid if the rejection rule were adjusted accordingly. That
is, serial data require different statistical methods from data collected in a batch.

1.2 Optional Stopping in Academia

One of the first documented cases of optional stopping was when researchers saw it
unfold in the study of extrasensory perception, studies to prove that the sixth sense
exists (see e.g Greenwood, 1938; Greenwood and Greville, 1939; Feller, 1940). It has
since been the subject of continuous debate among statisticians and has, more criti-
cally, been referred to as “sampling to a foregone conclusion” (Anscombe, 1954). The
problem is that researchers, either aware or unaware, might engage in optional stop-
ping and still report that they have conducted a fixed-sample hypothesis test at some
significance level α, while the true type-I error probability can be much higher. This
results in frequent controversies stemming from statistical investigations in various
fields. For example, an article published in 2018 in a Nature journal showed that
activation of certain neurons in animals suppresses REM sleep (Weber et al., 2018).
This conclusion was based on hypothesis tests designed for a fixed sample size, yet the
authors state that “we continuously increased the number of animals until statistical
significance was reached to support our conclusions.” This sparked some debate on
social media among statisticians (Barnett, 2018), but it only came to light because
the authors were transparent regarding their methodology.

An example in which there was no such transparency was when a team of re-
searchers supposedly showed the benefits of power posing (Carney et al., 2010). They
reported that assuming a powerful position helped boost confidence, increase testos-
terone, and decrease cortisol. Five years later, another research group tried to replicate
their findings with a larger sample size, and while they indeed found that power pos-
ing increased subjective feelings of power, they found no significant effect on hormonal
levels (Ranehill et al., 2015). In light of this and other failed replication attempts (see
e.g. Simmons and Simonsohn, 2017), the first author of the original article eventually
disassociated herself from the claims in the article and mentioned optional stopping as
one of her concerns: “We ran subjects in chunks and checked the effect along the way.
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Chapter 1 | Introduction

It was something like 25 subjects run, then 10, then 7, then 5” (Carney, 2016, fact
5). Unfortunately, these are not isolated incidents. In 2012, 56% of participants in a
survey of more than 2000 psychologists admitted to “deciding whether to collect more
data after looking to see whether the results were significant” (John et al., 2012).

This compromises the reliability of results derived from statistical analyses and,
in turn, might cause a distrust of statistics in general. Feller (1940) eloquently puts
it as follows: “...statistics makes claim to mathematical rigor, and still its practical
applications are often disputed or rejected as absurd. I fear it may sometimes produce
a feeling that mathematics is, after all, ‘one of those rational and scientific paths,
which is nothing more than a narrow, short, and dirty dead end, at the end of which
one hits their nose ingloriously’” (second part translated from French). Rather than
taking such a bleak point of view, statisticians have recently emphasized the need
to develop tools that can accommodate optional stopping. That is, to focus on the
development of methods that can handle serial data collection without losing type-I
error control (see e.g. Ramdas et al., 2023).

1.3 Sequential Methods

The first developments of methods that were designed for experiments with a variable
sample size were based on a simple observation: There are situations where one can
reach the same conclusions as when using fixed-sample methods but with a strictly
smaller sample size. For example, for a fixed sample size of n = 20, the table tennis
hypothesis test described above would reject the null hypothesis if the difference in
points is greater than or equal to 9. Now suppose that after 15 points the score is 15-0.
At this point, the game might as well be stopped, since no matter how it plays out,
the null hypothesis will always be rejected. That is, the sample size can be strictly
reduced while making the exact same decisions (a similar realization is already present
in early work on lot inspection by Dodge and Romig, 1929, p. 626).

This insight led to the idea that it might be beneficial to directly design hypoth-
esis tests that incorporate serial data collection. The culmination was the develop-
ment of a widely applicable sequential method: the sequential probability ratio test
(SPRT) (Wald, 1947). The SPRT works by updating a single number, the probability
ratio, that represents the evidence in favor of or against the null hypothesis after each
collected data point. Based on this number, the SPRT prescribes whether to collect
another data point or to stop and draw conclusions about the null hypothesis. In this
way, the total number of data points that will be collected in an experiment is variable
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1.4 Anytime-Valid Inference

and depends on the data that are observed. However, if one were to repeatedly follow
this procedure, the average sample size that is needed to reach a conclusion is smaller
than the average sample size that would be needed to draw similar conclusions using
any other method (fixed-sample and sequential alike). That is, the SPRT achieves the
optimal expected sample size.

This was a highly desirable feat because, in the intended applications, data col-
lection was extremely costly or even destructive. Indeed, the SPRT was developed in
the context of World War II and, as such, its applications included testing whether
ordnance (artillery, ammunition, explosives, etc.) was faulty or not (see also Wallis,
1980). The caveat to this cost efficiency is that the probability of falsely rejecting the
null hypothesis is only bounded by the prescribed significance level α if the SPRT’s
sampling plan is followed to a tee. If one deviates from it, then the type-I error prob-
ability might still be higher, so the SPRT does not fix the problems with optional
stopping that were outlined in the previous section.

1.4 Anytime-Valid Inference

The problem of optional stopping was specifically addressed in work by, among others,
Robbins (1952, 1970), Darling and Robbins (1968), and Lai (1976). They developed
hypothesis testing methods for which the type-I error probability remained below the
prespecified level of significance regardless of the data sampling rule that was employed.
Their methods are now referred to as anytime-valid. Similarly to the SPRT, anytime-
valid methods are based on a test statistic that can be thought of as a measure of
evidence against the null hypothesis at a certain time. This test statistic is updated
after observing each data point. If the total evidence is large enough at some point,
the null hypothesis is rejected. The key difference from the SPRT is that anytime-valid
methods do not prescribe whether or not to collect more data. Instead, this choice is
left to the experimenters. In particular, they might choose to keep collecting data until
the test statistic gives enough evidence to reject the null hypothesis. The probability
that this will ever happen if the null hypothesis is actually true, is smaller than α. As
such, anytime-valid methods are unaffected by optional stopping.

For a long time, anytime-valid methods made up only a minor segment of the area
of sequential analysis. A shift occurred when interest in them took off in recent years,
as demonstrated by the mere existence of this thesis. The key year for this shift was
2019, when at least four breakthrough articles on the subject were made available
online (Wasserman et al. (2020); Shafer (2021); Vovk and Wang (2021); Grünwald
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Chapter 1 | Introduction

et al. (2024); all of these articles first appeared on ArXiv in 2019). In addition to
these breakthroughs, the surge of interest may partly be caused by what is known as
the replication crisis, which refers to the widespread phenomenon that many scientific
studies cannot be reliably replicated or reproduced. One of the many facets of this
problem is that the number of scientific conclusions based on false-positive results is
much higher than one might theoretically expect. As argued in Section 1.1, this could
be caused by practices such as optional stopping. Therefore, anytime-valid methods
are sometimes presented as a partial solution to the replication crisis. Furthermore,
anytime-valid methods might be more appealing now than they used to be because
technological advances have transformed the way data is collected and stored (Cukier
and Mayer-Schoenberger, 2013; Sagiroglu and Sinanc, 2013). Datasets used to be
collected manually and stored on paper, film, or other analogue media with careful
thought as to what was stored and what was not. Today, the standard in many
fields—finance, commerce, and many more—has become storing data digitally, and as
much of it as possible. Think of stock prices, the amount of time customers spend
at a certain webshop, or atmospheric conditions at various points in time. These are
all examples of data that are inherently serial, and digital records allow them to be
accessed easily and at all times. Anytime-valid methods enable researchers to analyze
these data in real time and draw conclusions accordingly without breaking the type-I
error control, that is, without making too many mistakes.

1.5 Contributions of This Thesis

In the discussion of hypothesis testing so far, only one type of error has been considered:
false rejection of the null hypothesis. If this were the only basis on which hypothesis
tests are evaluated, then one should be content with never rejecting the null hypothesis,
and the experiment might as well not have been performed. Therefore, to determine
whether testing methods are actually useful, it is custom to consider a second type of
mistake: failure to reject the null hypothesis when it is actually false. This is commonly
referred to as a type-II error. For a fixed significance level α, the typical approach
for fixed-sample methods is to find the hypothesis test that minimizes the probability
of making a type-II error, among all methods with a type-I error probability below
α. Equivalently, one can consider maximizing one minus the probability of making
a type-II error, which is referred to as the power of the test. Which test has the
most power will depend on the specific hypotheses under consideration and should be
determined on a case-by-case basis.
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1.5 Contributions of This Thesis

For anytime-valid tests, the concept of power is ambiguous. Indeed, the advantage
of anytime-valid tests lies in the fact that they can be used with an unknown data
sampling rule. One might keep collecting data forever, in which case the null hypothesis
will almost certainly be rejected if it is false, or one might stop after a single data
point, making it highly unlikely to be rejected. Due to this ambiguity, it is customary
to consider optimality criteria different from power for anytime-valid methods. To
this end, Koolen and Grünwald (2022); Grünwald et al. (2024) propose to consider
anytime-valid tests that are based on log-optimal test statistics. A formal definition of
this concept, as well as a rigorous introduction to the theory of anytime-valid testing,
is given in Chapter 2. As is the case for power, the criterion of log optimality gives
an abstract notion of how optimal tests can be found. In practice, actually finding
them is not a straightforward exercise. This thesis is concerned with the criterion of
log-optimality and finding log-optimal test statistics for a variety of hypotheses. We
now give a brief overview of all the chapters.

Log Optimality

Grünwald et al. (2024) show that, under certain conditions, there exists a log-optimal
test statistic that takes the form of a likelihood ratio—an object that is well studied
in the classical literature on testing. However, when these conditions are not met,
the log-optimality criterion cannot fully differentiate between different test statistics.
That is, there are settings for which a wide range of test statistics all seem equally good
when judged by this criterion. One can even construct examples where a certain test
statistic always provides more evidence against the null hypothesis than another, yet
both statistics seem equally good according to the log-optimality criterion. Chapter 3
discusses a way to redefine the log-optimality criterion in such situations to avoid this.
Optimal test statistics are shown to still take on the form of likelihood ratios.

Exponential Families

Many common statistical models, such as the normal, Bernoulli, and Poisson model,
are instances of exponential families. The latter are collections of probabilistic models
with a specific form that offers great mathematical convenience for a variety of objec-
tives. As such, exponential families are used to model data by researchers in a wide
range of scientific fields for many different applications.

An example is for k-sample tests, where k groups of data (or samples) are observed
and the goal is to test whether they have the same distribution, under the assumption
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that this distribution comes from a certain exponential family. In Chapter 4, three
different test statistics for this problem are studied. The first is the log-optimal test
statistic for a specific alternative, which, as it turns out, cannot always be computed
efficiently. The second test statistic is generally suboptimal but can always be easily
evaluated. Finally, the third test statistic is designed to be robust against misspeci-
fication of the exponential family. That is, it is still valid if the data have the same
distribution in all groups but this distribution is not a member of the exponential
family. For small effects, that is, if the distributions of the different streams under the
alternative are not too different, it is shown that all three statistics give a surprisingly
similar amount of evidence.

Although the third statistic mentioned is robust against misspecification of the
exponential family, the first two are not. This means that if those statistics are used
but the model is wrong, then the type-I error probability is not guaranteed to be
below the desired significance level. Similar reliability issues can occur with many
statistical tools when the underlying models are misspecified. It is therefore important
to test whether the exponential family is well specified, that is, whether the data could
indeed have been generated by a specific exponential family. This problem is studied
in Chapter 5. Conditions are given under which log-optimal test statistics are easy
to compute. We furthermore discuss a variety of exponential families for which these
conditions hold, so that anytime-valid tests can be constructed to test whether they
are well specified.

Model-X

An important task in many branches of science is to detect whether there is an as-
sociation, or dependence, between a response and an explanatory variable. Consider,
for example, testing whether a certain medication (explanatory variable) has an im-
pact on a patient’s health (response). Often, there are also other variables that could
potentially impact the response (e.g. age) and therefore need to be controlled for.
These variables are called covariates. To capture this in a hypothesis testing setting,
one needs to construct a probabilistic model for the data. The difficulty with that is
that there is often little prior information about what the explanatory variable and
response will behave like. However, in specific cases, it is known how the explana-
tory variable should be modeled conditional on knowledge of the covariates. The
assumption that this conditional distribution is known, is referred to as the model-X
assumption. For example, in many clinical trials, the medication is administered to
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patients in a randomized manner, irrespective of the covariates. Therefore, the dis-
tribution of the explanatory variable (whether the medication has been administered
to a certain patient) conditional on the covariates (that patient’s characteristics) is
known: It is fully characterized by the randomization. Chapter 6 shows that, under
the model-X assumption, it is possible to construct anytime-valid tests of indepen-
dence without further assumptions on the way in which the data are generated. In
particular, log-optimal test statistics for specific alternatives are derived.

Group Invariance

Transformations of the data often do not have any meaningful effect from a statistical
point of view. For example, changing the units of some measurement from kilometers
to miles should generally not impact the information that can be extracted from the
data. It is therefore an accepted principle that statistical inferences should exhibit
certain invariance properties. In particular, if the data are not impacted by a certain
transformation, then the conclusions drawn from a hypothesis test should also not
be. Tests that have this property are referred to as invariant, and similarly for the
corresponding test statistics. Anytime-valid tests that are invariant are the subject
of Chapter 8. In particular, conditions are given under which the log-optimal test
statistic is invariant. That is, the conclusion that will be reached by the optimal test
will not depend on irrelevant aspects of the data.

However, it is not always entirely clear which facets of the data are actually ir-
relevant, that is, which transformations have a meaningful impact on the data. For
example, it is a common assumption that changing the order of the data points does
not have a meaningful effect on any important aspects of the data. However, there are
also situations where, for example, seasonal effects are lost by reordering the data. Car-
rying out analyses under the assumption that certain transformations do not impact
the data, while in reality they do, might cause researchers to draw wrong conclusions.
It is therefore also important to be able to test whether certain transformations have
an effect on the data. General methodology to construct anytime-valid tests for this
purpose is discussed in Chapter 7. Furthermore, conditions are shown under which
the corresponding test statistics are log optimal.
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2 | Preliminaries

In this chapter, the theory of anytime-valid testing is formally introduced. Specifically,
we will define what it means for a test to be anytime valid, discuss test statistics that
are commonly used to construct anytime-valid tests, and define appropriate notions of
optimality for those statistics. The concepts that are most relevant to the subsequent
chapters will be reiterated there; the aim here is solely to sketch the context in which
the results should be understood. We will therefore leave the measure-theoretic details
implicit for the most part.

Throughout, X1, X2, . . . denotes the data that are observed in a certain experi-
ment. The purpose of said experiment is to test the null hypothesis H0. That is,
the random variables X1, X2, . . . are assumed to be independent and identically dis-
tributed (i.i.d.)1 following an unknown probability distribution on, and taking values
in, the sample space X . The null hypothesis H0 is a collection of distributions on X
and the objective is to collect evidence against the claim that one of these distributions
generated X1, X2, . . . . The strength of this evidence is defined relative to an alterna-
tive hypothesis H1, which is a collection of plausible distributions on X for when H0 is
not true. For the sake of brevity, we will use Xn as shorthand for (X1, . . . , Xn) for all
n ∈ N, where we use the convention N = {1, 2, . . . }. Furthermore, a stopping time τ is
defined as a random variable that takes values in N∪{∞}, such that the event {τ = n}
is σ(Xn)-measurable for all n ∈ N. The intuition is that τ denotes the sample size
at which the experiment is stopped, and the event {τ = n} being σ(Xn)-measurable
means that the decision to stop at time n may only be based on the data available up
to that time.2 The set of all stopping times will be denoted by T .

1The assumption that data are i.i.d. is made purely for ease of exposition. It is not actually
required for most of the theory discussed here.

2More generally, there could be a filtration F = (Fn)n∈N on X , such that Fn represents all
information available at time n. For example, researchers might make the decision to ignore part of
the data, or to add e.g. randomization. This would result in F being a poorer or richer filtration than
σ(Xn), respectively. In this section, we only consider the case Fn = σ(Xn) for simplicity’s sake.
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The main goal in anytime-valid testing is to construct a sequence of decision rules
with a type-I error probability (the probability of rejecting H0 if it is actually true)
that is uniformly bounded over time.

Definition 2.1 (Anytime-valid sequential test). A sequential test is a sequence (ϕn)n∈N

of functions ϕn : X n → {0, 1}. A sequential test is said to be anytime valid at signifi-
cance level α ∈ (0, 1) if the following holds:

Q(∃n ∈ N : ϕn(Xn) = 1) ≤ α for all Q ∈ H0. (2.1)

In this definition, ϕn(Xn) = 1 indicates that the null hypothesis is rejected after
observing the first n data points and ϕn(Xn) = 0 means that there is not enough
evidence to reject the null. Inequality (2.1) ensures that the type-I error probability of
an anytime-valid test (ϕn)n∈N is smaller than α, even if the experimenter uses the most
aggressive stopping rule, that is, if they continue to collect data until ϕn(Xn) = 1.
However, the latter is a choice, not a requirement; the test would keep the type-I
error guarantee if the experimenter chooses any other moment to stop collecting data.
To emphasize that the type-I error guarantee also holds for other stopping rules, an
equivalent definition of anytime-validity (see e.g. Howard et al., 2021, Lemma 3) is
given by

Q(ϕτ (Xτ ) = 1) ≤ α for all τ ∈ T and Q ∈ H0. (2.2)

In particular, anytime-valid tests are also valid under sampling rules that do not
require the experimenter to reanalyze after each data point. That is, one might choose
to first collect a batch of data points of size n1 ∈ N, then compute ϕn1(Xn1) and
choose whether to collect another batch of some size n2 ∈ N or not. If so, then
ϕn1+n2(Xn1+n2) is computed, etc.

The output of a decision rule (that is, to reject or not) is generally based on a nu-
merical measure of evidence against H0. The guarantee in (2.1), or equivalently (2.2),
will only hold if this measure is chosen appropriately. Appropriate measures of evi-
dence are the subject of the next section.

2.1 The E-Family

One of the central statistics in the construction of anytime-valid tests is the e-statistic.

Definition 2.2 (E-statistic). For fixed n ∈ N, an e-statistic is any nonnegative statis-
tic E such that E = E(Xn) and EQ[E] ≤ 1 for all Q ∈ H0.
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Here, EQ[·] is used to denote the expected value under Q. E-statistics are also
known as e-variables. Both terms will be used interchangeably in the following chap-
ters. Furthermore, the realization of an e-statistic will be referred to as an e-value.

Intuitively, it should not occur frequently under the null hypothesis that we observe
a large e-value. Large e-values can thus be interpreted as evidence against the null
hypothesis. To turn this evidence into a hypothesis test, we can apply Markov’s
inequality to see Q(E ≥ 1/α) ≤ α. It follows that the test defined by 1 {E ≥ 1/α}
has a type-I error probability that is bounded by α. However, this test is only defined
after observing the first n data points, and thus requires the sample size to be fixed.
A first step to turn this into a sequential procedure is to realize that, if E and E′

are independent e-statistics, then E · E′ is again an e-statistic because EQ[E · E′] =
EQ[E] · EQ[E′] ≤ 1 for any Q ∈ H0. We can thus consider each data point separately,
define an e-statistic on each data point, and then multiply the e-statistics to get a
measure of the total evidence. That is, let Ei = Ei(Xi) be an e-statistic for each i,
then the product

∏n
i=1 Ei is again an e-statistic for any n ∈ N, because the Xi’s are

independent. This idea can be generalized to allow dependence between the e-statistics
by considering past-conditional e-statistics.

Definition 2.3 (Past-conditional e-statistic). A past-conditional e-statistic at time
n ∈ N is a nonnegative statistic E = E(Xn) s.t. EQ[E | Xn−1] ≤ 1 for all Q ∈ H0.3

Here, the expectation is to be read unconditionally for n = 1. The intuition is that
the past-conditional e-statistic at time n measures the evidence against H0 in round
n conditional on the past data. The total evidence at time n is then measured by the
product Sn =

∏n
i=1 Ei. It follows from the law of total expectation that Sn is again an

e-statistic. However, a stronger property also holds: the cumulative product (Sn)n∈N

forms a test supermartingale with respect to H0.

Definition 2.4 (Test supermartingale4). A test supermartingale for H0 is a sequence
(Mn)n∈N of nonnegative statistics Mn = Mn(Xn) such that EQ[M1] ≤ 1 and EQ[Mn |
Xn−1] ≤ Mn−1 for n > 1 and all Q ∈ H0.

3In this definition, the relevant randomness in a past-conditional e-statistic originates from Xn

only, whereas the randomness in a ‘regular’ e-statistic may come from n data points. However, as
we will see in Section 2.3, it might be that Xn = (Y1, . . . , Ym) for some sequence of data Y1, . . . , Ym.
Then, in round n, we could compute a statistic E = E(Y1, . . . , Ym) such that either EQ[E] ≤ 1
or EQ[E | Xn−1] ≤ 1 for all Q ∈ H0, corresponding to a regular or a past-conditional e-statistic,
respectively. Past-conditional e-statistics can thus be seen as e-statistics with an additional property.

4Conventionally, (test) supermartingales are defined with respect to a single distribution. However,
the composite definition given here is particularly useful in the context of anytime-valid testing (see
e.g. Ramdas et al. (2023), who call them composite test supermartingales).
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The fact that the cumulative product of past-conditional e-statistics forms a test
supermartingale for H0 follows from EQ[Sn | Xn−1] = Sn−1EQ[En | Xn−1] ≤ Sn−1

for all Q ∈ H0 and n > 1. Here, the last inequality follows from the definition of the
past-conditional e-statistic at time n. Furthermore, we have EQ[S1] = EQ[E1] ≤ 1 for
all Q ∈ H0 by definition, so that (Sn)n∈N indeed forms a test martingale. Conversely,
any test martingale (Mn)n∈N can be decomposed into past-conditional e-statistics
by considering En = Mn/Mn−1. Depending on the situation, it can be easier to
consider test supermartingales as a whole or to think in terms of the decomposition
in past-conditional e-statistics. The most well-known examples of e-statistics and test
supermartingales are likelihood ratios. To illustrate this, suppose that H0 = {Q} and
H1 = {P} for some P and Q under which data are i.i.d. and that have densities p and
q with respect to a common background measure. Then the likelihood ratio process
between P and Q is defined as (Mn)n∈N with Mn = p(Xn)/q(Xn). This process is a
test martingale for H0, which can be shown as follows

EQ[Mn | Xn−1] = p(Xn−1)
q(Xn−1)EQ

[
p(Xn)
q(Xn)

]
= Mn−1,

where the density in the denominator is canceled against that of the expectation. The
process (Mn)n∈N can be decomposed into (past-conditional) e-statistics by defining,
for each n ∈ N, En = p(Xn)/q(Xn).

Test supermartingales are useful for sequential testing because any test super-
martingale (Mn)n∈N for H0 satisfies

Q(∃n ∈ N : Mn ≥ 1/α) ≤ α for all Q ∈ H0, (2.3)

which is an immediate implication of Ville’s inequality (Ville, 1939). That is, the prob-
ability that a test martingale ever grows large is bounded under the null hypothesis.
In particular, applying this to the cumulative product of past-conditional e-variables,
it follows that the sequential test (ϕn)n∈N defined by ϕn(Xn) = 1 {Sn ≥ 1/α} is any-
time valid at level α. That is, we can monitor the cumulative product over time and
reject the null hypothesis as soon as it exceeds 1/α. However, as alluded to below
equation (2.2), it is not necessary to monitor the test martingale after each data point
to have a bounded type-I error probability. We might, for example, choose to collect
data in blocks and only compute the test martingale on a new block of data rather
than after each individual data point. In fact, inequality (2.3) is a consequence of a
more general property: any test supermartingale (Mn)n∈N with respect to Q ∈ H0
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satisfies EQ[Mτ ] ≤ 1 for any stopping time τ ∈ T , which follows from Doob’s optional
stopping theorem (Williams, 1991, Section 10.10). Combined with Markov’s inequal-
ity, it follows that Q(Mτ ≥ 1/α) ≤ α. We can recover inequality (2.3) by applying
this to τ∗ = inf{n ∈ N : Mn ≥ 1/α}. This suggests that it is not necessary to have
the extra structure of a test supermartingale (decomposability into past-conditional e-
statistics) to define an anytime-valid test. All we need is a process that, when stopped,
has expected value bounded by one. This idea gives rise to e-processes.

Definition 2.5 (E-process). An e-process is a sequence (En)n∈N of nonnegative statis-
tics En = En(Xn) such that EQ[Eτ ] ≤ 1 for all τ ∈ T and all Q ∈ H0.

Similar to the discussion above, the definition of an e-process ensures that Q(Eτ ≥
1/α) ≤ α for any Q ∈ H0, so that an anytime-valid test can be defined by (ϕn)n∈N

where ϕn(Xn) = 1 {En ≥ 1/α}. It should be clear that any test martingale is also an
e-process, however, the other way around is not necessarily true. Ramdas et al. (2022)
show that it is possible to define a nontrivial e-process for a certain problem for which
no nontrivial test martingales exist.

2.2 Optimality

Whenever the null hypothesis is not true, we would actually like to gather evidence
against it—that is, to obtain a large e-value. One idea is to use the e-statistic that is
expected to grow as fast as possible when the alternative hypothesis H1 is true. There
are many ways to define what this means exactly; here, the approach of Grünwald
et al. (2024) is followed. To this end, assume first that the alternative hypothesis is
simple, that is, H1 = {P}.

Definition 2.6 (Log-optimal e-statistic). For a fixed n, the log-optimal e-statistic is
the maximizer of E 7→ EP [ln E] over all e-statistics E = E(Xn).

Here, EP [ln E] can be understood as the expected rate at which evidence is accumu-
lated per batch of n data points, if one uses the e-statistic E. To explain, suppose that
we partition the data into blocks of size n and calculate the same e-statistic on each
block, that is, E1 = E(X1, . . . , Xn), E2 = E(Xn+1, . . . , X2n), etc. The total evidence
after m blocks of data will be measured by

∏m
i=1 Ei. If the alternative P is true, then

by the law of large numbers, it will P -a.s. hold that
∏m

i=1 Ei = exp(mEP [ln E]+o(m)).
That is, the accumulated evidence will grow exponentially fast in the number of blocks
at a rate of EP [ln E]. The log-optimal e-statistic is defined to maximize this rate. For
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this reason, it is also known as the growth-rate optimal (GRO) e-statistic. When
applied to blocks of size n = 1, the cumulative product (

∏m
i=1 Ei)m∈N defines a test

martingale, so that this procedure can be used for anytime-valid testing.
Alternatively, we can directly define the log-optimal e-process as the dynamic coun-

terpart of the log-optimal e-statistic (Koolen and Grünwald, 2022).

Definition 2.7 (Log-optimal e-process). For a fixed randomized stopping time τ ,
the log-optimal e-process is the maximizer of (En)n∈N 7→ EXn∼P τ [ln En(Xn)] over all
e-processes.

Here, a randomized stopping time τ is a process τ = (τn)n∈N where τn = τn(Xn) ∈
[0, 1] gives the conditional probability of stopping after having seen data Xn. That is,
for randomized stopping times, the choice to stop after n data points need not be de-
termined deterministically by Xn, but may be randomized. Furthermore, P τ denotes
the distribution induced by τ together with the alternative P . Randomized stopping
times are needed because, for regular stopping times, the log-optimal e-process might
remain zero until that specific stopping time is reached. This is undesirable if, for
whatever reason, we decide to employ a stopping time different from the one with
respect to which was optimized, because we might then be left without any evidence.

The motivation of the log-optimality criterion for e-processes is through repeated
testing. That is, instead of thinking about using the same statistic on different blocks of
data, we can think about using the same e-process and stopping rule over independent
repetitions of the same experiment. By a similar argument as above, the rate at which
evidence is accumulated over repetitions of the experiment is given by (En)n∈N 7→
EXn∼P τ [ln En(Xn)] and the log-optimal e-process is defined to maximize this rate.

For the stopping time τ ≡ n, the log-optimal e-process coincides with the log-
optimal e-statistic at sample size n. However, which e-process is log optimal generally
depends on the stopping rule and can be difficult to compute—if it is even known how
to do so (see e.g. Koolen and Grünwald, 2022, Section 4.5). To avoid this dependency
and complexity, it is common to consider test martingales that are the cumulative
product of log-optimal e-statistics instead. In general, it is unclear whether this is an
effective approach; for example, if no nontrivial test martingales exist, it is doomed
to fail. Remarkably, however, there are settings where the resulting test martingale
is also the log-optimal e-process with respect to any stopping time, randomized or
not (Koolen and Grünwald, 2022, Theorem 12). As we will see, this is true in the
contexts of Chapters 4–7. Although these chapters are framed from the perspective
of finding log-optimal e-statistics (with the exception of Chapter 7), the optimality
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results they contain therefore also hold with respect to (randomized) stopping times.
So far, all of the optimality criteria were defined for a simple alternative. There

are multiple ways in which they can be adjusted to handle composite H1. One such
approach is the method of mixtures (see e.g. Robbins, 1970). That is, one can first
consider the log-optimal e-statistic or e-process against each of the elements of H1

separately. These can then be combined by taking a convex mixture, which will
result in a valid e-statistic or e-process that can be used as a measure of evidence for
the entire alternative. To further illustrate, suppose that H1 = {P1, P2}, and that
Ê1 and Ê2 are the log-optimal e-statistics for P1 and P2 respectively. That is, for
j ∈ {1, 2}, Êj maximizes EPj [ln Ej ] over all e-statistics. Then for any w ∈ [0, 1], the
mixture wÊ1 +(1−w)Ê2 is an e-statistic. This mixture e-statistic serves a measure of
evidence against H0 relative to both P1 and P2 simultaneously. The mixture weight
w can either be chosen to reflect some prior belief as to which of the alternatives is
more likely, or, if no such information is available, it can be set to w = 1/2.

Alternatively, in the case of the multiplication of conditional e-statistics, one can
make use of prequential plug-in estimates (see e.g. Robbins and Siegmund, 1974).
That is, at each time, the (smoothed) maximum likelihood (or any other estimator)
under the alternative can be computed on the basis of previous data. Then, the log-
optimal e-statistic with respect to that estimate can be constructed. For example,
let us again consider H1 = {P1, P2} and suppose that P1 and P2 have densities p1

and p2 with respect to some background measure. After n − 1 rounds, we can use
these densities to determine which of the alternatives maximizes the likelihood, that
is, ĵn = arg maxj∈{1,2} pj(Xn−1). Then Êĵn

(Xn) can be used as test statistic at time
n, so that the total evidence equals

∏n
i=1 Êĵi

(Xi). This can be seen as an estimate of
the evidence we would have accumulated if we had known the true distribution and
used the log-optimal e-statistic for that distribution.

The method of mixtures and prequential estimation have in common that they
can be efficiently implemented as long as the log-optimal e-statistic for each alterna-
tive can be computed. The problem of finding log-optimal e-statistics for a simple
alternative is therefore important even when the true alternative one has in mind is
composite. This problem is at the heart of Chapters 3–7. Another method of deal-
ing with composite alternatives is by taking a worst-case approach. That is, one can
consider the maximizer of infP ∈H1 EP [ln E] over all e-statistics E. This requires a
fundamentally different analysis, because it cannot be implemented based on the log-
optimal e-statistic for fixed alternatives. However, a specific instance where it can be
applied efficiently is discussed in Chapter 8.
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2.3 From Experiment to Meta-Analysis

The setup so far has suggestively been framed as a single experiment. However, there is
no restriction on what Xn represents for a certain n ∈ N. For example, each Xn could
correspond to a sequence of data collected in an experiment to test H0. In this case,
considering an anytime-valid test on X1, X2, . . . corresponds to performing a meta-
analysis—combining the results—of all the different experiments. Viewed in this light,
the above theory reveals a straightforward method of conducting meta-analyses: all
experimenters should report an e-value and the results should be multiplied. Moreover,
there might be multiple layers of anytime-validity here: within each sub-experiment,
data might again be serial. That is, the data might be given by Xn = (Yn,1, . . . , Yn,τn),
where Yn,1, Yn,2, . . . denotes the data in the nth experiment and τn is the stopping
time for that experiment. If, for each experiment n, the researchers base their results
on a conditional e-process En,m = En(Yn,1, . . . , Yn,m), that is, such that EQ[En,τn |
Xn−1] ≤ 1 for all Q ∈ H0, then the stopped e-process defines a past-conditional e-
statistic for time n to use in the meta-analysis. The total evidence can therefore be
measured as

∏n
i=1 Ei,τi .

To illustrate, suppose that some institute conducts a small-scale trial to test the
efficacy of a certain drug or vaccine. Due to the limited scope of the trial, no significant
conclusions could be drawn based on the results. However, the results might seem
promising enough for the institute itself or another to conduct a second trial. By
definition, this introduces a sequential dependence between the trials, making it very
difficult to combine the results through standard meta-analysis techniques (Ter Schure
and Grünwald, 2019). However, if an e-process E1 = (E1,n)n∈N was used in the first
trial and a conditional e-process E2 = (E2,n)n∈N is used in the second trial, then the
total evidence can be measured by multiplying the stopped e-process from the first
trial with the e-process from the second trial. The total evidence can then be updated
and analyzed (that is, reject the null if it exceeds 1/α) after each new observation of
the second trial, while retaining type-I error guarantees. Note in particular that this
guarantee does not require the number of patients in either trial to be specified upfront.
Furthermore, this reasoning can be extended to multiple trials, that is, we might
add a third trial, and then a fourth, etc. Hence, e-processes enable straightforward
combination of results from separate studies (see Ter Schure and Grünwald (2022) for
more details).
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3 | On the Optimality of
E-statistics

In the previous chapter, we defined the log-optimal, or GRO, e-statistic in the context
of anytime-valid testing. In this chapter, we shift the focus to the properties of the
GRO e-statistic, independent of that specific context. In particular, we discuss the
form of the GRO e-statistic, as well as limitations of Definition 2.6.

To this end, it has recently been shown that, for testing simple alternatives against
composite null hypotheses, there is a one-to-one correspondence between the GRO
e-statistic and the reverse information projection (RIPr). The latter is an object
that arises in information theory and is defined as the measure in the null that is
closest to the alternative in information divergence. However, the RIPr as well as the
GRO e-statistic are not uniquely defined when the infimum information divergence
between the null and alternative hypothesis is infinite. We show that in such scenarios,
under some assumptions, there still exists a measure in the null that is closest to the
alternative in a specific sense. Whenever the information divergence is finite, this
measure coincides with the usual RIPr. It therefore gives a natural extension of the
RIPr to certain cases where the latter was previously not defined. This extended
notion of the RIPr is shown to lead to optimal e-statistics in a sense that is a novel,
but natural, extension of the GRO criterion. We also give conditions under which the
(extension of the) RIPr is a strict sub-probability measure, as well as conditions under
which an approximation of the RIPr leads to approximate e-statistics. For this case
we provide tight relations between the corresponding approximation rates.

Throughout this chapter, we assume that the null hypothesis is convex, which is
not true for most models used in practice. However, from the perspective of testing
with e-statistics, it does not matter whether one considers a given model or its convex
hull, because taking the convex hull does not change the set of all e-statistics.
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3.1 Introduction

3.1 Introduction

We write D(ν∥λ) for the information divergence (Kullback-Leibler divergence, (Kull-
back and Leibler, 1951; Csiszár, 1963; Liese and Vajda, 1987)) between two finite
measures ν and λ given by

D(ν∥λ) =


∫

Ω
ln
(

dν

dλ

)
dν − (ν(Ω) − λ(Ω)), if ν ≪ λ;

∞, else.

For probability measures the interpretation of D(ν∥λ) is that it measures how much
we gain by coding according to ν rather than coding according to λ if data are dis-
tributed according to ν. Many problems in probability theory and statistics, such
as conditioning and maximum likelihood estimation, can be cast as minimization in
either or both arguments of the information divergence. In particular, this is the
case within the recently established and now flourishing theory of hypothesis testing
based on e-statistics that allows for optional continuation of experiments (see Sec-
tion 3.2.3)(Grünwald et al., 2024; Ramdas et al., 2023; Vovk and Wang, 2021; Shafer,
2021; Henzi and Ziegel, 2022). That is, a duality has been established between optimal
e-statistics for testing a simple alternative P against a composite null hypothesis C
and reverse information projections (Grünwald et al., 2024). Here, the reverse infor-
mation projection (RIPr) of P on C is — if it exists — a unique measure Q̂ such that
every sequence (Qn)n∈N in C with D(P∥Qn) → infQ∈C D(P∥Q) converges to Q̂ in a
particular norm (Li, 1999; Csiszár and Matúš, 2003). Li (1999) showed that whenever
C is convex and D(P∥C) := infQ∈C D(P∥Q) < ∞, the RIPr Q̂ exists and the likelihood
ratio between P and Q̂ is an e-statistic (this result is restated as Theorem 3.1 below).
Grünwald et al. (2024) showed (restated as Theorem 3.3 below) that it is even the
optimal e-statistic for testing P against C. However, it is clear that the RIPr cannot
be defined in this way if the information divergence between P and C is infinite, i.e.
D(P∥C) = ∞. This leaves a void in the theory of optimality of e-statistics. In this
chapter we remedy this by realizing that even if all measures in C are infinitely worse
than P at describing data distributed according to P itself, there can still be a measure
that performs best relative to the elements of C. To find such a measure, we consider
the description gain (Topsøe, 2007) given by

D(P∥Q⇝ Q′) =
∫

Ω
ln
(

dQ′

dQ

)
dP − (Q′(Ω) − Q(Ω)) (3.1)
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whenever this integral is well-defined. If the quantities involved are finite then the
description gain reduces to

D(P∥Q⇝ Q′) = D(P∥Q) − D(P∥Q′). (3.2)

In analogy to the interpretation of information divergence for coding, the description
gain measures how much we gain by coding according to Q′ rather than Q if data are
distributed according to P . Furthermore denote

D(P∥Q⇝ C) := sup
Q′∈C

D(P∥Q⇝ Q′),

where undefined values are counted as −∞ when taking the supremum. If there exists
at least one Q∗ ∈ C such that P ≪ Q∗, then D(P∥Q ⇝ C) is a well-defined number
in [0, ∞] for any Q ∈ C. This quantity should be seen as the maximum description
gain one can get by switching from Q to any other measure in C. Intuitively, if there
is a best descriptor in C, nothing can be gained by switching away from it. Indeed, in
Proposition 3.6 we show that infQ∈C D(P∥Q⇝ C) is finite if and only if it is equal to
zero.

3.1.1 Contents and Overview

Below, in Section 3.2, we start by giving an overview of existing results on both the
reverse information projection and e-statistics, which we define and briefly motivate,
and the growth-rate optimality (GRO) criterion, a natural replacement of statistical
power within the context of e-value based hypothesis testing. Section 3.3 states Theo-
rem 3.5, our first central result. It shows that — under very mild conditions — there
exists a unique measure Q̂ such that every sequence (Qn)n∈N in C with

D(P∥Qn ⇝ C) → 0

converges to Q̂ in a specific metric which we define. Thus, Theorem 3.5 may be viewed
as a generalization of Li’s result stated below as Theorem 3.1. We refer to Q̂ as the
RIPr, as it coincides with the original notion of the RIPr whenever the information
divergence is finite. The remainder of Section 3.3 provides further discussion of this
result, as well as an example showing that our extended notion of the RIPr can be
well-defined whereas the RIPr was previously undefined. In the specific case that all
initial measures are probability measures, both Li’s original result and ours leave open
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3.2 Background

the possibility that Q̂ may be a strict sub-probability measure, integrating to less than
1. In Sub-Section 3.3.1 we give a further example showing that this can indeed be the
case, and we provide, via Theorem 3.9, a condition under which Q̂ is guaranteed to
be a standard (integrating to 1) probability measure. Sub-Section 3.3.2 then extends
the greedy algorithm of Li and Barron (1999) and Brinda (2018) for approximating
the RIPr in settings where D(P∥C) < ∞ to settings where the information divergence
might be infinite.

In Section 3.4 we turn to e-statistics. It contains our second central result, Theo-
rem 3.13, which shows that whenever our extended notion of the RIPr Q̂ exists, the
likelihood ratio of P and Q̂ is an optimal e-statistic according to the criterion of Defini-
tion 3.11, which can be seen as a strict generalization of GRO, the standard optimality
criterion for e-statistics. As such, this result may be viewed as a generalization of a
result of Grünwald et al. (2024) stated below as Theorem 3.3. After illustrating the re-
sult by an example, Sub-Section 3.4.2 provides another technical result, Theorem 3.16,
which relates approximations in terms of information gain, to approximations in terms
of e-statisticity: conditions are given under which a sequence Q1, Q2, . . . converging
to Q̂ in terms of information gain at a certain rate also satisfies that the likelihood
ratio between P and Q1, Q2, . . . converges to an e-statistic, and tight bounds on the
corresponding rates are given. After a discussion of related work, the chapter ends
with a summary and ideas for future work in Section 3.5. All proofs are delegated to
Appendix A.1. Appendix A.2 provides a general method for constructing RIPrs that
are strict sub-probability measures. Finally, Appendix A.3 provides a discussion on
the assumption of convexity that we will make throughout.

3.2 Background

3.2.1 Preliminaries

We work with a measurable space (Ω, F) and, unless specified otherwise, all measures
will be defined on this space. Throughout, P will denote a finite measure and C a set
of finite measures, such that P and all Q ∈ C have densities w.r.t. a common σ-finite
measure µ. These densities will be denoted with lowercase, i.e. p and q respectively.
We will assume throughout that C is convex, i.e. closed under finite mixtures. In
Section 3.4.1 and in more detail in Appendix A.3 we discuss how our results would
be affected if we were to adopt stronger notions of convexity like σ-convexity (closed
under countable mixtures), or Choquet-convexity (closed under arbitrary mixtures).
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Furthermore, we assume that there exists at least one Q∗ ∈ C such that P ≪ Q∗. This
assumption is needed to ensure that D(P∥Q ⇝ C) is a well-defined number in [0, ∞]
for any Q ∈ C.

3.2.2 The Reverse Information Projection

As mentioned briefly above, the reverse information projection is the result of min-
imizing the information divergence between P and C. If C is an exponential family,
this problem is well understood (Csiszár and Matúš, 2003), but we focus here on the
case that C is a general convex set. In this setting, the following theorem establishes
existence and uniqueness of a limiting object for any sequence (Qn)n∈N in C such that
D(P∥Qn) → D(P∥C) whenever the latter is finite. This limit (i.e. Q̂ in the following)
is called the reverse information projection of P on C.

Theorem 3.1 (Li (1999)). If P and all Q ∈ C are probability measures s.t. D(P∥C) <

∞, then there exists a unique (potentially sub-) probability measure Q̂ such that:

1. We have that ln qn → ln q̂ in L1(P ) for all sequences (Qn)n∈N in C such that
lim

n→∞
D(P∥Qn) = D(P∥C).

2.
∫

Ω ln dP
dQ̂

dP = D(P∥C),

3.
∫

Ω
dP
dQ̂

dQ ≤ 1 for all Q ∈ C.

3.2.3 E-Statistics and Growth Rate Optimality

The e-value has recently emerged as a popular alternative to the p-value for hypoth-
esis testing (Ramdas et al., 2023; Henzi and Ziegel, 2022). Unlike the p-value, it is
eminently suited for testing under optional continuation — and more generally, when
the rule for stopping or continuing to analyze an additional batch of data is not under
control of the data analyst, and may even be unknown or unknowable. It can be
thought of as a measure of statistical evidence that is intimately linked with numerous
ideas, such as likelihood ratios, test martingales (Ville, 1939) and tests of random-
ness (Levin, 1976). Formally, an e-value is defined as the value taken by an e-statistic,
which is defined as a random variable E : Ω → [0, ∞] that satisfies

∫
Ω E dQ ≤ 1 for

all Q ∈ C (Vovk and Wang, 2021). The set of all e-statistics is denoted as EC . Large
e-values constitute evidence against C as null hypothesis, so that the null can be re-
jected when the computed e-value exceeds a certain threshold. For example, the test
that rejects the null hypothesis when E ≥ 1/α has a type-I error guarantee of α by
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a simple application of Markov’s inequality: Q(E ≥ 1/α) ≤ α
∫

Ω E dQ ≤ α. For all
further details, as well as an extensive introduction to the concept, and how it relates
to optional stopping and continuation, we refer to Grünwald et al. (2024) and the
overview paper by Ramdas et al. (2023).

In general, the set EC of e-statistics is quite large, and the above does not tell us
which e-statistic to pick. This question was studied by Grünwald et al. (2024) and
a log-optimality criterion coined GRO (Growth-Rate Optimality) was introduced for
the case that the interest is in gaining as much evidence as possible relative to an
alternative hypothesis given by a single probability measure P . GRO is a natural
replacement of statistical power, which cannot meaningfully be used in an optional
stopping/continuation context. This criterion can be traced back to the information-
theoretic Kelly betting criterion by Kelly (1956) and is further discussed at length
by Shafer (2021); Ramdas et al. (2023); Grünwald et al. (2024), to which we refer for
more discussion.

Definition 3.2. If it exists, an e-statistic Ê ∈ EC is Growth-Rate Optimal (GRO) if
it achieves ∫

Ω
ln Ê dP = sup

E∈EC

∫
Ω

ln E dP.

The following theorem establishes a duality between GRO e-statistics and reverse
information projections. For a limited set of testing problems, it states that GRO
e-statistics exist and are uniquely given by likelihood ratios.

Theorem 3.3 (Grünwald et al. (2024), Theorem 1). If P and all Q ∈ C are probability
measures such that D(P∥C) < ∞, p(ω) > 0 for all ω ∈ Ω, and Q̂ is the RIPr of P on
C, then Ê = dP

dQ̂
is GRO with rate equal to D(P∥C), i.e.

sup
E∈EC

∫
Ω

ln E dP =
∫

Ω
ln Ê dP = D(P∥C).

Furthermore, for any GRO e-statistic Ẽ, we have that Ẽ = Ê holds P -almost surely.

3.3 The Reverse Information Projection

In this section, we state a result analogous to Theorem 3.1 in a more general setting.
Rather than convergence of the logarithm of densities in L1(P ), we consider conver-
gence with respect to a different metric on the set of measurable positive functions,
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i.e. M (Ω,R>0) = {f : Ω → R>0 : f measurable}. For f, f ′ ∈ M (Ω,R>0) we define

m2
P (f, f ′) := 1

2

∫
Ω

ln
(

f

f

)
+ ln

(
f

f ′

)
dP, (3.3)

where f := (f+f ′)/2. This is a divergence that can be thought of as the averaged
Bregman divergence associated with the convex function γ(x) = x − 1 − ln(x). In
particular, this means that for Q, Q′ ∈ C such that P ≪ Q and P ≪ Q′, we have that

m2
P (q, q′) = 1

2D(P∥Q⇝ Q̄) + 1
2D(P∥Q′ ⇝ Q̄). (3.4)

Chen et al. (2008) study averaged Bregman divergences in detail for general γ, and
they show that the function

m2
γ(x, y) = 1

2γ(x) + 1
2γ(y) − γ

(
x + y

2

)
is the square of a metric if and only if ln (γ′′(x))′′ ≥ 0. In our case, ln(γ′′(x))′′ =
2x−2, so this result holds. This can be used together with an application of the
Minkowski inequality to show that the triangle inequality holds for the square root
of the divergence (3.3), i.e. mP , on M (Ω,R>0). It should also be clear that for
f, g ∈ M (Ω,R>0) if f = g everywhere, then mP (f, g) = 0. Conversely mP (f, g) = 0
only implies that P (f ̸= g) = 0. This prevents us from calling mP a metric on
M (Ω,R>0), and we therefore define, analogous to Lp and Lp spaces, M (Ω,R>0) as
the set of equivalence classes of M (Ω,R>0) under the relation ‘∼’ given by f ∼ g ⇔
P (f ̸= g) = 0. By the discussion above, mP properly defines a metric on M (Ω,R>0).
In the following we will often ignore this technicality and simply act as if mP defines
a metric on M (Ω,R>0), since we are not interested in what happens on null sets of
P .

Considering convergence with respect to mP will be useful for our analyses in the
following. In particular, we will exploit on numerous occasions that mP can be inter-
preted as a symmetrized version of the description gain, as described in Equation (3.4).
However, other than mathematical convenience, there is no fundamental difference be-
tween considering convergence with respect to mP and convergence of the logarithms
in L1(P ), as considered in Theorem 3.1. Indeed, Lemma A.2 in Appendix A.1 shows
that the two types of convergence are equivalent. It is also this result from which the
following proposition follows.

Proposition 3.4. The metric space (M (Ω,R>0) , mP ) is complete.
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Everything is now in place to state the main result.

Theorem 3.5. If infQ∈C D(P∥Q ⇝ C) < ∞, then there exists a measure Q̂ that
satisfies the following for every sequence (Qn)n∈N in C such that D(P∥Qn ⇝ C) →
infQ∈C D(P∥Q⇝ C) as n → ∞:

1. qn → q̂ in mP .

2. If P ′ is a measure such that |infQ∈C D(P∥Q⇝ P ′)| < ∞, then∫
Ω

ln dP ′

dQ̂
dP = lim

n→∞

∫
Ω

ln dP ′

dQn
dP.

3. For any Q ∈ C, ∫
Ω

dP

dQ̂
dQ ≤ P (Ω) + Q(Ω) − lim inf

n→∞
Qn(Ω).

Theorem 3.1 is a special case of Theorem 3.5 when P and all Q ∈ C are probability
measures such that D(P∥C) < ∞. This follows because Equation (3.2) implies that
minimizing D(P∥Q ⇝ Q′) over Q is equivalent to minimizing D(P∥Q) and because
convergence of the densities in mP is equivalent to convergence of the logarithms in
L1(P ) by Lemma A.2 in Appendix A.1.1. We therefore refer to Q̂ as the reverse
information projection of P on C, thereby extending the definition of the latter (we
refrain from the term ‘generalized RIPr’, because it has already been used for the
RIPr whenever it is not attained by an element of C (Csiszár and Matúš, 2003) or
when the log score is replaced by another loss function (Grünwald and Mehta, 2020)).
However, the density of the measure Q̂ is only unique as an element of M(Ω,R>0),
since convergence of the densities holds in mP . This causes no ambiguity here, so that
we simply refer to it as ‘the’ RIPr.

Note that Theorem 3.5 implies that if there exists a Q ∈ C with D(P∥Q⇝ C) = 0,
then Q is the RIPr of P on C. This matches with the intuition that the maximum
gain we can get from switching away from the ‘best’ code in C should be equal to zero.
The following result establishes this more formally.

Proposition 3.6. The following conditions are equivalent:

1. There exists a measure P ′ such that D(P∥P ′ ⇝ C) is finite.

2. There exists a measure Q in C such that D(P∥Q⇝ C) is finite.
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3. There exists a sequence of measures Qn ∈ C such that D(P∥Qn ⇝ C) → 0 for
n → ∞.

Consequently, whenever infQ∈C D(P∥Q⇝ C) < ∞, it must actually be equal to zero.

To show that the reverse information projection exists, it is therefore enough to
prove that one of these equivalent conditions holds. Which condition is easiest to check
will depend on the specific setting, as exemplified by the following propositions.

Proposition 3.7. Suppose that C is the convex hull of finitely many distributions,
that is, C = conv({Q1, . . . , Qn}), then for any probability measure P with P ≪ Qi for
at least one i, it holds that D(P∥ 1

n

∑
Qi ⇝ C) < ∞.

Example 3.1. Let C be a singleton whose single element Q is given by the standard
Gaussian and let P be the standard Cauchy distribution. Since the Cauchy distribu-
tion is exponentially heavier-tailed than the Gaussian, we have that D(P∥C) = ∞.
However, since both distributions have full support, it follows that

D(P∥Q⇝ C) = D(P∥Q⇝ Q) = 0.

By Theorem 3.5 (1), Q is therefore the reverse information projection of P on C.
This example can be extended to composite C by considering all mixtures of the

Gaussian distributions N (−1, 1) and N (1, 1) with mean ±1 and variance 1. Propo-
sition 3.7 guarantees the existence of a reverse information projection although the
information divergence is still infinite because a Cauchy distribution is more heavy
tailed than any finite mixture of Gaussian distributions. Symmetry implies that the
reverse information projection must be equal to the uniform mixture of N (−1, 1) and
N (1, 1), which coincides with the result one would intuitively expect.

Proposition 3.8. Assume that C is a convex set of probability measures that has finite
minimax regret and with normalized maximum likelihood distribution Q∗ ∈ C. Then
for any probability measure P that is absolutely continuous with respect to Q∗, it holds
that D(P∥Q∗ ⇝ C) < ∞.

For an extensive discussion on minimax regret in the present coding context, as well
as the normalized maximum likelihood distribution (also known as Shtarkov distribu-
tion), see e.g. Grünwald and Harremoës (2009); van Erven and Harremoës (2014). In
short, the minimax regret is defined as infQ∈C supQ′∈C,ω∈Ω ln q′(ω)/q(ω). This quantity
is known to be finite if and only if the normalized maximum likelihood distribution
Q∗, defined as q∗(ω) = supQ∈C q(ω)/

(∫
Ω

supQ∈C q dµ
)
, is well-defined. One-dimensional
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exponential families with finite minimax regret have been classified by Grünwald and
Harremoës (2009).

3.3.1 Strict Sub-Probability Measure

We return now to the familiar setting where P is a probability measure and C a convex
set of probability measures. It is easy to verify that the RIPr Q̂ of P on C is then a
sub-probability measure. This follows because we know that there exists a sequence
(Qn)n∈N in C such that qn converges point-wise P -a.s. to q̂ and Fatou’s Lemma tells
us ∫

Ω
q̂ dµ =

∫
Ω

lim inf
n→∞

qn dµ ≤ lim inf
n→∞

∫
Ω

qn dµ = 1. (3.5)

It is not clear a priori whether this can ever be a strict inequality. For example, if the
sample space is finite, the set of probability measures is compact, so the limit of any
sequence of probability measures (i.e. the reverse information projection) will also be
a probability measure. The following example illustrates that this is not always the
case for infinite sample spaces, and it can in fact already go wrong for a countable
sample space with D(P∥C) < ∞.

Example 3.2. Let Ω = N and F = 2N. Furthermore, let P denote the probability
measure δ1 concentrated in the point i = 1 and C the set of distributions Q satisfying

∞∑
i=1

1
i
q(i) = 1

2 .

This set is defined by a linear constraint, so that C is convex, and for any Q ∈ C, we
have

q(1) +
∞∑

i=2

1
i
q(i) =

∞∑
i=1

1
i
q(i) = 1

2 ,

implying that q(1) ≤ 1/2. It follows that D(P∥Q) = − ln(q(1)) ≥ ln(2). The sequence
Qn = n−2

2n−2 δ1 + n
2n−2 δn satisfies Qn ∈ C and

D(P∥Qn) = ln 2n − 2
n − 2 → ln(2).

Consequently, it must hold that D(P∥C) = ln(2). The sequence Qn converges to the
strict sub-probability measure (1/2)δ1, which must therefore be the RIPr of P on C.

A more general example, which can be seen as a template to create such situa-
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tions, is given in Appendix A.2. The common theme is that C is defined using only
constraints of the form

∑
i f1(i)q(i) = c, where f1 is some positive function such that

limn→∞ f1(n) = 0. Since C only contains probability measures, there is the additional
constraint that

∑
i f0(i)q(i) = 1, where f0 denotes the constant function f0 ≡ 1. This

function f0 dominates all other constraints f1 in the sense that limi→∞ f1(i)/f0(i) = 0,
but is itself not dominated by any of the constraints in the same manner. It turns out
that this is the precise condition that dictates whether or not a constraint has to be
respected when taking point-wise limits of elements in C. Indeed, as shown in the the-
orem below, any constraint on C that is dominated by another constraint in the sense
described above cannot be violated by taking point-wise limits. Therefore, if we add
a restriction to C that dominates the constant function 1, i.e. that is defined by some
function f1 with limn→∞ f1(n) = ∞, then the RIPr cannot be a strict sub-probability
measure.

Theorem 3.9. Take Ω = N, F = 2N, and let C be a convex set of probability measures.
Suppose that for f0, f1 : N → R>0, we have that

∑
i f0(i)q(i) ≤ λ0 and

∑
i f1(i)q(i) =

λ1 for all Q ∈ C. If Qn denotes a sequence of measures in C that converges point-wise
to some distribution Q∗, and f0 dominates f1 in the sense that

lim
i→∞

f1 (i)
f0 (i) = 0, (3.6)

then ∑
i

f1 (i) · q∗ (i) = λ1. (3.7)

3.3.2 Greedy Approximation

So far, we have discussed the existence and properties of the RIPr of P on C. However,
there will be many situations where it is infeasible to compute this exact projection,
as it requires solving a complex minimization problem. For example, if C is given
by the convex hull of some parameterized family of distributions, the reverse infor-
mation projection might be an arbitrary mixture of elements of this family, and the
minimization problem need not be convex in the parameters of the family. To this
end, Li and Barron (1999) propose an iterative greedy algorithm for the case that C
is given by the σ-convex hull (all countable mixtures, see Appendix A.3) of a param-
eterized family of distributions, i.e. C = σ-conv({Qθ : θ ∈ Θ}), and D(P∥C) < ∞.
The algorithm starts by setting Q1 := Qθ1 , where θ1 minimizes D(P∥Qθ1), and then
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iteratively defining Qk := (1−αk)Qk−1 +αkQθk
, where αk = 2/(k+1)1 and θk is chosen

to minimize D(P∥Qk). It is shown that, if supx,θ1,θ2 log qθ1 (x)/qθ2(x) is bounded, then
D(P∥Qk) converges to D(P∥C) at rate 1/k. Later, Brinda (2018) showed that the
condition that the likelihood ratio has to be uniformly bounded in x can be relaxed to
the condition that (3.8) below is finite. In both of these previous works, it is simply
assumed that a minimizer in each step exists, though it need not necessarily be unique.
We will do likewise in the following, where we give an adaptation of the algorithm that
works when the KL divergence is infinite.

Algorithm 1 Greedy Approximation of the RIPr
1: Fix Q∗ ∈ C s.t. | infθ∈Θ

∫
Ω log q∗

/qθ dP | < ∞
2: Let Q1 = Qθ1 , where θ1 = arg min

θ′∈Θ
D(P∥Qθ′ ⇝ Q∗)

3: for k = 2, 3, . . . do
4: Choose αk = 2

k+1 and θk = arg minθ′∈Θ D(P∥(1 − αk)Qk−1 + αkQθ′ ⇝ Q∗)
5: Let Qk = (1 − αk)Qθk−1 + αkQθk

6: end for

Proposition 3.10. Suppose that infQ∈C D(P∥Q⇝ C) < ∞, let (Qk)k∈N be the output
of Algorithm 1, and let Q be any measure in C, so that q =

∑
θ∈Θ′ qθ · wQ(θ) for some

probability mass function wQ on a countable Θ′ ⊂ Θ. If D(P∥Q′ ⇝ Q′′) is finite for
all Q′, Q′′ ∈ C, then it holds that

D(P∥Qk ⇝ Q) ≤
b

(k)
Q (P )

k
,

where b
(k)
Q (P ) is given by

∫
Ω

(
1 + sup

θ∗∈{θi}k
i=1

log supθ∈Θ qθ

qθ∗

) ∑
θ∈Θ′ q2

θ · wQ(θ)
q2 dP ≤

sup
Q∈C

∫
Ω

(
1 + sup

θ∗,θ∈Θ
log qθ

qθ∗

) ∑
θ∈Θ′ q2

θ · wQ(θ)
q2 dP. (3.8)

It follows that if b
(k)
Q is uniformly bounded over all Q ∈ C, in particular if (3.8) is

finite, then D(P∥Qk ⇝ C) converges to zero, i.e. Qk converges to the RIPr of P on C,
at rate 1/k. The former holds under the strong, but often imposed assumption that the

1Li actually proposes to either minimize over αk or use α2 = 2/3 and αk = 2/k for k > 2; the
formulation given here is a slight simplification by Brinda (2018).
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likelihood ratios in C are uniformly bounded; for example when C is given by the σ-
convex hull of Gaussian densities restricted to a cube (Li, 1999, Example 1). However,
(3.8) might also be finite under weaker assumptions. For example, consider the set of
Gaussian mixtures as in Example 3.1, that is, C = {w · N (−1, 1) + (1 − w) · N (1, 1) :
w ∈ [0, 1]}. It can be seen that bQ(P ) < ∞ for all Q ∈ C whenever P has a finite
first moment. Moreover, if the latter holds, then bQ(P ) is uniformly bounded over all
Q ∈ C′ where C′ = {w ·N (−1, 1)+(1−w) ·N (1, 1) : w ∈ [c, 1−c]} for some c ∈ (0, 1/2).

Whereas Proposition 3.10 is a satisfying theoretical result, we must concede that
Algorithm 1 might not be the fastest to implement in practice. This arises from the
fact that the objective D(P∥(1 − αk)Qk−1 + αkQθ′ ⇝ Q∗) need not be convex in θ′.
One might therefore have to resort to an exhaustive search over a discretization of
the parameter space. On top of that, there is no guarantee that the information gain
is easily computable. As an alternative for the case that Θ is finite and D(P∥C) <

∞, one might use the iterative algorithm proposed by Csiszár and Tusnády (1984,
Theorem 5). A big advantage of the latter is that their recursive update step has
an explicit formula, which makes each iteration considerably faster. The downside is
that, whereas convergence in terms of KL is guaranteed, it is unclear at what rate
this happens in general. Furthermore, proving convergence of their algorithm in the
setting where D(P∥C) = ∞ seems far from a straightforward exercise.

3.3.3 Discussion

The results in this section might be regarded as a generalization of large parts of
Chapters 3 and 4 in Li’s Ph.D. thesis (Li, 1999) and in fact the tools in this section
were initially developed to clear up some ambiguity around the proof of Theorem 3.1,
Part 1 as provided by Li. That is, Li states that for all sequences (Qn)n∈N in C such
that limn→∞ D(P∥Qn) = D(P∥C) it holds that ln qn → ln q̂ in L1(P ). However,
the proof thereof refers to his Lemma 4.3, which only shows existence of one such a
sequence. Then, in Lemma 4.4, Li also shows that if Q̂ is such that log qn → log q̂ in
L1(P ) for some sequence (Qn)n∈N that achieves limn→∞ D(P∥Qn) = D(P∥C), then
it must hold that D(P∥Q̂) = D(P∥C). However, it is a priori not clear whether
every sequence (Qn)n∈N that achieves limn→∞ D(P∥Qn) = D(P∥C) has such a limit.
Moreover, it is never shown that, if it exists, this limit must be the same for every such
sequence. Note that it is not at all our intention here to criticize Li’s fundamental and
ground-breaking work. Li’s is one of those rare theses that have had a major impact
outside of their own research area: being a thesis on information-theory, it served
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as the central tool and inspiration for papers on fast convergence rates in machine
learning theory (van Erven et al., 2015; Grünwald and Mehta, 2020), and also for
Grünwald et al. (2024), which led to a breakthrough in (e-based) hypothesis testing.
Our aim is merely to indicate that Theorem 3.5 ties up some loose ends in Li’s original,
pioneering results.

3.4 Optimal E-Statistics

In this section, we assume that P and all Q ∈ C are probability measures, and we
are interested in the hypothesis test with P as alternative and C as null. To this end,
Theorem 3.5 shows that — whenever it exists — the likelihood ratio of P and its RIPr
is an e-statistic. A natural question is whether the optimality of the RIPr in terms
of describing data distributed according to P carries over to some sort of optimality
of the e-statistic, as is true for the GRO criterion in the case that D(P∥C) < ∞. It
turns out that this is true in terms of an intuitive extension of the GRO criterion.
Completely analogously to the coding story, we simply have to change from absolute
to pairwise comparisons.

Definition 3.11. For e-statistics E, E′ ∈ EC , we say that E is stronger than E′ if the
following integral is well-defined and nonnegative, possibly infinite:∫

Ω
ln
(

E

E′

)
dP, (3.9)

where we adhere to the conventions ln(0/c) = −∞ and ln(c/0) = ∞ for all c ∈ R>0.
Furthermore, an e-statistic E∗ ∈ EC is a strongest e-statistic if it is stronger than any
other e-statistic E ∈ EC .

The notion of optimality in Definition 3.11 comes down to the simple idea that
if one e-statistic E is stronger than another e-statistic E′, then repeatedly testing
based on E eventually becomes more powerful than repeatedly testing based on E′

in the sense that there is a higher probability of rejecting a false null-hypothesis. Let
us explain in more detail what we mean by this. Suppose that we conduct the same
experiment N times independently to test the veracity of the hypothesis C, resulting in
outcomes ω1, . . . , ωN . For any given e-statistic E ∈ EC , we have that

∏N
i=1 E(ωi) is still

an e-statistic, not just for fixed N but even if N is a random (i.e. data-dependent)
stopping time. So, as indicated before, it can be used to test C with type-I error
guarantees. Yet, for two e-statistics E, E′ ∈ EC , the law of large numbers states that
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if P is true, it will almost surely hold that∏n
i=1 E(ωi)∏n
i=1 E′(ωi)

= exp
(

n

∫
Ω

ln
(

E

E′

)
dP + o(n)

)
.

It follows that if the integral
∫

Ω ln (E/E′) dP is positive then with high probability E

will, for large enough n, give more evidence against C than E′ if the alternative is true,
i.e. a test based on E will asymptotically have more power than a test based on E′.

Since we assume throughout that there exists a Q∗ ∈ C such that P ≪ Q∗, it
follows that for any e-statistic E we must have P (E = ∞) = 0, which simplifies any
subsequent analyses greatly.

Proposition 3.12. Assume that C is a set of probability measures and that P is a
probability measure. If there is an E′ ∈ EC such that supE∈EC

∫
Ω ln (E/E′) dP < ∞,

then a strongest e-statistics exists. Furthermore, if E1 and E2 are both strongest e-
statistics then E1 = E2 holds P -a.s.

The strongest e-statistic in Definition 3.11 can be seen as a generalization of
the GRO e-statistic, because if

∫
Ω ln E dP and

∫
Ω ln E′ dP are both finite, (3.9) can

be written as the difference between the two logarithms, that is,
∫

Ω ln (E/E′) dP =∫
Ω ln E dP −

∫
Ω ln E′ dP . In this case, finding the strongest e-statistic therefore cor-

responds to maximizing
∫

Ω ln E dP over all e-statistics, thus recovering the original
GRO criterion. As an extension of that case, we prove that whenever the RIPr exists,
it always leads to the strongest e-statistic.

Theorem 3.13. Suppose that both P and all Q ∈ C are probability measures and that
infQ∈C D(P∥Q ⇝ C) < ∞. If Q̂ denotes the RIPr of P on C, then Ê = dP/dQ̂ is the
strongest e-statistic.

The likelihood ratio between P and its RIPr is in fact the only e-statistic in the
form of a likelihood ratio with P in the numerator, as the following proposition shows.
Though the statement is more general, the proof is completely analogous to part of
the proof of Lemma 4.1 by Li (1999).

Proposition 3.14. Suppose that C is a set of probability measures and that P is a
probability measure. If there exists a measure Q∗ ∈ C such that dP/dQ∗ ∈ EC, then
D(P∥Q∗ ⇝ C) = 0, i.e. Q∗ is the RIPr of P on C.

We now return to Example 3.1, where the GRO criterion is not able to distinguish
between e-variables, but we are able to do so with Definition 3.11 and Theorem 3.13.
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Example 3.1 (continued). In the case that P is the standard Cauchy and C = {Q},
where Q is the standard Gaussian, it is straightforward to see that the likelihood ratio
between P and Q is an e-statistic, i.e.∫

Ω

dP

dQ
dQ =

∫
Ω

dP = 1.

However, for the growth rate it holds that∫
Ω

ln
(

dP

dQ

)
dP = D(P∥Q) = ∞.

The same argument can be used to show that for any 0 < c ≤ 1, we have an e-
statistic given by c dP/dQ, which still has infinite growth rate. The GRO criterion
in Definition 3.2 is not able to tell which of these e-statistics is preferable. However,
since Q is the RIPr of P on C, it follows from Theorem 3.13 that dP/dQ is the strongest
e-statistic, and in particular it is stronger than c dP/dQ for all 0 < c < 1.

3.4.1 Convexity

In the discussion above, the null hypothesis C is assumed to be convex, which does
not hold for many of the null hypotheses commonly employed in statistics, such as
the set of all Gaussian distributions with varying mean and/or variance. However, it
follows from the Fubini-Tonelli theorem that the set of e-statistics on C equals the set
of e-statistics on the convex hull of C. The same is true if the convex hull is replaced
by the σ-convex hull where countable mixtures are allowed or by the Choquet-convex
hull where arbitrary mixtures are allowed (see Appendix A.3 for precise definitions).
Therefore, if there exists a strongest e-statistic for testing the alternative P against
any of these notions of the convex hull, then that is also the strongest e-statistic for
testing P against the original null hypothesis, regardless of whether that was convex.
It follows from Theorem 3.13 that, to find the strongest e-statistic, it suffices to find
the RIPr of P on any of the notions of the convex hull. In particular, if RIPrs exists on
more than one of these, they must coincide; on the other hand, none of the three RIPrs
may exist, and our results also do not rule out the possibility that the RIPr exists on
just one or two of the three convex hulls. To witness, in Appendix A.3 we give an
example (Example A.1) in which the RIPr of P on the σ-convex hull exists, whereas
the RIPr of P on the convex hull does not. At the same time, there are constraints:
Theorem A.8 in Appendix A.3 implies that if the RIPr on the convex hull of C exists,
then the RIPr on the σ-convex hull of C also exists (and then they must be equal).

34



Chapter 3 | On the Optimality of E-statistics

Things become much more clear-cut if the RIPr Q̂ of P on a certain notion of the
convex hull exists and is an element of that set. In that case, Q̂ is also the RIPr of P

on any stronger notion of the convex hull. Indeed, the different levels of convex hulls
are nested, and their corresponding sets of e-statistics coincide, so this follows directly
from Proposition 3.14:

Corollary 3.15. Let C denote a set of probability measures (not necessarily convex)
and let P denote a probability measure. If the RIPr of P on the convex hull of C exists
and is given by Q̂ ∈ conv(C), then Q̂ is also, (a) the RIPr of P on the σ-convex and,
(b), on the Choquet-convex hull of C. Similarly, if Q̂ ∈ σ-conv(C) is the RIPr of P on
σ-conv(C), then (c) Q̂ is also the RIPr of P on the Choquet-convex hull of C.

Further details regarding convexity are presented in Appendix A.3. In particular,
Theorem A.8 in the latter gives an analogous result to Corollary 3.15, Part (a), for
the case that P and C are not restricted to be probability measures, and the RIPr is
not assumed to be attained in the set.

3.4.2 Approximation

In Section 3.3.2, we discussed an algorithm that provides an approximation of the RIPr
for scenarios where it is not possible to explicitly compute the latter. However, the
convergence guarantee given by Proposition 3.10 is in terms of the information gain.
That is, if Qk is the approximation of the projection after k iterations, then under
suitable conditions it holds that D(P∥Qk ⇝ C) → 0. This is not enough if we want
to use such an approximation for hypothesis testing: we need that p/qk gets closer and
closer to being an e-statistic. The following theorem gives a condition under which
this is true.

Theorem 3.16. Assume infQ∈C D(P∥Q⇝ C) < ∞, fix Q, Q′ ∈ C, set δ := D(P∥Q⇝

C) and suppose that there exists β ∈ (0, ∞] such that ∥q′
/q∥1+β < ∞. If β ≤ 1 or

D(P∥Q′ ⇝ C) ≤ Kδ, then it holds that∫
Ω

p

q
dQ′ =

∫
Ω

q′

q
dP = 1 + O

(
Cβ · δ

β
1+β

)
as δ → 0, (3.10)

where Cβ = ∥q′
/q∥1+β if β ≤ 1 and Cβ = K

β−1
2(1+β) ∥q′

/q∥1+β otherwise.

Here, we use ∥f∥p for p ∈ (0, ∞] to denote the Lp(Ω, P ) norm of a function f ∈
M(Ω,R>0), i.e.

(∫
Ω(f)p dP

)1/p. Explicit values for the constants in (3.10) can be
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found in the proof in the appendix. In particular, Theorem 3.16 implies the following:
if there are C, δ0 > 0 such that ∥q′

/q∥2 ≤ C for all Q′ ∈ C and all Q ∈ C with
D(P∥Q ⇝ C) ≤ δ0, then any sequence Q1, Q2, . . . with D(P∥Qk ⇝ C) → 0 will have
supq′∈C

∫
Ω

q′
/qk dP = 1 + O(δ1/2

k ), where δk = D(P∥Qk ⇝ C). This gives an easy to
check condition for the convergence of p/qk to an e-statistic. This square-root rate
of convergence cannot be improved in general without an extra assumption, even if
all likelihood ratios are bounded, i.e. ∥q′

/q∥∞ < ∞. This can be seen by taking P

and Q to be Bernoulli distributions with parameter 1/2 and 1/2 + ϵ respectively, C
the set of Bernoulli distributions with parameters in [1/4, 3/4] and Q′ Bernoulli 1/4.
Then δ = D(P∥Q ⇝ C) = 2ϵ2(1 + o(1)) yet

∫
Ω

q′
/q dP = 1 + 4ϵ(1 + o(1)). But if

likelihood ratios are bounded and we additionally consider Q′ in a ‘neighborhood’ of
Q (i.e. D(P∥Q′ ⇝ C) ≤ Kδ), then a linear rate is possible as shown in Theorem 3.16
by letting β tend to infinity; the rate then interpolates between δ1/2 and δ depending
on the largest β for which the (1 + β)-th moment exists. Furthermore the following
example shows that in general bounds on the integrated likelihood ratios are necessary
for the convergence to hold at all.

Example 3.3. Let Q represent the family of geometric distributions on Ω = N0 and
let C = conv(Q). The elements of Q are denoted by Qθ with density qθ(n) = θn(1−θ),
where θ ∈ [0, 1) denotes the probability of failure. For simplicity, assume that P ∈ Q
so that the reverse information projection of P on C is equal to P . Take for example
P = Q1/2, then for any θ, θ′ ∈ [0, 1)

∫
Ω

qθ′

qθ
dP =

∞∑
n=0

(
1
2

θ′

θ

)n 1
2

1 − θ′

1 − θ

=


1

1− θ′
2θ

· 1
2

1−θ′

1−θ , if θ′ < 2θ;

∞, otherwise;
(3.11)

whereas

D(P∥Qθ) =
∞∑

n=0

(
1
2

)n+1
(−n log(2θ) − log 2(1 − θ))

= log
1/2

1 − θ
+ log

1/2

θ
,

Now consider a sequence 1/3 < θ1 < θ2 < θ3 . . . that converges to 1/2. Then by the
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above,
D(P∥Qθi) → 0 = D(P∥C).

We also see that for all i and all θ′ ∈ [2θi, 1), we have∫
Ω

qθ′

qθi

dP = ∞,

i.e. for all i we have supθ′∈[0,1)
∫

Ω
qθ′/qθi

dP = ∞.

3.4.3 Related Work

The results on the existence of optimal e-statistics displayed in this section bear sim-
ilarities with work concurrently done by Zhang et al. (2024). In particular, they show
that if C is a convex polytope, then there exists an e-statistic in the form of a likeli-
hood ratio between two unspecified measures. Since a convex polytope contains the
uniform mixture of its vertices, which can be shown to have finite information gain,
this also follows from our Proposition 3.7. However, the techniques used to prove their
results appear to be of a completely different nature than the ones used in this chap-
ter, as they rely mostly on classical results in convex geometry together with results
on optimal transport (and with these techniques, they provide various other results
incomparable to ours).

In the case of compact alternative they furthermore discuss a property which
they refer to as nontrivial e-power. That is, if the alternative is a convex polytope
A, then at least one of their e-statistics in the form of a likelihood ratio satisfies
infP ∈A

∫
Ω ln E dP > 0. We now show that the existence of such an e-statistic also

follows from our results. In fact, if A is any convex set (not just a polytope) such
that infP ∈A D(P∥C) < ∞, then (as Zhang et al. (2024) point out) a similar result is
already implied by Grünwald et al. (2024) as long as the infimum is achieved on the
left. Indeed, they show that the likelihood ratio of the distribution that achieves the
infimum and its RIPr is an e-statistic that has nontrivial e-power. This leaves the case
that infP ∈A D(P∥C) = ∞. Indeed, the current work implies that also in this case, an
e-statistic with nontrivial (in fact, infinite) e-power exists, as long as A is a convex
polytope. That is, if we use P ∗ to denote the uniform mixture of the vertices of A,
then for any vertex P ∈ C, we have that∫

Ω
ln dP ∗

dQ̂∗
dP ≥

∫
Ω

ln
1
n dP

dQ̂∗
dP ≥ D(P∥C) − ln(n),
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where Q̂∗ denotes the RIPr of P ∗. It follows that infP ∈A
∫

Ω ln dP ∗

dQ̂∗ dP = ∞, so that
the e-statistic given by the likelihood ratio of P ∗ to its RIPr has “nontrivial e-power”.
However, more work is needed to determine whether such constructions are in any
way optimal and whether the restriction that A is a convex polytope can be relaxed.

Second, after the first version of this manuscript was made available online, a follow-
up paper appeared by Larsson et al. (2024). They show that, under no conditions on P

and C whatsoever, there exists an e-statistic E∗ that is the strongest e-statistic in the
sense of Definition 3.11. This e-statistic, which they call ‘the numeraire’, gives rise to
a measure Q∗ such that dQ∗

/dP = 1/E∗. Whenever the conditions of Theorem 3.5 hold,
Q∗ coincides with the reverse information projection of P on C, so that it provides (in
their words) “[...] a natural definition of the RIPr in the absence of any assumptions
on C or P .” We refer to their work (Larsson et al., 2024) for all further details.

3.5 Summary and Future Work

We have shown that, under very mild conditions, there exists a measure that achieves
the minimax description gain over a convex set of measures C relative to a measure
P . Whenever the information divergence between P and C is finite, this measure
coincides with the reverse information projection of P on C. As such, it provides a
natural extension of the reverse information projection to cases where the the minimax
description gain is finite, while the information divergence is infinite. In the context of
hypothesis testing, this extended notion of the RIPr can be used to define an e-statistic
for testing the simple alternative P against the composite null C. This e-statistic is
optimal in a sense that is a natural, but novel extension of the previously known
GRO optimality criterion for e-statistics. We have shown an example where GRO is
unable to differentiate between e-statistics, whereas our novel criterion can, so that
it is a strict extension. Additionally, we discussed an algorithm that can be used to
approximate the reverse information projection in scenarios where it is not explicitly
computable and show under what circumstances this also leads to an approximation
of the optimal e-statistic.

The results presented thus far suggest various avenues for further research of which
we discuss two. First, Theorem 3.5 is formulated for general measures so one may
ask for an interpretation of the RIPr in the case that P and C are not probability
measures. If Ω is finite and λ is a measure on Ω, then we may define a probability
measure Po(λ) as the product measure Po(λ) =

⊗
ω∈Ω Po (λ(ω)), where Po (λ(ω))
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denotes the Poisson distribution with mean λ(ω). With this definition we get

D(P∥Q⇝ Q′) = D(Po(P )∥Po(Q)⇝ Po(Q′)).

Furthermore, it can be shown that if the RIPr Q̂ of P on C exists and is an element of
C, then Po(Q̂) is also the RIPr of Po(P ) on the convex hull of C′ := {Po(Q)|Q ∈ C}.
Consequently, P o(P )/P o(Q̂) can be thought of as an e-statistic for C′. More work is
needed to determine whether this interpretation has any applications and if it can be
generalized to arbitrary Ω.

Second, even if D(P∥C) = ∞, the Rényi divergence Dα (P∥Q) (see e.g. van Erven
and Harremoës (2014)) may be a well-defined nonnegative real number for α ∈ (0, 1)
and Q ∈ C. These Rényi divergences are jointly convex in P and Q (van Erven and
Harremoës, 2014) and for each 0 < α < 1 one may define a reverse Rényi projection
Q̂α of P on C (Kumar and Sason, 2016). Larsson et al. (2024) show that one may
use this projection to define an e-statistic that is optimal for a polynomial rather
than a logarithmic utility function — the theory is developed in completely analogous
fashion to the logarithmic/standard Kullback-Leibler information case. We conjecture
that the projections Q̂α will converge to the RIPr for α tending to 1, which might lead
to further applications.
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4 | k-Sample Tests With Ex-
ponential Families

The discussion of the correspondence between log-optimal e-variables and the reverse
information projection in the previous chapter leads us to consider the problem of
finding the reverse information projection in concrete settings. This is complicated
because the reverse information projection is generally an element of the convex hull
of the null hypothesis, so it could be any mixture of elements of the null. However,
in this chapter we show that there are certain k-sample tests for which the reverse
information projection lies in the null hypothesis itself, that is, is not a mixture.

In particular, we consider the problem of testing whether k samples of data are
drawn from the same element of an exponential family, the alternative being that they
come from different elements of the same exponential family. We show that for some
exponential families, there exists an e-variable that is a likelihood ratio between the
alternative and an element of the null. The denominator of this likelihood ratio must
be the reverse information projection by Proposition 3.14, so this e-variable is GRO.
We also propose two other e-variables for when this is not the case, thus consider-
ing three e-variables in total: the GRO e-variables for (1) the null itself, and (2) a
larger nonparametric null, as well as (3) an e-variable arrived at by conditioning on
the sum of the sufficient statistics. (2) and (3) are always efficiently computable, and
extend ideas from Turner et al. (2024) and Wald (1947) respectively from Bernoulli
to general exponential families. We provide theoretical and simulation-based com-
parisons of these e-variables in terms of their logarithmic growth rate, and find that
for small effects all four e-variables behave surprisingly similarly; for the Gaussian
location and Poisson families, e-variables (1) and (3) coincide; for Bernoulli, (1) and
(2) coincide; but in general, whether (2) or (3) grows faster under the alternative is
family-dependent. Finally, we discuss algorithms for numerically approximating (1).
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4.1 Introduction

E-variables (and the value they take, the e-value) provide an alternative to p-values
that is inherently more suitable for testing under optional stopping and continuation,
and that lies at the basis of anytime-valid confidence intervals that can be monitored
continuously (Grünwald et al., 2024; Vovk and Wang, 2021; Shafer, 2021; Ramdas
et al., 2023; Henzi and Ziegel, 2022; Grünwald, 2023). While they have their roots
in the work on anytime-valid testing by H. Robbins and students (e.g. (Darling and
Robbins, 1967)), they have begun to be investigated in detail for composite null hy-
potheses only very recently. E-variables can be associated with a natural notion of
optimality, called GRO (growth-rate optimality), introduced and studied in detail by
Grünwald et al. (2024). GRO may be viewed as an analogue of the uniformly most
powerful test in an optional stopping context. In this chapter, we develop GRO and
near-GRO e-variables for a classical statistical problem: parametric k-sample tests.
Pioneering work in this direction appears already in Wald (1947): as we explain in
Example 4.1, his SPRT for a sequential test of two proportions can be re-interpreted
in terms of e-values for Bernoulli streams. Wald’s e-values are not optimal in the
GRO sense — GRO versions were derived only very recently by Turner et al. (2024);
Turner and Grünwald (2023), but again only for Bernoulli streams. Here we develop
e-variables for the case that the alternative is associated with an arbitrary but fixed
exponential family, M, with data in each of the k groups sequentially sampled from a
different distribution in that family. We mostly consider tests against the null hypoth-
esis, denoted by H0(M) that states that outcomes in all groups are i.i.d. by a single
member of M. We develop the GRO e-variable Sgro(M) for this null hypothesis, but
it is not efficiently computable in general. Therefore, we introduce two more tractable
e-variables: Sgro(iid) and Scond. The former is defined as the GRO e-variable, for the
much larger null hypothesis that the k groups are i.i.d. from an arbitrary distribution,
denoted by H0(iid): since an e-variable relative to a null hypothesis H0 is automati-
cally an e-variable relative to any null that is a subset of H0, Sgro(iid) is automatically
also an e-variable relative to H0(M). Whenever below we refer to ‘the null’, we mean
the smaller H0(M). The use of Sgro(iid) rather than Sgro(M) for this null, for which
it is not GRO, is justifiable by ease of computation and robustness against misspeci-
fication of the model M. However, exactly this robustness might also cause it to be
too conservative when M is well-specified. The third e-variable we consider, Scond,
does not have any GRO status, but is specifically tailored to H0(M), so that it might
still be better than Sgro(iid) in practice. Finally, we introduce a pseudo-e-variable
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Spseudo(M), which coincides with Sgro(M) whenever the latter is easy to compute; in
other cases it is not a real e-variable, but it is still highly useful for our theoretical
analysis.

Results Besides defining Sgro(M), Sgro(iid) and Scond and proving that they achieve
what they purport to, we analyze their behavior both theoretically and by simulations.
Our main theoretical results, Theorem 4.12 and 4.13 reveal some surprising facts: for
any exponential family, the four types of (pseudo-) e-variables achieve almost the
same growth rate under the alternative, hence are almost equally good, whenever the
‘distance’ between null and alternative is sufficiently small. That is, suppose that the
(shortest) ℓ2-distance between the k dimensional parameter of the alternative and the
parameter space of the null is given by δ. Then for any two of the aforementioned
e-variables S, S′, we have E[log S − log S′] = O(δ4), where the expectation is taken
under the alternative. Here, E[log S] can be interpreted as the growth rate of S, as
explained in Section 4.1.1.

While Sgro(iid) and Scond are efficiently computable for the families we consider,
this is generally not the case for Sgro(M), since to compute it we need to have access
to the reverse information projection (RIPr; (Li, 1999; Grünwald et al., 2024)) of a
fixed simple alternative to the set H0(M). In general, this is a convex combination of
elements of H0(M), which can only be found by numerical means. Interestingly, we
find that for three families, Gaussian with fixed variance, Bernoulli and Poisson, the
RIPr is attained at a single point (i.e. a mixture putting all its mass on that point)
that can be efficiently computed. Furthermore, in these cases Sgro(M) coincides with
one of the other e-variables (Sgro(iid) for Bernoulli, Scond for Gaussian and Poisson).
For other exponential families, for k = 2, we approximate the RIPr and hence Sgro(M)

using both an algorithm proposed by Li (1999) and a brute-force approach. We find
that we can already get an extremely good approximation of the RIPr with a mixture
of just two components. This leads us to conjecture that perhaps the deviation from
the RIPr is just due to numerical imprecision and that the actual RIPr really can be
expressed with just two components. The theoretical interest of such a development
notwithstanding, we advise to use Scond or Sgro(iid) rather than Sgro(M) for practical
purposes whenever more than one component is needed for the RIPr, as their growth
rates are not much worse, and they are much easier to compute. If furthermore
robustness against misspecification of the null is required, then Sgro(iid) is the most
sensible choice.
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Method: Restriction to Single Blocks and Simple Alternatives The main
interest of e-variables is in analyzing sequential, anytime-valid settings: the data ar-
rives in k streams corresponding to k groups, and we may want to stop or continue
sampling at will (optional stopping); for example, we only stop when the data looks
sufficiently good; or we stop unexpectedly, because we run out of money to collect new
data. Nevertheless, in this chapter we focus on what happens in a single block, i.e. a
vector Xk = (X1, . . . , Xk), where each Xj denotes a single outcome in the j-th stream.
By now, there are a variety of papers (see e.g. Grünwald et al. (2024); Ramdas et al.
(2023); Turner et al. (2024)) that explain how e-variables defined for such a single
block can be combined by multiplication to yield e-processes (in our context, coin-
ciding with nonnegative supermartingales) that can be used for testing the null with
optional stopping if blocks arrive sequentially — that is, one observes one outcome
of each sample at a time. Briefly, one multiplies the e-variables and at any time one
intends to stop, one rejects the null if the product of e-values observed so-far exceeds
1/α for pre-specified significance level α. This gives an anytime-valid test at level α:
irrespective of the stopping rule employed, the type-I error is guaranteed to be below
α. Similarly, one can extend the method to design anytime-valid confidence intervals
by inverting such tests, as described in detail by Ramdas et al. (2023). This is done for
the 2-sample test with Bernoulli data by Turner and Grünwald (2023); their inversion
methods are extendable to the general exponential family case we discuss here. Thus,
we refer to the aforementioned papers for further details and restrict ourselves here
to the 1-block case. Also, Turner et al. (2024); Turner and Grünwald (2022) describe
how one can adapt an e-process for data arriving in blocks to general streams in which
the k streams do not produce data points at the same rate; we briefly extend their
explanation to the present setting in Appendix B.1. Finally, we mainly restrict to
the case of a simple alternative, i.e. a single member of the exponential family under
consideration. While this may seem like a huge restriction, extension from simple to
composite alternatives (e.g. the full family under consideration) is straightforward
using the method of mixtures (i.e. Bayesian learning of the alternative over time)
and/or the plug-in method. We again refer to Grünwald et al. (2024); Ramdas et al.
(2023) for detailed explanations, and Turner et al. (2024) for an explanation in the
2-sample Bernoulli case, and restrict here to the simple alternative case: all the ‘real’
difficulty lies in dealing with composite null hypotheses, and that, we do explicitly and
exhaustively in this chapter.
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Related Work and Practical Relevance As indicated, this chapter is a direct
(but far-reaching) extension of the papers Turner et al. (2024); Turner and Grünwald
(2023) on 2-sample testing for Bernoulli streams as well as Wald’s (1947) sequential
two-sample test for proportions to streams coming from an exponential family. There
are also nonparametric sequential (Lhéritier and Cazals, 2018) and anytime-valid 2-
sample tests (Balsubramani and Ramdas, 2016; Pandeva et al., 2022) that tackle a
somewhat different problem. They work under much weaker assumptions on the al-
ternative (in some versions the samples could be arbitrary high-dimensional objects
such as pictures and the like). The price to pay is that they will need a much larger
sample size before a difference can be detected. Indeed, while our main interest is
theoretical (how do different e-variables compare? in what sense are they optimal?),
in settings where data are expensive, such as randomized clinical trials, the methods
we describe here can be practically very useful: they are exact (existing methods are
often based on chi-squared tests, which do not give exact type-I error guarantees at
small sample size), they allow for optional stopping, and they need small amounts of
data due to the strong parametric assumptions for the alternative. As a simple illus-
tration of the practical importance of these properties, we refer to the recent SWEPIS
study (Wennerholm et al., 2019) which was stopped early for harm. As demonstrated
by Turner et al. (2024), if an anytime-valid two-sample test had been used in that
study, substantially stronger conclusions could have been drawn.

We also mention that k-sample tests can be viewed as independence tests (is the
outcome independent of the group it belongs to?) and as such this chapter is also
related to recent papers on e-values and anytime-valid tests for conditional indepen-
dence testing (Shaer et al., 2023; Duan et al., 2022); see also Chapter 6. Yet, the
setting studied in those papers is quite different in that they assume the covariates
(i.e. indicator of which of the k groups the data belongs to) to be i.i.d.

Contents In the remainder of this introduction, we fix the general framework and
notation and we briefly recall how e-variables are used in an anytime-valid/optional
stopping setting. In Section 4.2 we describe our four (pseudo-) e-variables in detail,
and we provide preliminary results that characterize their behavior in terms of growth
rate. In Section 4.3 we provide our main theoretical results which show that, for all
regular exponential families, the expected growth of the four types of e-variables is
of surprisingly small order δ4 if the parameters of the alternative are at ℓ2-distance δ

to the parameter space of the null. In Section 4.4 we give more detailed comparisons
for a large number of standard exponential families (Gaussian, Bernoulli, Poisson,
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exponential, geometric, beta), including simulations that show what happens if δ gets
larger. Section 4.5 provides some additional simulations about the RIPr. All proofs,
and some additional simulations, are in the appendix.

4.1.1 Formal Setting

Consider a regular one-dimensional exponential family M = {Pµ : µ ∈ M} given
in its mean-value parameterization (see e.g. (Barndorff-Nielsen, 1978) for more on
definitions and for all the proofs of all standard results about exponential families that
are to follow). Each member of the family is a distribution for some random variable
U , taking values in some set U , with density pµ;[U ] relative to some underlying measure
ρ[U ] which, without loss of generality, can be taken to be a probability measure. For
regular exponential families, M is an open interval in R and pµ;[U ] can be written as:

pµ;[U ](U) = exp (λ(µ) · t(U) − A(λ(µ))) , (4.1)

where λ(µ) maps mean-value µ to canonical parameter β, t(U) is a measurable function
of U and A(β) is the log-normalizing factor. We furthermore have µ = EPµ

[t(U)]. The
measure ρ[U ] induces a corresponding (marginal) measure ρ := ρ[X] on the sufficient
statistic X := t(U), and similarly the density (4.1) induces a corresponding density
pµ := pµ;[X] on X, i.e. we have

pµ(X) := pµ;[X](X) = exp (λ(µ) · X − A(λ(µ))) . (4.2)

All e-variables that we will define can be written in terms of the induced measure
and density of the sufficient statistic of X; in other words, we can without loss of
generality act as if our family is natural. Therefore, from now on we simply assume
that we observe data in terms of their sufficient statistics X rather than the potentially
more fine-grained U , and will be silent about U ; for simplicity we thus abbreviate pµ;[X]

to pµ and ρ[X] to ρ. Note that exponential families are more usually defined with a
carrier function h(X) and ρ set to Lebesgue or counting measure; we cover this case
by absorbing h into ρ, which we do not require to be Lebesgue or counting.

The data comes in as a block Xk = (X1, . . . , Xk) ∈ X k, where X is the support of
ρ. To calculate our e-values we only need to know Xk ∈ X k, and under the alternative
hypothesis, all Xj , j = 1 . . . k are distributed according to some element Pµj

of M. In
our main results we take the alternative hypothesis to be simple, i.e. we assume that
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µ = (µ1, . . . , µk) ∈ Mk is fixed in advance. The alternative hypothesis is thus given by

simple H1 : X1 ∼ Pµ1 , X2 ∼ Pµ2 , . . . , Xk ∼ Pµk
independent.

Note that we will keep µ fixed throughout the rest of this section and Section 4.2. This
is without loss of generality as µ is defined as an arbitrary element of Mk, so that all
results stated for µ hold for any element of Mk. The extension to composite alternatives
by means of the method of mixtures or the plug-in method is straightforward, and done
in a manner that has become standard for e-value based testing (Ramdas et al., 2023).

Our null hypothesis is directly taken to be composite, for as regards the null, the
composite case is inherently very different from the simple case (Ramdas et al., 2023;
Grünwald et al., 2024). It expresses that the Xk are identically distributed. We
shall consider various variants of this null hypothesis, all composite: let P be a set of
distributions on X , then the null hypothesis relative to P, denoted H0(P), is defined
as

composite H0(P) : X1 ∼ P, X2 ∼ P, . . . , Xk ∼ P i.i.d. for some P ∈ P.

Our most important instantiation for the null hypothesis will be H0 = H0(M) for
the same exponential family M from which the alternative was taken; then H0(M)
is a one-dimensional parametric family expressing that the Xi are i.i.d. from Pµ0 for
µ0 ∈ M. Still, we will also consider H0 = H0(P) where P is the much larger set of
all distributions on X . Then the null simply expresses that the Xk are i.i.d.; we shall
abbreviate this null to H0(iid). Finally we sometimes consider H0 = H0(M′) where
M′ ⊂ M is a subset of Pµ ∈ M with µ ∈ M′ for some sub-interval M′ ⊂ M. The
statistics that we use to gain evidence against these null hypotheses are e-variables.

Definition 4.1. We call any nonnegative random variable S on a sample space Ω
(which in this chapter will always be Ω = X k) an e-variable relative to H0 if it satisfies

for all P ∈ H0 : EP [S] ≤ 1. (4.3)

4.1.2 The GRO E-Variable for General H0

In general, there exist many e-variables for testing any of the null hypotheses intro-
duced above. Each e-variable S can in turn be associated with a growth rate, defined
by EPµ [log S]. Roughly, this can be interpreted as the (asymptotic) exponential growth
rate one would achieve by using S in consecutive independent experiments and mul-
tiplying the outcomes if the (simple) alternative was true (see e.g. (Grünwald et al.,
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2024, Section 2.1) or (Kelly, 1956)). The Growth Rate Optimal (GRO) e-variable is
then the e-variable with the greatest growth rate among all e-variables. The central
result (Theorem 1) of Grünwald et al. (2024) states that, under very weak conditions,
GRO e-variables take the form of likelihood ratios between the alternative and the re-
verse information projection (Li, 1999) of the alternative onto the null. We instantiate
their Theorem 1 to our setting by providing Lemma 4.2 and 4.4, both special cases of
their Theorem 1. Before stating these, we need to introduce some more notation and
definitions. For µ = (µ1, . . . , µk) we use the following notation:

pµ(Xk) :=
k∏

i=1
pµi

(Xi).

Whenever in this text we refer to KL divergence D(Q∥R), we refer to measures Q and
R on X k. Here Q is required to be a probability measure, while R is allowed to be a
sub-probability measure, as in (Grünwald et al., 2024). A sub- probability measure R

on X k is a measure that integrates to 1 or less, i.e
∫

x∈X dR(x) ≤ 1.
The following lemma follows as a very special case of Theorem 1 (simplest version)

of Grünwald et al. (2024), when instantiated to our k-sample testing set-up:

Lemma 4.2. Let P be a set of probability distributions on X k and let conv(P) be its
convex hull. Then there exists a sub-probability measure P ∗

0 with density p∗
0 such that

D(Pµ∥P ∗
0 ) = inf

P ∈conv(P)
D(Pµ∥P ). (4.4)

P ∗
0 is called the reverse information projection (RIPr) of Pµ onto conv(P).

Clearly, if P ∗
0 ∈ conv(P) (the minimum is achieved) then P ∗

0 is a probability
measure, i.e. integrates to exactly one. We show that this happens for certain specific
exponential families in Section 4.4. However, in general we can neither expect the
minimum to be achieved, nor the RIPr to integrate to one. Lemma 4.4 below, again a
special case of (Grünwald et al., 2024, Theorem 1), shows that the RIPr characterizes
the GRO e-variable, and explains the use of the term GRO in the definition below.

Definition 4.3. Sgro(P) is defined as

Sgro(P) := pµ(Xk)
p∗

0(Xk) (4.5)

where p∗
0 is the density of the RIPr of Pµ onto conv(P).
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Lemma 4.4. For every set of distributions P on X , Sgro(P) is an e-variable for
H0(P). Moreover, it is the GRO (Growth-Rate-Optimal) e-variable for H0(P), i.e. it
essentially uniquely achieves

sup
S

EPµ [log S]

where the supremum ranges over all e-variables for H0(P).

Here, essential uniqueness means that any other GRO e-variable must be equal
to Sgro(P) with probability 1 under Pµ. This in turn implies that the measure P ∗

0

is in fact unique, as members of regular exponential families must have full support.
Thus, once we have fixed our alternative and defined our null as H0(P) for some set of
distributions P on X , the optimal (in the GRO sense) e-variable to use is the Sgro(P)

e-variable as defined above.

4.2 The Four Types of E-Variables

In this section, we define our four types of e-variables; the definitions can be instan-
tiated to any underlying 1-parameter exponential family. More precisely, we define
three ‘real’ e-variables Sgro(M), Scond, Sgro(iid) and one ‘pseudo’ e-variable Spseudo(M),
a variation of Sgro(M) which for some exponential families is an e-variable, and for
others is not.

4.2.1 The GRO E-Variable for H0(M) and the pseudo e-variable

We now consider the GRO e-variable for our main null of interest, H0(M). In prac-
tice, for some exponential families M, the infimum over conv(M) in (4.4) is actually
achieved for some Pµ∗

0
∈ M. In this easy case we can determine Sgro(M) analytically

(this happens if Sgro(M) = Spseudo(M), see below). For all other M, i.e. whenever the
infimum is not achieved at all or is in conv(M)\M, we do not know if Sgro(M) can be
determined analytically. In this hard case will numerically approximate it by S′

gro(M)
as defined below. First, for a fixed parameter µ0 ∈ M we define the vector ⟨µ0⟩ as the
vector indicating the distribution on X k with all parameters equal to µ0:

⟨µ0⟩ := (µ0, . . . , µ0) ∈ Mk (4.6)
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Next, with W a distribution on M, we define

pW :=
∫

p⟨µ0⟩(Xk)dW (µ0) (4.7)

to be the Bayesian marginal density obtained by marginalizing over distributions in
H0(M) according to W . Clearly, if W has finite support then the corresponding
distribution PW has PW ∈ conv(M). We now set

S′
gro(M) := pµ(Xk)

pW ′
0
(Xk)

where W ′
0 is chosen so that pW ′

0
is within a small ϵ of achieving the minimum in (4.4),

i.e. D(Pµ1,...,µk
∥P ′

W0
) = infP ∈conv(M) D(Pµ1,...,µk

∥P ) + ϵ′ for some 0 ≤ ϵ′ < ϵ. Then,
by Corollary 2 of Grünwald et al. (2024), S′

gro(M) will not be an e-variable unless
ϵ′ = 0, but in each case (i.e. for each choice of M) we verify numerically that
supµ0∈M EPµ0,...,µ0

[S] = 1 + δ for negligibly small δ, i.e. δ goes to 0 quickly as ϵ′

goes to 0. We return to the details of the calculations in Section 4.5.
We now consider the ‘easy’ case in which P ∗

0 = P⟨µ∗
0⟩ for some µ∗

0 ∈ M. Clearly, we
must have µ∗

0 := arg minµ0∈M D(Pµ∥P⟨µ0⟩). An easy calculation shows that then

µ∗
0 = 1

k

k∑
i=1

µi. (4.8)

Definition 4.5. Spseudo(M) is defined as

Spseudo(M) := pµ(Xk)
p⟨µ∗

0⟩(Xk) .

Spseudo(M) is not always a real e-variable relative to H0(M), which explains the
name ‘pseudo’. Still, it will be very useful as an auxiliary tool in Theorem 4.12 and
derivations. Note that, if it is an e-variable then we know that it is equal to Sgro(M):

Proposition 4.6. Spseudo(M) is an e-variable for M iff Spseudo(M) = Sgro(M).

The proposition above does not give any easily verifiable condition to check if
Spseudo(M) is an e-variable or not. The following proposition does provide a condition
which is sometimes easy to check (and which we will heavily employ below). With µ∗

0
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as in (4.8), define

f(µ0) :=
k∑

i=1
varPµi+µ0−µ∗

0
[X] − kvarPµ0

[X].

Proposition 4.7. If f(µ∗
0) > 0, then Spseudo(M) is not an e-variable. If f(µ∗

0) < 0,
then there exists an interval M′ ⊂ M with µ∗

0 in the interior of M′ so that Spseudo(M) is
an e-variable for H0(M′), where M′ = {Pµ : µ ∈ M′}.

4.2.2 The GRO E-Variable for H0(IID)

Recall that we defined H0(iid) as the set of distributions under which Xj , j = 1, . . . k,
are i.i.d. from some arbitrary distribution on X . By the defining property of e-
variables, i.e. expected value bounded by one under the null (4.3), it should be clear
that any e-variable for H0(iid) is also an e-variable for H0(M), since H0(M) ⊂
H0(iid). In particular, we can also use the GRO e-variable for H0(iid) in our setting
with exponential families. It turns out that this e-variable, which we will denote as
Sgro(iid), has a simple form that is generically easy to compute. We now show this:

Theorem 4.8. The minimum KL divergence infP ∈conv(H0(iid)) D(Pµ∥P ) as in Lemma
4.2 is achieved by the distribution P ∗

0 on X k with density

p∗
0(xk) =

k∏
j=1

1
k

k∑
i=1

pµi(xj).

Hence, Sgro(iid), as defined below, is the GRO e-variable for H0(iid).

Definition 4.9. Sgro(iid) is defined as

Sgro(iid) := pµ(Xk)
k∏

j=1

(
1
k

k∑
i=1

pµi
(Xj)

) .

The proof of Theorem 4.8 extends an argument of Turner et al. (2024) for the
2-sample Bernoulli case to the general k-sample case. The argument used in the
proof does not actually require the alternative to equal the product distribution of k

independent elements of an exponential family — it could be given by the product of
k arbitrary distributions. However, we state the result only for the former case, as
that is the setting we are interested in here.
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4.2.3 The Conditional E-Variable

So far, we have defined e-variables as likelihood ratios between Pµ and cleverly chosen
elements of either H0(M) or H0(iid). We now do things differently by not considering
the full original data X1, . . . Xk, but instead conditioning on the sum of the sufficient
statistics, i.e. Z =

∑k
i=1 Xi. It turns out that doing so actually collapses H0(M)

to a single distribution, so that the null becomes simple. That is, the distribution of
Xk | Z is the same under all elements of H0(M), as we will prove in Proposition 4.11.
This means that instead of using a likelihood ratio of the original data, we can use a
likelihood ratio conditional on Z, which ‘automatically’ gives an e-variable.

Definition 4.10. Setting Z to be the random variable Z :=
∑k

i=1 Xi, Scond is defined
as

Scond :=
pµ

(
Xk−1 | Z

)
p⟨µ0⟩ (Xk−1 | Z) ,

with µ0 ∈ M and (X) the sufficient statistic as in (4.2).

Proposition 4.11. For all µ′ = (µ′
1, . . . , µ′

k) ∈ Mk , we have that pµ′(xk−1 | Z = z)
depends on µ′ only through λj := λ(µ′

j) − λ(µ′
k), j = 1, . . . k − 1, i.e. it can be written

as a function of (λ1, . . . , λk−1). As a special case, for all µ0, µ′
0 ∈ M, it holds that

p⟨µ0⟩(xk | Z) = p⟨µ′
0⟩(xk | Z). As a direct consequence, Scond is an e-variable for

H0(M),

Example 4.1. [The Bernoulli Model] If M is the Bernoulli model and k = 2,
then the conditional e-variable reduces to a ratio between the conditional probability
of (X1, X2) ∈ {0, 1}2 given their sum Z ∈ {0, 1, 2}. Clearly, for all µ′

1, µ′
2 ∈ M = (0, 1),

we have pµ′
1,µ′

2
((0, 0) | Z = 0) = pµ′

1,µ′
2
((1, 1) | Z = 2) = 1, so Scond = 1 whenever

Z = 0 or Z = 2, irrespective of the alternative: data with the same outcome in both
groups is effectively ignored. A nonsequential version of Scond for the Bernoulli model
was analyzed earlier in great detail by Adams (2020).

Furthermore, for any c ∈ R, we have that Mc := {(µ′
1, µ′

2) : λ(µ1)−λ(µ2) = c} is the
line of distributions within M2 with the same odds ratio log(µ1(1−µ2)/((1−µ1)µ2)) = c.
The sequential probability ratio test of two proportions from Wald (1947) was based
on fixing a c for the alternative (viewing it as a notion of ‘effect size’) and analyzing
sequences of paired data X(1), X(2), . . . with X(i) = (Xi,1, Xi,2) by the product of
conditional probabilities

pc(X(i) | Z(i))
p0(X(i) | Z(i))

= Scond(Xi),
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thus effectively using Scond (here, we abuse notation slightly, writing pc(x | z) when
we mean pµ′

1,µ′
2
(x | z) for any µ′

1, µ′
2 ∈ Mc). It is, however, important to note that this

product was not used for an anytime-valid test but rather for a classical sequential
test with a fixed stopping rule especially designed to optimize power.

4.3 Growth Rate Comparison of Our E-Variables

Above we provided several recipes for constructing e-variables S = Sµ whose definition
implicitly depended on the chosen alternative µ. To compare these, we define, for any
nonnegative random variables Sµ

1 and Sµ
2 , Sµ

1 ⪰ Sµ
2 to mean that for all µ ∈ Mk, it

holds that EPµ [log Sµ
1 ] ≥ EPµ [log Sµ

2 ]. We write Sµ
1 ≻ Sµ

2 if Sµ
1 ⪰ S2 and there exists

µ ∈ Mk for which equality does not hold. From now on we suppress the dependency
on µ again, i.e. we write S instead of Sµ. We trivially have, for every underlying
exponential family M,

Spseudo(M) ⪰ Sgro(M) ⪰ Sgro(iid) and Sgro(M) ⪰ Scond. (4.9)

We proceed with Theorem 4.12 and 4.13 below (proofs in the Appendix). These results
go beyond the qualitative assessment above, by numerically bounding the difference
in growth rate between Spseudo(M) and Sgro(iid) (and, because Sgro(M) must lie in
between them, also between these two and Sgro(M)) and Spseudo(M) and Scond respec-
tively. Theorem 4.12 and 4.13 are asymptotic (in terms of difference between mean-
value parameters) in nature. To give more precise statements rather than asymptotics
we need to distinguish between individual exponential families; this is done in the next
section.

To state the theorems, we need a notion of effect size, or discrepancy between the
null and the alternative. So far, we have taken the alternative to be fixed and given
by µ, but effect sizes are usually defined with the null hypothesis as starting point.
To this end, note that each P⟨µ0⟩ ∈ H0(M) corresponds to a whole set of alternatives
for which P⟨µ0⟩ is the closest point in KL within the null. This set of alternatives
is parameterized by M(k)(µ0) = {µ′

1, . . . , µ′
k ∈ M : 1

k

∑k
i=1 µ′

i = µ0}, as in (4.8). We
can re-parameterize this set as follows, using the special notation ⟨µ0⟩ as given by
(4.6). Let A be the set of unit vectors in Rk whose entries sum to 0, i.e. α ∈ A iff√∑k

j=1 α2
j = 1 and

∑k
j=1 αj = 0. Clearly µ ∈ M(k)(µ0) if and only if µ1, . . . , µk ∈ M

and µ = ⟨µ0⟩ + δα for some scalar δ ≥ 0 and α ∈ A. We can think of δ as expressing
the magnitude of an effect and α as its direction. Note that, if k = 2, then there
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are only two directions, A = {a1, a−1} with a1 = (1/
√

2, −1/
√

2) and a−1 = −a1,
corresponding to positive and negative effects: we have µ1 − µ2 =

√
2 · δ if α = a1 and

µ1 − µ2 = −
√

2 · δ if α = a−1, as illustrated later on in Figure 4.1. Also note that, for
general k, in the theorem below, we can simply interpret δ as the Euclidean distance
between µ and ⟨µ0⟩.

Theorem 4.12. Fix some µ0 ∈ M, some α ∈ A and let µ = ⟨µ0⟩ + δα for δ ≥ 0 such
that µ ∈ M(k)(µ0). The difference in growth rate between Spseudo(M) and Sgro(iid) is
given by

EPµ

[
log Spseudo(M) − log Sgro(iid)

]
= 1

8

∫
x

(f ′′
x (0))2

fx(0) dρ(x) · δ4 + o
(
δ4) = O

(
δ4) ,

(4.10)

where fx(δ) =
∑k

i=1 pµ0+δαi
(x) =

k∑
i=1

pµi
(x) and f ′′

x is the second derivative of fx, so

that fx(0) = kpµ0(x) and (with some calculation) f ′′
x (0) = d2

dµ2 pµ(x) |µ=µ0 .

As is implicit in the O(·)-notation, the expectation on the left is well-defined and
finite and the integral in the middle equation is finite as well. The theorem implies that
for general exponential families, Sgro(iid) is surprisingly close (O(δ4)) to the optimal
Sgro(M) in the GRO sense, whenever the distance δ between H1 and H0(M) is small.
This means that, whenever Sgro(M) ̸= Spseudo(M) (so Sgro(M) is hard to compute and
Spseudo(M) is not an e-variable), we might consider using Sgro(iid) instead: it will be
more robust (since it is an e-variable for the much larger hypothesis H0(iid)) and it
will only be slightly worse in terms of growth rate.

Theorem 4.12 is remarkably similar to the next theorem, which involves Scond

rather than Sgro(iid). To state it, we first set Xk(xk−1, z) := z −
∑k−1

i=1 xi, and we
denote the marginal distribution of Z =

∑k
i=1 Xi under Pµ as Pµ;[Z], noting that its

density pµ;[Z] is given by

pµ;[Z](z) =
∫

C(z)
pµ

(
xk−1, xk

)
dρ(xk−1), (4.11)

where ρ is extended to the product measure of ρ on X k−1 and

C(z) :=
{

xk−1 ∈ X k−1 : Xi(xk−1, z) ∈ X
}

. (4.12)

Theorem 4.13. Fix some µ0 ∈ M, α ∈ A and let µ = ⟨µ0⟩ + δα for δ ≥ 0 such that
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µ ∈ M(k)(µ0). The difference in growth rate between Spseudo(M) and Scond is given by

EPµ

[
log Spseudo(M) − log Scond

]
= 1

8

∫
z

(g′′
z (0))2

gz(0) dρ[Z](z) · δ4 + o
(
δ4) = O(δ4),

(4.13)

where gz(δ) := p⟨µ0⟩+αδ;[Z](z) and ρ[Z] denotes the measure on Z induced by the
product measure of ρ on X k; an explicit expression for g′′

z (0) is

∫
C(z)

p⟨µ0⟩
(
xk
) k∑

j=1
[I ′(µ0)(xj − µ0) − I(µ0)] dρ(xk−1),

where I(µ) denotes the Fisher information for µ and I ′(µ) is its first derivative.

Again, the expectation on the left is well-defined and finite and the integral on the
right is finite. Comparing Theorem 4.13 to Theorem 4.12, we see that fx(0), the sum
of k identical densities evaluated at x, is replaced by gz(0), the density of the sum of
k i.i.d. random variables evaluated at z.

Corollary 4.14. With the definitions as in the two theorems above, the growth-rate
difference EPµ

[
log Scond − log Sgro(iid)

]
can be written as

1
8

(∫
x

(f ′′
x (0))2

fx(0) dρ(x) −
∫

z

(g′′
z (0))2

gz(0) dρ[Z](z)
)

· δ4 + o
(
δ4) = O

(
δ4) . (4.14)

4.4 Growth Rate Comparison for Specific Exponen-
tial Families

We will now establish more precise relations between the four (pseudo-) e-variables
in k-sample tests for several standard exponential families, namely those listed in
Table 4.1 and a few related ones, as listed at the end of this section. For each family
M under consideration, we give proofs for which different e-variables are the same,
i.e. S = S′, where S, S′ ∈ {Sgro(M), Scond, Sgro(iid), Spseudo(M)}. Whenever we can
prove that Sgro(M) ̸= S for another e-variable S ∈ {Scond, Sgro(iid)}, we can infer
that Sgro(M) ≻ S because Sgro(M) is the GRO e-variable for H0(M). Whenever both
Scond and Sgro(iid) are not equal to Sgro(M), we will investigate via simulation whether
Sgro(iid) ≻ Scond or vice versa — our theoretical results do not extend to this case.
All simulations are carried out for the case k = 2 in the chapter. Theorem 4.12 and

55



4.4 Growth Rate Comparison for Specific Exponential Families

Theorem 4.13 show that in the neighborhood of δ = 0 (µ1, . . . , µk all close together),
the difference EPµ [log S − log S′] is of order δ4 when S, S′ ∈ {Sgro(M), Spseudo(M),

Sgro(iid), Scond}. Hence in the figures we will show (EPµ [log S − log S′])1/4, since then
we expect the distances to increase linearly as we move away from the diagonal, making
the figures more informative.

Our findings, proofs as well as simulations, are summarised in Table 4.1. For each
exponential family, we list the rank of the (pseudo-)e-variables when compared with
the order ‘≻’. The ranks that are written in black are proven in Appendix B.4, while
the ranks in blue are merely conjectures based on our simulations as stated above. The
results of the simulations on which these conjectures are based are given in Figure 4.1.
Furthermore, the rank of Spseudo(M) is colored red whenever it is not an e-variable
for that model, as shown in the Appendix. Note that whenever any of the e-variables
have the same rank, they must be equal ρ-almost everywhere, by strict concavity of the
logarithm together with full support of the distributions in the exponential family. For
example, the results in the table reflect that for the Bernoulli family, we have shown
that Spseudo(M) = Sgro(M) = Sgro(iid) and that Spseudo(M) ≻ Scond. Also, for the
geometric family and beta with free β and fixed α, we have proved that Spseudo(M) is
not an e-variable, that Sgro(M) ̸= Sgro(iid) and that Sgro(M) ̸= Scond, so that it follows
from (4.9) that Spseudo(M) ≻ Sgro(M), Sgro(M) ≻ Sgro(iid) and Sgro(M) ≻ Scond. Then
the findings of the simulations shown in Figure 4.1a suggest that Sgro(iid) ≻ Scond for
beta with free β and fixed α and in Figure 4.1b suggest that Scond ≻ Sgro(iid) for
geometric family, but these are not proven. Figure 4.1c shows that Sgro(iid) ≻ Scond

for Gaussians with free variance and fixed mean. Finally, Figure 4.1d shows that
for the exponential, there is no clear relation between Sgro(iid) and Scond. That is,
Sgro(iid) grows faster than Scond for some µ1, . . . , µk ∈ M, and slower for others, which
is indicated by rank (3) − (4) in the table.

Finally, we note that for each family listed in the table, the results must extend to
any other family that becomes identical to it if we reduce it to the natural form (4.2).
For example, the family of Pareto distributions with fixed minimum parameter v can
be reduced to that of the exponential distributions: if U ∼ Pareto(v, α), then we can
do a transformation X = t(U) with t(U) = log(U/v), and then X ∼ Exp(α). Thus,
the k-sample problem for U with the Pareto(v, α) distributions, with α as free param-
eter, is equivalent to the k-sample problem for X with the exponential distributions;
the e-value Sgro(M) obtained with a particular alternative in the Pareto setting for
observation U coincides with Sgro(M) for the corresponding alternative in the expo-
nential setting for observation X = t(U), and the same holds for Sgro(iid) and Scond.
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(a) beta with free β and fixed α

(b) geometric

(c) Gaussian with free variance and fixed mean

(d) Exponential

Figure 4.1: A comparison of Sgro(iid) and Scond for four exponential families. We evaluated
the expected growth difference on a grid of 50 × 50 alternatives (µ1, µ2), equally spaced
in the standard parameterization (explaining the nonlinear scaling on the depicted mean-
value parameterization). On the left are the corresponding heatmaps. On the right are
diagonal ‘slices’ of these heatmaps: the red curve corresponds to the main diagonal (top left -
bottom right), the blue curve corresponds to the diagonal starting from the second tick mark
(10th discretization point) top left until the second tick mark bottom right. These slices are
symmetric around 0, their value only depending on δ =| µ1 − µ2 | /

√
2 =| µ1 − µ∗

0 | ·
√

2,
where µ∗

0 = (µ1 + µ2)/2 and δ is as in Theorem 4.12
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4.5 Simulations to Approximate the RIPr

Exponential Family Spseudo(M) Sgro(M) Sgro(iid) Scond

Bernoulli (1) (1) (1) (2)
Gaussian with free mean and fixed variance (1) (1) (2) (1)
Poisson (1) (1) (2) (1)
beta with free β and fixed α (1) (2) (3) (4)
geometric (1) (2) (4) (3)
Gaussian with free variance and fixed mean (1) (2) (3) (4)
Exponential (1) (2) (3)-(4) (3)-(4)

Table 4.1: The ranks of the four different e-variables when compared with the relation ‘≻’.
The ranks in black are proved in Appendix B.4, while the ranks in blue are conjectures based
on the simulations in Figure 4.1. The rank of Spseudo(M) is denoted in red whenever it is not
an e-variable, as shown in Appendix B.4

Therefore, the ordering for Pareto must be the same as the ordering for exponential in
Table 4.1. Similarly, the e-variables for the log-normal distributions (with free mean
or variance) can be reduced to the two corresponding normal distribution e-variables.

4.5 Simulations to Approximate the RIPr

Because of its growth optimality property, we may sometimes still want to use the
GRO e-variable Sgro(M), even in cases where it is not equal to the easily calculable
Spseudo(M). To this end we need to approximate it numerically. The goal of this
section is twofold: first, we want to illustrate that this is feasible in principle; second,
we show that this raises interesting additional questions for future work. Thus, below
we consider in more detail simulations to approximate Sgro(M) for the exponential
families with Sgro(M) ̸= Spseudo(M) that we considered before, i.e. beta, geometric,
exponential and Gaussian with free variance; for simplicity we only consider the case
k = 2. In Appendix B.5 we provide some graphs illustrating the RIPr probability
densities for particular choices of µ1, µ2; here, we focus on how to approximate them,
taking our findings for k = 2 as suggestive for what happens with larger k.

4.5.1 Approximating the RIPr via Li’s Algorithm

Li (1999) provides an algorithm for approximating the RIPr of distribution Q with
density q onto the convex hull conv(P) of a set of distributions P (where each P ∈ P
has density p) arbitrarily well in terms of KL divergence. At the m-th step, this
algorithm outputs a finite mixture P(m) ∈ conv(P) of at most m elements of P. For
m > 1, these mixtures are determined by iteratively setting P(m) := αP(m−1) + (1 −

58



Chapter 4 | k-Sample Tests With Exponential Families

α)P ′, where α ∈ [0, 1] and P ′ ∈ P are chosen so as to minimize KL divergence
D(Q∥αP(m−1) + (1 − α)P ′). Here, P(1) is defined as the single element of P that
minimizes D(Q∥P(1)). It is thus a greedy algorithm, but Li shows that, under some
regularity conditions on P, it holds that D(Q∥P(m)) → infP ∈conv(P) D(Q∥P ). That is,
P(m) approximates the RIPr in terms of KL divergence. This suggests, but is not in
itself sufficient to prove, that supP ∈P EP [q(X)/p(m)(X)] → 1, i.e. that the likelihood
ratio actually tends to an e-variable.

We numerically investigated whether this holds for our familiar setting with k = 2,
Q is equal to Pµ for some µ = (µ1, µ2) ∈ M2, and P = H0(M). To this end, we applied
Li’s algorithm to a wide variety of values (µ1, µ2) for the beta, exponential, geometric
and Gaussian with free variance. In all these cases, after at most m = 15 iterations, we
found that supµ0∈M EPµ0,µ0

[pµ1,µ2(X1, X2)/q(m)(X1, X2)] was bounded by 1.005: Li’s
algorithm convergences quite fast; see Appendix B.5 for a graphical depiction of the
convergence and design choices in the simulation.

(note that, since we have proved that Sgro(M) = Spseudo(M) for Bernoulli, Poisson
and Gaussian with free mean, there is no need to approximate Sgro(M) for those
families).

4.5.2 Approximating the RIPr via Brute Force

While Li’s algorithm converges quite fast, it is still highly suboptimal at iteration
m = 2, due to its being greedy. This motivated us to investigate how ‘close’ we
can get to an e-variable by using a mixture of just two components. Thus, we set
pA(xk) := αp⟨µ01⟩(xk) + (1 − α)p⟨µ02⟩(xk) and, for various choices of µ = (µ1, µ2),
considered

Sappr := pµ(Xk)
pA(Xk) (4.15)

as an approximate e-variable, for the specific values of α ∈ [0, 1] and µ01, µ02 that
minimize

sup
µ0∈M

EP⟨µ0⟩ [Sappr].

(in practice, we maximize µ0 over a discretization of M with 1000 equally spaced grid
points and minimize α, µ01, µ02 over a grid with 100 equally sized grid points, with
left- and right- end points of the grids over M determined by trial and error).

The simulation results, for k = 2 and particular values of µ1, µ2 and the expo-
nential families for which approximation makes sense (i.e. Sgro(M) ̸= Spseudo(M))
are presented in Table 4.2. We tried, and obtained similar results, for many more
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Distributions (µ1, µ2) α (µ01, µ02) sup
µ0∈M

EX1,X2∼Pµ0,µ0
[Sappr]

beta (0.5, 0.25) 0.22 (0.24, 0.81) 1.0052
Exponential (0.5, 0.25) 0.56 (0.35, 0.51) 1.0000

Gaussian with free variance
and fixed mean (0.5, 0.25) 0.37 (0.5, 0.5) 1.0000

Exponential ( 10
3 , 5

4 ) 0.51 (0.62, 0.31) 1.0047
geometric ( 10

3 , 5
4 ) 0.47 (1.84, 2.97) 1.0008

Gaussian with free variance
and fixed mean ( 10

3 , 5
4 ) 0.08 (3.64, 2.73) 1.0002

Table 4.2: For given values of µ = (µ1, µ2), we show α, µ01 and µ02 for the corresponding
two-component mixture αpµ01 (X1)pµ01 (X2) + (1 − α)pµ02 (X1)pµ02 (X2) arrived at by brute-
force minimization of the KL divergence as in Section 4.5.2, and we show how close the
corresponding likelihood ratio Sappr is to being an e-variable

parameter values; one more parameter pair for each family is given in Table B.1 in
Appendix B.5. The term supµ0∈M EP⟨µ0⟩ [Sappr] is remarkably close to 1 for all of these
families. Corollary 2 of Grünwald et al. (2024) implies that if the supremum is exactly
1, i.e. Sappr is an e-variable, then Sappr must also be the GRO e-variable relative to
Pµ. This leads us to speculate that perhaps all the exceedance beyond 1 is due to
discretization and numerical error, and the following might (or might not — we found
no way of either proving or disproving the claim) be the case:

Conjecture For k = 2, the RIPr, i.e. the distribution achieving

min
Q∈conv(H0(M))

D(Pµ1,µ2∥Q)

can be written as a mixture of just two elements of H0(M).

4.6 Conclusion and Future Work

In this chapter, we introduced and analyzed four types of e-variables for testing
whether k groups of data are distributed according to the same element of an ex-
ponential family. These four e-variables include: the GRO e-variable (Sgro(M)),
a conditional e-variable (Scond), a mixture e-variable (Sgro(iid)), and a pseudo-e-
variable (Spseudo(M)). We compared the growth rate of the e-variables under a sim-
ple alternative where each of the k groups has a different, but fixed, distribution
in the same exponential family. We have shown that for any two of the e-variables
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S, S′ ∈ {Sgro(M), Scond, Sgro(iid), Spseudo(M)}, we have E[log S − log S′] = O(δ4) if the
ℓ2 distance between the parameters of this alternative distribution and the parameter
space of the null is given by δ. This shows that when the effect size is small, all
the e-variables behave surprisingly similar. For more general effect sizes, we know
that Sgro(M) has the highest growth rate by definition. Calculating Sgro(M) involves
computing the reverse information projection of the alternative on the null, which
is generally a hard problem. However, we proved that there are exponential fami-
lies for which one of the following holds Spseudo(M) = Sgro(M), Scond = Sgro(M) or
Sgro(iid) = Sgro(M), which considerably simplifies the problem. If one is interested in
testing an exponential family for which is not the case, there are algorithms to estimate
the reverse information projection. We have numerically verified that approximations
of the reverse information projection also lead to approximations of Sgro(M). However,
the use of Scond or Sgro(iid) might still be preferred over Sgro(M) due to the compu-
tational advantage. Our simulations show that depends on the specific exponential
family which of them is preferable over the other, and that sometimes there is even
no clear order.
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5 | Simple E-Variables for
Exponential Families

In the previous chapter, we observed that in certain k-sample tests, there exists an e-
variable in the form of a simple-vs.-simple likelihood ratio—a likelihood ratio between
the alternative and a single element of the null. Equivalently, the reverse information
projection is sometimes a distinct element of the null hypothesis rather than a convex
combination. In such cases, the GRO e-variable is easy to compute. Moreover, while
it was not mentioned explicitly in the previous chapter, Koolen and Grünwald (2022,
Theorem 12) show that the cumulative product of such ‘simple’ e-variables is also the
log-optimal e-process, further justifying their use for applications where the sample
size is not fixed beforehand.

In this chapter, we provide a general condition under which simple e-variables exist
when the null hypothesis is a composite, multivariate exponential family. Simple e-
variables were previously only known to exist in quite specific settings, but we offer a
unifying theorem on their existence for testing exponential families. We start with a
simple alternative Q and a regular exponential family null. Together these induce a
second exponential family Q containing Q, with the same sufficient statistic as the null.
Our theorem shows that simple e-variables exist whenever the covariance matrices of
Q and the null are in a certain relation. A prime example in which this relation holds
is testing whether a parameter in a linear regression is 0. Other examples include some
k-sample tests, Gaussian location- and scale tests, and tests for more general classes
of natural exponential families. While in all these examples, the implicit composite
alternative is also an exponential family, this is not required in general.
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5.1 Introduction

Exponential families play a central role in statistical modeling, as they include the
Bernoulli-, Gaussian-, Poisson-, and many more models. An important task is to test
whether these models are well-specified, that is, whether observed data are indeed
distributed by an element of an exponential family; or more specifically whether a
specific parameter in an exponential family is 0 or not — the latter including linear
regression testing as a special case. Many classic tests are well-suited for this pur-
pose (Anderson and Darling, 1954; Lilliefors, 1967; Stephens, 1974). However, the
vast majority of these methods are based on p-values, and thus designed for fixed
sample size experiments. Here, we are instead interested in hypothesis tests that are
based on e-values (Grünwald et al., 2024), which is the value taken by an e-variable.
The most straightforward example of e-variables are likelihood ratios between simple
alternatives and simple null hypotheses. E-variables for composite hypotheses, and in
particular ‘good’ e-variables, are generally more complicated. However, e-variables in
the form of a likelihood ratio with a single, special element of the null representing
the full, composite null sometimes still exist. We refer to such e-variables as ‘simple’
e-variables. As we shall see below, their existence is intimately tied to properties of
the reverse information projection (RIPr).

Simple e-variables, if they exist, can easily be computed, and are known to be
optimal in an expected-log-optimality sense (Koolen and Grünwald, 2022; Grünwald
et al., 2024). That is, if we combine evidence from a repeated experiment where
data is collected using a fixed stopping rule, then using the simple e-variable will
asymptotically result in the most evidence against the null, among all e-variables;
details can be found in Section 5.1.4. As such, it is desirable to find out whether
or not simple e-variables exist in specific settings. The main result of this chapter,
Theorem 5.3, provides a set of equivalent conditions under which simple e-variables
exist for exponential family nulls.

5.1.1 Main Result and Overview

Here we briefly describe Theorem 5.3, assuming prior knowledge on e-variables and
exponential families, and we provide an overview of the rest of the chapter — all
relevant definitions and explanations are given in Section 5.1.2–5.1.4. We fix a regular
multivariate exponential family null P for data U with some sufficient statistic vector
X = t(U) and a distribution Q for U , outside of P, and with density q. As our
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most important regularity condition, we assume that Q has a moment generating
function and that there exists Pµ∗ ∈ P with the same mean of X, say µ∗, as Q. It
is known that Pµ∗ is the Reverse Information Projection (RIPr) of Q onto P (Li,
1999), that is, it achieves minP ∈P D(Q∥P ). Denoting the density of Pµ∗ by pµ∗ , it
follows by Theorem 1 of Grünwald et al. (2024) that q(U)/pµ∗(U) would be an e-
variable in case infP ∈conv(P) D(Q∥P ) = minP ∈P D(Q∥P ). Our theorem establishes
a sufficient condition for when this is actually the case. It is based on constructing
a second exponential family Q with densities proportional to exp(βT t(U))q(U) for
varying β: Q contains Q and has the same sufficient statistic as P. In some cases,
but not all, Q may be thought of as the composite alternative we are interested in.
Letting Σp(µ) and Σq(µ) denote the covariance matrices of the Pµ ∈ P and Qµ ∈ Q
with mean µ, Theorem 5.3 below implies the following: under a further regularity
condition on the parameter spaces of P and Q, simple e-variables exist whenever
Σp(µ) − Σq(µ) is positive semidefinite for all µ in the mean-value parameter space of
Q (additionally, three equivalent conditions will be given). If this happens, then we
may further conclude that for every element Qµ′ of the constructed Q, the likelihood
ratio qµ′(U)/pµ′(U) is an e-variable, where Pµ is the element of P to which Qµ is
projected. An example pair (Q, P) to which the theorem applies is when, under Q,
U ∼ N(m, s2) for fixed m, s2 and P = {N(0, σ2) : σ2 > 0} is the univariate (scale)
family of normal distributions. This situation is illustrated in Figure 5.1 and is treated
in detail in Section 5.4.3, and extended to linear regression testing – arguably our most
important application – in Section 5.4.4.

We stress that, while our approach starts with a simple alternative Q, the results
are still applicable if one is interested in a composite alternative H1. To this end, take
any Q ∈ H1 and use our main result to determine whether a simple e-variable with
respect to Q exists. If one exists for every Q, an e-variable for the full alternative can
easily be constructed either by the method of mixtures or the prequential (sequential
plug-in learning) method (Ramdas et al., 2023).

Things conceptually simplify in this composite alternative case if H1 can be pa-
rameterized as H1 = {Q(θ) : θ ∈ Θ} in such a way that for each Q ∈ H1, the associated
family Q constructed from P and Q is equal to Q(θ) for some θ. As is suggested by
Figure 5.1, this happens, for example, in the Gaussian scale example of Section 5.4.3,
if we consider as alternative H1 the full Gaussian family. We can start with any
Q = N(m, s2) and generate Q which then coincides with some Q(θ), corresponding
to a specific sloped line in the figure. Together, all these sloped lines span H1. In
fact, it turns out that a natural choice of H1 that partitions into Q(θ) is possible in all
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Figure 5.1: The family Q for various (m, s2). The coordinate grid represents the param-
eters of the full Gaussian family, the horizontal line shows the parameter space of P, the
sloped lines show the parameters of the distributions in Q, and the dashed lines show the
projection of (m, s2) onto the parameter space of P. For example, we may start out with Q
expressing U ∼ N(m, s2) with m = −3.0, s2 = 9.0, represented as the green dot on the green
line. Its RIPr onto P is the green point on the yellow line. The corresponding family Q,
constructed in terms of Q and P, is depicted by the green solid line. The theorem implies
that the likelihood ratio between any point on the green line and its RIPr onto the yellow
line is an e-variable; similarly for the red and blue lines.

our examples, and that this H1 is itself an exponential family in all these examples.
Nevertheless, we stress that in general our method does not in any way require H1 to
be an exponential family — only P is required to be so.

A specific interpretation of the result is obtained when restricting to the
1-dimensional case. The best squared-error predictor of X sampled according to Q

has Q-expected squared error prediction equal to varQ[X] = EQ(X − µ∗)2. If X is
really sampled from Q but we think it comes from Pµ∗ and want to make the best
Pµ∗ -expected squared error predictions, we would predict with the mean, which is still
µ∗, but we assess our squared error as varPµ∗ [X] whereas the real expected squared
error is still varQ[X]. Thus, in the 1-dimensional case, in the situation that our result
does not hold, there is a mismatch between Q and its projection Pµ∗ in the sense
that the closest approximation we can provide to Q promises a better squared-error
prediction than can be obtained with Q itself. Our result says that if the mismatch
does not occur, then we cannot get closer to Q by convexifying P.

The proof of Theorem 5.3 is based on convex duality properties of exponential
families. In the remainder of this introductory section, we fix notation and definitions
of exponential families and e-variables. In Section 5.2 we show how, based on the
constructed family Q, one can often easily construct local e-variables, i.e. e-variables

66



Chapter 5 | Simple E-Variables for Exponential Families

with the null restricted to a subset of P. Then, in Section 5.3 we present our main
theorem, extending the insight to global e-variables. Section 5.4 provides several
examples. This includes cases for which simple e-variables were already established,
such as certain k-sample tests (Turner et al., 2024) (see also Chapter 4) or — in an
unpublished master’s thesis — the linear regression model (De Jong, 2021), as well as
cases for which it was previously unknown whether simple e-variables exist, such as
for a broad class of natural exponential families. Theorem 5.3 can thus be seen as a
unification and generalization of known results on the existence of simple e-variables,
leading to deeper understanding of why they sometimes exist. Section 5.5 provides
the proof for Theorem 5.3. Finally, Section 5.6 provides a concluding discussion and
points out potential future directions.

5.1.2 Formal Setting

We study general hypothesis testing problems in which the null hypothesis P is a
regular (and hence full) d-dimensional exponential family. Here and in the sequel, we
will freely use standard properties of exponential families without explicitly referring
to their definitions and proofs, for which we refer to e.g. (Barndorff-Nielsen, 1978;
Brown, 1986; Efron, 2022). Each member of P is a distribution for a random element
U , that takes values in some set U , with a density relative to some given underlying
measure ν on U . The sufficient statistic vector is denoted by X = (X1, . . . , Xd) with
Xj = tj(U) for given measurable functions t1, . . . , td. We furthermore define Mp to
be the mean-value parameter space of P, i.e. the set of all µ such that EP [X] = µ

for some P ∈ P. For any µ ∈ Mp, we denote by Pµ the unique element of P with
EPµ [X] = µ, so that P = {Pµ : µ ∈ Mp}. As usual, this parameterization of P is
referred to as its mean-value parameterization. Furthermore, we use Σp to denote
the variance function of P. That is, for all µ ∈ Mp, Σp(µ) is the covariance matrix
corresponding to Pµ.

Since P is an exponential family, the density of any member of P can be written,
for each fixed µ∗ ∈ Mp, as

pβ;µ∗(u) = 1
Zp(β; µ∗) exp

 d∑
j=1

βjtj(u)

 · pµ∗(u), (5.1)

where Z(β; µ∗) =
∫

exp(
∑

βjtj(u))pµ∗(u)dν, and β ∈ Rd such that Zp(β; µ∗) < ∞.
Therefore, P can also be parameterized as P = {Pβ;µ∗ : β ∈ Bp,µ∗}, where Bp;µ∗ ⊂ Rd
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denotes the canonical parameter space with respect to µ∗, i.e. the set of all β for which
Zp(β; µ∗) < ∞. We use βp(µ′; µ∗) to denote the β ∈ Bp,µ∗ such that EPβ;µ∗ [X] = µ′

and set µp(·; µ∗) = β−1
p (·; µ∗) to be its inverse. βp(·; µ∗) maps mean-value parameters

to corresponding canonical parameters and µp(·; µ∗) vice versa. Note that pµ∗ = p0,µ∗ ,
and that we can see from the notation (one versus two subscripts) whether a density
is given in the mean- or canonical representation, respectively.

The reason for explicitly denoting the mean µ∗ of the carrier density, which is
unconventional, is that it will be convenient to simultaneously work with different
canonical parameterizations, i.e. with respect to a different element of Mp, below.
These are all linearly related to one another in the sense that for each µ1, µ2 ∈ Mp,
there is a fixed vector γ such that for all β ∈ Bp,µ1 it holds that pβ;µ1 = pβ+γ;µ2 . This
can be seen by taking γ = −βp(µ2; µ1), since one then has

pβ;µ1(u) = 1
Zp(β; µ1) exp

 d∑
j=1

(βj + γj)tj(u)

 exp

 d∑
j=1

−γjtj(u)

 pµ1(u)

= Zp(−γ; µ1)
Zp(β; µ1) exp

 d∑
j=1

(βj + γj)tj(u)

 p−γ;µ1(u)

= 1
Zp(β + γ; µ2) exp

 d∑
j=1

(βj + γj)tj(u)

 pµ2(u) = pβ+γ;µ2(u).

(5.2)

5.1.3 The Composite Alternative Generated by A Simple One

We are mostly concerned with testing the null hypothesis P against simple alterna-
tive hypotheses of the form {Q} for some distribution Q on U . In particular, we will
consider distributions Q that admit a moment generating function and that have a
density q relative to the underlying measure ν. While the former is a strong condition,
it holds in many cases of interest. For our analysis, it will be beneficial to define a sec-
ond exponential family Q for U with distributions Qβ;µ∗ and corresponding densities

qβ;µ∗(u) = 1
Zq(β; µ∗) · exp

 d∑
j=1

βjtj(u)

 · q(u), (5.3)

where µ∗ is the mean of X under Q, and Zq(β; µ∗) is the normalizing constant. The
notational conventions that we use for Q will be completely analogous to that for P,
e.g. βq(·, µ∗), µq(·, µ∗), Σq, etc. Since Q is assumed to have a moment generating
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function, the canonical domain Bq,µ∗ is nonempty and contains a neighborhood of 0.
Similarly, the mean-value space Mq is also nonempty and contains a neighborhood of
µ∗. We further have the following: if we take any other Q′ ∈ Q, say Q′ = Qµ′ for
µ′ ∈ Mq, then the ‘constructed’ family around Q′, i.e. {qβ;µ′ : β ∈ Bq;µ′} coincides
with Q (as was the case for P, by (5.2)).

We may think of the null P and the generated family Q as two different exponential
families that share the same sufficient statistic. Moreover, as we shall see below, there
are many examples where their mean-value spaces are equal, that is, Mq = Mp. In this
case P and Q are “matching” pairs: they share the same sufficient statistic as well as
the same set of means for this statistic.

5.1.4 E-variables

We use e-variables to gather evidence against the null hypothesis P. An e-variable
is a non-negative statistic with expected value bounded by one under the null, i.e. a
non-negative statistic S(U) such that EP [S(U)] ≤ 1 for all P ∈ P. We give only a
brief introduction to e-variables here and refer to e.g. (Grünwald et al., 2024; Ramdas
et al., 2023) for detailed discussions. The realization of an e-variable on observed data
will be referred to as an e-value, though the two terms are often used interchangeably.
Large e-values give evidence against the null hypothesis, since by Markov’s inequality
we have that Q(S(U) ≥ 1

α ) ≤ α for any e-variable S(U) and Q ∈ P. The focus here
is on a static setting, where e-variables are computed for a single block of data (i.e.
one observation of U). However, the main application of e-variables is in anytime-
valid settings, where data arrives sequentially and one wants a type-I error guarantee
uniformly over time. Indeed, it is well-known that the product of sequentially com-
puted e-variables again gives an e-variable, even if the definition of each subsequent
e-variable depends on past e-values, which leads to an easy extension of the methods
described here to such anytime-valid settings (Ramdas et al., 2023; Grünwald et al.,
2024).

Since large e-values give evidence against the null, we look for e-variables that
are, on average, ‘as large as possible’ under the alternative hypothesis. In particular,
we study growth-rate optimal (GRO) e-variables, an optimality criterion embraced
implicitly or explicitly by most of the e-community (Ramdas et al., 2023). Grünwald
et al. (2024) define the GRO e-variable for single outcome U , relative to a simple
alternative {Q}, to be the e-variable S that, among all e-variables, maximizes the
growth-rate EU∼Q[log S(U)] (also known as e-power (Wang et al., 2024; Zhang et al.,
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2024)). In a celebrated result, Grünwald et al. (see also Chapter 3 and (Larsson et al.,
2024)) show that the GRO e-variable is given by:

q(U)
p ⇝q(U) , (5.4)

where p ⇝q denotes the reverse information projection of Q on the convex hull of the null
P. The reverse information projection of Q on conv(P) is defined as the distribution
that uniquely achieves infP ∈conv(P) D(Q∥P ), which is known to exist whenever the
latter is finite (see Chapter 3 for further details). Here, D(Q∥P ) denotes the Kullback-
Leibler (KL) divergence between Q and P , both defined as distributions for U . In this
chapter, all reverse information projection will be on conv(P), so we will not explicitly
mention the domain of projection everywhere (i.e. referring to it simply as ‘the reverse
information projection of Q’). The growth rate achieved by the GRO e-variable is given
by

EQ

[
log q(U)

p ⇝q(U)

]
= D(Q∥P ⇝q) = inf

P ∈conv(P)
D(Q∥P ). (5.5)

However, due to the fact that, with the exception of the Bernoulli and multinomial
models, exponential families are not convex sets of distributions, finding the reverse
information projection can be quite challenging (Lardy, 2021). In this chapter we
provide a simple and easily verifiable condition under which

inf
P ∈conv(P)

D(Q∥P ) = min
P ∈P

D(Q∥P ), (5.6)

that is, the infimum is achieved by an element of P, so that the problem greatly
simplifies.

In that case, the GRO e-variable simply takes on the form of a likelihood ratio
between Q and a particular member of P, i.e.

q(U)
p(U) , (5.7)

which we will refer to as a simple e-variable relative to Q. We will frequently use the
fact (following from Corollary 1 of (Grünwald et al., 2024, Theorem 1)) that there can
be at most one simple e-variable with respect to any fixed alternative, i.e. of the form
(5.7). This is captured by the following proposition.

Proposition 5.1. Fix a probability measure Q on U . If there exists a simple e-variable
relative to Q, then it must be the GRO e-variable for testing P against alternative {Q}.
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A big advantage of simple e-variables—besides their simplicity—is that their opti-
mality extends beyond the static setting. That is, suppose we were to observe indepen-
dent copies U1, U2, . . . of the data and assume that a simple e-variable of the form (5.7)
exists. As alluded to before, we can measure the total evidence as

∏n
i=1 q(Ui)/p(Ui),

which defines an e-variable for any fixed n ∈ N. Instead of thinking of this as multipli-
cation of individual e-variables, one can think of it as a likelihood ratio of U1, . . . , Un.
Proposition 5.1 then implies that

∏n
i=1 q(Ui)/p(Ui) is the GRO e-variable for testing P

against {Q} based on n data points. This statement shows that for any fixed sample
size n, the best e-variable (in the GRO sense of 5.5) is the simple likelihood ratio.
Moreover, for applications where the sample size is not fixed beforehand, Koolen and
Grünwald (2022, Theorem 12) show that a more flexible statement is also true: if τ

is any stopping time that is adapted to the data filtration, then q(Uτ )/p(Uτ ) is also
a maximizer of E[ln Sτ ] over all processes S = (Sn)n∈N with E[Sτ ] ≤ 1. While we will
not explicitly consider this type of sequential optimality in the following, it is one of
the main motivating factors behind this work.

We assume throughout this chapter that, for any considered alternative Q, there
exists a µ∗ ∈ Mp such that EX∼Q[X] = µ∗. By a standard property of exponential
families, the KL divergence from Q to P is then minimized by the element of P with
the same mean as Q. If (5.6) holds, then Pµ∗ must therefore be the reverse information
projection of Q. It follows that, if a simple e-variable with respect to Q exists, then it
is given by q(U)/pµ∗(U).

5.2 Existence of Simple Local E-Variables

Here we will show how the family Q is related to the question of whether the likelihood
ratio q(U)/pµ∗(U) is a local GRO e-variable around µ∗. We say that a nonnegative
statistic S(U) is a local e-variable around µ∗ if there exists a connected open subset B′

µ∗

of Bp;µ∗∩Bq;µ∗ containing 0 such that S is an e-variable relative to P ′ = {Pβ : β ∈ B′
µ∗},

i.e. supβ∈B′
µ∗

EPβ;µ∗ [S] ≤ 1. If S also maximizes EQ[ln S(U)] among all e-variables
relative to P ′, then we say that S is a local GRO e-variable with respect to Q. A
local (GRO) e-variable may not be an e-variable relative to the full null hypothesis
P, but it is a an e-variable relative to some smaller null hypothesis, restricted to
all distributions in the null with mean in a neighborhood of µ∗. Investigating when
local e-variables exist provides the basic insight on top of which the subsequent, much
stronger Theorem 5.3 about ‘global’ e-variables is built. As stated in Section 5.1.3, we
may view P and Q as two families with the same sufficient statistic, only differing in
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their carrier, which for P is pµ∗ = p0;µ∗ and for Q is q0;µ∗ = q = qµ∗ : we can and will
denote the original Q also by Qµ∗ .

Define the function f(·; µ∗) : Bp;µ∗ ∩ Bq;µ∗ → R as

f(β; µ∗) := logEPβ;µ∗

[
qµ∗(U)
pµ∗(U)

]
= log Zq(β; µ∗) − log Zp(β; µ∗), (5.8)

where the equality comes from the fact that we can rewrite the density in the numerator
as qµ∗(U) = Zq(β; µ∗) exp(

∑d
j=1 βjtj(u))−1qβ;µ∗(U) and similar for the density in the

denominator. It should be clear that the function f(·; µ∗) is highly related to the
question we are interested in. Indeed, qµ∗(U)/pµ∗(U) is a local e-variable relative
to P ′ = {Pβ : β ∈ B′

µ∗} if and only if supβ∈B′
µ∗

f(β; µ∗) ≤ 0. Equivalently, since
f(0; µ∗) = 0, we have that qµ∗/pµ∗ is a local e-variable around µ∗ if and only if there
is a local maximum at 0. To investigate when this happens, a standard result on
exponential families gives the following:

∇f(β; µ∗) = EQβ;µ∗ [X] − EPβ;µ∗ [X] (5.9)

In particular, it follows that ∇f(0; µ∗) = µ∗ − µ∗ = 0. Thus, qµ∗/pµ∗ is a local e-
variable around µ∗ if and only if the d×d Hessian matrix of second partial derivatives
of f(·; µ∗), is negative semidefinite in 0. By (5.8)-(5.9) and using a convex duality
property of exponential families, this is equivalent to

Ip(0; µ∗) − Iq(0; µ∗) = Σp(µ∗) − Σq(µ∗) is positive semidefinite,

where Ip and Iq denote the Fisher information matrix in terms of the canonical pa-
rameter spaces of P and Q, respectively. We have thus proven our first result:

Proposition 5.2. qµ∗(U)/pµ∗(U) is a local e-variable around µ∗ (and therefore, by
Proposition 5.1, a GRO local e-variable) if and only if Σp(µ∗) − Σq(µ∗) is positive
semidefinite.

The surprising result that follows below essentially adds to this that, if for every
µ∗ ∈ Mq, qµ∗/pµ∗ is a local e-variable, then also for every µ∗, we have that qµ∗/pµ∗ is
a full, global e-variable!
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5.3 Existence of Simple Global E-Variables

The theorem below gives eight equivalent characterizations of when a global GRO
e-variable exists. Not all characterizations are equally intuitive and informative: the
simplest ones are Part 1 and 3. To appreciate the more complicated characterizations
as well, it is useful to first recall some convex duality properties concerning derivatives
of KL divergences with regular exponential families (see e.g. Grünwald, 2007, Section
18.4.3):

βp(µ; µ∗) = ∇µD(Pµ∥Pµ∗), (5.10)(
Σ−1

p (µ)
)

ij
= d2

dµidµj
D(Pµ∥Pµ∗), (5.11)

and analogous for Q. That is, the gradient of the KL divergence in its first argument
at µ is given by the canonical parameter vector corresponding to µ, and the Hessian
is given by the Fisher information, i.e. the inverse covariance matrix.

Theorem 5.3. Let P be a regular exponential family with mean-value parameter space
Mp. Fix a distribution Q for U with EQ[X] = µ∗ for some µ∗ ∈ Mp ⊆ Rd and
consider the corresponding Q as defined above. Suppose that Mq is convex, Mq ⊆ Mp,
and Bp;µ ⊆ Bq;µ for all µ ∈ Mq. Then the following statements are equivalent:

1. Σp(µ) − Σq(µ) is positive semidefinite for all µ ∈ Mq.

2. (βp(µ; µ′) − βq(µ; µ′))T · (µ − µ′) ≤ 0 for all µ, µ′ ∈ Mq.

3. D(Qµ∥Qµ′) ≥ D(Pµ∥Pµ′) for all µ, µ′ ∈ Mq.

4. log Zp(β; µ) ≥ log Zq(β; µ) for all µ ∈ Mq, β ∈ Bp;µ.

5. qµ(U)/pµ(U) is a global e-variable for all µ ∈ Mq.

6. qµ(U)/pµ(U) is the global GRO e-variable w.r.t. Qµ for all µ ∈ Mq.

7. qµ(U)/pµ(U) is a local e-variable for all µ ∈ Mq.

8. qµ(U)/pµ(U) is a local GRO e-variable w.r.t. Qµ for all µ ∈ Mq.

Note that the canonical parameter space of a full exponential family is always
convex, but the mean-value space need not be (Efron, 2022). Still, in all examples we
consider below, the constructed family Q will in fact be a regular exponential family,
and then the convexity requirement must hold.
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In the one-dimensional case, the first statement simplifies to σ2
p(µ) ≥ σ2

q (µ) for all
µ ∈ Mq. Similarly, the second statement reduces to βq(µ; µ′) ≥ βp(µ; µ′) for all µ ∈ Mq

such that µ > µ′ and βq(µ; µ′) ≤ βp(µ; µ′) for all µ ∈ Mq such that µ < µ′ for all
µ′ ∈ Mq.

Using standard properties of Loewner ordering, it can be established that Σp(µ) −
Σq(µ) is positive semidefinite if and only if Σ−1

q (µ)−Σ−1
p (µ) is (see e.g. Agrawal, 2018).

Therefore, recalling (5.10) and (5.11), statement 1 in Theorem 5.3 can be thought of as
a condition on the second derivative of D(Pµ∥Pµ∗)−D(Qµ∥Qµ∗), whereas statement 2
refers to its first derivative, and statement 3 to the difference in KL divergence itself.
It is somewhat surprising that signs of differences between the second derivatives and
separately signs of differences between the first derivatives are sufficient to determine
signs of difference between a function itself.

5.3.1 Simplifying Situations

In some special situations, the conditions needed to apply Theorem 5.3 may be signif-
icantly simplified. We now identify two such situations, embodied by Proposition 5.4
and Corollary 5.5, that will be useful for our examples below.

First, we note that it is sometimes easy to check that either Mp = Mq or Bp;µ∗ =
Bq;µ∗ . The following proposition shows that, in the 1-dimensional setting, this is
already sufficient to apply the theorem (we do not know whether an analogous result
holds in higher dimensions):

Proposition 5.4. Let P be a 1-dimensional regular exponential family with mean-
value parameter space Mp ⊆ R. Fix a distribution Q for U with EQ[X] = µ∗ for
some µ∗ ∈ Mp and consider the corresponding Q as defined above. Suppose that for all
µ ∈ Mq, we have σ2

p(µ) ≥ σ2
q (µ), i.e. the first condition of Theorem 5.3 holds. Then:

1. If Mq = Mp then for all µ′ ∈ Mq, Bp;µ′ ⊆ Bq;µ′ , i.e., Theorem 5.3 is applicable.

2. If for some µ ∈ Mq, we have that Bp;µ = Bq;µ then Mq ⊆ Mp. Hence if for all
µ ∈ Mq, we have that Bp;µ = Bq;µ, then Theorem 5.3 is applicable.

The proof is simple and we only sketch it here: for part 1, draw the graphs of
βp(µ; µ′) and βq(µ; µ′) as functions of µ ∈ Mq, noting that both functions must take
the value 0 at the point µ = µ′. Using that 1/σ2

p(µ) is the derivative of βp(µ; µ′) and
similarly for σ2

q (µ), the function βq(µ; µ′) must lie above βp(µ; µ′) for µ > µ′, and
below for µ < µ′. Therefore the co-domain of βq must include that of βp. The second
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part goes similarly, essentially by flipping the just-mentioned graph of two functions
by 90 degrees.

Second, we note that in practice we often have a composite alternative H1 in
mind such that the union of the set of families Q that can be constructed from P
and any Q ∈ H1 in fact coincides with H1. This is the case in the examples of
Section 5.4.1, 5.4.3, 5.4.3 and 5.4.4. The following immediate corollary of Theorem 5.3
simplifies the analysis in such cases (although we will only explicitly need to invoke
it in Section 5.4.4). While in that section, H1 will itself be an exponential family, we
stress that in general, this need not be the case: to apply the corollary it is sufficient
for H1 to be a union of exponential families.

Corollary 5.5. Let P be a d-dimensional regular exponential family as before with
mean-value parameter space Mp, and let H1 =

⋃
θ∈Θ Q(θ) where each Q(θ) is a d-

dimensional regular exponential family with the same sufficient statistic as P and with
mean-value parameter space M(θ)

q and canonical parameter spaces B(θ)
q;µ for µ ∈ M(θ)

q .
Suppose that, for each θ ∈ Θ, for each Q ∈ Q(θ), the corresponding set Q as constructed
above in terms of P and Q, happens to be equal to Q(θ) and satisfies the pre-condition
of Theorem 5.3, i.e. M(θ)

q is convex, M(θ)
q ⊆ Mp, and Bp;µ ⊆ B(θ)

q;µ for all µ ∈ M(θ)
q . Then

we have, with Q
(θ)
µ (density q

(θ)
µ ) denoting the element of Q(θ) with mean µ, for all

θ ∈ Θ:

For all µ ∈ M(θ)
q : q

(θ)
µ (U)
pµ(U) is the global GRO e-variable w.r.t. Q

(θ)
µ ⇔

For all µ ∈ M(θ)
q : Σp(µ) − Σ(θ)

q (µ) is positive semidefinite.

Here Σ(θ)
q (µ) denotes the d × d covariance matrix of the element of Q(θ) with mean-

value parameter vector µ.

5.4 Examples

In this section we discuss a variety of settings to which Theorem 5.3 can be applied.
In some cases, this gives new insights into whether simple e-variables exist, and in
others it simply gives a reinterpretation of existing results. The examples are broadly
divided in terms of the curvature of the function f(·; µ∗), as defined in (5.8). Instances
where f(·; µ∗) is constant will be referred to as having ‘zero curvature’, those with a
constant second derivative as having ‘constant curvature’, and ‘nonconstant curvature’
otherwise.
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5.4.1 Zero Curvature: Gaussian and Poisson k-sample tests

In Chapter 4, we studied GRO e-values for k-sample tests with regular exponential
families. In that setting, data arrived in k ∈ N groups, or samples, and the null
hypothesis was that all of the data points are distributed according to the same element
of some exponential family. That is, let U = (Y1, . . . , Yk) for Yi ∈ Y, so that U = Yk

for some measurable space Y. Furthermore, fix a one-dimensional regular exponential
family on Y, given in its mean-value parameterization as Pstart = {Pµ : µ ∈ Mstart}
with sufficient statistic tstart(Y ). The composite null hypothesis P considered in the
k-sample test expresses that Y1, . . . , Yk

i.i.d.∼ Pµ for some µ ∈ Mstart. On the other
hand, the simple alternative Q that was considered in Chapter 4 is characterized by
µ = (µ1, . . . , µk) ∈ Mk

start, and expresses that the Y1, . . . , Yk are independent with
Yi ∼ Pµi

for i = 1 . . . k. It was shown that, for the case that Pstart is either the
Gaussian location family or the Poisson family,

S(U) :=
k∏

i=1

pµi
(Yi)

pµ̄(Yi)
, with µ̄ = 1

k

k∑
i=1

µi,

is a simple e-value relative to Q, and that its expectation is constant as the null varies.
That is, for any µ′ ∈ Mstart, it holds that

EU∼Pµ′ ×···×Pµ′ [S(U)] = 1. (5.12)

This finding can now be re-interpreted as an instance of Theorem 5.3, as we will show in
detail for the Poisson family; the analysis for the Gaussian location family is completely
analogous. In the Poisson case, tstart(Y ) = Y , so that P defines an exponential family
on U with sufficient statistic X =

∑k
i=1 Yi and mean-value space Mp = R+. The latter

follows because the sum of Poisson data is itself Poisson distributed with mean equal
to the sum of means of the original data. Under the alternative, the mean of the
sufficient statistic is given by µ∗ := EQ[

∑k
i=1 Yi] =

∑k
i=1 µi, so that the elements of

the auxiliary exponential family Q as in (5.3) can be written as

qβ;µ∗(Y1, . . . , Yk) = 1
Zq(β; µ∗) · exp

(
β

k∑
i=1

Yi

)
· q(Y1, . . . , Yk). (5.13)

Note in particular that Q is, by construction, a one-dimensional exponential family
with sufficient statistic

∑k
i=1 Yi, which does not equal (yet may be viewed as a subset

of) the full k-dimensional exponential family from which Q was originally chosen. The
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normalizing constant Zq(β; µ∗) is equal to the moment generating function of X under
Q, which is given by

Zq(β; µ∗) = EQ

[
exp

(
β

k∑
i=1

Yi

)]
= exp

(
µ∗(eβ − 1)

)
.

It follows that

EQβ;µ∗

[
k∑

i=1
Yi

]
= d

dβ
log Zq(β; µ∗) = µ∗eβ ,

which shows that mean-value space of the alternative is again given by Mq = R+.
Therefore, via Proposition 5.4, the assumptions of Theorem 5.3 are satisfied. The
element of P with mean µ∗ is given by Pµ̄ × · · · × Pµ̄, so that

qµ∗(U)
pµ∗(U) =

k∏
i=1

pµi
(Yi)

pµ̄(Yi)
.

Under Pµ∗ , the sufficient statistic
∑k

i=1 Yi has the same distribution as under Qµ∗ ,
so that Zp(β; µ∗) = Zq(β; µ∗). Consequently, f(·; µ∗) as in (5.8) is zero, so that its
second derivative is zero, and condition 1 of Theorem 5.3 is verified. It follows that,
qµ∗(U)/pµ∗(U) is the global GRO e-variable with respect to Qµ∗ .

5.4.2 Constant Curvature: Multivariate Gaussian Location

Suppose that P is the multivariate Gaussian location family with some given nondegen-
erate covariance matrix Σp and let Q be any Gaussian distribution with nondegenerate
covariance matrix Σq. Note that in this case we have that X = U , i.e. the sufficient
statistic is simply given by the original data. The family Q, generated from Q and
P as in (5.3), is the full Gaussian location family with fixed covariance matrix Σq.
For both P and Q, the mean-value and canonical spaces are all equal to Rd, so that
Theorem 5.3 applies to the pair P and Q. Furthermore, the covariance functions are
constant, since Σp(µ) = Σp and Σq(µ) = Σq for all µ ∈ Rd. It follows that, if Σp − Σq

is positive semidefinite, then Σp(µ) − Σq(µ) is positive semidefinite for all µ ∈ Rd.
In that case, Theorem 5.3 shows that the simple likelihood ratio qµ/pµ is the GRO
e-value w.r.t. Qµ for every µ ∈ Rd. The growth rate is given by

EQ

[
log qµ(U)

pµ(U)

]
= Dgauss(ΣqΣ−1

p ),

77



5.4 Examples

where Dgauss(B) := 1
2 (− log det(B) − (d − tr(B))), i.e. the standard formula for the

KL divergence between two multivariate Gaussians with the same mean.
In the case that Σp − Σq is negative semidefinite, the simple likelihood ratio does

not give an e-value; the GRO e-value for this case can also be derived however and
will be reported on in future work.

5.4.3 Nonconstant Curvature: Univariate Examples

We now discuss three examples with nonconstant curvature. In the first two, Theo-
rem 5.3 can be used to show the existence of simple e-variables. All three are univariate
in nature; in the separate Section 5.4.4 we provide the example of linear regression,
which has nonconstant curvature but is multivariate.

More k-Sample Tests

Besides the Gaussian and Poisson case, Chapter 4 identified one more model that gives
rise to a k-sample test with a simple e-value: the case that Pstart is the Bernoulli
model. The difference with the Gaussian location- and Poisson family is that the
involved e-value does not have constant expectation 1 here. Nevertheless, this result
for the Bernoulli model can also be cast in terms of Theorem 5.3 using a different
argument.
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(0.2,0.4)

(0.5,0.9)

(0.8,0.2)

Figure 5.2: The family Q for various µ∗. The coordinate grid represents the parameters
of the full 2-sample Bernoulli family, the straight line shows the parameter space of P, the
curved lines show the parameters of the distributions in Q, and the dashed lines show the
projection of µ∗ onto the parameter space of P.

Again, P is an exponential family on U that states that the k samples are i.i.d.
Bernoulli, which has sufficient statistic X =

∑k
i=1 Yi. Its mean-value space is given
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by Mp = (0, k), since the sum of k i.i.d. bernoulli random variables with parameter
µ has a binomial distribution with parameters (k, µ). Under the alternative Q, the
k samples are independently Bernoulli distributed with means given by µ ∈ (0, 1)k,
in which case the sum has mean µ∗ =

∑k
i=1 µi. When constructing the family Q as

in (5.3), it can be verified that Qβ,µ∗ is the product of Bernoulli distributions with
means (

eβµ1

1 − µ1 + eβµ1
, . . . ,

eβµk

1 − µk + eβµk

)
. (5.14)

This family of distributions is illustrated in Figure 5.2 for different choices of µ∗. Seen
as a function of β, all entries in (5.14) behave as sigmoid functions, so that the sum
takes values in (0, k). It follows that the mean-value space of Q is given by Mq = (0, k),
which equals Mp — ana also, the canonical spaces are all equal to R. Furthermore, the
normalizing constant Zq(β; µ∗) of Q must be given by

Zq(β; µ∗) =
k∏

i=1
(1 − µi + µie

β).

We will now verify that item 4 of Theorem 5.3 is satisfied by doing a similar
construction for arbitrary µ ∈ (0, k). The element in P with mean µ corresponds to
Bernoulli parameter µ/k, so that we have

Zp(β; µ) = EPµ∗

[
exp

(
β

k∑
i=1

Yi

)]
=
(

1 − µ

k
+ µ

k
eβ
)k

.

Furthermore, there is a corresponding µ′ ∈ (0, 1)k such that
∑k

i=1 µ′
i = µ and µ′ can

be written as (5.14) for a specific β. Repeating the reasoning above gives

Zq(β; µ) =
k∏

i=1
(1 − µ′

i + µ′
ie

β).

By concavity of the logarithm, it holds that

log Zp(β; µ) = k log
(

1 − µ

k
+ µ

k
eβ
)

≥
k∑

i=1
log(1 − µ′

i + µ′
ie

β) = log Zq(β; µ).

We can therefore conclude that q(U)/pµ∗(U) is the GRO e-variable with respect to Q.
Several other exponential families for k-sample testing, such as exponential distri-

butions, Gaussian scale, and beta, were investigated in Chapter 4, but none of these
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gave rise to a simple e-value. Parts 1-4 of Theorem 5.3 provide some insight into what
separates these families from the Gaussian location, Poisson, and Bernoulli.

Gaussian Scale Family

Another setting in which Theorem 5.3 applies is where P equals the Gaussian scale
family with fixed mean, which we take to be 0 without loss of generality. That is,
P = {Pσ2 : σ2 ∈ Mp} where Pσ2 is the normal with mean 0 and variance σ2, i.e.

pσ2(U) = 1√
2πσ

· e− 1
2σ2 U2

. (5.15)

We will substantially extend this null hypothesis, and hence this example, in Sec-
tion 5.4.4. For now, note that P is an exponential family with sufficient statistic
X = U2, mean-value parameter σ2 and mean-value space given by Mp = R+. The
canonical parameterization of the null relative to any mean-value σ2 ∈ Mp is given by

pβ;σ2(U) = 1
Zp(β; σ2) · eβU2

· 1√
2πσ2

e−U2/(2σ2) (5.16)

with canonical parameter space Bp;σ2 = (−∞, 1/(2σ2)).
As alternative, we take Q to be a Gaussian distribution with some fixed mean

m ̸= 0 and variance s2. We use m and s2 instead of µ and σ2 here to avoid confusion
with the mean-value parameters of P. The expected value of X under Q is given by
σ∗2 := EQ[X] = s2 + m2. The family Q = {Qβ : β ∈ Bq;σ∗2} as defined by (5.3)
therefore becomes:

qβ;σ∗2(U) = 1
Zq(β; σ∗2) · eβU2

· 1√
2πs

· e−c(U−m)2
, (5.17)

where c = 1/(2s2), with Bq;σ∗2 = (−∞, c). Comparing (5.16) and the above confirms
that Q is an exponential family that has the same sufficient statistic, namely U2, as
P, but different carrier.

The normalizing constant Zq can be computed using (for example) the moment
generating function of the noncentral chi-squared.

Zq(β; σ∗2) = EQ

[
eβU2

]
= EQ

[
eβs2( U

s )2
]

= (1 − 2βs2)−1/2 exp
(

m2β

1 − 2βs2

)
,

where we use that (U/s)2 has noncentral chi-squared distribution with one degree
of freedom and noncentrality parameter m2/s2. Plugging this back in (5.17) shows
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that qβ,σ∗2 is a normal density with mean cm/(c − β) and variance 1/(2(c − β)) =
s2/(1 − 2βs2). This gives

EQβ;σ∗2 [U2] = 2c2m2 − (β − c)
2(β − c)2 (5.18)

The mean-value parameter space of Q is thus given by Mq = {EQβ;σ∗2 [U2], β < c} = R+

which is equal to Mp. Thus, this constructed family does not equal the natural choice of
composite alternative that Q was also chosen from, i.e. the (two-dimensional) set of all
Gaussians with arbitrary variance mean unequal to zero. However, it does correspond
to a specific one-dimensional subset thereof, as was illustrated in Figure 5.1 in the
introduction.

Since Mq = Mp, we get, via Proposition 5.4 that a simple e-variable w.r.t. Q exists
if, for all σ2 > 0, we have that varPσ2 [U2] ≥ varQσ2 [U2]. We now show this to be
the case. We have

varPσ2 [U2] = 2σ4 = 2(EPσ2 [U2])2 = 2(EQσ2 [U2])2.

It is therefore sufficient to check whether, for all σ2 > 0, it holds that varQσ2 [U2] ≤
2(EQσ2 [U2])2. We can either verify this using existing results by noting that, no matter
how m and s2 were chosen, U2 has a noncentral χ2-distribution under each Qσ2 , for
which it is known that the inequality holds. We can also easily verify it explicitly
now that we have already found an expression for Zq(β; σ∗2): since there is no more
mention of the null hypothesis, it is equivalent to check whether for each β ∈ Bq;σ∗2

we have
varQβ;σ∗2 [U2] ≤ 2

(
EQβ,σ∗2 [U2]

)2
.

To this end, the variance function in terms of β can be computed as

varQβ;σ∗2 [U2] = d2

dβ2 log Zq(β; σ∗2) = −4c2m2 − (β − c)
2(β − c)3 . (5.19)

Comparing this to (5.18) shows that the condition above indeed holds, from which we
can conclude that q(U)/pσ∗2(U) is an e-value.

Finally, note that even though the mean-value parameter spaces of P and Q are
equal, the canonical spaces are not: Bp;σ∗2 is a proper subset of Bq;σ∗2 . More generally,
for any σ′2 > 0 different from the σ∗2 we started with, the canonical spaces Bp;σ′2 and
Bq;σ′2 both change but remain unequal. Still, Proposition 5.4 ensures that we will have
Bp;σ′2 ⊂ Bq;σ′2 .
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NEFS and their Variance Functions

In this section, we consider the setting where P is a one-dimensional natural expo-
nential family (NEF) and Q is also an element of an NEF. This setting is particularly
suited for the analysis above, because the constructed family Q can be seen to equal
the NEF that Q was chosen from. We therefore do not differentiate between the simple
or composite alternative in this section. Furthermore, NEFs are fully characterized
by the pair (σ2(µ), M), where M is the mean-value parameter space and σ2(µ) is the
variance function as defined before. A wide variety of NEFS and their corresponding
variance functions have been studied in the literature (see e.g. Morris, 1982; Jørgensen,
1997; Bar-Lev et al., 2024) and this can be used in conjunction with Theorem 5.3 to
quickly check on a case-by-case basis whether any given pair of NEFs provides a simple
e-variable.

For example, let P = {Pλ,r : λ ∈ R+} be the set of Gamma distributions for U with
varying scale parameter λ and fixed shape parameter r > 0. The sufficient statistic
is given by X = U and its mean under Pλ,r equals rλ, so the mean-value parameter
space is Mp = R+. The variance function is given by σ2

p(µ) = µ2/r. If we set Q to
Pλ∗,r′ for specific λ∗, r′ ∈ R+, then Q is the set of Gamma distributions with fixed
shape parameter r′.

Similarly, let P be the set of negative binomial distributions with fixed number of
successes n ∈ N and let Q be any Poisson distribution, so that Q equals the Poisson
family. The variance functions are given by σ2

p(µ) = µ2/n + µ and σ2
q (µ) = µ, respec-

tively. It is trivially true that σ2
p(µ) ≥ σ2

q (µ) for all µ, so Theorem 5.3 reveals that
a simple e-variables exists with respect to any element of the Poisson family. More
generally, we may look at the Awad-Bar-Lev-Makov (ABM) class of NEFs (Bar-Lev
and Ridder, 2021; Awad et al., 2022; Bar-Lev and Ridder, 2023) that are characterized
by mean-value parameter space M = R+ and variance function

σ2
s(µ) = µ

(
1 + µ

s

)r

, s > 0, r = 0, 1, 2, ...

This class was proposed as part of a general framework for alternatives to the Poisson
model (which would arise for r = 0) that are zero-inflated and over-dispersed. The case
r = 1 recovers the negative binomial distribution and r = 2 is called the generalized
Poisson or Abel distribution. As was the case for the negative binomial distribution,
it follows from Theorem 5.3 that simple e-variables exist for testing any of the ABM
NEFs against the Poisson model.

Much more generally, consider the Tweedie-Bar-Lev-Enis class (Bar-Lev, 2020) of
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NEFs that have mean-value space M = R+ and power variance functions

σ2(µ) = aµγ , a > 0, µ > 0, γ ≥ 1.

We require γ ≥ 1 because there are no families of this form with γ ∈ (0, 1) and while
there are families in this class with γ < 0, they are not regular and therefore beyond
the scope of this chapter. The cases γ = 1 (Poisson) and γ = 2 (Gamma families,
with a depending on the shape parameter) were already encountered above. If we test
between two of such families, say P with σ2

p(µ) = apµγp and Q with σ2
q (µ) = aqµγq

that share the same underlying sample space, there do not exist simple e-variables in
general. Indeed, we have that σ2

p(µ) ≥ σ2
q (µ) if and only if µγp−γq ≥ aq/ap, which, for

certain combinations of parameters, does not hold for all µ ∈ M. Since this condition
might hold for some µ but not for others, this suggests that there may be cases where
we find local e-variables that are not global.

Let us investigate this for (ap, γp) = (1, 2) and (aq, γq) = (1/2, 3), which corre-
sponds to the family of exponential distributions and the family of inverse Gaussian
distributions with shape parameter λ := a−1

q = 2 respectively. In this case, it holds
that σ2

p(µ) ≥ σ2
q (µ) ⇔ µ ≤ a−1

q . It follows from the analysis in Section 5.2 that
qµ(U)/pµ(U) is a local e-variable for µ ≤ a−1

q . However, since the condition does not
hold for all µ we cannot use Proposition 5.4 (or, equivalently, because, as we will see,
the preconditions for Theorem 5.3 do not hold), this need not necessarily also be a
global e-variable. In fact, the expected value under µ′ ∈ M is given by

EU∼Pµ′

[
qµ(U)
pµ(U)

]
=
∫ ∞

0

1
µ′

√
λ

2πx3 exp
(

−λ(x − µ)2

2µ2x
+ x

µ
− x

µ′

)
dx, (5.20)

which diverges for µ′ ≥ (1/µ − λ/(2µ2))−1. The latter is vacuous for µ ≤ λ/2, which
means that for such µ we might still get a global e-variable. For µ ∈ (λ/2, λ), this
shows that we will get a local e-variable that is not a global e-variable. These different
regimes are illustrated in Figure 5.3. For µ > 1, the lines stop when the integral
in (5.20) starts diverging. To see how the potential divergence (for large enough µ′, in
the regime 1 < µ < 2) plays out in terms of the function f in (5.8), consider for example
µ = 3/2. Then, as is immediate from the definition of exponential distributions and
the inverse Gaussian density with λ = 2 we have qβ;µ(x) ∝ exp((β − 4/9)x)h(x)
with h the probability density on R+ given by h(x) =

√
1/(πx3) exp(−1/x), whereas

pβ;µ ∝ exp((β − 2/3)x). We see that Bp;µ = (−∞, 6/9) and Bq;µ = (−∞, 4/9). Thus,
as β ↑ 4/9, we get that log Zp(β) converges to a finite constant whereas log Zq(β) ↑ ∞,
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so that f(β, µ) → ∞, with f the function in (5.8), as it should.
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Figure 5.3: The expected value of qµ(U)/pµ(U) under the null Pµ′ for varying µ′.

5.4.4 The Linear Model

We now show that Theorem 5.3 allows us to conclude that simple e-variables exist
for the linear model, i.e. standard linear regression with Gaussian noise, where the
null hypothesis P is a subset of the alternative H1 obtained by setting the regression
parameter of a control random variable to 0, as soon as we allow the variance in P to be
a free parameter. This was shown directly, without associating a specific family Q to
P, in an unpublished master thesis (De Jong, 2021). De Jong’s treatment involved a lot
of hard-to-interpret calculus, much of it discovered by trial-and-error. The advantage
of the present treatment is that Theorem 5.3 clearly guides the reasoning and suggests
what formulas to verify. The setting is really a vast extension of that of Section 5.4.3,
which is (essentially) retrieved if below we set d = 0. Interestingly, e-variables for
linear models were already derived by Pérez-Ortiz et al. (2024) and Lindon et al.
(2024), based on right-Haar priors. The current approach provides a different type
of e-variable which has the advantage that it does not require the variance under the
alternative to be equipped with a right-Haar prior: while for convenience we give the
treatment below for H1 with the variance σ2 being left a free parameter, we can freely
apply the results to any H′

1 ⊂ H1, in particular with H′
1 restricted to densities with a

fixed variance. The price to pay is that the e-variables derived below, while growth-
optimal for the fixed Q ∈ H1 relative to which they are defined, will in general not
be GROW (worst-case growth optimal, see (Grünwald et al., 2024)) in the worst-case
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over all distributions in H1 when σ2 varies within H1.
Assume then that data arrives as a block of outcomes together with given covariate

vectors, i.e. U = ((Y1, x1), . . . , (Yn, xn)) with Yi ∈ R and xi = (xi,0, xi,1, . . . , xi,d)T ∈
Rd+1. Define the conditional normal distributions Gσ,γ with corresponding densities

gσ,γ(Y n) := gσ,γ(Y n | xn) = 1
(2πσ2)n/2 · e− 1

2σ2

∑
(Yi−νi)2

(5.21)

with γ = (γ0, γ1, . . . , γd)T ∈ Rd+1 and

νi := γT xi. (5.22)

Here and in the sequel, sums without explicitly denoted ranges are invariably taken
to be over i = 1..n and we omit the conditional xn from the notation, since they are
fixed throughout the following analysis.

We focus on the most common case in which one of the covariates, xi,0, has a
special status and we want to test whether the corresponding coefficient γ0 is equal
to 0. We thus want to design an e-variable for testing any simple alternative Q

taken from the full alternative hypothesis H1 vs. the null P, where H1 and P are
respectively given by:

H1 = {Gσ,γ : γ ∈ Rd+1, γ0 ̸= 0, σ > 0} ; P = {Gσ,γ : γ ∈ Rd+1, γ0 = 0, σ > 0}.

(5.23)
We make the standard assumption that n ≥ d + 1 and that the matrix (x1, . . . , xn)
has maximal (i.e. d + 1) rank. Now define the transformed parameters λ := −1/(2σ2)
and β = (β1, . . . , βd)T with, for j = 1..d, βj := γj/σ2 and θ := γ0/σ2 and set tj(Y n) =∑

Yixi,j . Rewriting the likelihood (5.21) in terms of this new parameterization and
the tj , denoting the resulting densities by f

(θ)
λ,β, we see that

f
(θ)
λ,β(yn) = gσ,γ(yn) = exp

λ
∑

y2
i + θt0(yn) +

d∑
j=1

βjtj(yn)

 · h1(yn)h2(σ, γ)

(5.24)

for some function h1 not depending on the parameters and h2 not depending on the
data yn. Let, for θ ∈ R, Q(θ) be the set of distributions F

(θ)
λ,β with densities f

(θ)
λ,β. We

see that for each θ ∈ R, Q(θ) is a (d+1)-dimensional exponential family with sufficient
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statistic vector (∑
Y 2

i , t1(Y n), . . . , td(Y n)
)

. (5.25)

and mean-value parameter space M(θ)
q = (0, ∞) × Rd. The original parameter vector

corresponding to (λ, β) is (σ2, γ) with σ2 := −1/(2λ) and γ = (σ2θ, σ2β1, . . . , σ2βd)
and the corresponding mean-value parameter vector is

µ :=
(

nσ2 +
∑

ν2
i ,
∑

xi,1νi, . . . ,
∑

xi,dνi

)T

. (5.26)

with νi as in (5.22). Observe that H1 =
⋃

θ∈R\{0} Q(θ) and P = Q(0). For expository
convenience, we slightly deviated from our previous notation here by having a canonical
parameter space vector of the form (λ, β) rather than β = (β1, . . . , βd); thus β is d-
dimensional but µ still represents a full (d + 1)-dimensional mean-value parameter.

Having established that Q(θ) and P are, indeed, exponential families, we will now
show that Theorem 5.3 in the form of Corollary 5.5 is applicable to them. Thus, fix
arbitrary Q◦ ∈ H1. We must have that Q◦ ∈ Q(θ◦) for some θ◦ and the density of
Q◦ can be written as f

(θ◦)
λ◦,β◦ or equivalently as gσ◦,γ◦ with σ◦, γ◦ and ν◦ related to

θ◦, λ◦ and β◦ in the same way as before, in particular ν◦
i = γ◦T xi (we can now see

how this example extends Section 5.4.3: using the notation from that example, i.e. m

the mean of U and s2 its variance under Q, we set n = 1, d = 0, x1 = 1, ν◦
1 = γ◦

0 = m

and σ◦2 = s2).
Simple differentiation gives that the element in P that minimizes KL divergence,

i.e. achieves minP ∈P D(Q∥P ), is given by P = Gγ∗,σ∗ with parameters σ∗2 and
γ∗ = (0, γ∗

1 , . . . , γ∗
d) where γ∗ is a Euclidean projection and σ∗2 is related to this

projection via

σ∗2 = min
(γ1,...,γd)∈Rd

1
n

EQ

∑(Yi −
d∑

j=1
γjxi,j)2


This link to Euclidean projection implies, upon setting ν∗

i := γ∗T xi the following
easily derivable consequences:

for all j ∈ {1, . . . , d}:
∑

ν◦
i xi,j=

∑
ν∗

i xi,j

σ∗2 = σ◦2 + 1
n

∑
(ν∗

i − ν◦
i )2=σ◦2 + 1

n

(∑
ν∗2

i −
∑

ν◦2
i

)
, (5.27)

where we note that (5.27) may be seen as versions of the standard normal equations
in linear regression analysis. Again we define λ∗, β∗, µ∗ correspondingly as above, in
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particular µ∗ is given in terms of σ∗ and ν∗ via (5.26) .
We now simply follow the steps needed to apply Theorem 5.3 in the form of Corol-

lary 5.5. First, we reparameterize P in terms of the specific canonical parameterization
in which (λ, β) = 0 must correspond to Gσ∗,γ∗ . We obtain:

pλ,β;µ∗(yn) = 1
Zp(λ, β; µ∗) · exp

λ
∑

y2
i +

d∑
j=1

βjtj(yn)

 f
(0)
λ∗,β∗(yn), (5.28)

with Zp(λ, β; µ∗) the normalizing constant, defined for all (λ, β) ∈ Bp;µ∗ where

Bp;µ∗ = {(λ, β) : Zp(λ, β; µ∗) < ∞} = (−∞, −λ∗) × Rd.

We see that this family coincides with P. Similarly, relative to our fixed (θ◦, λ◦, β◦)
we define the family with densities

q
(θ◦)
λ,β (yn; µ∗) = 1

Z
(θ◦)
q (λ, β; µ∗)

· exp

λ
∑

y2
i +

d∑
j=1

βjtj(yn)

 f
(θ◦)
λ◦,β◦(yn), (5.29)

with normalizing constant Z
(θ◦)
q (λ, β; µ∗). We see that this family coincides with Q(θ◦)

and has canonical parameter space B(θ◦)
q;µ∗ = (−∞, −λ◦) × Rd.

To apply Corollary 5.5, we need to verify that for each choice of θ◦, we have (i)
M(θ◦)

q ⊆ Mp, and (ii) for each µ ∈ M(θ◦)
q , we have that Bp;µ ⊆ B(θ◦)

q;µ . We already verified
M(θ◦)

q = Mp, implying (i), further above. As to (ii), note that the inclusion holds
for µ = µ∗ since, using (5.27), −λ∗ = (1/2σ∗2) ≤ (1/2σ◦2) = −λ◦. We next note
that for each θ◦ ∈ R, there is a 1-to-1 correspondence between the choice (λ◦, β◦) ∈
(−∞, 0)×Rd used to determine f

(θ◦)
λ◦,β◦ and the resulting µ∗ ∈ Mp. We thus see that we

can obtain the desired inclusion for arbitrarily chosen µ ∈ Mp by picking (λ◦, β◦) such
that µ∗ becomes equal to this µ. This shows that (ii) holds for all µ ∈ Mp = M(θ◦)

q .
Corollary 5.5 now gives the following: for all γ◦ ∈ Rd with γ◦

0 ̸= 0, all σ◦ > 0, we have
that gσ◦,γ◦(Y n)/gσ∗,γ∗(Y n) = f

(θ◦)
λ◦,β◦(Y n)/f

(0)
λ∗,β∗(Y n) is the GRO e-variable relative

to Gσ◦,γ◦ if Σp(µ)−Σ(θ◦)
q (µ) is positive semidefinite for all µ ∈ Rd. But this condition

is readily established to hold: we do so in Appendix C.1.
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5.5 Proof of Theorem 5.3

To get some intuition first, we note that the distributions Pβ and Qβ indexed by the
β in the definition of f(β; µ∗), i.e. (5.8), are difficult to compare in the sense that
they do not necessarily have any properties in common. In particular, Pβ generally
does not achieve minP ∈P D(Qβ∥P ), so that Pβ and Qβ do not have the same mean.
This suggests to replace f(β; µ∗) by a function g(µ; µ∗) on the mean-value parameter
space and also to re-express f(β; µ∗) ≤ 0, the condition for being an e-variable, by
a condition on g — and this is what we do in the proof of Theorem 5.3: inside the
proof below we establish, using well-known convex duality properties of exponential
families, that this can be done with function and condition, respectively, given by:

g(µ; µ∗) = D(Pµ∥Pµ∗) − D(Qµ∥Qµ∗), (5.30)

g(µ; µ∗) ≤ 0. (5.31)

This condition on g corresponds to item 3 in Theorem 5.3. The key insight for showing
the suitability of g is the following well-known convex-duality fact about exponential
families: for all µ, µ′ ∈ Mp, all β ∈ Bp;µ∗ , we have:

− log Zp(β; µ′) = D(Pµp(β;µ′)∥Pµ′) − βT µp(β; µ′) ≤ D(Pµ∥Pµ′) − βT µ. (5.32)

This can be derived as follows:

D(Pµp(β;µ′)∥Pµ′) − D(Pµ∥Pµ′) = log Zp(βp(µ; µ′))
Zp(β; µ′) + βT µp(β; µ′) − βp(µ; µ′)µ

= log Zp(βp(µ; µ′))
Zp(β; µ′) + βT (µp(β; µ′) − µ) − (βp(µ; µ′) − β)T µ

= βT (µp(β; µ′) − µ) − D(Pµ∥Pµp(β;µ′))

≤ βT (µp(β; µ′) − µ).

We now prove the chain of implications in the theorem.

(1) ⇒ (2) Let µ, µ′ ∈ Mq and denote µ(α) := (1 − α)µ′ + αµ. By assumption of
convexity, we have that µ(α) ∈ Mq for all α ∈ [0, 1]. Furthermore, define h(α) =
(βp(µ(α); µ′) − βq(µ(α); µ′))T (µ(α) − µ′), so that h(0) = 0 and h(1) = (βp(µ; µ′) −
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βq(µ; µ′))T (µ − µ′). The derivative of h is given by

d

dα
h(α) =

(
d

dα
βp(µ(α); µ′) − βq(µ(α); µ′)

)T

(µ(α) − µ′)

+ (βp(µ(α); µ′) − βq(µ(α); µ′))T d

dα
µ(α).

The chain rule gives

d

dα
βp(µ(α); µ′) = Σ−1

p (µ(α))T (µ − µ′),

where we use (5.10) and (5.11) together with the fact that the Jacobian of the gradient
of a function equals the transpose of its Hessian. The derivative of βq(µ(α); µ′) can
be found with the same argument, so we see

d

dα
h(α) =

(
(Σ−1

p (µ(α)) − Σ−1
q (µ(α)))T (µ − µ′)

)T (µ(α) − µ′)

+ (βp(µ(α); µ′) − βq(µ(α); µ′))T (µ − µ′)

= 1
α

(µ(α) − µ′)T (Σ−1
p (µ(α)) − Σ−1

q (µ(α)))(µ(α) − µ′)

+ (βp(µ(α); µ′) − βq(µ(α); µ′))T (µ − µ′)

= 1
α

(µ(α) − µ′)T (Σ−1
p (µ(α)) − Σ−1

q (µ(α)))(µ(α) − µ′) + 1
α

h(α). (5.33)

If Σp(µ) − Σq(µ) is positive semidefinite for all µ, then Σ−1
p (µ) − Σ−1

q (µ) is negative
semidefinite (as discussed below the statement of Theorem 5.3). In this case, the first
term in (5.33) is negative and, since h(0) = 0, the second term is also negative on
[0, 1]. It follows that h is decreasing when Σp(µ) − Σq(µ) is positive semidefinite, so
that (βp(µ; µ′) − βq(µ; µ′))T (µ − µ′)) ≤ 0, as was to be shown.

(2) ⇒ (3) We use a similar argument as was used to prove the previous implication, so
let µ, µ′ ∈ Mq and denote µ(α) = (1−α)µ′ +αµ as before. Define h(α) := g(µ(α); µ′).
Using the chain rule of differentiation together with (5.10), we see that the derivative
of h is given by

d

dα
h(α) = (βp(µ(α); µ′) − βq(µ(α); µ′))T (µ − µ′)

= 1
α

(βp(µ(α); µ′) − βq(µ(α); µ′))T (µ(α) − µ′).
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If item (2) holds, then we have that d
dα h(α) ≤ 0. Furthermore, since h(0) = 0 and

h(1) = D(Pµ∥Pµ′) − D(Qµ∥Qµ′), we see that item (2) implies that

D(Pµ∥Pµ′) − D(Qµ∥Qµ′) ≤ 0,

as was to be shown.

(3) ⇒ (4) Assume that D(Pµ∥Pµ′) − D(Qµ∥Qµ′) ≤ 0 for all µ, µ′ ∈ Mq. Together
with (5.32) this gives, for all µ, µ′ ∈ Mq, all β ∈ Bp;µ′ :

D(Pµp(β;µ′)∥Pµ′) − βT µp(β; µ′) ≤ D(Pµ∥Pµ′) − βT µ ≤ D(Qµ∥Qµ′) − βT µ.

(5.34)

Applying this with µ = µq(β; µ′) and re-arranging gives

−D(Pµp(β;µ′)∥Pµ′) + βT µp(β; µ′) ≥ −D(Qµq(β;µ′)∥Qµ′) + βT µq(β; µ′), (5.35)

which, by the equality in key fact (5.32) is equivalent to log Zp(β; µ′) ≥ log Zq(β; µ′),
which is what we had to prove.

Remaining Implications (4) ⇒ (5) now follows by the equality in (5.8) and the
definition of an e-variable. (5) ⇒ (6) follows from proposition 5.1, (6) ⇒ (7) follows
because a global e-variable is automatically also a local one, and (7) ⇒ (8) again
follows from Proposition 5.1. Finally, (8) ⇒ (1) has already been established as
Proposition 5.2.

5.6 Conclusion and Future Work

We have provided a theorem that, under regularity pre-conditions, provides a general
sufficient condition under which there exists a simple e-variable for testing a simple
alternative versus a composite regular exponential family null. The characterization
was given in terms of several equivalent conditions, the most direct being perhaps
the condition ‘Σp(µ) − Σq(µ) is positive semidefinite for all µ ∈ Mq’. A direct follow-
up question is: can we construct GRO or close-to-GRO e-variables, in case either
the regularity pre-conditions or the positive definiteness condition do not hold? The
example of Section 5.4.3, and in particular Figure 5.3, indicated that in that case,
many things can happen: under some µ ∈ Mq (green curve), qµ/pµ still gives a global
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simple e-variable; for other µ (blue), it gives a local but not global e-variable; for yet
other µ (pink), it does not give an e-variable at all.

Nevertheless, it turns out that if the pre-regularity conditions hold and the ‘op-
posite’ of the positive semidefinite condition holds, i.e. if Σp(µ) − Σq(µ) is negative
semidefinite for all µ ∈ Mq, then there is again sufficient structure to analyze the prob-
lem. The GRO e-variable will now be based on a mixture of elements of the null,
but the specific mixture will depend on the sample size: we now need to look at i.i.d.
repetitions of U rather than a single outcome U . We will provide such an analysis in
future work.

Another interesting avenue for future work is to extend the analysis to curved ex-
ponential families (Efron, 2022). While we do not have any general results in this
direction yet, the analysis by Liang (2023) suggests that this may be possible. Liang
considers a variation of the Cochran-Mantel- Haenszel test, in which the null hypothe-
sis expresses that the population-weighted average effect size over a given set of strata
is equal to, or bounded by, some δ. This can be rephrased in terms of a curved ex-
ponential family null, for which Liang (2023) shows that a local e-variable exists by
considering the second derivative of the function f(β; µ∗) as in (5.8), just like in the
present chapter but with β representing a particular suitable parameterization rather
than the canonical parameterization of an exponential family. The local e-variable is
then shown to be a global e-variable by a technique different from the construction
of Q we use here. Still, the overall derivation is sufficiently similar to suggest that it
can be unified with the reasoning underlying Theorem 5.3. Finally, the analysis of the
linear model in Section 5.4.4 suggests that the results may perhaps be extended to say
something about existence of generalized linear models without assuming a model-X
condition (see Chapter 6) — a situation about which currently next to nothing is
known.
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6 | Tests of Conditional Inde-
pendence Under Model-X

In Chapters 4 and 5, we discovered that there exist simple-vs.-simple likelihood ratios
that are e-statistics (hence GRO) for certain parametric hypothesis tests involving
exponential families. This considerably simplifies the problem of finding the GRO
e-statistic in such cases. Furthermore, the discussion of the GRO e-statistic for the
large nonparametric null in Section 4.2.2—called Sgro(iid) there—reveals that this can
also occur for nonparametric null hypotheses. In this chapter, we continue the investi-
gation of nonparametric problems by studying tests of conditional independence of a
response Y and a predictor X given a random vector Z. Although we do not make any
assumptions on the rest of the distribution, our test depends on the availability of the
conditional distribution of X given Z, or at least a sufficiently sharp approximation
thereof. This is known as the model-X setting. Within this setting, we derive a general
method for constructing e-statistics to test conditional independence. This method
leads to GRO e-statistics for simple alternatives, because it gives an e-statistic in the
form of a simple-vs.-simple likelihood ratio. Furthermore, we prove that our method
yields tests with asymptotic power one in the special case of a logistic regression model.
A simulation study is done to demonstrate that the approach is competitive in terms
of power when compared to established sequential and nonsequential testing methods,
and robust with respect to violations of the model-X assumption.
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6.1 Introduction

A fundamental task in many areas of research, such as economics, genetics, and phar-
macology, is to find out whether there is an association between a response Y and an
explanatory variable X, given a vector of covariates Z. Mathematically, absence of
such an association is defined as conditional independence (CI) between X and Y given
Z, denoted by X ⊥⊥ Y | Z (Dawid, 1979). A standard way to tackle these problems
is to assume a (semi)parametric model on Y given X and Z, encoding the depen-
dence between Y and X in a model parameter. For example, in the logistic model
the probability that a binary random variable Y equals one is regressed on (X, Z),
and the regression coefficient corresponding to X is zero if and only if X ⊥⊥ Y | Z.
Within these parametric models, there are well established methods to test conditional
independence, such as the likelihood ratio test for generalized linear models (McCul-
lagh and Nelder, 1989). However, all of these tests have in common that they fail to
uphold a type-I error guarantee when the model assumptions are not satisfied. If Z

is continuously distributed such error inflation is in fact unavoidable: unless further
assumptions on the distribution of (X, Y, Z) are imposed, there exist no nontrivial
tests of CI which maintain type-I error guarantees (Shah and Peters, 2020).

However, Candès et al. (2018) show that given additional knowledge, i.e. the dis-
tribution of X conditional on Z, nontrivial tests of conditional independence can be
designed without further assumptions on the distribution of (X, Y, Z). This has been
dubbed the Model-X (MX) setting, and the condition that the distribution of X con-
ditional on Z is known is called the Model-X (MX) assumption, though there are
settings where the MX ‘assumption’ is known to be true. Perhaps the most prominent
example is a randomized clinical trial, where the distribution of treatment/control is
imposed by the researchers. Another example is conjoint analysis, which is a survey-
based experiment where respondents are asked to express a preference between multi-
ple hypothetical products with different attributes. These attributes are randomized
according to a distribution chosen by the researchers, with the aim to find out whether
one or more of the attributes have an influence on consumer preference (see e.g. Ham
et al. (2024)). Furthermore, Candès et al. (2018) show that there are ample scenarios
where at least an accurate estimate of the conditional distribution of X given Z is
known, while also acknowledging that the MX assumption might not be appropriate
if this is not the case.

Under the MX assumption, Candès et al. derive the conditional randomization
test (CRT), which has nontrivial power to detect CI. Recently, much effort has gone
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into relaxing the MX assumption and improving the robustness of the CRT under
misspecification of the conditional distribution of X | Z (Katsevich and Ramdas,
2022; Li and Liu, 2023; Niu et al., 2024). The CRT and most of its extensions have in
common that they are based on p-values computed on batches of data, and therefore
designed for fixed sample size experiments. In this chapter, we focus on anytime-valid
tests for CI under MX. Anytime-valid tests allow for more flexibility when testing
compared to the nonsequential CRT and also allow covariate adaptive designs, where
the distribution of X does not only depend on Z, but also on past data, such as
in response-adaptive sampling schemes. Previous work on anytime-valid tests of CI
under MX has been done by Duan et al. (2022), who propose tests for the case that
X is binary. Their approach is based on pragmatic game-theoretic principles, whereas
in this chapter, we aim to describe and theoretically analyze anytime-valid tests for
CI for general X. Shaer et al. (2023) have worked on an extension of the work by
Duan et al. (2022) concurrently, and we discuss their work and the connections to this
chapter in Section 6.6.

Our hypothesis tests are based on the concept of e-statistics1 (Grünwald et al.,
2024; Ramdas et al., 2022; Vovk and Wang, 2021). E-statistics have been intro-
duced as an alternative to p-values that is inherently more suitable for testing under
optional stopping and continuation (Grünwald et al., 2024; Vovk and Wang, 2021;
Ramdas et al., 2020). While they have their roots in the work on anytime-valid test-
ing by H. Robbins and students (e.g. (Darling and Robbins, 1967)), interest in them
has exploded in recent years; see, for example, also Shafer (2021); Grünwald (2024).
E-statistics can be associated with a natural notion of optimality, called GRO (growth-
rate optimality) by Grünwald et al. (2024), which may be viewed as an analogue of
statistical power in an optional stopping context. We derive a general method for con-
structing e-statistics for conditional independence testing under model-X and show
that the method that we propose is optimal in this GRO sense for testing conditional
independence against point alternatives under MX. This result should be seen as an
anytime-valid analogue to the result by Katsevich and Ramdas (2022), who use the
Neyman-Pearson lemma to derive test statistics for which the conditional randomiza-
tion test is the most powerful conditionally valid MX CI test. Furthermore, we show
that under misspecification of the distribution of X given Z, our method retains type-I
error sequentially just as well as the CRT does for blocks of data (Berrett et al., 2020).
Finally, we discuss in detail an application to the setting where Y is binary, where we
use logistic regression to construct an anytime-valid test of conditional independence.

1E-statistics are commonly known as e-variables; we use the former to stress data dependence.
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Under the MX assumption, this test is valid even if the logistic model assumptions are
not satisfied, and when they are, it is guaranteed to have asymptotic power one.

The rest of this chapter is structured as follows. In Section 6.2, we discuss the
necessary theoretical background. This includes an introduction to the conditional
randomization test in Section 6.2.1 and to e-statistics in Section 6.2.2. In Section 6.3 we
discuss in detail our anytime-valid method of testing conditional independence under
MX. This includes an analysis of optimality in Section 6.3.1, a bound on the worst-
case rejection rate in Section 6.3.2, and an application to binary response variable in
Section 6.3.3. We compare our method to established tests of conditional independence
in a simulation study in Section 6.4. This includes a comparison in terms of type-I
error (Sections 6.4.1 and Appendix D.1) and in terms of power (Section 6.4.2). Our
method is further highlighted by an application to a real-world data set in Section 6.5.
This chapter is concluded with a discussion of our results in Section 6.6. All proofs
are deferred to Appendix D.2.

6.2 Background

In this section, we give a brief introduction to the conditional randomization test, as
well as to e-statistics. Throughout this section, as well as the rest of the chapter, we
assume that the data consists of independent and identically distributed (i.i.d.) tuples
Di = (Xi, Yi, Zi) ∈ D := X × Y × Z. In the section on the CRT, we assume that data
comes in as a single block Dn = (D1, . . . , Dn) of n ∈ N data points, so that i above
ranges from 1 to n. In contrast, in the section on e-statistics, we assume that the
data comes in sequentially as a stream (Dn)n∈N. We use the notation fY |X,Z(y | x, z)
to denote the conditional density of Y given X and Z evaluated at (x, y, z) when the
joint density of (X, Y, Z) is f , and analogous notation for other conditional densities,
e.g. fX|Z(x | z) for the density of X given Z.

6.2.1 The Conditional Randomization Test

The conditional randomization test by Candès et al. (2018) works under the MX
assumption, i.e. that the distribution of X | Z is known. This holds, for example,
when X corresponds to a randomized treatment in a clinical trial, since the researchers
specify the randomization mechanism themselves. Candès et al. (2018) give other
examples where the this distribution is at least known to a much higher precision
than the joint distribution of (X, Y, Z) because much more samples of pairs (X, Z) are
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available than data including Y . We let Qz denote the distribution of X given that
Z = z. We are interested in testing X ⊥⊥ Y | Z, which in the MX setting corresponds
to the null hypothesis

H0 =
{

P ∈ P(D) : X
P

⊥⊥ Y | Z, PX|Z = QZ

}
, (6.1)

where P(D) denotes the set of all probability distributions on D, and PX|Z is a short-
hand for the conditional law of X given Z. The starting point of the CRT is to choose
any test statistic T : Dn 7→ R that measures the dependence of X and Y given Z, so
that larger values of T indicate stronger dependence. Since the conditional distribu-
tion of X given Z is known, one can simulate independent new realizations X̃j,i ∼ QZi

,
j = 1, . . . , M , i = 1, . . . , n, so that under the null hypothesis X̃n

j = (Xj,1, . . . , Xj,n)
and Xn have the same distribution conditional on Y n and Zn. Hence the triplets
(X̃n

j , Y n, Zn), j = 1, . . . , M , and (Xn, Y n, Zn) are exchangeable, and

pM (Xn, Y n, Zn) =
1 +

∑M
j=1 1{T (X̃n

j , Y n, Zn) ≥ T (Xn, Y n, Zn)}
1 + M

(6.2)

is a “Monte Carlo” p-value for the null hypothesis (6.1). More precisely, for any
distribution P ∈ H0,

P (pM (Xn, Y n, Zn) ≤ α) ≤ α.

In the case that the distributions Qz are not known exactly, but only some estimate
Q̂z, an obvious question is how robust a test based on Q̂z may be. Berrett et al. (2020,
Theorem 4) show that

P (pM (Xn, Y n, Zn) ≤ α | Y n, Zn) ≤ α + dTV(Q̂n
Zn , Qn

Zn), (6.3)

where Qn
Zn is the product of the distributions QZi

, i = 1, . . . , n, and dTV the total
variation distance. Precise estimation of conditional distributions in total variation
distance is admittedly a challenging problem, but also not completely unrealistic, as
discussed among others by Berrett et al. (2020, Section 5.1). We furthermore give a
brief discussion of available literature on estimation in terms of KL divergence at the
end of Section 6.3.1, and a bound on KL gives a bound on total variation.

There remains the question how to choose the statistic T . Katsevich and Ramdas
(2022) show that for a point alternative with density f for (X, Y, Z), using the con-
ditional density fY |X,Z of Y given (X, Z) as statistic T leads to the most powerful
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conditionally valid test against H0. This result suggests that a reasonable method is
to use an estimator f̂Y |X,Z of the true conditional density as statistic. Importantly,
any estimation error does not lead to a loss of type-I error guarantee, but only to a
decrease in power, as the p-value in (6.2) is valid for any statistic. Alternatively, one
could use any measure of conditional independence, e.g. the absolute value of the fitted
coefficient in a lasso regression model, as originally proposed by Candès et al. (2018).
A downside to this method is that it is computationally expensive, as it requires a
lasso model to be fit for the original data as well as for all the simulated data points.
Liu et al. (2021) propose a “leave-one-covariate-out” variant of these lasso statistics,
which is significantly less computationally demanding, while leading to similar power.

6.2.2 E-Statistics, Test Martingales and Anytime-Valid Tests

An e-statistic is any function of the data Sn : Dn → [0, ∞) such that EP [Sn(Dn)] ≤ 1
for all P ∈ H0. An e-statistic evaluated on a realization of the data will be referred to
as an e-value. Previously, e-statistics and e-values have appeared in the literature as
likelihood ratios (although the concept is vastly more general than such ratios), partic-
ular Bayes factors and betting scores (Shafer, 2021). Large e-values constitute evidence
against the null hypothesis, since P (Sn(Dn) ≥ 1/α) ≤ α by Markov’s inequality, so
that the type-I error of the test 1{Sn(Dn) ≥ 1/α} is bounded by α. However, such a
test is defined for a block of data Dn. In a sequential setting, one instead observes a
stream of data (Dn)n∈N. We therefore define, more generally, a sequence of conditional
e-statistics as a sequence of statistics (En(Dn))n∈N, such that EP [En(Dn) | Dn−1] ≤ 1
for all n ∈ N and P ∈ H0. For n = 1, the expectation is supposed to be read uncon-
ditionally. Intuitively, the conditional e-statistic at time n measures the evidence in
round n against H0 conditional on the past data, and the cumulative product of these
conditional e-statistics Sn(Dn) =

∏n
i=1 Ei(Di) is a measure of the total accumulated

evidence against the null hypothesis. Formally, the sequence (Sn(Dn))n∈N of cumula-
tive products forms a nonnegative supermartingale with starting value bounded by 1,
a so-called test martingale, i.e. EP [Sn+1(Dn+1) | Dn] ≤ Sn(Dn) for all P ∈ H0 and
n ∈ N, and EP [S1(D1)] ≤ 1. By Ville’s inequality (see e.g. Shafer, 2021), such test
martingales satisfy for any α > 0

P (∃ n ∈ N : Sn(Dn) ≥ 1/α) ≤ α. (6.4)

A sequential test can thus be defined by monitoring Sn(Dn) and rejecting if it exceeds
1/α. The inequality (6.4) ensures that this test retains type-I error control, no matter
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how we choose the moments to peek at Sn(Dn). In fact, (6.4) is easily derived from a
more basic property: (Sn(Dn))n∈N satisfies EP [Sτ (Dτ )] ≤ 1 for any stopping time τ ,
that is, the stopped process Sτ (Dτ ) is again an e-statistic, both for data dependent
and externally imposed stopping rules (Grünwald et al., 2024, Proposition 2). Tests
with this property will be referred to as anytime-valid tests.

Perhaps the most prominent example of a test martingale is the likelihood ratio
process Ln =

∏n
i=1 p1(Yi)/p0(Yi) for testing the null hypothesis that independent

(Yn)n∈N stem from a distribution with density p0 against the alternative density p1.
Tests based on likelihood ratio processes (Ln)n∈N are called sequential probability
ratio test (SPRT) and have first been studied by Wald (1947), though Wald, like most
of the subsequent sequential analysis literature, uses them with reject/accept rules
different from ours (e.g. one rejects if the value exceeds (1 − β)/α instead of 1/α)
that preclude optional stopping and require specific stopping times/rules. We refer
to Grünwald et al. (2024, Section 7) for further discussion of related literature on
sequential testing.

Under violations of the null hypothesis, one would hope that an e-statistic or test
martingale attains high values, which gives evidence to reject the null hypothesis. This
requires a suitable analogue of power, or notion of optimality, for e-statistics. We fol-
low Grünwald et al. (2024); Shafer (2021) and try to find e-statistics that maximize
the logarithmic expected value under the alternative. That is, suppose the alternative
hypothesis is given by a single distribution H1 = {P ∗}, then the growth-rate optimal
(GRO) e-statistic is defined as the e-statistic that maximizes Sn 7→ EP ∗ [log Sn(Dn)]
over all e-statistics. At first glance, this notion of optimality seems counterintuitive
for sequential tests, since it is defined for individual e-statistics and not test mar-
tingales. Really, one would hope to find a test martingale (Sn)n∈N that maximizes
EP ∗ [log Sτ (Dτ )] simultaneously for all stopping times τ . Remarkably, in the special
setting of this chapter, the sequence of GRO statistics that we will consider for a point
alternative does have exactly this property, as follows from Theorem 12 of Koolen
and Grünwald (2022), providing additional justification for our focus on GRO. This is
discussed briefly in Appendix D.3.
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6.3 Conditional Independence Testing
With E-Statistics

The conditional randomization test and its permutation version by Berrett et al. (2020)
are defined for batches of data Dn. We show here how to create e-statistics for
sequential testing with a stream of data (Dn)n∈N under the MX assumption. Our
method can be seen as a broad generalization of an e-statistic introduced in the proof
of the main theorem of Turner et al. (2024), who essentially handle the case that Y

and X are both Bernoulli.

Theorem 6.1. Let hn : D → [0, ∞), n ∈ N, be nonnegative measurable functions
such that hn is determined after seeing data Dn−1. Then the sequence (ECI

hn
(Dn))n∈N

defined by
ECI

hn
(Dn) = hn(Xn, Yn, Zn)∫

X hn(x, Yn, Zn) dQZn
(x)

. (6.5)

is a sequence of conditional e-statistics for the null hypothesis (6.1). Consequently,
the sequence (SCI

hn(Dn))n∈N defined by SCI
hn(Dn) =

∏n
i=1 ECI

hi
(Di) is a test martingale.

To be explicit, the general workflow of our method is as follows. At each time
n = 1, 2, . . . , a test function hn is chosen, usually depending on the past data Dn−1.
After seeing the data point Dn, the conditional e-statistic (6.5) is computed and the
cumulative product is updated according to SCI

hn(Dn) = SCI
hn−1(Dn−1) ·ECI

hn
(Dn). For a

test at level α, one could stop and reject the null hypothesis as soon as SCI
hn(Dn) ≥ 1/α

for the first time.

Remark. At this point, it should be noted that the MX assumption is stronger than
needed within our sequential setup: the MX assumption requires that the data points
(Xn, Yn, Zn) are i.i.d. and that the distribution of Xn given Zn is given by QZn

.
However, in our sequential setting it would actually be allowed for the distribution
of (Xn, Yn, Zn) to depend on the data Dn−1. At each time n, we would use in the
denominator a distribution QZn,Dn−1 . It should be clear that the resulting sequence
of random variables still defines a test martingale, but with respect to the altered
null hypothesis that Yn ⊥⊥ Xn | Zn, Dn−1 and Xn | Zn ∼ QZn,Dn−1 for all n ∈ N.
Clearly, the assumption that QZn,Dn−1 is known (or can be estimated with high preci-
sion) is not realistic in many settings with temporal dependence. One example where
this extension would be useful are clinical trials with so-called covariate- or response-
adaptive designs, where the allocation of patients to a treatment depends either on the
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imbalance of treatment/control in certain covariate groups or on previously observed
responses from patients (Robbins, 1952; Pocock and Simon, 1975; Zhang et al., 2007).
To avoid cluttering notation, we will not explicitly denote this potential past data
dependence, but it is good to keep in mind.

In most cases in practice, one has to resort to simulations to approximate the inte-
gral in the denominator of (6.5). That is, one simulates M independent X̃1, . . . , X̃M ac-
cording to QZn and replaces the integral by the empirical mean

∑M
i=1 hn(X̃i, Yn, Zn)/M .

The following proposition shows that a slight modification of this procedure is guar-
anteed to yield an e-statistic.

Proposition 6.2. Let X̃1, . . . , X̃M be independent with distribution QZn . Then

ĚCI
hn

(Dn) := hn(Xn, Yn, Zn)
(hn(Xn, Yn, Zn) +

∑M
i=1 hn(X̃i, Yn, Zn))/(M + 1)

satisfies EP [ĚCI
hn

(Dn) | Dn−1] = 1, P ∈ H0, where hn is as in Theorem 6.1 and the
expectation is taken both over the data and X̃1, . . . , X̃M .

In fact, the proof of Proposition 6.2 only requires that Xn, X̃1, . . . , X̃M are ex-
changeable, so it will also be applicable in many situations where data is randomly
permuted. Furthermore, the naive approach without including hn(Xn, Yn, Zn) in the
denominator is anti-conservative and does not define a sequence of conditional e-
statistics. Indeed, taking expectation over Xn, X̃1, . . . , X̃M ,

EP

[
hn(Xn, Yn, Zn)∑M

i=1 hn(X̃i, Yn, Zn)/M

∣∣∣∣∣Yn, Zn

]
≥

∫
hn(x, Yn, Zn) dQZn(x)∑M

i=1
∫

hn(x, Yn, Zn) dQZn
(x)/M

= 1,

(6.6)
Here we use that Xn, X̃1, . . . , X̃M are independent with distribution QZn

, and invoke
Jensen’s inequality with the strictly convex function s 7→ 1/s. Equality in (6.6) holds
if any only if hn is constant in x, and in that trivial case the e-statistic is equal to the
constant 1. In all our applications, we use the variant proposed in Proposition 6.2 to
compute the e-statistics.

6.3.1 Optimality

In order to accumulate evidence against the null hypothesis, the functions hi in (6.5)
should measure the conditional (in)dependence between X and Y . This will ensure
that the test martingale (SCI

hn(Dn))n∈N will grow if the null hypothesis is violated.

101



6.3 Conditional Independence Testing With E-Statistics

Ideally, we would be able to choose a measure of conditional independence that requires
little to no assumptions on the distribution of (X, Y, Z). Many such measures have
been proposed in the literature, see e.g. Fukumizu et al. (2007); Shah and Peters
(2020); Azadkia and Chatterjee (2021). However, as far as we can tell, none of these
measures allow for a sequential decomposition. That is, they are defined for fixed
sample size n as a function Tn : Dn → [0, ∞), but cannot be decomposed in a nontrivial
way as a product Tn(Dn) =

∏n
i=1 Ti(Di). Our only option to use them in our test

martingale is therefore to set hi(Di) = Ti(Di−1, Di) in (6.5). This would have two
major drawbacks: first, it would be computationally involved, because Ti needs to
be recalculated entirely within the integral in the denominators in (6.5). Secondly, it
would generally be ineffective, because Ti(Di−1, Di) will depend very little on Di for
large i, so hi(Di) will generally not be sensitive to changing Xi to x′ ∼ QZi . As a
result, the fraction in (6.5) will be close to 1, preventing us from accumulating much
evidence against the null.

However, if we are willing to assume that under the alternative, the density of
(X, Y, Z) is given by f , then the conditional density fY |X,Z itself is a measure of con-
ditional independence. Moreover, evaluating the density in n data points is equivalent
to taking the product of the density evaluated at all single data points i = 1, . . . , n, be-
cause the data stream is i.i.d. This gives a sequential decomposition as desired above.
Furthermore, Katsevich and Ramdas (2022) have shown that an optimal conditionally
valid p-value based test can be achieved by running the CRT with the conditional
density fY |X,Z as test function. It turns out that this choice also yields the GRO
e-statistic among all e-statistics defined on n observations, and the expectation of the
logarithm of this e-statistic is the conditional mutual information (Cover and Thomas,
1991), an established conditional dependence measure which has also been applied for
conditional independence testing (Runge, 2018). Note that the expectation is taken
over the entirety of the data, i.e. Dn = (Xn, Y n, Zn), as opposed to the result by Kat-
sevich and Ramdas (2022) which only holds conditionally on (Y n, Zn); see their article
for a more thorough discussion.

Theorem 6.3. The GRO e-statistic for testing H0 as in (6.1) against the alternative
distribution with density f is given by

SCI
fY |X,Z

(Dn) =
n∏

i=1
ECI

fY |X,Z
(Di) =

n∏
i=1

fY |X,Z(Yi | Xi, Zi)
fY |Z(Yi | Zi)

(6.7)

and achieves growth rate Ef [log SCI
fY |X,Z

(Dn)] = nIf (X; Y | Z), where If (X; Y | Z)
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denotes the conditional mutual information if (X, Y, Z) follows the distribution with
density f .

Remark. A simple application of Bayes theorem allows one to rewrite (6.7) to
SCI

fY |X,Z
(Dn) =

∏n
i=1 fX|Y,Z(Xi | Yi, Zi)/fX|Z(Xi | Zi), which shows that the resulting

test martingale is in fact a likelihood ratio process. That is, it is the ratio between the
true density of X given (Y, Z) under the alternative and that under the null (whereas
the density in the denominator of (6.7) does not have to correspond to the data gener-
ating distribution). The latter follows, because under the null fX|Y,Z is equal to fX|Z ,
which we assume to be well-specified and equal the density of QZi . Hence the resulting
test for a simple alternative hypothesis f is in fact a generalization of the SPRT, where
the distribution under the null hypothesis changes with the variable Zi. It depends
on the application at hand which formulation, i.e. (6.7) or conditional densities of X,
is more suitable for constructing a test. For example, we show in Section 6.3.3 that
for binary Y ∈ {0, 1} and (X, Z) ∈ Rp ×Rq, one can construct a test based on logistic
regression, which is often simpler than directly trying to find a suitable conditional
density of X given Y and Z, especially when p > 1.

The information inequality (Cover and Thomas, 1991) implies that If (X; Y | Z) ≥
0, with equality if and only if Y ⊥⊥ X | Z, which shows that SCI

fY |X,Z
has nontrivial

power to detect deviations from conditional independence if f is the true density of
(X, Y, Z). Assuming a simple (point) alternative f is, of course, an unrealistically
strong assumption. We now proceed to develop a method that also gets uniform
growth rates for potentially large classes of alternative densities F by building on the
simple alternative case. The following result states that if we do not know the density
fY |X,Z , but instead use a different density gY |X,Z , the loss in expected growth rate is
directly related to a measure of distance between fY |X,Z and gY |X,Z .

Proposition 6.4. For any conditional density gY |X,Z , the following holds:

Ef

[
log ECI

gY |X,Z
(D)

]
≥ If (X; Y | Z) − Ef [KL(fY |X,Z∥gY |X,Z)]. (6.8)

Since we are in a sequential setting, this proposition implies that if we do not know
the density f , we could try to estimate it, using estimates that improve as sample size
increases. That is, let f̂n be an estimator of fY |X,Z based on data Dn, and f̂0 an initial
guess. The test martingale we use is then given by

∏n
i=1 ECI

f̂n−1
(Di). It follows from

the combination of Theorem 6.3 and Proposition 6.4 that if the estimator is consistent
in a KL sense, then the expected growth per outcome converges to that of the GRO
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e-statistic.

Corollary 6.5. (i) Assume that 1
n

∑n
i=1 Ef [KL(fY |X,Z∥f̂i−1) | Di−1] a.s.−−−−→

n→∞
0, then

1
n

n∑
i=1

Ef

[
log ECI

f̂i−1
(Di)

∣∣Di−1
]

a.s.−−−−→
n→∞

If (Y ; X | Z).

(ii) Assume that for some function b(n) : N → R+
0 with b(n) = o(n), we have

Ef

[
n∑

i=1
Ef [KL(fY |X,Z∥f̂i−1) | Di−1]

]
≤ b(n). (6.9)

Then
1
n
Ef

[
n∑

i=1
log ECI

f̂i−1
(Di)

]
≥ If (X; Y | Z) − b(n)

n
. (6.10)

Consequently, to achieve an asymptotic optimal growth rate, we need to use a
conditional density estimator f̂i that converges in KL divergence to f , where we may
assume f ∈ F for some given set of densities F , i.e. our statistical model. Barron
(1998) showed that, for a wide variety of parametric and nonparametric models F , we
have convergence in information (his terminology for (6.9) holding for all n) if we set
f̂i to be the Bayes predictive density, under no further conditions, uniformly for all
f ∈ F , as long as a suitable prior is used. This means that, for some fixed function b

(6.9) holds uniformly for all f ∈ F , so that also (6.10) holds uniformly for all f ∈ F :
we could put a inff∈F to the left of (6.10) and the result would still hold. Thus, we
get the optimal growth rate (which itself can only be achieved by an oracle that knows
the ‘true’ f ∈ F) up to an additive term of b(n)/n uniformly for all f ∈ F . The rate
b(n)/n is then usually, up to log factors, equal to the minimax rate in squared Hellinger
distance. The same rates (potentially up to further log factors) are available for the
Bayesian posterior mean under a weak additional condition on the model introduced
by Grünwald and Mehta (2020) under the name witness-of-badness; it generalizes a
well-known earlier condition of Wong and Shen (1995); see also (Bilodeau et al., 2023)
for related results. In Section 6.3.3, we demonstrate our approach with F set to the
logistic regression model with X ∈ Rp and Z ∈ Rq, for which a result by Foster et al.
(2018) in combination with (Barron, 1998) implies that, if we use the Bayes predictive
distribution as above, then b(n) can be chosen as O((p+q) log n) as long as the first four
moments of all components of X and Z exist, implying a parametric rate. However, in
our experiments in Section 6.4, rather than the Bayes predictive distribution, we use a
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(slightly regularized) MLE, since it can be computed much more efficiently. Although
we suspect that the MLE converges at the same rates as Bayesian methods under the
same weak conditions, the methods of the aforementioned papers cannot be used to
prove this, and instead in Proposition 6.7 we show almost sure convergence of the
MLE, without rates, under a stronger subgaussianity assumption on (X, Z).

6.3.2 Worst-Case Bounds on Rejection Rate

Up to now, we have discussed the construction and properties of e-statistics when
the conditional distributions Qz are known exactly. In this section, we prove a result
analogous to Theorem 4 of Berrett et al. (2020) (see (6.3)) on the error rate of our
sequential test under the null hypothesis when the distributions Qz are only approx-
imations. The approximation of Qz will be denoted by Q̂z, and the (approximate)
e-statistic at time n is given by

ẼCI
hn

(Dn) = hn(Xn, Yn, Zn | Dn−1)∫
X hn(x, Yn, Zn | Dn−1) dQ̂Zn

(x)
.

Here the nonnegative function hn depends on Dn−1 since it can be constructed se-
quentially, for example by estimating the conditional density of Yn given Xn and Zn

with all past data (Xi, Yi, Zi), i = 1, . . . , n − 1. Recall that Qn
Zn denotes the product

distribution of QZi , i = 1, . . . , n, that is, for measurable A ⊆ X n

Qn
Zn(A) =

∫
X

· · ·
∫

X
1{xn ∈ A} dQZ1(x1) · · · dQZn

(xn),

In particular, Qn
Zn(A) = P (Xn ∈ A | Zn) = P (Xn ∈ A | Y n, Zn) for P ∈ H0, due to

conditional independence of Yi and Xi given Zi, i = 1, . . . , n. The distribution Q̂n
Zn is

defined in the same way as Qn
Zn but with Q̂Zi

instead of QZi
.

Theorem 6.6. Assume that h1, . . . , hN > 0 are measurable. For any N ∈ N, α ∈
(0, 1) and P ∈ H0,

P

(
∃ n ≤ N :

n∏
i=1

ẼCI
hi

(Di) ≥ 1
α

∣∣∣∣∣Y N , ZN

)
≤ α + dTV(QN

ZN , Q̂N
ZN ). (6.11)

Theorem 6.6 gives the same worst case bound on the rejection rate as Theorem 4
in Berrett et al. (2020) for a sample size N , but optional stopping at any sample size
n ≤ N is allowed. Berrett et al. (2020, Section 5.1) discuss conditions under which
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the total variation distance between QN
ZN and Q̂N

ZN , which bounds the excess rejection
rate, is small. For example, they obtain an upper bound of the form Op(

√
Nk/m)

when (X, Z) ∈ Rk follow a multivariate Gaussian distribution and the conditional law
of X | Z is estimated with an unlabeled sample of size m. Hence when m remains
constant but N diverges to infinity, the bound on the distance between QN

ZN and Q̂N
ZN

becomes trivial. Furthermore, the discussion at the end of Section 6.3.1 on estimation
in terms of KL divergence (which bounds the total variation distance) can also be
applied to the estimation of Qz.

6.3.3 Application to Logistic Regression

The general construction strategy for e-statistics and all results so far assume no
specific model for the outcome Y or covariates (X, Z). In this section, we consider
the special but important case of a binary outcome Y ∈ {0, 1} which follows a logistic
regression model under the alternative, i.e. (X, Z) ∈ Rp+q, and Y equals y = 0, 1 with
probability

pθ(y | X, Z) = exp(y(β⊤X + γ⊤Z))
1 + exp(β⊤X + γ⊤Z) , (6.12)

with an unknown (p + q)-dimensional coefficient vector θ = (β1, . . . , βp, γ1, . . . , γq).
Conditional independence of Y and X given Z holds if and only if β1 = · · · = βp = 0.
It turns out that in this setting, one can construct e-statistics which not only have
power on average, as in Corollary 6.5, but which even reject the null hypothesis with
probability one if it is violated and the sample size grows to infinity. At this point, it
is important to recall that the validity of the e-statistics does not require the logistic
model to be correctly specified: the validity only depends on the null hypothesis, which
is still the set of all distributions under which conditional independence holds in the
sense of (6.1), including many distributions that violate the logistic model assumption.
The result rather shows that if the logistic model is suitable (in the sense that, if the
alternative is true, then data are sampled from a distribution in this model), then the
e-statistic has guaranteed power to detect violations of conditional independence.

Following our general strategy, an e-statistic for testing CI is given by

SCI
n (Dn) =

n∏
i=1

pθ̂i−1
(Yi | Xi, Zi)∫

pθ̂i−1
(Yi | x, Zi) dQZi

(x)
, (6.13)

where θ̂k may be any estimator for θ based on the first k samples, (Xi, Yi, Zi), i =
1, . . . , k. When the observations (Xi, Yi, Zi), i ∈ N, are independent and identically
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distributed, the growth rate optimal e-statistic is obtained if θ̂k = θ for all k ∈ N.
Nevertheless, the following proposition shows that tests based on SCI

n have asymptotic
power one when θ̂k is the maximum likelihood estimator. From now on, ∥v∥ = (v⊤v)1/2

denotes the Euclidean norm of a vector v, and we denote by (X, Z) the stacked vector
(X1, . . . , Xp, Z1, . . . , Zq). We will take (X, Y, Z) as a generic observation which has
the same distribution as (Xi, Yi, Zi), i ∈ N, for writing probability statements about
elements of this sequence.

Proposition 6.7. Let (Xi, Yi, Zi), i ∈ N, be independent and identically distributed
such that (6.12) holds with (β1, . . . , βp) ̸= 0. Assume furthermore that

(i) (a) (X, Z) satisfies P (u⊤(X, Z) ̸= 0) > 0 for all u ∈ Rp+q \ {0}, and (b) it is
subgaussian with variance parameter σ2, that is

E[exp(u⊤((X, Z) − E[(X, Z)]))] ≤ exp(∥u∥2σ2/2), ∀ u ∈ Rp+q,

(ii) θ̂n in (6.13) is the logistic MLE based on data (Xi, Yi, Zi), i = 1, . . . , n, for all
n ∈ N, with θ̂n arbitrarily defined but finite if the MLE does not exist.

Then SCI
n satisfies lim infn→∞ log(SCI

n )/n ≥ I(X; Y |Z) > 0 almost surely.

Assumption (i)(a) ensures that the MLE converges almost surely at a fast rate,
as shown by Qian and Field (2002). Instead of subgaussianity ((i)(b)) their result
requires only moment assumptions (which are implied by subgaussianity), but sub-
gaussianity is indeed required in our setting: see the proof of Proposition 6.7, given in
Appendix D.2.6.

6.4 Simulations

To investigate the robustness and power of tests of conditional independence based on
e-statistics, we compare the e-statistic (6.13) for binary Y to other methods applicable
in this setting. The covariate X is univariate, X ∈ R, while Z = (1, Z1, . . . , Zq−1)
is a q-dimensional vector containing an intercept term. The distribution of the vec-
tor (X, Z1, . . . , Zq−1) is the q-dimensional normal distribution with zero mean and a
Toeplitz covariance matrix, Σi,j = 1/(1 + |i − j|) for i, j = 1, . . . , q. Then QZ is the
Gaussian distribution with mean

µZ = Σ1,−1Σ−1
−1,−1(Z1, . . . , Zq−1)⊤ (6.14)

107



6.4 Simulations

where Σ−1,−1 is the submatrix (Σi,j)i,j=2,...,q and Σ1,−1 is the row vector (Σ1,2, . . . , Σ1,q).
The conditional variance equals σ2

Z = 1 − Σ1,−1Σ−1
−1,−1Σ⊤

1,−1. The binary response Y

has probabilities given by pθ(y | X, Z), y ∈ {0, 1}, as in (6.12), where the intercept
and the coefficients of Z, and γ1, . . . , γq, are drawn independently and uniformly dis-
tributed on the interval [−1, 1]. The coefficient of X, i.e. β = β1, is chosen in [0, 1],
with 0 corresponding to conditional independence of Y and X given Z. Below are
implementation details for all methods considered in the simulations. In the following
subsections, these methods are compared in terms of type-I error and power. A further
study on the robustness of the MX-based methods with respect to violations of the
MX assumption is given in Appendix D.1.

Conditional randomization e-statistic (E-CRT). The parameter vector θ in
(6.13) is re-estimated after each new observation with the maximum likelihood method,
starting from a minimal sample size of 5q + 1, so that 5q observations are available for
the first parameter estimate. In addition, the probabilities pθ̂k

(y | X, Z) are truncated
to [ε, 1 − ε] for some small ε > 0. This is to account for the fact that at small sample
sizes the MLE sometimes yields predicted probabilities in {0, 1}. We also include an
oracle version of this e-statistic (E-CRT-O), which uses the true θ starting from the
first observation, instead of the maximum likelihood estimator. For both variants,
the integral in the e-statistic is approximated by an average over 500 Monte Carlo
samples.

Conditional randomization test (CRT). The CRT is applied nonsequentially
with the likelihood of the logistic regression model as test statistic and 500 samples
for randomization. That is, X is sampled 500 times from the conditional distribution
given Z, the logistic regression model is re-estimated with this simulated covariate,
and the likelihood achieved with these models with simulated X is compared to the
likelihood achieved with the actual values of X.

The following methods are for testing whether the coefficient β in the logistic re-
gression model equals zero. Unlike the E-CRT and CRT, they are not based on the
MX assumption, but their type-I error guarantee does require that the true proba-
bilities of Y are given by the logistic model (6.12). A comparison is of interest since
these methods are, to the best of our knowledge, currently the only ones that allow
sequential testing in a logistic model.
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Running maximum likelihood (R-MLE). We apply the running MLE method
by Wasserman et al. (2020, Section 7), an instance of the generic method introduced
in that paper which they call universal inference. Parameter estimation is also started
with a minimum 5q observations, and we additionally investigate an L1 penalized ver-
sion for estimation under the alternative hypothesis, abbreviated as R-MLE-P, which,
like for the E-CRT, is to prevent predicted probabilities close to 0 or 1 due to di-
vergence of the MLE. In this second variant, the penalization parameter is chosen by
10-fold cross validation on the available data at the given time, with likelihood as opti-
mization criterion. The penalization parameter is only updated every 10 observations,
since the cross validation is computationally expensive.

Likelihood ratio test (LRT). The classical asymptotic likelihood ratio test for
the null hypothesis that β = 0 is applied with fixed sample size, and group sequential
versions of it with K equally sized groups and the methods by Pocock (1977) (LRT-
PK) and O’Brien and Fleming (1979)(LRT-OF).

The results shown in this section are for dimension q = 4 of the covariate vector
(X, Z). A maximum sample size of n = 2000 is considered, after which the evaluation
is terminated independently of whether the null hypothesis is rejected. The sequential
methods apply the most aggressive stopping rule, namely, reject the null hypothesis
as soon as the test statistic exceeds 1/α once; more discussion on this is provided
in Section 6.4.2. All results, i.e. rejection rates and average sample sizes, are com-
puted over 800 simulations of the data generating process. The same simulation but
with higher dimension (q = 8) or with negative correlations between the covariates
(Σi,j = (−1)i−j/(1 + |i − j|)) yields similar results. For the running MLE method, we
additionally tested whether not penalizing the coefficient of interest, β, may achieve
higher power, which was not the case.

Simulations are performed in R 4.2 (R Core Team, 2022), with the glm function
for maximum likelihood estimation in logistic regression, the package glmnet (Simon
et al., 2011) for L1 penalized estimation, and the package ldbounds (Casper et al.,
2022) for computing critical values for the Pocock and O’Brien-Fleming group se-
quential tests. Replication material for the simulations and the case study, as well as
additional figures, are available on github.com/AlexanderHenzi/eindependence.

6.4.1 Sequential Tests Under the Null

Table 6.1 shows the rejection rates of the different sequential methods with a maximum
sample size of n = 2000. The methods based on e-statistics and the running MLE
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E-CRT R-MLE R-MLE-P LRT-PK LRT-OF
α = 0.01 0.0075 (0.0031) 0.0038 (0.0022) 0.0038 (0.0022) 0.0138 (0.0013) 0.0127 (0.0040)
α = 0.05 0.0438 (0.0072) 0.0038 (0.0022) 0.0038 (0.0022) 0.0700 (0.0090) 0.0599 (0.0084)

Table 6.1: Rejection frequencies (and standard errors) of the different methods, with
implementation details as described in Section 6.4.1. Frequencies are given in [0, 1], not in
percentages.

yield rejection rates below the nominal level. For the e-statistics, the chosen truncation
level is ε = 0.05, but the rejection rate is also below α for ε = 0, 0.01, 0.1. The group
sequential methods with K = 20 equally sized groups, each of size 100, are slightly
anti-conservative, and similar rejection rates are obtained for K = 5, 10, 40.

6.4.2 Simulations Under the Alternative

We proceed to compare the different methods under violations of the null. This is
commonly done by comparing the achieved power at given sample sizes n for different
effect sizes β, or the inverse of that function, i.e. the minimum sample size required to
achieve power 1 − η,

N(β, η) = min{n ∈ N : Pβ(ϕn = 1) ≥ 1 − η}.

For a fixed type-I error probability α, the test decision is ϕn = 1{maxm≤n Sm ≥ 1/α}
for anytime-valid tests based on (Sn)n∈N, or ϕn = 1{pn ≤ α} for a method based on
a fixed sample size p-value pn. For an anytime-valid test, N(β, η) can be regarded
as the worst case sample size a researcher has to plan for in order to achieve power
1 − η; the actual sample size at rejection may be smaller thanks to optional stopping.
Therefore, we additionally consider the average sample size of the anytime-valid tests
when evaluation is terminated at the latest at N(β, η),

Nav(β, η) = EPβ
[min(N(β, η), inf{n ∈ N : Sn ≥ 1/α})].

The rationale is that — even though we have seen that anytime-valid methods retain
type-I error validity under arbitrary stopping times — in practice, a natural way to
proceed with an anytime-valid test is to run the experiment until either a rejection or
a given upper bound on the number of samples is reached. The obvious choice for this
upper bound is N(β, η), as it ensures that the test will have a power of 1 − η. Then
Nav(β, η) gives the average sample size of anytime-valid tests designed for power 1−η.
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A comparison of the different methods in terms of N(β, η) and Nav(β, η) is given
in Figure 6.1. The group sequential methods are excluded from this figure and are
analyzed in more detail at the end of the section. The upper two panels of Figure 6.1
depict N(β, η) for 1 − η = 0.8, 0.95 as a function of the parameter β (for clarity note
that, as before, β stands for the parameter vector in (6.13); we never use 1 − β for
power). It can be seen that N(β, η) is higher for the anytime-valid methods than
for fixed sample size tests. This is to be expected: the sample size N(β, η) ensures
power 1 − η, but the actual sample size of an anytime-valid test is random and often
smaller thanks to early stopping. The lower two panels of Figure 6.1 similarly show
Nav(β, η) as a function of β. It can be seen that the average sample size is not more
and sometimes even less than the sample size of the nonsequential tests. These results
suggest that the average sample size to reject the null hypothesis with the E-CRT is
not higher than the fixed sample size one would have to plan for with the CRT or LRT.
Similar observations have already been made for e-statistics in other settings, such as
comparisons with the t-test (Grünwald et al., 2024), Fisher’s Exact Test (Turner et al.,
2024), or the logrank test (ter Schure et al., 2024).

Furthermore, the running MLE method requires much more data to achieve a
rejection than the other methods, even with the superior penalized estimation under
the null hypothesis. The large sample sizes required for the R-MLE to have a power
of 0.95 are mainly due to predicted probabilities close or equal to zero or one at
early stages, a problem which is remedied by using penalization, as already proposed
by Wasserman et al. (2020); even then, more data are required though. We again
emphasize that the running MLE methods are based on different assumptions than
the randomization based tests: they do not require the MX assumption, but are only
valid for a correctly specified logistic model. However, even when compared to the
classical likelihood ratio test, which requires almost the same sample sizes as the
CRT, one would have to plan for substantially higher sample sizes with the running
MLE methods.

For the conditional randomization e-statistics, we tested different levels of trunca-
tion [ε, 1−ε] for the predicted probabilities. Truncating at a small level ε = 0.01, 0.05
is superior to no truncation, ε = 0, since it prevents e-values close to or equal to
zero, but if the truncation level becomes too high, ε = 0.1, it limits the power of the
test for observations with predicted probability close to zero or one. See Figure D.1
in Appendix D.1 for the case ε = 0. The results shown in this and the next section
are for ε = 0.05. In principle, one could also apply a penalized estimator to remedy
convergence problems of the MLE, but truncation is computationally less demanding
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6.4 Simulations
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Figure 6.1: Sample sizes to achieve power 1 − η = 0.8, 0.95 with type-I error 0.05. For the
nonsequential methods (LRT, CRT), dashed lines show N(β, η) also in the lower panels for
better comparison. Simulations were conducted up to n = 2000, and no results are shown if
N(β, η) > 2000 for a given method, β and η, i.e. if more than 2000 observations would be
required to achieve a power of 1 − η.

as it does not require the selection of a penalization parameter.
Finally, in Figure 6.2, the conditional randomization e-statistic is compared to

group sequential methods with the Pocock and the O’Brien and Fleming method with
K = 20 groups. We see that for small parameter β ∈ {0.1, 0.2} these methods achieve
a higher power than the e-statistics, but as already shown in Table 6.1, the group
sequential methods do not control the rejection rate below the nominal level when
β = 0. Also, the E-CRT yields slightly more rejections at small sample sizes than the
group sequential methods. As β increases, the conditional randomization e-statistics
tend to outperform the O’Brien and Fleming method, and achieve a rejection rate very
close to Pocock’s method. Even for large β, the O’Brien and Fleming requires higher
sample sizes due to the fact that the method is designed to yield fewer rejections
with small samples. Different numbers of groups for the group sequential methods
give similar results, except for the fact that rejecting at small sample sizes becomes
impossible if the number of groups is small and the group size large. The performance
of the e-statistics compared to the group sequential methods is in line with the results
of ter Schure et al. (2024) for survival analysis. Also in their study, group sequential
methods and alpha-spending approaches, which have to stop at a certain maximum
sample size, tend to achieve a higher power than open-ended tests based on e-statistics,
which do not require a finite upper bound on the sample size.
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Figure 6.2: Empirical distribution of the sample size at rejection, with level α = 0.05, for
the randomization based e-statistics and group sequential methods, and β ∈ {0.1, 0.2, . . . , 1}.

6.5 Data Application

Berrett et al. (2020) analyze conditional independence relations in the Capital Bike-
share data set. Code and data for their study are available on https://rinafb.

github.io/research/ and https://ride.capitalbikeshare.com/system-data.
The data set collects information on bike rides with the Capital bikeshare System
in Washington DC. One question in the analysis by Berrett et al. (2020) is whether
there is dependence of the duration of ride and the binary variable member type,
distinguishing casual users from people who purchased a long-term membership, con-
ditional on the start location, destination, and the time of the day during which the
bike ride took place.

Let X denote the logarithm of the ride duration and denote by Z the three dimen-
sional vector of starting point, destination of ride, and of the starting time. We model
the distribution of X | Z as Gaussian, N (µZ , σ2

Z) in exactly the same way as Berrett
et al. (2020). Separately for each combination of starting point and destination, the
conditional mean µZ and variance σ2

Z are estimated by a kernel regression of X with
the time of day as covariate; details are given in Appendix B of Berrett et al. (2020).
We also apply the same preselection criteria, namely, exclude data from weekends and
holidays, and values of Z where the estimation might be imprecise due to scarce data.
The member type is encoded as Y ∈ {0, 1}, with Y = 0 referring to casual members.

The data analyzed is from the months September to November in 2011. Unlike
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6.6 Discussion, Related and Future Work

Berrett et al. (2020), who took the months September and November as training
data for estimating the distribution of X | Z and October as test data, we perform
estimation on data of September and October and perform tests on the November
data, which would be the natural order for real-time sequential analysis. The test
data set, after the application of selection criteria, contains 7173 observations. The
training data consists of 158 741 observations. Due to the temporal structure of the
data there might be some short lag autocorrelation between the observations, but we
did not find any distorting influence of this on the results presented below.

Berrett et al. (2020) apply the conditional randomization test with the test statistic
|cor(Y, X−EQZ

[X])|. Applied to the November data, this yields a p-value of essentially
zero: the observed value of the test statistic was greater than any value obtained with
simulated X, over 10 000 simulations. For the e-statistics, we model the probability
that Y = 1 with logistic regression, taking X and µZ as covariates and starting with
a minimal sample size of 200 observations in the test data. A full model including Z

instead of only µZ would be problematic due to the high number of combinations of
starting points and destinations relative to the size of the test data. We do not have
this limitation in the estimation of the distribution of X | Z due to the much larger size
of the training data set. However, for a valid test it is not necessary to include Z itself
in the model. The probability predictions from the logistic model are then truncated
to the interval [0.01, 0.99]. For the sequential analysis, the rides are arranged in the
order of the start date and time of ride. Figure 6.3 shows how evidence accumulates
over time. At the end of the period, an e-value of more than 106 is attained, giving
decisive evidence against the null hypothesis of conditional independence. An e-value
of 104 is already reached at the 4380th observation, on November 15th, and hence
after about half of the total observation time.

6.6 Discussion, Related and Future Work

We have proposed and analyzed anytime-valid tests of conditional independence in the
model-X setting. Our method gives a general procedure to transform statistics that
measure conditional independence to e-statistics. We have shown that for a simple
alternative, using the conditional density as statistic leads to the growth rate optimal
e-statistic, and derived a bound on the inflation of type-I error under violations of the
MX assumption.

Duan et al. (2022) and Shaer et al. (2023) have also proposed methods to test
CI under MX, but they address the problem in fundamentally different ways than
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Figure 6.3: E-value for the bike sharing data set. Lines at the bottom indicate observation
times.

we do. In the fully sequential setting, Duan et al. (2022, Appendix E.4) construct a
test martingale which grows if a researcher can better than randomly predict a binary
Xn given past information and (Yn, Zn); notice, however, that this is just a small
part of their work, which, for example, also includes tests for a batch setting. Shaer
et al. (2023) construct a test martingale which measures how much better a forecaster
can predict Yn based on past data and general (Xn, Zn), relative to a forecaster only
having access to a randomized X̃n ∼ QZn . A derandomization of this procedure is
obtained by taking the expectation over X̃n, which yields similar test martingales as in
Theorem 6.1. Both of these methods are very flexible in the choice and tuning of the
prediction method, and may therefore behave quite differently from ours. However,
ours are justified in terms of the strong GRO optimality criterion by Proposition 6.4
and Corollary 6.5, whenever a fast-converging estimator is used. While this makes our
approach in some sense the optimal one, it requires specifying a reasonable (potentially
nonparametric) set of densities F to define the estimator f̂ . We can basically use
any set of densities we like, as long as the estimators converge in information in the
sense below Corollary 6.5. However, it may not always be easy to find F for which
estimation is computationally feasible and practically successful, especially if Z is high-
dimensional. In that case the approaches of Duan et al. (2022) and Shaer et al. (2023)
may have the advantage of being more flexible — whether or not this is the case may
be domain-dependent, and is an interesting avenue for future research. Finally, the
issue of robustness with respect to misspecification of the distribution of X|Z is only
assessed by Shaer et al. (2023) through simulations, whereas our Theorem 6.6 yields
the same worst-case bound for our approach as in the batch setting.
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For a comparison of our method to the CRT, the following aspects are worth high-
lighting. Our simulations suggest that our anytime-valid tests with optional stopping
do not need more samples, on average, to achieve the same power as the CRT. To
be precise, for a given desired power, researchers have to plan for a higher maximum
sample size with our anytime-valid tests. But thanks to early stopping, the average
sample size of experiments is not more or even less than for the classical CRT. This
confirms the findings by Grünwald et al. (2024); ter Schure et al. (2024); Turner et al.
(2024) on other anytime-valid tests and their nonsequential counterparts. In terms
of computational complexity, our method is not less efficient than the classical CRT
if the functions hn in the test martingale can be updated in constant time; in our
application on logistic regression we did not make use of recursive updating, though.
A slight advantage of our method compared to the fixed sample size CRT is that the
latter requires at least ⌈1/α − 1⌉ resamples in order to be able to obtain a p-value
below α, whereas the test martingale (SCI

hn)n∈N can exceed any level independently of
the number M of resamples. If the strategy of Proposition 6.2 is applied, then each
factor in SCI

hn is bounded by M + 1, but not their cumulative product.
There are various avenues for future research. With respect to robustness, our

Theorem 6.6 shows that for a fixed upper bound N on the sample size, the sequen-
tial test achieves the same worst case inflation of rejection rate as the nonsequential
CRT with a sample size N . It would be of interest to investigate the robustness of
the test when this upper bound grows and the approximation Q̂Z of the conditional
distributions of X | Z are sequentially updated with new samples. Furthermore, our
simulations indicate that our e-statistics have competitive power compared to existing
methods with relatively small dimension of Z, but as stated above, further research
is necessary to investigate suitable e-statistics and their power when Z is of higher
dimension.
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One of the key assumptions underlying our approach to the construction of anytime-
valid tests in the previous chapters was that the data were independent. We now
consider a setting where this assumption does not necessarily hold. In particular, we
study the problem of testing for invariance under a group of transformations, which
includes many standard statistical hypothesis tests, such as those for normality and
exchangeability. We show that, regardless of any dependence structure in the original
data, the invariance properties of the problem can be used to construct a sequence of
random variables that are i.i.d. under the null hypothesis. In fact, these transformed
data always have the same distribution under the null hypothesis, that is, the null
becomes simple. Consequently, it is straightforward to compute the log-optimal e-
statistic for a given alternative, as it is simply given by the likelihood ratio between
the alternative and (now simple) null. It can be shown that the cumulative product of
these log-optimal e-statistics, the likelihood ratio process, is the log-optimal e-process
among all e-processes that are functions of the transformed data. Remarkably, under
some assumptions on the alternative, it is sometimes even log-optimal among all e-
processes (that is, which are functions of the original data).

We furthermore apply this method to extend recent anytime-valid tests of inde-
pendence, which leverage exchangeability, to work under general group invariances.
Additionally, we show applications to testing for invariance under subgroups of ro-
tations, which corresponds to testing the Gaussian-error assumptions behind linear
models.
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7.1 Introduction

Symmetry plays a crucial role in statistical modeling. Most models, either explicitly or
implicitly, introduce assumptions of distributional symmetry about the data. For ex-
ample, any distribution under which data are independent and identically distributed
is symmetric under permutations of the data points and any regression model with
Gaussian errors is symmetric under certain rotations of the data. If these symme-
tries are actually present in the data, employing symmetric models yields advantages
for various objectives. These objectives include max-min optimality in hypothesis
tests (Lehmann and Romano, 2005) (see also Chapter 8), admissibility of estima-
tors (Brown, 1966), and increased predictive performance of neural networks (Cohen
and Welling, 2016). On the other hand, if the symmetries are absent from the data,
the use of a symmetric model may lead to poor performance in these same tasks. We
address the problem of testing for the presence of symmetries in the data.

The presence of a symmetry is formalized as a null hypothesis of distributional
invariance under the action of a group (in the algebraic sense). Perhaps the most
prominent example is infinite exchangeability—the hypothesis that the distribution of
any finite data sequence is invariant under the group of all permutations. The null
hypothesis of exchangeability is at the heart of classic methods such as permutation
tests (Fisher, 1936; Pitman, 1937) and rank tests (Sidak et al., 1999). Tests for other
symmetries have also been studied, including tests for rotational symmetry, which cor-
responds to invariance under the orthogonal group (Baringhaus, 1991), symmetries for
data taking values on groups (Diaconis, 1988), and more general frameworks (Lehmann
and Stein, 1949; Chiu and Bloem-Reddy, 2023). The majority of tests in this line of
work are designed for fixed-sample experiments—the amount of data to be collected is
determined before the experiment. In this chapter, we focus on testing for the presence
of symmetries sequentially and under continuous monitoring.

In the applications that interest us, data are analyzed as they are collected, and
the decisions to either stop and reach a conclusion or to continue data collection
may depend on what has been observed so far. Hypothesis tests that retain type-
I error control under such flexible data collection schemes have been called tests of
power one (Robbins and Siegmund, 1974; Lai, 1977), and, more recently, anytime-
valid tests (Ramdas et al., 2023). The main insights in this line of work are that a
test martingale—a nonnegative martingale with expected value equal to one—can be
monitored continuously, and that a test that rejects when the test martingale exceeds
a fixed threshold maintains type-I error control uniformly over time (Ramdas et al.,
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2020; Shafer, 2021). More generally, the minimum over a family of test martingales—
an e-process—can be monitored (Ramdas et al., 2020).

While anytime-valid tests of general symmetries have not received much attention,
the specific case of infinite exchangeability has been studied classically. For example,
sequential rank tests, which can be interpreted as tests of exchangeability (also called
tests of randomness in the literature), have been studied. Sen and Ghosh (1973a,b,
1974) develop asymptotic approximations and law-of-the-iterated-logarithm-type in-
equalities for linear rank statistics that hold uniformly over the duration of the exper-
iment. More recently, Ramdas et al. (2022) and Saha and Ramdas (2024) developed
e-processes for the hypothesis of infinite exchangeability under specific assumptions
(binary and paired data, respectively). Anytime-valid tests of exchangeability that
do not require any additional assumptions are addressed in the work on conformal
prediction (Vovk et al., 2003, 2005). Conformal prediction, perhaps best known as
a framework for uncertainty quantification for point predictors, can also be used to
produce test martingales to test for exchangeability. In the context of conformal pre-
diction, test martingales are called conformal martingales. Most crucially for our
present purposes, Vovk et al. (2005) show that conformal martingales cannot only
be used to test for infinite exchangeability, but also to test whether data are gener-
ated by a fully general class of sequential data-generating mechanisms, called online
compression models (see Section 7.3). It is natural to ask whether distributionally
symmetric models define online compression models, as the conformal martingales
built by Vovk et al. (2005) would automatically yield tests of distributional symmetry.
Unfortunately, this is not true in general.

In this chapter, we show that the above difficulty can be circumvented: Under nat-
ural conditions, a distributionally symmetric model does define an online compression
model. Furthermore, we show that the resulting conformal martingales are optimal
in a specific sense. Indeed, we show that the resulting martingales are likelihood ra-
tios against implicit alternatives and prove that they are optimal—in a sense that is
specified in Section 7.2—for testing against that particular alternative. We use these
constructions to abstract and generalize existing tests of independence under the as-
sumption of exchangeability (Henzi and Law, 2024) to tests of independence under
general symmetries. Finally, we build tests for the Gaussian-error assumptions behind
linear models by testing for invariance under subgroups of the orthogonal group.

The rest of this document is organized as follows. Section 7.2 formally introduces
the problem of anytime valid testing for distributional invariance, and the optimality
criterion that we employ. Then, in Section 7.3, the connection between group-invariant
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distributions and online compression models is shown. This connection is used in Sec-
tion 7.4 to construct test martingales against the hypothesis of distributional invari-
ance; the optimality of this procedure is shown in Section 7.4.2. Section 7.5 shows
applications to test the assumptions of linear models, testing sign-invariant exchange-
ability, and independence testing. Finally, Section 7.6 discusses a potential direction
for future work.

7.2 Problem Statement

Suppose that we observe data X1, X2, . . . sequentially and that they take values in
some topological space X . In our examples, X = R. Note that we assume neither that
these observations are independent nor that they are identically distributed; we only
assume that they are sampled from a distribution on infinite sequences. Furthermore,
for each n = 1, 2, . . . , we assume that Gn is a compact topological group (in the
algebraic sense) that acts continuously on X n. Here, a topological group is a group
that is equipped with a topology under which the group operation, seen as a function
Gn×Gn → Gn, is a continuous map. A (left) group action is a map φ : Gn×X n → X n

that satisfies, for any g, h ∈ Gn and xn ∈ X n, that φ(h, φ(g, xn)) = φ(hg, xn). To
alleviate notation, when the action is clear from context, we write gxn instead of
φ(g, xn). In our examples, the group Gn has a representation as a group of n × n

matrices and the group acts on Rn by matrix multiplication. We are interested in
testing the null hypothesis of invariance of the data under the action of the sequence
of groups (Gn)n∈N, that is,

H0 : gXn D= Xn for all g ∈ Gn and all n ∈ N, (7.1)

where Xn = (X1, . . . , Xn) and D= signifies equality in distribution. At this level of
generality, one can build pathological examples of (7.1) that cannot be tested; more
structure is needed (see Section 7.3). The next example contains simple instances of
the problems that are amenable to our general framework.

Example 7.1 (Exchangeability, rotational symmetry, and compact matrix groups).
For tests of infinite exchangeability, the null hypothesis is given by

H0 : X1, . . . , Xn are exchangeable for each n ∈ N.
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By definition, this can be rewritten as

H0 : (Xπ(1), . . . , Xπ(n))
D= (X1, . . . Xn) for all π ∈ S(n) and n ∈ N,

where S(n) denotes the group of permutations on n elements. In terms of the notation
above, the relevant sequence (Gn)n∈N of groups is Gn = S(n) and the group action may
be written as πXn = (Xπ(1), . . . , Xπ(n)) for each permutation π ∈ S(n). Note that
S(n) can be represented through the group of n × n permutation matrices (matrices
with exactly one entry of 1 in each row and each column and 0 in all other entries). The
hypothesis above coincides with that of distributional invariance under multiplication
of the data (X1, . . . , Xn) by n × n permutation matrices for all n.

Similarly, in the case of tests for sphericity, that is, invariance under rotations
of data, the relevant sequence of groups is Gn = O(n). Here, O(n) denotes the
orthogonal group—the group of all n × n matrices O with orthonormal columns, that
is, such that OT O = I. Details are given in Section 7.5.2. The action of permutation
and orthogonal groups are special examples of the actions of classic compact matrix
groups on Rn (Meckes, 2019). With adjustments, invariance under any of these classic
compact matrix groups is also an instance of the hypothesis in 7.1.

Anytime-valid tests We are interested in constructing sequential tests for H0 as
in (7.1) that are anytime-valid at some prescribed level α ∈ (0, 1). Here, a sequential
test is a sequence (φn)n∈N of rejection rules φn : X n → {0, 1} and we say that it is
anytime valid for H0 at level α if

Q(∃n ∈ N : φn = 1) ≤ α for any Q ∈ H0.

Notice that this is a type-I error guarantee that is valid uniformly over all sample sizes:
the probability that the null hypothesis is ever rejected by (φn)n∈N is controlled by
α. The main tools for constructing anytime-valid tests are test martingales (Ramdas
et al., 2020; Shafer, 2021; Grünwald et al., 2024) and minima thereof, e-processes—see
Ramdas et al. (2020) for a comprehensive overview. We now define them.

Test martingales A sequence of statistics of the data is a test martingale if it is non-
negative, starts at one, and is a supermartingale under every element of H0. Formally,
let G = (Gn)n∈N be a filtration of σ-algebras such that Gn ⊆ σ(Xn), where σ(Xn)
denotes the σ-algebra induced by Xn. Then a sequence of statistics (Mn)n∈N that is
adapted to G is a test martingale for H0 with respect to G if EQ [Mn | Gn−1] ≤ Mn−1
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for all Q ∈ H0 and M0 = 1. The main utility of test martingales is that, under H0,
they take large values with small probability. This is quantified by Ville’s inequal-
ity (Ville, 1939), which shows that the sequential test given by φn = 1 {Mn ≥ 1/α} is
anytime valid.

Lemma 7.1 (Ville’s inequality). Let (Mn)n∈N be a test martingale with respect to
some filtration (Gn)n∈N under all elements of H0, then

sup
Q∈H0

Q(∃n ∈ N : Mn ≥ 1/α) ≤ α.

Proof. Fix Q ∈ H0. Doob’s optional stopping theorem states that EQ[Mτ ] ≤ 1 for any
stopping time τ that is adapted to (Gn)n∈N (Durrett, 2019, Theorem 5.7.6). Markov’s
inequality implies that Q(Mτ > 1

C ) ≤ C for any C > 0. Applying this to the stopping
time τ∗ = inf{n ∈ N : Mn ≥ 1

α } shows the result.

Test martingales that make use of external randomization will also prove useful;
we will call them randomized test martingales. For randomized test martingales, we
append an independent random number θn ∼ Uniform([0, 1]) to each Xn, that is, we
let Yn = (Xn, θn) and consider test martingales that are functions of Yn rather than
Xn.

Test martingales are part of a broader class of processes, e-processes (Ramdas et al.,
2023). An e-process is any nonnegative stochastic process E such that EQ[Eτ ] ≤ 1
for all Q ∈ H0 and (a subset of) all stopping times τ . Any e-process can be turned
into an anytime-valid test by thresholding it, that is, ϕn = 1

{
Eτ ≥ 1

α

}
is an anytime-

valid test for any stopping time τ . This property is often referred to as safety under
optional stopping (Grünwald et al., 2024). Relatedly, the product of e-processes based
on independent data is again an e-process. That is, suppose some e-processes E and
E′ are used for independent experiments, yielding stopped process Eτ1 and E′

τ2
. Then

the product again has the property that EQ[Eτ1E′
τ2

] ≤ 1 for all Q ∈ H0, which is
referred to as safety under optional continuation.

Log-optimality This type of evidence aggregation by multiplication of e-processes
motivates a natural optimality criterion. Indeed, suppose we were to repeatedly run
a single experiment, using a fixed e-process E and stopping time τ . If we measure
the total evidence by the cumulative product of the individual e-processes, then the
asymptotic growth rate of our evidence under true distribution P will be EP [log Eτ ].
It is therefore custom to look for e-processes that maximize this asymptotic growth
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rate, as can be traced back to Kelly betting (Kelly, 1956). Variants of this criterion
have more recently been studied under numerous monikers (Shafer, 2021; Koolen and
Grünwald, 2022; Grünwald et al., 2024), but here we shall simply refer to maximizers
of this criterion as “log-optimal”.

7.3 Sequential Group Actions are Online Compres-
sion Models

The hypothesis in (7.1) can only be meaningfully tested if the statements regarding
group invariance for each n ∈ N are consistent with each other; without any further
restrictions, invariance of the data at one time may contradict the invariance of the
data at a later time. To avoid such situations, we assume that there is a certain
structure to the action of sequence of groups (Gn)n∈N on the sample space, which we
will refer to as a sequential group action. After the statement of this definition, we
discuss its meaning.

Definition 7.2 (Sequential group action). We say that the action of the sequence of
groups (Gn)n∈N on (X n)n∈N is sequential if the following conditions hold.

(i) The sequence (Gn)n∈N is ordered by inclusion: for each n, there is an inclusion
map ın+1 : Gn → Gn+1 such that ın+1 is a continuous group isomorphism
between Gn and its image, and the image of Gn under ın+1 is closed in Gn+1.

(ii) For all gn ∈ Gn and all xn+1 ∈ X n+1 , projX n(ın+1(gn)xn+1) = gn(projX n(xn+1)),
where projX n is the canonical projection map projX n : X n+1 → X n given by
projX n(x1, . . . , xn, xn+1) = (x1, . . . , xn).

(iii) Let n ≥ 1, gn ∈ Gn, and gn+1 ∈ Gn+1. For xn+1 = (x1, . . . , xn+1) ∈ X n+1,
denote (xn+1)n+1 = xn+1. Then, gn+1 = ın+1(gn) if and only if, for all xn+1 ∈
X n+1, (gn+1xn+1)n+1 = xn+1.

In Definition 7.2, item (i) gives an ordering of the sequence of groups by inclusion,
(ii) ensures that this inclusion does not change the action of the groups on past data,
and (iii) implies that the groups do not act on future data. As a result, invariance
of Xn−1 under Gn−1 is implied by invariance of Xn under Gn and the individual
statements of invariance in (7.1) for each n do not contradict each other. The instances
of (7.1) discusssed in Example 7.1 satisfy this assumption; a simpler situation where
this is satisfied is given in the next example.
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Example 7.2 (Within-batch invariance). Perhaps the simplest example is when, for
each n, Gn has a product structure and acts on X n componentwise. This is when

Gn = H1 × H2 × · · · × Hn

for some sequence of topological groups (Hn)n∈N, each Hn acting continuously on X
by (h, x) 7→ hx and (gn, Xn) 7→ (h1X1, . . . , hnXn) for each gn = (h1, . . . , hn) ∈ Gn.
This covers the setting where batches of data are observed sequentially and the interest
is in testing group invariance within each batch. For example, assume that X = Rk,
each Hi is a fixed group H acting on Rk, and data Xk

1 , Xk
2 , . . . are assumed to be

i.i.d. copies of a random variable Xk. Then (7.1) becomes the problem of testing
sequentially whether Xk D= hXk for all h ∈ H, that is, whether the distribution of Xk

is H-invariant. Koning (2023) treats this batch-by-batch setting for general compact
groups.

In a addition to this example, sequential group actions also include more compli-
cated situations where there is “cross-action” between the different data points, as in
Example 7.1 (corresponding to exchangeability and sphericity). The details for the
case of testing rotational symmetry are given in Section 7.5.2.

We now show that, under the assumption that the group action is sequential, the
null hypothesis of invariance is an online compression model. The latter are models
for computing online summaries, or compressed representations, of the observed data.
When the data is generated by an online compression model, the techniques developed
for conformal prediction can be used to construct a sequence of statistics that has a
Uniform([0, 1]) distribution under the null hypothesis. These statistics can be used
to build a conformal (test) martingale, as we will discuss in Section 7.4. Vovk et al.
define online compression models in abstract terms; we use a simplified definition here.

Definition 7.3 (Online compression model, Vovk et al. (2005)). An online compres-
sion model on X is a 3-tuple of sequences ((σn)n∈N, (Fn)n∈N, (Qn)n∈N), where

1. (σn)n∈N is a sequence of statistics σn = σn(Xn); we call σn a summary of Xn,

2. (Fn)n∈N is a sequence of functions such that Fn(σn−1, Xn) = σn,

3. (Qn)n∈N is a sequence of conditional distributions for (σn−1, Xn) given σn.

To show how sequential group invariance defines an online compression model, we
first recall some group theory. First, the orbit GnXn of Xn under the action of Gn

is the set of all values that are reached by the action of Gn on Xn, i.e., GnXn =
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{gXn : g ∈ Gn}. In order to identify each orbit, we pick a single element of X n

in each orbit—an orbit representative—and consider the map γn : X n → X n that
takes each Xn to its orbit representative. We call γn an orbit selector (see Section 7.5
for examples), and we assume that it is measurable. Such measurable orbit selectors
exist under weak regularity conditions on X n and Gn (see Bondar, 1976, Theorem 2)
that hold in all the examples of this chapter. Furthermore, because Gn is a compact
group, there exists a unique Gn-invariant probability distribution µn, called the Haar
(probability) measure (Bourbaki, 2004, Chapter VII). The Haar measure plays the
role of a uniform probability distribution on compact groups. Finally, it is a fact
that the data is uniformly distributed on its orbit conditionally on the orbit where it
lays; formally, Xn | γn(Xn) D= Uγn(Xn) | γn(Xn), where U ∼ µn independently of
X (Eaton, 1989, Theorem 4.4).

We now show that if a sequence of groups (Gn)n∈N acts sequentially on the data,
any distribution that is invariant under the action of said sequence defines an online
compression model. We use the orbit representative as summary statistic, i.e., we use
σn = γn(Xn). Then, since the distribution of the data is (Gn)n∈N-invariant, the se-
quence of conditional distributions of (σn−1, Xn−1) given σn is uniform over the orbits
as remarked earlier. In this way, we fix σn and Qn in Definition 7.3. Furthermore, the
next proposition shows that, for sequential group actions, σn can be computed as a
function of σn−1 and Xn. The proof of this proposition can be found in Appendix E.1
and it uses crucially the assumption that the group action is sequential. This dis-
cussion and the following proposition prove that a sequential group-invariant model
indeed defines an online compression model, as we state in Corollary 7.5.

Proposition 7.4. If the action of (Gn)n∈N on (X n)n∈N is sequential, then there ex-
ists a sequence (Fn)n∈N of measurable functions Fn : X n−1 × X → X n such that
Fn(γn−1(Xn−1), Xn) = γn(Xn) and Fn( · , Xn) is a one-to-one function of γn−1(Xn−1).

Corollary 7.5. Assume that the action of (Gn)n∈N on (X n)n∈N is sequential, let µ̃n

be the uniform distribution on GnXn induced by the Haar measure µn on Gn, and let
(Fn)n∈N be as guaranteed by Proposition 7.4. Then the tuple

((γn(Xn))n∈N, (Fn)n∈N, (µ̃n)n∈N),

defines an online compression model on X .
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7.4 Testing Group Invariance With Conformal Mar-
tingales

We now construct test martingales for the null hypothesis of distributional symmetry
in (7.1) any time that a sequence of groups (Gn)n∈N acts sequentially on the data
(Xn)n∈N. To this end, the invariant structure of the null hypothesis H0 is used in
tandem with conformal prediction to build a sequence of independent random variables
(Rn)n∈N with the following three properties:

1. The sequence (Rn)n∈N is adapted to the data sequence with external random-
ization (Xn, θn)n∈N, that is, for each n ∈ N, Rn = Rn(Xn, θn).

2. Under any element of the null hypothesis H0 from (7.1), (Rn)n∈N is a sequence
of independent and identically distributed Uniform[0, 1] random variables.

3. The distribution of (Rn)n∈N is not uniform when departures from symmetry are
present in the data.

The construction of these random variables is the subject of Section 7.4.1—additional
definitions are needed—and their optimality is the subject of Section 7.4.2. In order to
guide intuition, Example 7.3 shows a first example for testing exchangeability, which
has previously also been studied by Vovk et al. (2005) and Fedorova et al. (2012).
They call the statistics R1, R2, . . . p-values owing to their uniformity. We opt against
that terminology here, because typically only small p-values are interpreted evidence
against the null hypothesis. However, in the context of testing for symmetry, it is any
deviation from uniformity that we interpret as evidence against the null hypothesis.
For reasons that will become apparent soon, we call R1, R2, . . . (smoothed) orbit ranks
(see Definition 7.7).

With the sequence (Rn)n∈N at hand, test martingales against distributional invari-
ance are built by testing against the uniformity of (Rn)n∈N. Indeed, any time that
(fn)n∈N is a sequence of functions fi : [0, 1] → R such that

∫
fi(r)dr = 1, the process

(Mn)n∈N given by
Mn :=

∏
i≤n

fi(Ri) (7.2)

is a test martingale for H0 with respect to F, where F = (σ(Rn))n∈N and σ(Rn) is
the σ-algebra generated by Rn. This follows from the fact that EQ

[
Mn | σ(Rn−1)

]
=

Mn−1
∫

fn(r)dr = Mn−1, where we leverage independence and uniformity. The func-
tions (fn)n∈N are known as calibrators (Vovk and Wang, 2021). They can be taken
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to be any sequence of predictable estimators of the density of R1, R2, . . . (Fedorova
et al., 2012), so that the test martingale is expected to grow if the true distribution of
the orbit ranks is not uniform, i.e., the null hypothesis is violated. The optimality of
this procedure is discussed in Section 7.4.2.

Example 7.3 (Sequential Ranks). Consider the case of testing exchangeability as
discussed in Example 7.1, that is, the case when X = R and Gn = S(n) . For
each n, define the random variables R̃n =

∑
i≤n 1 {Xi ≤ Xn}—the rank of Xn among

X1, . . . , Xn. The random variables R̃1, R̃2, . . . are called sequential ranks (Malov,
1996). It is a classic observation that each R̃n is uniformly distributed on {1, . . . , n},
and that (R̃n)n∈N is a sequence of independent random variables (Rényi, 1962). After
rescaling and adding external randomization, a sequence of random variables (Rn)n∈N

can be built from (R̃n)n∈N such that (Rn)n∈N satisfies items 1, 2 and 3 at the start
of this section. Furthermore, if we denote the uniform measure on S(n) by µn, then
R̃n can also be obtained from n−1R̃n = µn{g : (gXn)n ≤ Xn}. While this rewriting
may seem esoteric at this point, it turns out to be the correct point of view for
generalization.

7.4.1 Conformal Prediction Under Invariance

In general, the statistics Rn will be designed to measure how strange the observations
Xn are in contrast to what would be expected under distributional invariance. To this
end, the values of Xn are compared to those in the orbit of Xn under the action of
Gn. In order to measure the “strangeness” of the observations in their orbit, we use
an adaptation of the conformity measures introduced by Vovk et al. (2005).

Definition 7.6 (Conformity measure of invariance). We say that the function A :
X ×

⋃∞
n=1 X n → R is a conformity measure of invariance if the following holds: if there

are Xn, X ′n ∈ X n, such that A(Xi, γn(Xn)) = A(X ′
i, γn(X ′n)) for all i ∈ {1, . . . , n},

then, for all g ∈ Gn, we also have that A((gXn)i, γn(Xn)) = A((gX ′n)i, γn(X ′n)) for
all i ∈ {1, . . . , n}.

The group-related condition on A that appears in Definition 7.6 is an addition to
that of Vovk et al. (2005); it ensures that the action of Gn on X n induces an action
on the conformity measure. The intuition of the definition is that when A is prop-
erly chosen, A(Xn, γn(Xn)) is a numerical score that indicates how similar Xn is to
the other values in its orbit. Therefore, the statistic αn = A(Xn, γn(Xn)) is called
a conformity score. The easiest example is when X n ⊆ Rn because then A defined
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by A(Xn, γn(Xn)) = Xn is a conformity measure of invariance—this is the case in
Example 7.3. However, perhaps a more intuitive choice would be A(Xn, γn(Xn)) =
|Xn−

∫
G

gγn(Xn) dµn(g)|−1, since this quantity is large whenever Xn is close to the av-
erage value within the orbit, which is given by

∫
G

gγn(Xn) dµn(g). For a more involved
example, consider the case where the data points are given by Xi = (Yi, Zi) for some
outcome Yi ∈ R and a covariate Zi ∈ R. Then one might consider A(Xi, γn(Xn)) =
|Yi − Ŷi|−1, where Ŷi is the prediction of some regression method that was trained
on the orbit of Xi. In this case, the intuition is that, if the label is very close to the
prediction that is made using all of the values in the same orbit, then Xi must have
been very typical of the orbit. For a more detailed discussion on different conformity
measures, we refer to Fontana et al. (2023).

Since the scale of the conformity scores is arbitrary—they can be scaled at will—,
only comparisons between them are meaningful. Therefore, similar to what happened
in Example 7.3, we will rank the observed value of the conformity score αn among all
its possible values on the orbit of the data. To this end, we obtain the distribution
of the conformity scores under the null hypothesis using the assumed distributional
invariance. Indeed, as discussed in Section 7.3, the distribution of Xn conditional
on γ(Xn) is uniform on its orbit. This idea gives rise to the (smoothed) orbit ranks
(Rn)n∈N in the next definition.

Definition 7.7 (Smoothed Orbit Ranks). Fix n ∈ N, let A be a conformity measure,
and let αn = A(Xn, γn(Xn)) be the associated conformity score. We call Rn, defined
by

Rn =µn({g ∈ Gn : A((gXn)n, γn(Xn))n < αn}) +

θnµn({g ∈ Gn : A((gXn)n, γn(Xn)) = αn}),
(7.3)

a (smoothed) orbit rank, where µn denotes the Haar probability measure on Gn and
θn ∼ Uniform[0, 1] is independent of the data Xn.

The simplest case is when the group Gn is finite of size k and A(Xi, γn(Xn)) = Xi.
In that case, µn is the discrete uniform distribution on Gn and Rn = 1

k #{g ∈ Gn :
(gXn)n < Xn} + θn

k #{g ∈ Gn : (gXn)n = Xn}.
An important intuition is that the statistic Rn is the CDF of the distribution of

αn conditional on γn(Xn) evaluated in αn (with added randomization) under H0. It
follows that if said CDF is continuous, smoothing plays no role in (7.3) and Rn ⊥ θn. It
also follows—and this is shown in Theorem 7.8—that each Rn is uniformly distributed
on [0, 1]. Vovk et al. (2005, Theorem 11.2) show that, if the data is generated by an
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online compression model, and θ1, θ2, . . . are independent, then R1, R2, . . . are also
independent. Since Corollary 7.5 shows that a sequential group invariance structure
defines an online compression model, it follows that the smoothed orbit ranks form an
i.i.d. uniform sequence under the null hypothesis. This is stated in the next theorem,
for which we provide a direct proof in Appendix E.1 for completeness .

Theorem 7.8. Suppose that the action of (Gn)n∈N on (X n)n∈N is sequential, that
(Xn)n∈N is generated by an element of H0, and that θ1, θ2, . . . are independent. Then
Rn ⊥ γn(Xn) for each n and (Rn)n∈N is a sequence of i.i.d. Uniform[0, 1] random
variables.

7.4.2 Optimality

We now show that any martingale based on the smoothed orbit ranks as in (7.2) is a
likelihood ratio process and that it is log-optimal against the implicit alternative for
which it is built. To this end, let P be a distribution such that for all n, conditionally
on Rn−1, Rn has density fn (with respect to the Lebesgue measure). Technically,
the conditional density of Rn is not defined only by P , but also by the external
randomization. To make this explicit in the following, we will use P̃ to denote P

with external randomization added, that is, P̃ = P × U∞, where U∞ is the uniform
distribution on [0, 1]∞. Analogously, for each Q ∈ H0, define Q̃ = Q × U∞.

The discussion below (7.2) shows that Mn =
∏

i≤n fi(Ri) is a test martingale.
In fact, Mn is the likelihood ratio for the orbit ranks Rn between P̃ and Q̃, since
the distribution of Rn under Q̃ equals the uniform distribution for any Q ∈ H0 by
Theorem 7.8. Surprisingly, if P̃ is such that Rn ⊥ γn(Xn), then Mn is also the likeli-
hood ratio for the full data Xn between P and an appropriately chosen distribution
Q∗ ∈ H0, as shown in the following proposition. For the sake of brevity, the action of
(Gn)n∈N on (X n)n∈N is assumed to be sequential throughout.

Proposition 7.9. Suppose that A( · , γn(Xn)) is a one-to-one function for each n ∈ N,
suppose that P is any distribution under which Rn ⊥ γn(Xn) for each n, and let fi

denote the conditional density of Ri given Ri−1 under P . Let Mn =
∏

i≤n fi(Ri).
Then, for Q ∈ H0,

Q̃

(
Mn = dP

dQ∗ (Xn)
)

= 1, (7.4)

where Q∗ denotes the distribution under which the marginal of γn(Xn) coincides with
that under P , and such that Xn | γn(Xn) D= Uγn(Xn) | γn(Xn), where U ∼ µn

independently from γn(Xn).
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The distribution Q∗ can be thought of as a symmetrization of P , since the marginal
of γn(Xn) is the same, but the distribution conditional on γn(Xn) is defined by sym-
metry. Proposition 7.9 therefore shows that, if the orbit ranks are independent of the
orbit selectors under P , then (Mn)n∈N is the likelihood ratio process between P and
a symmetrization thereof. The next theorem uses this representation to show the log-
optimality of (Mn)n∈N. Its proof follows that of Theorem 12 of Koolen and Grünwald
(2022).

Theorem 7.10. Assume that A( · , γn(Xn)) is one-to-one for all n ∈ N and let P

be such that, under P , the distribution of Xn | γn(Xn) is absolutely continuous with
respect to the uniform distribution. Denote fi for the density of Ri | Ri−1 under P̃

and let Mn =
∏

i≤n fi(Ri). Let τ be any stopping time and (En)n∈N any e-process for
H0, both with respect to F—the filtration generated by the smoothed ranks. Then it
holds that

E
P̃

[ln Mτ ] = E
P̃

[
ln

τ∏
i=1

fi(Ri)
]

≥ E
P̃

[ln Eτ ] . (7.5)

Moreover, if P̃ is such that Rn ⊥ γn(Xn) for all n, then for any e-process E′ for H0

w.r.t. (σ(Xn, θn))n∈N—the full-data filtration—, it also holds that

E
P̃

[ln Mτ ] ≥ E
P̃

[ln E′
τ ] . (7.6)

The first part of Theorem 7.10, Equation (7.5), establishes that, under some as-
sumptions on P , (Mn)n∈N is log-optimal for testing group invariance among all e-
processes defined only on the orbit ranks. Moreover, the second part of Theorem 7.10,
Equation (7.6), states that if the orbit ranks are also independent of the orbit se-
lector under P , then (Mn)n∈N is log-optimal for testing group invariance among all
e-processes defined on the full data. The additional assumption of independence be-
tween Rn and γn(Xn) is necessary for (7.6) to hold: if P̃ is a distribution under which
R1, . . . , Rn ̸⊥ γn(xn), then the conformal martingale is not in general a likelihood
ratio as in (7.4). For the deterministic stopping time τ = n, the log-optimal statistic
is instead given by Sn =

∏n
i=1 fn(R1, . . . , Rn | γn(Xn)), as it can be written as a

likelihood ratio (see also Grünwald et al., 2024; Koning, 2023). However, the sequence
(Sn)n∈N does not necessarily define a test martingale or e-process, so that it might not
be possible to use it in the construction of an anytime-valid test. Using tests based
on the sequential ranks circumvents this issue for such alternatives.

The optimality of Mn in Theorem 7.10 is contingent on oracle knowledge of the
true distributions f1, f2, . . . , which are unknown in practice. To counter this, past
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data can be used to sequentially estimate the true density. This idea has previously
been applied for testing exchangeability (Vovk et al., 2005; Fedorova et al., 2012).
More precisely, for each n, let f̂n be an estimator of fn based on Rn−1, and consider
the martingale defined by

∏n
i=1 f̂i(Ri). In general, this is suboptimal with respect

to an oracle that knows the true density. However, in the case that there exists a
density f such that fi ≡ f for all i, i.e. data are i.i.d. under P , there is limited loss
asymptotically if f̂i is a good estimator of f . In order to judge if an estimator is good
for the task at hand, consider the difference in expected growth per outcome for fixed
n, i.e.,

1
n

n∑
i=1

E
P̃

[log f(Ri) − log f̂i(Ri)] = 1
n

n∑
i=1

E
P̃

[KL(f∥f̂i)], (7.7)

where KL(f∥ĝ) =
∫ 1

0 f(r) log(f(r)/g(r))dr denotes the Kullback-Leibler divergence
whenever f is absolutely continuous with respect to g, and the expectation on the
right-hand side of (7.7) is over past data (on which f̂i depends). If (7.7) tends to zero
as n grows large, the expected growth per outcome converges to that of the log-optimal
test martingale. This motivates the use of density estimation algorithms for which this
always happens. Under stringent assumptions—for example, if the density f belongs
to an exponential family—sequential Bayesian-update-type algorithms are known to
guarantee that (7.7) converges to zero (Kotłowski and Grünwald, 2011). Under weaker
assumptions, specialized algorithms exist with the same guarantees (Haussler and
Opper, 1997; Cesa-Bianchi and Lugosi, 2001; Grünwald and Mehta, 2019).

7.5 Applications and Extension

In this section, we discuss applications and an extension of the theory developed in
the previous sections.

7.5.1 Sign-Invariant Exchangeability

In this subsection, we consider testing for sign-invariant exchangeability (Berman,
1965; Fraiman et al., 2024) with the purpose of illustrating our method on a concrete,
basic example, and show its performance through numeric simulation. Real-valued
data are sign-invariant if (X1, . . . , Xn) D= (ϵ1X1, . . . , ϵnXn) for all signs (ϵ1, . . . , ϵn) ∈
{−1, 1}n. We consider {−1, 1}n as a group with componentwise multiplication as
operation. Data are sign-invariant exchangeable if they are both sign-invariant and ex-
changeable. That is, if (X1, . . . , Xn) D= (ϵ1Xπ(1), . . . , ϵnXπ(n)) for all signs (ϵ1, . . . , ϵn) ∈
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{−1, 1}n and all permutations π ∈ S(n). The null hypothesis of sign-invariant ex-
changeability is therefore equivalent to the distributional invariance of Xn under the
action of Gn = {−1, 1}n × S(n). The orbit of Xn under Gn is given by the set
{(ϵ1Xπ(1), . . . , ϵnXπ(n)) : (ϵ1, . . . , ϵn) ∈ {−1, 1}n, π ∈ S(n)}. Since Gn is finite, the
Haar measure is the discrete uniform distribution. Furthermore, because the data are
assumed to be real, we can take A(Xn, γn(Xn)) = Xn. Let X ′

1, . . . , X ′
2n be given, for

i = 1, . . . , n, by X ′
i = Xi and X ′

n+i = −Xi. The smoothed orbit rank in (7.3) becomes

Rn = #{i ≤ 2n : X ′
i < Xn}

2n
+ θn

#{i ≤ 2n : X ′
i = Xn}

2n
. (7.8)

These statistics can be computed upon observing the data, and standard density
estimation algorithms can used to estimate their density. Following Section 7.4, for
each n we use R1, . . . , Rn−1 to build an estimate f̂n of the density and use Mn =∏

i≤n f̂i(Ri) as a test martingale.
We investigate how martingales obtained in this manner behave through simula-

tions. For these experiments, we used the R language (R Core Team, 2022). The den-
sity estimation was performed using the kernel density estimation that is implemented
in the Stats package. However, standard kernel density estimation can lead to poor
performance around the boundaries. This is because these algorithms are designed
to estimate densities supported on R and not just on [0, 1]. Following Fedorova et al.
(2012), a solution to this problem is (in the case of testing exchangeability) to reflect
the sequence of orbit ranks to the left from zero and to the right from one. Then, the
estimate is computed using the extended sample ∪n

i=1{−Ri, Ri, 2 − Ri}. Finally, the
estimated density is set to zero outside of the unit interval and then normalized. We
have used this same procedure here. Furthermore, for the sake of comparison, we also
include the conformal martingale that would be obtained if testing either for exchange-
ability exclusively or for sign-invariance. The results are shown in Figure 7.1. We see
that, if data are sign-invariant exchangeable—i.i.d. Rademacher or i.i.d. Normal(0, 1)
in our experiments—, the conformal martingales are indeed martingales and do not
take large values, as expected based on the discussion in Section 7.2. Under the al-
ternative, the statistic Mn is no longer a martingale, and it does grow. However, the
methods that test for only one of the two symmetries (either exchangeability or sign
invariance separately) do not detect alternatives for which that particular symmetry
is not violated, but the other is (see Figure 7.1b). On the other hand, the conformal
martingale based on Rn as described in (7.8) detects all of the alternatives. In fact,
for the alternative where each Xi ∈ {−1, 1} and Xi = 1 with probability pi = 1 − 1/i
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(a) Under null models: Xi = ±1 w.p. 0.5 and Xi ∼ N(0, 1).

(b) Statistics under alternative models (all independent). Upper left
corner: Xi = 1 w.p. pi = 1 − 1/i and Xi = 1 with probability
1 − pi. Upper right corner: Xi ∼ N(i/10, 1). Lower left corner:
Xi ∼ N(0, 1/i). Lower right corner: Xi ∼ N(1, 1).

Figure 7.1: The logarithm of the conformal martingale against sample size for three dif-
ferent methods: testing for both sign-invariance and exchangeability, or only one of the two.
A test built against sign-invariance and exchangeability can detect the absence of either of
those two invariances while a test that is built to detect only one of then cannot achieve the
same goal (see Section 7.5.1). Data are independent under all considered models. The results
were averaged over 500 repetitions.

and Xi = −1 with probability 1 − pi indepently, the corresponding test martingale
is even log-optimal among all e-processes. This is due to the fact that, regardless
of the observed data, the orbit of Xi is always the set {−1, 1}. Therefore, the orbit
selector can be chosen to be γn(Xn) = (1, . . . , 1) independently of the data, such that
Rn ⊥ γn(Xn). The log-optimality then follows from Theorem 7.10.
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7.5.2 The Orthogonal Group and Linear Models

Consider testing whether the data we observe are drawn from a spherically symmetric
distribution, i.e., X = R and Gn = O(n), where O(n) is the orthogonal group in
dimension n. Testing for spherical symmetry is equivalent to testing whether the data
are generated by a zero-mean Gaussian distribution. Indeed, any distribution on R∞

for which the marginal of the first n coordinates is spherically symmetric for any n,
is a mixture of i.i.d. zero-mean Gaussian distributions (Bernardo and Smith, 2009,
Proposition 4.4). It follows that any process that is a supermartingale under all zero-
mean Gaussian distributions is also a supermartingale under spherical symmetry and
vice-versa. This implies that, for the purpose of testing with test (super)martingales,
the two hypotheses are equivalent. We show how this fits in our setting, and defer the
application to regression to Appendix E.2.

We now check that testing spherical symmetry fits in our setting, i.e., that Defini-
tion 7.2 is fulfilled. Consider the inclusion of O(n) in O(n + 1) given by

ın+1(On) =
(

On 0
0 1

)

for each On ∈ O(n). Using the canonical projections in Rn, Definition 7.2 is readily
checked. Since the data are real, we can consider the simple measure of conformity
A(Xn, γn(Xn)) = Xn. An orbit selector is given by γn(Xn) = ∥Xn∥e1, where e1 is
the unit vector e1 = (1, 0, . . . , 0). For simplicity, we assume that the distribution of
Xn has a density with respect to the Lebesgue measure for each n, so that Rn =
µn({On ∈ O(n) : (OnXn)n < Xn})—no external randomization is needed. Rather
than thinking of µn as a measure on O(n), one can think of it as the uniform measure
on Sn−1(∥Xn∥). This way, Rn can be recognized to be the relative surface area of
the hyper-spherical cap with co-latitude angle φn = π − cos−1(Xn/∥Xn∥). Li (2010)
shows that an explicit expression for this area is given by

Rn =

1 − 1
2 Isin2(π−φn)

(
n−1

2 , 1
2
)

if φn > π
2 ,

1
2 Isin2(φn)

(
n−1

2 , 1
2
)

else,
(7.9)

where Ix(a, b) denotes the regularized beta function, Ix(a, b) = B(x,a,b)
B(1,a,b) for B(x, a, b) =∫ x

0 ta−1(1 − t)b−1 for 0 ≤ x ≤ 1.
Note that φn > π

2 if and only if Xn > 0 and that sin2(φn) = 1 − X2
n

∥Xn∥2 , so that
(7.9) equals the CDF of the t-distribution with n − 1 degrees of freedom evaluated
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in t =
√

n − 1Xn/∥Xn−1∥. If Xn ∼ N (0, σ2In), then t is the ratio of a normally
distributed random variable and an independent chi-squared-distributed random vari-
able. Therefore, t has a t-distribution with n − 1 degrees of freedom. The test thus
obtained is a type of sequential t-test that has, to the best of our knowledge, not been
considered previously.

This example can be extended to testing for centered spherical symmetry, i.e.,
whether Xn = µ1n + ϵn, where 1n is the all-ones n-vector, µ ∈ R and ϵn is spherically
symmetric for every n ∈ N. By similar reasoning as above, this is equivalent to
testing whether the data is i.i.d. Gaussian with any mean/variance. Even more, by
considering different isotropy groups, one can also cover the case where the mean µ is
not fixed, but depends on covariates. The ideas needed in that case are similar; we
show how deal with the added complexity in Appendix E.2.

7.5.3 Modification for Independence Testing

We now propose a minor modification of the conformal martingales from the previous
section that can be used to test for independence. Formally, fix K ∈ N and suppose
that at each time point n ∈ N, a K-dimensional vector Xn = (X1,n, . . . , XK,n) ∈ X K

is observed. We are interested in testing the null hypothesis that states that: (1)
for each k = 1, . . . , K and each n the vectors (Xk,1, . . . , Xk,n) are Gn-invariant, and
(2) (Xk,1, . . . , Xk,n) ⊥ (Xk′,1, . . . , Xk′,n) for all k ̸= k′ ∈ {1, . . . , K}. Under this
hypothesis, the data is invariant under the sequential action of (G̃n)n∈N given by
G̃n = GK

n , acting on X K×n rowwise. That is, the first copy of the group acts on
(X1,1, . . . , X1,n), the second on (X2,2, . . . , X2,n), etc. This action is sequential anytime
that the action of (Gn)n∈N is sequential on each of the K data streams.

Based on the discussion above, a first idea to test for invariance under G̃n is to
create K test martingales and combine them through multiplication. More specifically,
we can treat each of the sequences (Xk,n)n∈N, k ∈ {1, . . . , K} as a separate data
stream and compute the corresponding statistics in (7.3), leading to K sequences of
uniformly distributed random variables (Rk,n)n∈N. If, for all n ∈ N and k ∈ {1, . . . , K},
fk,n is a density on [0, 1] then, by independence, the sequence (M ′

n)n∈N defined by
M ′

n =
∏n

i=1
∏K

k=1 fk,i(Rk,i) is a martingale under the null hypothesis. However, this
martingale would not be able to detect alternatives under which the marginals are
group invariant, but not independent. This stems from the fact that it only uses that
the marginals are uniform under the null, while in fact a stronger claim is true: for
each n, the joint distribution of Rk,n, k ∈ {1, . . . , K}, is uniform on [0, 1]K . As a result
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of this observation, one can choose any sequence of joint density (estimators) f1, f2, . . .

on [0, 1]K and create a test martingale by considering Mn =
∏n

i=1 fi(R1,i, . . . , RK,i).
In the case that K = 2 and Gn = S(n), this is the procedure that was recently

employed by Henzi and Law (2024). They discuss a specific choice of fn, a histogram
density estimator, that is able to detect departures from independence consistently
under the stronger assumption that data are i.i.d. One of their key insights is that
independence of the data streams not only implies joint uniformity of the sequential
ranks in their setting, but that independence and joint uniformity are actually equiv-
alent. This equivalence breaks down if one does not assume that Xk,1, Xk,2 . . . are
i.i.d. for all k. Finding conditions under which the independence of the streams and
the joint uniformity of the rank distributions are equivalent so that a histogram den-
sity estimator might reliably detect independence in the more general setting is an
interesting avenue of research.

7.6 Discussion

We have discussed how the theory of conformal prediction can be applied to test
for symmetry of infinite sequences of data. Here we discuss two topics. First, the
relationship to noninvariant conformal martingales. Second, whether smoothing is
necessary when defining orbit ranks.

7.6.1 Noninvariant Conformal Martingales

Not all online compression models correspond to a compact-group invariant null hy-
pothesis. An interesting example of this phenomenon is when the data are i.i.d. and
exponentially distributed. This distribution is invariant under reflections in any 45◦

line (not necessarily through the origin), but these reflections do not define a compact
group and therefore do not fit the setting discussed in this chapter. Nevertheless, the
sum of data points is a sufficient statistic for the data, so this model can still be seen as
an online compression model with the sum being the summary. More work is needed
to find out whether conformal martingales are log-optimal against certain alternatives
in such settings.

7.6.2 The Need for Smoothing

In situations when, conditionally on the orbit selector γn(Xn), the conformity measure
αn(Xn) has a continuous distribution, the smoothing plays no role in (7.7). This is the
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case for the rotations discussed in Section 7.5.2. In certain other scenarios, smoothing
can be avoided as well. Indeed, one can always define nonsmoothed orbit ranks,
in opposition to the smoothed ranks Rn from Definition 7.7, by R̃n := µn({g ∈ Gn :
(gαn)n ≤ αn}). Notice that this nonsmooth version satisfies R̃n ≤ Rn. For a particular
choice of increasing densities f1, f2, . . . , on [0, 1]—in the sense that u 7→ fi(u) is
increasing—, we have that the process M̃n :=

∏n
i=1 fi(R̃i) is bounded from above

by the conformal martingale Mn =
∏n

i=1 fi(Ri). Such a choice of increasing fi is
natural when high values of Ri (or R̃i) are associated with departures from the null
hypothesis. Then, any sequential test based on an upper threshold on M̃n inherits
the anytime-valid type-I error guarantees of Mn—exactly because M̃n ≤ Mn. This
was previously noted by Vovk et al. (2003). However, the process M̃n may not be
a martingale itself. Instead, a test martingale can sometimes directly be associated
to R̃n. For instance, in the setting of Example 7.3 (testing exchangeability), the
distribution of R̃n under the null hypothesis is known—it is uniformly distributed on
{1, . . . , n}. Therefore, we can construct likelihood ratio processes for the sequence of
nonsmoothed ranks. Even more, there are parametric alternatives under which the
exact distributions of the nonsmoothed ranks can be computed. This is the case for
Lehmann alternatives where, under the null, each Xi is assumed to be sampled from
some continuous distribution with c.d.f. Fi(x) = F0(x) for some fixed F0; under the
alternative, Fi(x) = 1 − (1 − F0(x))θi for some θi. From Theorem 7.a.1 of Savage
(1956) the distribution of R̃i can be derived, so that the likelihood ratio process of R̃i

can be used for testing, thus avoiding external randomization.
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Group-Invariant Models

So far, in Chapters 4-7, the approach has been to construct log-optimal e-statistics
against simple alternatives. As discussed in Section 2.2, this can be extended to com-
posite alternatives by using the method of mixtures or using prequential plug-in esti-
mators. In this chapter, we instead take a worst-case approach for the alternative and
study worst-case-growth-rate-optimal (GROW) e-statistics. In particular, we consider
GROW e-statistics for hypothesis testing problems between two group models. That
is, in the previous chapter, we tested whether the distribution that generated the data
was invariant under a certain group of transformations. Here, we instead assume that
there is such an invariance and consider test statistics that use this assumption. To
this end, it is known that under a mild condition on the action of the underlying group
G on the data, there exists a maximally invariant statistic. We show that among all
e-statistics, invariant or not, the likelihood ratio of the maximally invariant statistic
is GROW, both in an absolute and in a relative sense, and that an anytime-valid test
can be based on it. The GROW e-statistic is equal to a Bayes factor with a right Haar
prior on G. Our treatment avoids nonuniqueness issues that sometimes arise for such
priors in Bayesian contexts. A crucial assumption on the group G is its amenability,
a well-known group-theoretical condition, which holds, for instance, in scale-location
families. Our results also apply to finite-dimensional linear regression.
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8.1 Introduction

We develop e-statistics and anytime-valid methods (Ramdas et al., 2023) for composite
hypothesis testing problems where both null and alternative models remain unchanged
under a group of transformations. Assume that the parameter of interest is a function
δ = δ(θ) that is invariant under these transformations. Here, θ ∈ Θ is the parameter
of a probabilistic model P = {Pθ : θ ∈ Θ} on an observation space X . In the simplest
case that we address, we are interested in testing whether the invariant parameter δ

takes one of two values, that is,

H0 : δ(θ) = δ0 vs. H1 : δ(θ) = δ1. (8.1)

A prototypical example is the one-sample t-test where P = {N(µ, σ) : (µ, σ) ∈ R×R+}
and the parameter of interest is the effect size δ(µ, σ) = µ/σ, an invariant function
of the model parameters under changes of scale. Other examples include tests about
the correlation coefficient, which is invariant under affine transformations, and the
variance of the principal components, an invariant under rotations around the origin
(for more examples, see Berger et al., 1998). Data can be reduced by only considering
its invariant component. Roughly speaking, by replacing the data Xn = (X1, . . . , Xn)
with an invariant statistic Mn = mn(Xn), one discards all information that is not
relevant to the parameter δ (see the formal definitions in Section 8.2). For example,
for the one-sample t-test, we can set Mn equal to the t-statistic MS,n ∝ µ̂n/σ̂n but
also to Mn = (X1/ |X1| , . . . , Xn/ |X1|). Both are invariant functions under rescaling
of all data points by the same factor that retain, as we will see, as much information
as possible about the data.

By reducing the data through an invariant function, an invariant test can be ob-
tained. Through the lens of the invariance-reduced data Mn, the composite hypotheses
about θ simplify and (8.1) becomes simple-vs.-simple in terms of δ. Indeed, because
Mn is an invariant function, its density depends only on δ. Let us denote pMn and
qMn the densities of Mn under H0 and H1, respectively. Both fixed-sample-size and
sequential tests can be based on assessing the value of the likelihood ratio

T Mn := qMn(mn(Xn))
pMn(mn(Xn)) . (8.2)

However, it is not clear a priori whether this reduction affects the optimality of the
resulting tests. In other words, does the family of invariant tests, i.e. tests that can
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be written as a function of (8.2), contain the best ones?
For fixed-sample size tests, with power as a criterion, the answer is positive: a cele-

brated theorem of Hunt and Stein shows that, when looking for a test that has max-min
power, no loss is incurred by looking only among group-invariant tests (Lehmann and
Romano, 2005, Section 8.5). In classic sequential testing, the principle of invariance
has been used (Cox, 1952; Hall et al., 1965), but no optimality results are known.
In this chapter we address this question and provide an analogue of the Hunt-Stein
theorem within the setting of anytime-valid tests. We replace power by GROW (see
again below), the natural optimality criterion in this context, and we show that, under
some regularity conditions, T Mn is the optimal e-statistic for testing (8.1).

The e-statistic (also known as e-variable or e-value) is a central concept within the
theory of anytime-valid testing (Vovk and Wang, 2021; Shafer, 2021; Grünwald et al.,
2024; Ramdas et al., 2020), interest in which has recently exploded —Ramdas et al.
(2023) provide a comprehensive overview. The main objective that is achieved by
testing with e-statistics is finite-sample type-I error control in two common situations:
when experiments are optionally stopped—sampling is stopped at a data-dependent
sample size—, and when aggregating the evidence of interdependent experiments. In
the latter case, called optional continuation (Grünwald et al., 2024, GHK from now on),
the decision to start a new experiment may depend in unknowable ways on the outcome
of previous experiments (Vovk and Wang, 2021). We will use the qualifier anytime-
valid as an umbrella term that covers both optional stopping and continuation, and
study invariance reductions for anytime-valid tests; we stress that, as elaborated in
Appendix F.3, anytime-valid testing, while taking place in a sequential setting, is
different from classical, Wald-style sequential testing, in which power is meaningful.
While e-statistics have also found applications beyond anytime-validity, for example in
multiple testing (Wang and Ramdas, 2022; Ren and Barber, 2024) and when not just
the stopping time but also the relevant loss function or significance level may depend in
unknowable ways on the data itself (decision-theoretic robustness, Grünwald (2023)),
our results focus on optimality in the anytime-valid context. In this context, power
is not a meaningful measure of optimality (see Section 8.2.4). A natural replacement
of power is the GROW criterion, which stands for growth rate optimal in the worst
case. Informally, among all e-statistics, those that are GROW accumulate evidence
against the null as fast as possible (in terms of sample size). Some other authors
refer to GROW as “maximal e-power” (Zhang et al., 2024) or as “optimizing the
Kelly criterion” (Ramdas et al., 2023). Sometimes, it is beneficial to consider instead
the growth rate relative to an oracle that knows the distribution of the data, not in
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absolute terms. e-statistics that are optimal in this relative sense are called relatively
GROW. Especially this relative criterion (or closely related variations of it) has often
been used to design e-statistics; recent examples include the work of Henzi et al.
(2023) and Waudby-Smith and Ramdas (2024)—see Ramdas et al. (2023) for a more
comprehensive list.

Under regularity conditions, the GROW e-statistic can be found by minimizing the
Kullback-Leibler (KL) divergence between the convex hull of the null and alternative
models (GHK). Indeed, the likelihood ratio of the distributions that achieve this min-
imum KL is a GROW e-statistic, and the GROW e-statistic is then essentially unique
in the sense that any two GROW e-statistics agree almost surely under all distribu-
tions in H0 and H1. As such, e-statistics can be seen as composite generalizations of
likelihood ratios. In particular, any likelihood ratio of a statistic that has the same
distribution under all elements of the null and another single distribution under the
alternative is an e-statistic (GHK). As a consequence, for any invariant function of the
data Mn, the likelihood ratio statistic T Mn from (8.2) is an e-statistic for the testing
problem (8.1). As our main contribution, we show that, under regularity conditions, if
Mn is a maximally invariant statistic of the data or of a sufficient statistic for θ, then
the KL divergence between qMn and pMn equals the minimum KL divergence between
the convex hulls of the null and alternative models. By the result of GHK mentioned
above that links KL minimization to GROW e-statistics, T Mn is GROW. A maxi-
mally invariant statistic, informally, loses as little information as possible about the
data while being invariant. For example, with Vn = (X1/|X1|, . . . , Xn/|X1|), setting
Mn := Vn as in the beginning of the introduction for the t-test gives a maximal invari-
ant, while using M ′

n := Vn−1 gives an invariant that is not maximal. Furthermore, the
t-statistic is not maximally invariant for the raw data, but it is a maximally invariant
function of (µ̂n, σ̂n) which is a sufficient statistic. As we will see, the likelihood ratio
statistic T MS,n , where MS,n is the t-statistic and T Mn with Mn = Vn coincide (see
Appendix F.1), and it will follow from our results that both are GROW.

Additionally, we show that any GROW e-statistic is also relatively GROW in the
group-invariant setting. Hence, T Mn is relatively GROW as well. This growth rate
optimality motivates the use of T Mn in optional continuation settings. As a further
contribution, we show that every time that Mn is a maximal invariant, the sequence
T = (T Mn)n∈N is a nonnegative martingale. This extends its use and optimality to
optional stopping.

The rest of this chapter is organized as follows. In Section 8.2 we introduce nota-
tion, formally lay the groundwork for group-invariant testing, review e-statistics and
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their optimality criteria, and discuss related work. Section 8.3 is devoted to stating
our main results: showing that the e-statistic T Mn for a maximally invariant function
Mn = mn(Xn) is both GROW and relatively GROW, proving that T Mn is suited
for both optional continuation and optional stopping, and extending these results to
composite hypotheses, i.e. sets ∆1 and ∆0 of δ’s, both with and without a prior dis-
tribution imposed on them (for general discussion on how to choose δj , ∆j or such
priors, we refer to GHK, Section 6). Next, in Section 8.4, we apply our results to two
examples. We end this chapter with Section 8.5, where we discuss further the tech-
nical conditions that our results require and related work on group-invariant testing.
Section 8.6 contains all proofs that were omitted earlier.

8.2 Preparation for the Main Results

This section is structured as follows. We first introduce notation. Then, in sec-
tion 8.2.2, we introduce the formal setup and our running example, the t-test. In
Section 8.2.3, we define e-statistics, our main objects of study, and in Section 8.2.4 we
define our optimality criteria. Finally, Section 8.2.5 highlights previous work.

8.2.1 Notation

All spaces that we consider are assumed to be topological spaces with an additional
measurable structure given by the respective σ-algebra of Borel sets. We write X for
a random variable taking values in the observation space X , and Xn := (X1, . . . , Xn)
for n independent copies of X under the distributions that are to be considered.

Statistics of the data Xn are denoted as T = t(Xn), where t is a measurable
map t : X n → Tn. We use letters P and Q to refer to distributions of X. For
a statistic T = t(Xn), we write PT for the image measure of P under t, that is,
PT {T ∈ A} = P{t(Xn) ∈ A} for measurable A ⊆ Tn (note that we may think of
T as a random variable on the space X n). When writing conditional expectations,
we write EP[f(X)|Y ], and PX|y for the conditional distribution of X given Y = y.
We only deal with situations where such conditional distributions exist. If we are
considering a set of distributions parameterized in terms of a parameter space Θ, we
write EP

θ [f(X)] rather than EPθ [f(X)] for the sake of readability. Furthermore, for a
prior distribution Π on Θ, we write ΠθPθ for the marginal distribution that assigns
probability ΠθPθ{X ∈ B} =

∫
Pθ{X ∈ B}dΠ(θ) to any measurable set B ⊆ X . For

the posterior distribution of θ given X we write Πθ|X . The Kullback-Leibler (KL)
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divergence between Q and P is denoted by KL(Q, P) = EQ[ln(dQ/dP)] (Kullback
and Leibler, 1951) whenever the Radon–Nikodym derivative dQ/dP exists. Given two
subsets H, K of a group G we write HK = {hk : h ∈ H, k ∈ K} for the set of all
products between elements of H and elements of K. Similarly, for g ∈ G and K ⊆ G,
we write gK = {gk : k ∈ K} for the translation of K by g, and K−1 = {k−1 : k ∈ K}
for the set of inverses of K. We say that K is symmetric if K = K−1. If G acts on X ,
then we denote the action of G on X by (g, x) 7→ gx for g ∈ G and x ∈ X , and extend
the action to X n component-wise; that is, (g, xn) 7→ gxn := (gx1, . . . , gxn) for g ∈ G

and xn ∈ X n. We write gB = {gb : b ∈ B} for the left translate of a subset B ⊆ X by
g. If G acts on Θ, the notation is completely analogous.

8.2.2 Group Invariance

We consider a group G that acts freely on both the observation space X and the
parameter space Θ. Recall that G acts freely on a set Z if anytime that gz = z for
some g ∈ G and z ∈ Z, then g is the identity element of the group G. A probabilistic
model P = {Pθ : θ ∈ Θ} on X is said to be invariant under the action of G if the
distribution Pθ satisfies

Pθ{X ∈ B} = Pgθ{X ∈ gB} (8.3)

for any g ∈ G, any measurable B ⊆ X , and any θ ∈ Θ. Furthermore, a function
m(x) is said to be invariant under the action of G if m(gx) = m(x) for all x ∈ X
and all g ∈ G; in other words, m is constant on the orbits of G. Moreover, m is
said to be maximally invariant if it indexes the orbits of X under the action of G;
that is, m(x) = m(x′) for x, x′ ∈ X if and only if there exists a g ∈ G such that
x = gx′. A statistic is called (maximally) invariant if the corresponding function is.
These definitions are completely analogous for functions defined on Θ. In particular,
we study situations where the parameter of interest δ = δ(θ) is a maximally invariant
function of the parameter θ. We then say that δ is a maximally invariant parameter.

We now reparametrize the problem described in (8.1) using the group G. Using
that the action of the group on the parameter space is free, we can reparametrize
each orbit in Θ/G with G. Indeed, we can pick an arbitrary but fixed element in the
orbit θ0 ∈ δ−1(δ0) and, for any other element θ ∈ δ−1(δ0), we can identify θ with
the group element g(θ) ∈ G that transports θ0 to θ, that is, such that g(θ)θ0 = θ.
Hence, with a slight abuse of notation, we can identify θ ∈ δ−1(δ0) with g = g(θ) ∈ G

and identify Pθ = Pg(θ)θ0 with Pg. Define Qg using the same construction in the
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alternative model by an analogous choice of θ1 ∈ δ−1(δ1). The starting problem (8.1)
may now be rewritten in the form

H0 : Xn ∼ Pg, g ∈ G, vs. H1 : Xn ∼ Qg, g ∈ G. (8.4)

To make notation more succinct, we use Q = {Qg}g∈G to denote the alternative
hypothesis and P = {Pg}g∈G for the null. As will follow from our discussion, our
results are insensitive to the choices of θ0 ∈ δ−1(δ0) and θ1 ∈ δ−1(δ1).

As mentioned in the introduction, tests for (8.4) are classically based on the likeli-
hood ratio T Mn of a maximally invariant statistic Mn = mn(Xn), as in (8.2). While
the distribution of Mn might be unknown, it is well-known that its likelihood ra-
tio can be computed by integration over the group G whenever the following three
conditions—which will be explained in brief—hold: (1) the action is continuous and
proper, (2) G is a σ-compact locally compact topological group, and (3) for all g,
Pg and Qg are dominated by a relatively left invariant measure ν. In (1), an action
is proper if the map G × X n → X n × X n defined by (g, xn) 7→ (gxn, xn) is proper,
that is, the inverse of any compact set is compact. In (2), a topological group is a
group equipped with a topology, such that the group operation, seen as a function
G × G → G, is continuous. Under (3), we assume the existence of densities pg and
qg for Pg and Qg, respectively, with respect to ν for each g ∈ G. Furthermore, since
G is assumed to be locally compact, there exists a measure ρ on G that is right in-
variant (see Bourbaki, 2004, VII,§1,no 2). This means that for any g ∈ G and any
B ⊆ G that is measurable, it holds that ρ{Bg} = ρ{B}. The measure ρ, called the
right Haar measure, is unique up to a multiplicative factor and is finite if and only if
G is compact. Using disintegration-of-measure results from Bourbaki (2004, VIII.27),
Andersson (1982) shows that T Mn can be computed as

T Mn = qMn(mn(Xn))
pMn(mn(Xn)) =

∫
G

qg(Xn)dρ(g)∫
G

pg(Xn)dρ(g)
, (8.5)

This is known as Wijsman’s representation theorem (for extended statement and dis-
cussion, see Eaton, 1989, Theorem 5.9). Note that (8.5) implies that the likelihood
ratio T Mn is independent of the choice of maximal invariant Mn. Remarkably, work
by Stein, reported by Hall et al. (1965), shows that it does not even matter whether we
consider a maximal invariant of the original data, or whether we first reduce the data
through sufficiency and then consider a maximal invariant of the sufficient statistic.
In the t-test example, this shows that the likelihood ratio of the t-statistic is equal
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to that of Mn as in the start of the introduction. We further discuss this result in
Appendix F.1.

Finally, the classic theorem of Hunt and Stein (Lehmann and Romano, 2005, Sec-
tion 8.5) shows that, under some regularity conditions, when looking for a test that is
max-min optimal in the sense of power, it is sufficient to look among invariant tests,
i.e. tests that can be written as a function of T Mn as in (8.2). One of the crucial
assumptions underlying their result is the amenability of G. A group G is amenable
if there exists a sequence of almost-right-invariant probability distributions, that is, a
sequence Π1, Π2, . . . such that, for any measurable set B ⊆ G and g ∈ G

lim
k→∞

|Πk {H ∈ B} − Πk {H ∈ Bg}| = 0.

Amenable groups have been thoroughly studied (Paterson, 1988) and include, among
others, all finite, compact, commutative, and solvable groups. The easiest example
of a nonamenable group is the free group in two elements and any group containing
it. Another prominent example of a nonamenable group is that of invertible d × d

matrices with matrix multiplication.

Example 8.1 (t-test under Gaussian assumptions). Consider an i.i.d. sample Xn =
(X1, . . . , Xn) of size n ∈ N from an unknown Gaussian distribution N(µ, σ), with µ ∈ R
and σ ∈ R+. In the 1-sample t-test, we are interested in testing whether µ/σ = δ0 or
µ/σ = δ1 for some δ0, δ1 ∈ R. For c ∈ R+, we have that cX ∼ N(cµ, cσ), so it follows
that the Gaussian model is invariant under scale transformations. The corresponding
group is G = (R+, · ), which acts on X n by component-wise multiplication and on
Θ by (c, (µ, σ)) 7→ (cµ, cσ) for each c ∈ G and (µ, σ) ∈ Θ. The parameter of interest,
δ = µ/σ, is scale-invariant and indexes the orbits of the action of G on Θ. A maximally
invariant statistic is Mn := (X1/ |X1| , . . . , Xn/ |X1|). The right Haar measure ρ on G

is given by dρ(σ) = dσ/σ, so that the likelihood ratio of Mn can be expressed, as in
(8.5), by

T Mn =

∫
σ>0

1
σn exp

(
− n

2

[(
X̄n

σ − δ1

)2
+ 1

n

∑n
i=1

(
Xi−X̄

σ

)2
])

dσ
σ∫

σ>0
1

σn exp
(

− n
2

[(
X̄n

σ − δ0

)2
+ 1

n

∑n
i=1

(
Xi−X̄

σ

)2
])

dσ
σ

, (8.6)

where X̄n := 1
n

∑n
i=1 Xi. The results by Stein, discussed in Appendix F.1, show that

the likelihood ratio of the t-statistic, i.e. MS,n ∝ µ̂n/σ̂n, is equal to the expression
obtained in (8.6).
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8.2.3 The Family of E-Statistics

We now define e-statistics, our measure of evidence against the null hypothesis. The
family of e-statistics comprises all nonnegative real statistics whose expected value is
bounded by one under all elements of the null, that is, all statistics Tn = tn(Xn) such
that Tn ≥ 0 and

sup
g∈G

EP
g [Tn] ≤ 1. (8.7)

An example of an e-statistic is the likelihood ratio statistic in any simple-vs-simple
testing problem (see e.g. GHK, Section 1 or Ramdas et al. (2023)). In particular, (8.2)
is an e-statistic for the hypotheses in (8.4). e-statistics are appropriate in optional
continuation contexts because of the following two properties that are consequences
of (8.7).

1. The type-I error of the test that rejects the null hypothesis anytime that Tn ≥
1/α is smaller than α, a consequence of (8.7) and Markov’s inequality.

2. Suppose that Xn and Xm are the independent outcomes of two subsequent
experiments. Let Tn = tn(Xn) be an e-statistic for Xn and let {Tm,φ : φ ∈ Φ}
be a family of e-statistics for Xm indexed by some set Φ. Suppose further that,
after observing the first sample Xn, the specific Tm,φ used to measure evidence
for the second sample is chosen as a function of Xn, that is, we use Tm,φ̂ where
φ̂ = φ̂(Xn) is some function of Xn. Then Tn+m := TnTm,φ̂ is also an e-statistic,
irrespective of the definition of φ̂. In particular, this includes the scenario where
we only continue to the second experiment if a certain outcome is observed in
the first one. Indeed, Φ may contain a special value 1 so that tm(Xm; 1) = 1 is
constant, irrespective of Xm. Then, Tn+m = Tn every time that φ̂ = 1.

Together, these two properties imply that the test that rejects the null if Tn+m ≥ 1/α

has type-I error bounded by α, no matter the definition of φ̂. Such type-I error
guarantees are essentially impossible using p-values (GHK, Section 1.3). Some—not
all—types of e-statistics can additionally be used in two related settings: (a) optional
stopping, when there is a single sequence of data X1, X2, . . . and we want to do a test
with type-I error guarantees based on all data seen so far, irrespective of when we
stop; and (b) optional continuation as in 2. above, but with individual e-statistics
whose sample size is itself not fixed but determined by some stopping rule. As is well-
known, for both (a) and (b) it is sufficient that (Tn)n∈N is a nonnegative martingale
with respect to some filtration F (see e.g. Ramdas et al., 2023, or GHK). The first
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part follows from Ville’s inequality for nonnegative martingales: the probability that
there will ever be a sample size n at which Tn ≥ 1/α is bounded by α. We thus
have type-I error control under optional stopping, which takes care of (a) above. The
optional stopping theorem implies that for every stopping time τ adapted to F , Tτ is
also an e-statistic, taking care of (b). For completeness, we provide more details in
Appendix F.3, including a subtlety regarding (b): while they seem unlikely to arise in
practice, there do exist stopping times τ ′ relative to the data that are not stopping
times relative to F . We show an example where Tτ ′ is not an e-statistic and (b)
breaks.

8.2.4 Optimality Criteria for E-Statistics

The standard optimality criterion for hypothesis tests satisfying a certain type-I error
guarantee is worst-case power maximization for a fixed-sample-size or, with classic
sequential tests, for a fixed stopping rule. This criterion cannot be used when the
stopping rule is unknown because knowledge of the stopping rule is required by the
definition of power. Additionally, an e-statistic that optimizes power at fixed stopping
time will take the value zero with positive probability, making it useless for optional
continuation by multiplication. A more sensible criterion for e-statistics under optional
continuation is growth rate optimality in the worst case (GHK). Should it exist, an e-
statistic T ∗

n is GROW if it maximizes the worst-case expected logarithmic value under
the alternative hypothesis, that is, if it maximizes

Tn 7→ inf
g∈G

EQ
g [ln Tn] (8.8)

over all e-statistics. The following theorem, stated in our notation for group-invariant
problems, shows that in most cases the GROW e-statistic takes the form of a particular
Bayes factor.

Theorem 8.1 (GHK Theorem 1 in Section 4.3). Suppose that there exists a statistic
Vn = vn(Xn) such that

inf
Π0,Π1

KL(Πg
1Qg, Πg

0Pg) = min
Π0,Π1

KL(Πg
1QVn

g , Πg
0PVn

g ) < ∞, (8.9)

where Π0 and Π1 are probability distributions on G. Let Π⋆
0 and Π⋆

1 be probability
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distributions that achieve the minimum on the right hand side. Then

max
Tn e-stat.

inf
g∈G

EQ
g [ln Tn] = KL(Π⋆g

1 QVn
g , Π⋆g

0 PVn
g ),

and the maximum on the left is achieved, essentially uniquely, by T ∗
n as given by

T ∗
n :=

∫
qVn

g (vn(Xn))dΠ⋆
1(g)∫

pVn
g (vn(Xn))dΠ⋆

0(g)
.

Here ‘essentially uniquely’ means that any other e-statistic achieving the maximum
must coincide with T ∗

n almost surely, under all Pg and Qg with g ∈ G. In words, the
e-statistic T ∗

n is GROW for testing {Pg}g∈G against {Qg}g∈G.

The statistic Vn may be any measurable function taking values in any set Vn

(equipped with its corresponding σ-algebra), but in all our examples we can take
Vn = Rm for some m ≤ n. By allowing Vn ̸= Xn, the theorem also covers cases in
which the infimum on the left in (8.9) is not achieved. This might be the case when
the group G is not compact, as in the t-test example. Corollary 8.3 in the next section,
which gives the GROW e-statistic when G is possibly noncompact, uses crucially this
feature of Theorem 8.1.

Given their worst-case nature, GROW e-statistic, while appropriate in some scenar-
ios (e.g. testing exponential families with given minimum effect sizes and no nuisance
parameters), are too conservative in others (GHK). GHK propose, for those cases, to
maximize a relative form of (8.8), leading to less conservative e-statistics. We say that
an e-statistic T ∗

n is relatively GROW if it maximizes the gain in expected logarithmic
value relative to an oracle that is given the particular distribution in the alternative
hypothesis from which data are generated, that is, if T ∗

n maximizes, over all e-statistics,

Tn 7→ inf
g∈G

{
EQ

g [ln Tn] − sup
T ′

n e-stat.
EQ

g [ln T ′
n]
}

. (8.10)

As we will see and contrary to the general case, in the group-invariant setting, any
GROW e-statistic is also relatively GROW. Hence, both criteria coincide and the
differences that have been observed between them (raising the sometimes difficult
question: which one to choose?) are not a concern for our purposes (Ramdas et al.,
2023).
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8.2.5 Previous and Related Work

Group-invariant problems have a long tradition in statistics. They have been studied
both for fixed-sample-size experiments Eaton (1989); Lehmann and Romano (2005)
and classical, Wald-type sequential experiments (Rushton, 1950; Cox, 1952). For fixed-
sample-size tests, our main result can be viewed, to some extent, as an anytime-valid
analogue of the Hunt-Stein theorem. The proof techniques that are needed for our
result are, however, distinct. At the core of the proof of the Hunt-Stein theorem lies
the fact that the power is a linear function of the test under consideration. In its
proof, an approximate symmetrization of the test is carried out using almost-right-
invariant priors without affecting power guarantees. This line of reasoning cannot be
directly translated to our setting because of the nonlinearity of the objective function
that characterizes the optimal e-statistics that we consider (see Section 8.2.4). As for
sequential tests with group invariance, most previous work (including the pioneering
Rushton (1950); Cox (1952) and in fact, as far as we could ascertain, all work pre-
dating Robbins (1970)) dealt, like Wald’s original SPRT, with a priori fixed stopping
rules and is not directly comparable to our anytime-valid work (see Appendix F.3 for
elaboration of this point). Notable exceptions are the works of Robbins (1970) and
Lai (1976), who do consider what we now call anytime validity. Lai (1976) also used
the expression in (8.6) for the t-test, which, in our terminology, is using the fact that
it gives an e-statistic. However, our main concern, optimality of e-statistics, has not
been explored in this context.

Related ideas can also be found in the Bayesian literature, where group-invariant
inference with right Haar priors has been studied (Dawid et al., 1973; Berger et al.,
1998). It has been shown that, in contrast to some other improper priors, inference
based on right Haar priors yields admissible procedures in a decision-theoretical sense
(Eaton and Sudderth, 2002, 1999). However, there have also been concerns that the
underlying group (and hence the right Haar prior) is not uniquely defined in some
situations, and that different choices lead to different conclusions (Sun and Berger,
2007; Berger and Sun, 2008). Interestingly, as we briefly discuss in Section 8.5 and at
length in Appendix F.2, this issue cannot arise in our setting. In the same section,
we point out similarities and the main difference to the information-theoretic work
of Liang and Barron (2004), who provide exact min-max procedures for predictive
density estimation for general location and scale families under Kullback-Leibler loss.
In a nutshell, despite some similarities, the precise min-max result that they prove is
not comparable to the results presented here.
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8.3 Main Results

In this section, we state the main results of this chapter. In Section 8.3.1 we show that
the likelihood ratio T Mn for a maximal invariant Mn is simultaneously GROW and
relatively GROW. Next, in Section 8.3.2, we show that T Mn can be used to build an
anytime-valid test. Finally, in Section 8.3.3 we extend these results to the case that
the hypotheses remain composite after reduction by invariance.

8.3.1 GROW for simple invariant hypotheses

In order to build intuition, we first demonstrate our line of reasoning using the very
special case of finite groups. So, assume for now that G is a finite group, for instance,
a group of permutations. Since the uniform probability distribution ΠU(G) on G

is right invariant, the right Haar measure ρ coincides with ΠU(G) up to scaling. By
Wijsman’s representation theorem (8.5), the likelihood ratio for any maximal invariant
Mn = mn(Xn) can be written as

T Mn = qMn(mn(Xn))
pMn(mn(Xn)) =

1
|G|
∑

g∈G qg(Xn)
1

|G|
∑

g∈G pg(Xn)
. (8.11)

Furthermore, Theorem 8.1 above takes a simple form for finite parameter spaces, as
is the case here, namely

max
Tn e-stat.

min
g∈G

EQ
g [ln Tn] = min

Π0,Π1
KL(Πg

1Qg, Πg
0Pg), (8.12)

where the minimum on the right hand side is taken over all pairs of distributions on
G. We now employ the information processing inequality (Cover and Thomas, 1991,
Section 2.8) which says that KL divergence decreases when taking functions of the
data (i.e. if A and B are distributions for X and U = u(X), then KL(A∥B) ≥
KL(AU ∥BU )). In our setting, the information processing equality implies that for any
pair (Π0, Π1) of probability distributions on G,

KL(Πg
1Qg, Πg

0Pg) ≥ KL(QMn , PMn). (8.13)

This lower bound can be rewritten as KL(QMn , PMn) = KL(Πg
U(G)Qg, Πg

U(G)Pg)
because of the second equality in (8.11). Therefore, the minimum KL on the right
hand side of (8.12) is achieved for the particular choice of two uniform priors on G.
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Finally, we have that EQ
g [ln T Mn ] = KL(QMn , PMn) for all g ∈ G. Putting everything

together

max
Tn e-stat.

min
g∈G

EQ
g [ln Tn] = KL(QMn , PMn) = min

g∈G
EQ

g [ln T Mn ];

in other words, T Mn is a GROW e-statistic. A natural question is whether this same
reasoning can be reproduced for infinite groups. If the Haar measure ρ could always
be chosen to be a probability measure, we could replace ΠU(G) by ρ everywhere in the
reasoning above and conclude that T Mn is GROW in general. However, ρ is finite if
and only if G is compact (see e.g. Reiter and Stegeman, 2000, Proposition 3.3.5). This
is a severe limitation; it would not even cover our guiding example, the t-test, because
the group (R+, · ) is not compact (see Example 8.1). The main technical contribution
of this chapter is the extension of the above optimality result to amenable groups
(see Section 8.2.2). Setting technical details aside, the core of the proof of the main
Theorem 8.2 below is replacing the Haar measure above by a sequence of almost-right-
invariant probability measures and showing that the KL converges to its infimum. Our
arguments require the following additional assumptions.

Assumption 8.1. Let G be a topological group acting on a topological space X n,
both equipped with their Borel σ-algebra. The group G, the observation space X n,
and the probabilistic models under consideration satisfy the following three properties:

1. As topological spaces, G and X n are Polish (separable and completely metriz-
able) and locally compact.

2. The action of G on X n is free, continuous and proper.

3. The models {Pg}g∈G and {Qg}g∈G are invariant and have densities with respect
to a common measure µ on X n that is relatively left invariant with some mul-
tiplier χ—µ {gB} = χ(g)µ {B} for any measurable set B ⊆ X n and g ∈ G. All
densities have a single common support.

Assumption 8.1 holds in most cases of interest for the purpose of parametric in-
ference; some examples where it holds are given in Section 8.4. The topological as-
sumptions on G and X have two purposes. The first is to ensure that Wijsman’s
representation theorem (8.5) holds. Though (8.5) requires slightly weaker assump-
tions than those presented here, see Section 8.2.2, the strengthened conditions are
needed for the second purpose: to ensure that the observation space X n can be put
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in bijective and bimeasurable1 correspondence with a subset of G × X n/G, where the
group G acts naturally by multiplication on the first component (Bondar, 1976). This
will be used extensively in the proofs given in Section 8.6. With these assumptions,
everything is in place to state the main results of this chapter.

Theorem 8.2. Let Mn = mn(Xn) be a maximally invariant statistic under the action
of the group G on X n. Assume that G is amenable, that Assumption 8.1 holds, and
that there is ε > 0 such that

EQ
1

[∣∣∣∣ln q1(Xn)
p1(Xn)

∣∣∣∣1+ε
]

, EQMn

[∣∣∣∣ln qMn(Mn)
pMn(Mn)

∣∣∣∣1+ε
]

< ∞, (8.14)

where the subindex 1 refers to the unit element of G. Then

inf
Π0,Π1

KL(Πg
1Qg, Πg

0Pg) = KL(QMn , PMn),

where the infimum is over all pairs (Π0, Π1) of probability distributions on G.

Corollary 8.3. Under the assumptions of Theorem 8.2, a GROW e-statistic for test-
ing H1 against H0 as in (8.4) is given by the likelihood ratio of any maximally invariant
statistic Mn = mn(Xn), i.e.

T Mn = qMn(mn(Xn))
pMn(mn(Xn)) .

Corollary 8.3 follows from the combination of Theorem 8.2 with Theorem 8.1.
The results are stated in terms of the likelihood ratio of any maximal invariant for
the original data. However, as mentioned briefly in Section 8.2.2 and in detail in
Appendix F.1, one can use instead any maximal invariant for a sufficient statistic of
the original data, rather than for the data itself. The resulting likelihood ratio is
identical and the optimality results therefore remain valid. Next, we show that in the
group-invariant setting, any statistic that is GROW is also relatively GROW, meaning
that any e-statistic that maximizes (8.8) also maximizes (8.10). This is not true in
general; the result relies crucially on the invariance of the models. For example, for
contingency tables, the two e-statistics are vastly different (Turner et al., 2024).

Theorem 8.4. Suppose that Part 3 of Assumption 8.1 is satisfied and that, for each
1We call an invertible map bimeasurable if both the map and its inverse are measurable.
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g ∈ G, there exists h ∈ G such that KL(Qg, Ph) is finite. Then the map defined by

g 7→ sup
Tn e-stat.

EQ
g [ln Tn]

is constant. Consequently, any maximizer of (8.8) also maximizes (8.10), that is, an
e-statistic is GROW if and only if it is relatively GROW for the hypothesis testing
problem (8.4).

Corollary 8.5. T Mn from Corollary 8.3 is not only GROW, it is also relatively
GROW.

Example 8.2 (continues=ex:t-test). It is known that the group G = (R+, ·) of the
t-test is amenable—the sequence of probability distributions (Uniform([−n, n]))n∈N is
almost right invariant. It is readily verified that Assumption 8.1 and condition (8.14)
are also satisfied. Hence, Corollary 8.3 implies that the likelihood ratio for the t-
statistic, given in (8.6), is a GROW e-statistic. Moreover, it follows from Corollary 8.5
that it is also relatively GROW.

8.3.2 Anytime-Validity

As discussed in Section 8.2.3, any e-statistic can be used in the context of optional
continuation with fixed sample sizes, but not all e-statistics are suitable for optional
stopping and optional continuation with data-dependent sample sizes. A sufficient
condition that allows us to engage in these two additional uses is that the sequence
of e-statistics is a nonnegative martingale. We now show that this is the case for the
sequence (T Mn)n∈N.

Proposition 8.6. If (Mn)n∈N is a sequence of maximally invariant statistics Mn =
mn(Xn) for the action of G on X n, then the process (T Mn)n∈N is a nonnegative
martingale with respect to the filtration (σ(M1, . . . , Mn))n∈N under any of the elements
of the null hypothesis.

In particular, Proposition 8.6 implies that under every stopping time τ defined rela-
tive to the filtration induced by (Mn)n∈N, T Mτ is itself an e-statistic; see Appendix F.3
for the (standard) proof. There is an interesting subtlety here however: if τ ′ is a stop-
ping time relative to the filtration induced by (Xn)n∈N but not relative to the coarser
filtration induced by (Mn)n∈N, then T Mτ′ is not necessarily an e-statistic anymore.
Thus, with such T Mτ′ , we cannot engage in optional continuation. This is generally
not a problem, since most stopping times encountered in practice are stopping times
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relative to the filtration induced by (Mn)n∈N. This includes the aggressive stopping
time “stop at the smallest n at which T Mn ≥ 1/α”. However, in Appendix F.3.1 we
give an explicit example of a stopping time τ ′ relative to the filtration induced by
(Xn)n∈N in the t-test such that T Mτ′ is not an e-statistic.

8.3.3 GROW for Composite Invariant Hypotheses

Until now we have considered null and alternative hypotheses that become simple when
viewed through the lens of the maximally invariant statistic. As we saw, in the t-test
this corresponds to testing simple hypotheses about the effect size δ. In this section
we consider hypotheses that are composite in the maximally invariant parameter.
We also consider problems in which a fixed prior is placed on the maximally invariant
parameter δ. This implements the method of mixtures, a standard method to combine
test martingales (Wald, 1945; Darling and Robbins, 1968), which was already used in
the context of the anytime-valid t-test (Lai, 1976).

Suppose that the initial hypotheses are not defined by a single value of the maxi-
mally invariant parameter δ = δ(θ), as in (8.1), but are instead given by

H0 : δ(θ) = δ, δ ∈ ∆0 vs. H1 : δ(θ) = δ, δ ∈ ∆1, (8.15)

where ∆0 and ∆1 are two sets of possible values of δ = δ(θ). In Section 8.2.2, we
reparametrized {Pθ}θ∈Θ:δ(θ)=δ0 and {Qθ}θ∈Θ:δ(θ)=δ1 in terms of G, and denoted the
resulting models as {Pg}g∈G and {Qg}g∈G respectively. Instead of only considering δ0

and δ1, we can do the same for all δ ∈ ∆0 and δ ∈ ∆1. We denote the resulting models
as {Pg,δ}g∈G,δ∈∆0 and {Qg,δ}g∈G,δ∈∆1 . As an example, Pg,δ0 and Qg,δ1 correspond
to what were previously simply Pg and Qg. The problem (8.15) may now be rewritten
as

H0 : Xn ∼ Pg,δ, δ ∈ ∆0, g ∈ G vs. H1 : Xn ∼ Qg,δ, δ ∈ ∆1, g ∈ G. (8.16)

Since the distribution of a maximally invariant function of the data Mn = mn(Xn)
depends on the parameter δ, these hypotheses are not simple when data are reduced
through invariance. The main objective of this section is to show that, when searching
for a GROW e-statistic for (8.16), it is enough to do so for the invariance-reduced
problem

H0 : Mn ∼ PMn

δ , δ ∈ ∆0 vs. H1 : Mn ∼ QMn

δ , δ ∈ ∆1. (8.17)

We follow the same steps that we followed in Section 8.3.1, and begin by showing that
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if there exists a minimizer for the KL minimization problem associated to (8.17), then
it has the same value as that associated to (8.16).

Proposition 8.7. Assume that there exists a pair of probability distributions Π⋆
0, Π⋆

1

on ∆0 and ∆1 that satisfy

KL(Π⋆δ
1 QMn

δ , Π⋆δ
0 PMn

δ ) = min
Π0,Π1

KL(Πδ
1QMn

δ , Πδ
0PMn

δ ). (8.18)

For each g ∈ G, define the probability distributions P⋆
g = Π⋆δ

0 Pg,δ and Q⋆
g = Π⋆δ

1 Qg,δ

on X n. If the models {P⋆
g}g∈G and {Q⋆

g}g∈G satisfy the assumptions of Theorem 8.2,
then

inf
Π0,Π1

KL(Πg,δ
1 Qg,δ, Πg,δ

0 Pg,δ) = min
Π0,Π1

KL(Πδ
1QMn

δ , Πδ
1PMn

δ ).

From this proposition, using Theorem 8.1 and the steps used for Corollaries 8.3
and 8.5, we can conclude that the ratio of the Bayes marginals for the invariance-
reduced data Mn using the optimal priors Π⋆

0 and Π⋆
1 is both a GROW and a relatively

GROW e-statistic for (8.16). We now state the corollary and apply it to to our running
example, the t-test.

Corollary 8.8. Under the assumptions of Proposition 8.7, the statistic given by

T ⋆ =
∫

qMn

δ (mn(Xn))dΠ⋆
1(δ)∫

pMn

δ (mn(Xn))dΠ⋆
0(δ)

is a (both absolute and relative) GROW e-statistic for (8.16).

Example 8.3 (continues=ex:t-test). Suppose, in the t-test setting, that we are inter-
ested in testing

H0 : δ ∈ (−∞, δ0] vs. H1 : δ ∈ [δ1, ∞)

for some δ0 < δ1, where, recall, δ = µ/σ is the maximally invariant parameter. Corol-
lary 8.8 shows that no loss is incurred if we only look among e-statistics that are a
function of the maximally invariant function Mn, the t-statistic. Since the density of
the t-statistic is monotone in δ, we can use Proposition 3 of GHK, Section 3.1. to
infer that the minimum in (8.18) is achieved by the probability distributions Π⋆

0 and
Π⋆

1 that put all of their mass on δ0 and δ1, respectively. Corollary 8.8 yields that
T ∗

n = pMn

δ1
/pMn

δ0
is GROW among all possible e-statistics of the original data (not only

the scale-invariant ones). This result can be extended to other families with this type
of monotonicity property.
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Another approach to deal with the unknown parameter values is to employ proper
prior distributions, as is standard practice both within Bayesian statistics and with
e-statistics. That is, we may want to use specific priors Π̃0 and Π̃1 on ∆0 and
∆1 respectively. If we define for each g the probability distributions P̃g = Π̃δ

0Pg,δ

and Q̃g = Π̃δ
1Qg,δ, and the resulting models {P̃g}g∈G and {Q̃g}g∈G also satisfy the

conditions of Corollary 8.3, the proof of Proposition 8.7 also provides the following
corollary.

Corollary 8.9. Let Π̃0 and Π̃1 be two probability distributions on ∆0 and ∆1, respec-
tively. Let {P̃g}g∈G and {Q̃g}g∈G be two probability models defined by P̃g = Π̃δ

0Pg,δ

and Q̃g = Π̃δ
1Qg,δ. If {P̃g}g∈G and {Q̃g}g∈G satisfy the conditions of Corollary 8.3,

then the e-statistic
T̃n =

∫
qδ(mn(Xn))dΠ̃1(δ)∫
pδ(mn(Xn))dΠ̃0(δ)

(8.19)

is both GROW and relatively GROW for testing {P̃g}g∈G against {Q̃g}g∈G.

Example 8.4 (continues=ex:t-test). Jeffreys (1961) proposed a Bayesian version of
the t-test based on the Bayes factor (8.6) with δ0 to 0 and a Cauchy prior centered at
0 on δ1. Popularized as the Bayesian t-test (Rouder et al., 2009), it is an instance of
(8.19) with Π̃1 set to aforementioned Cauchy prior and Π̃0 putting mass 1 on δ0 = 0.
It is itself an e-statistic (GHK), but condition (8.14) of Theorem 8.2 does not hold
because the Cauchy distribution does not have any moments. Thus, we cannot verify
whether (8.19) has the relative GROW property. However, as soon as we replace the
Cauchy prior by any prior centered at 0 for which, for some ε > 0, the (2 + ε)-th
moment exists (such as e.g. a normal distribution centered at 0, as has also been
proposed for this problem), we can use Lemma 8.10 in the next section (applied with
d = 1) to infer that assumption (8.14) holds. Finally, Proposition 8.9 can be applied
to conclude that the corresponding Bayes factor is then relatively GROW.

8.4 Testing Multivariate Normal Distributions

We show how the theory developed in the previous sections can be applied to hy-
pothesis testing under normality assumptions. The latter is particularly suited for the
group-invariant setting, because the family of normal distributions carries a natural in-
variance under scale-location transformations, as we have already seen in Example 8.1.
Different subsets of scale-location transformations correspond to different parameters
of interest. We develop two examples in detail. The first is an alternative to Hotelling’s
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T 2 for testing whether the (multivariate) mean of the distribution is identically zero.
The corresponding group is that of lower triangular matrices with positive entries on
the diagonal. This test is in direct relation with the step-down procedure of Roy and
Bargmann (1958)2 (see also Subbaiah and Mudholkar, 1978). The second example
that we consider is, in the setting of linear regression, a test for whether or not a
specific regression coefficient is identically zero. In this case, the group is a subset of
the affine linear group.

8.4.1 The Lower Triangular Group

Consider data Xn = (X1, . . . , Xn) where Xi ∈ X = Rd. We assume each Xi to
have a Gaussian distribution N(µ, Σ) with unknown mean µ ∈ Rd and covariance
matrix Σ. We consider a test for whether the mean µ of the distribution is zero. To
formalize the test, recall that the Cholesky decomposition of a positive definite matrix
Σ is Σ = ΛΛ′ for a unique Λ ∈ LT+(d). Here, LT+(d) denotes the group of lower
triangular matrices with positive entries on the diagonal, which is amenable. We can
therefore parametrize the Gaussians in terms of (µ, Λ), taking the parameter space
to be Θ = Rd × LT+(d). In this parametrization, consider the following hypothesis
testing problem, which generalizes the t-test (Example 8.1) to dimensions d ≥ 1:

H0 : Λ−1µ = δ0 vs. H1 : Λ−1µ = δ1. (8.20)

A test for whether µ is zero can be obtained by setting δ0 = 0. The group LT+(d)
acts freely and continuously on X n through component-wise matrix multiplication,
i.e. (L, Xn) 7→ (LX1, . . . , LXn) for any L ∈ LT+(d). This action is continuous and
free, and can be shown to be proper on the restriction of X n to matrices of rank d

if n ≥ d + 1. If Xi ∼ N(µ, Λ), then LXi ∼ N(Lµ, LΛ), so that LT+(d) acts on
Θ by (L, (µ, Λ)) 7→ (Lµ, LΛ) for each (µ, Λ) ∈ Θ and L ∈ LT+(d). A maximally
invariant parameter under this action is δ(µ, Λ) = Λ−1µ, so that (8.20) is indeed a
test of the form described in Section 8.2.2. Furthermore, seen as a subset of Rd×n, the
restriction of the Lebesgue measure to X n is relatively left-invariant with multiplier
χ(L) = | det(L)|n. It follows that Assumption 8.1 holds and therefore, the likelihood
ratio of any maximally invariant statistic is GROW by Corollary 8.3.

By the results of Hall et al. (1965), recapped in Appendix F.1, this likelihood
2Even though not explicitly in group-theoretic terms, the test of Roy and Bargmann (1958) test

is based on a different maximally invariant function of the data. The fact that the test statistic of
Roy and Bargmann (1958) is maximally invariant is shown by Subbaiah and Mudholkar (1978)
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ratio must coincide with that of an invariantly sufficient statistic for δ. We now
proceed to compute one such statistic. Recall that the pair Sn = sn(Xn) = (X̄n, V̄n),
consisting of the unbiased estimators X̄n and V̄n for the mean and covariance matrix
respectively, is a sufficient statistic for (µ, Σ). Analogous to the technique we used for
the parameter space, we can perform the Cholesky decomposition V̄n = LnL′

n. The
statistic MS,n = mS,n(Sn) =

√
n/(n − 1)L−1

n X̄n is maximally invariant under the
action of LT+(d) on Sn; in other words, MS,n is invariantly sufficient for δ. Hence,
the GROW e-statistic can be written as T MS,n = qMS,n/pMS,n . Since it was used
in Example 8.1 (underneath Corollary 8.9), we give an explicit expression for the
likelihood ratio T MS,n when δ0 = 0, from which values for other δ0 can be computed.
It is based on a more general computation in Appendix F.4.

Lemma 8.10. For the maximally invariant statistic MS,n =
√

n
n−1 L−1

n X̄n, we have

qMS,n(mS,n(Sn))
pMS,n(mS,n(Sn)) = e− n

2 ∥δ1∥2
∫

en⟨δ1,T A−1
n MS,n⟩dPn,I(T ), (8.21)

where An is the lower triangular matrix resulting from the Cholesky decomposition
I + MS,nM ′

S,n = AnA′
n, and PT

n,I is the distribution according to which nTT ′ ∼
W (n, I), a Wishart distribution.

Proof. This follows from Proposition F.5 in Appendix F.4 with γ =
√

nδ1, X =
√

nX̄n,
m = n − 1, and S = V̄n.

8.4.2 Linear Regression

Consider the problem of testing whether one of the coefficients of a linear regression is
zero under Gaussian error assumptions. Assume that the observations are of the form
(X1, Y1, Z1), . . . , (Xn, Yn, Zn), where Xi, Yi ∈ R and Zi ∈ Rd for each i. We consider
the the linear model given by

Yi = γXi + β′Zi + σεi,

where γ ∈ R, β ∈ Rd and σ ∈ R+ are the parameters, and ε1, . . . , εn are i.i.d. errors
with standard Gaussian distribution N(0, 1). We are interested in testing

H0 : γ/σ = δ0 vs. H1 : γ/σ = δ1. (8.22)
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A test for whether γ = 0 is readily obtained by taking δ0 = 0. This problem is
invariant under the action of the group G = R+ × Rd given by ((c, v), (X, Y, Z)) 7→
(X, cY + v′Z, Z) (Kariya, 1980; Eaton, 1989). The corresponding action of G on
the parameter space is given by ((c, v), (γ, β, σ)) 7→ (cγ, cβ + v, cσ). A maximally
invariant parameter is δ(γ, β, σ) = γ/σ, so that the problem in (8.22) is of the form
described in Section 8.2.2. Furthermore, it can be shown that the action of G on X
is continuous and proper, and that G is amenable. Since the Lebesgue measure is
again relatively left invariant, it follows that Assumption 8.1 holds. All that remains
is to find a maximally invariant function of the data. To this end, define the vectors
Y n = (Y1, . . . , Yn)′ and Xn = (X1, . . . , Xn)′, and the n × d matrix Zn = [Z1, . . . , Zn]′

whose rows are the vectors Z1, . . . , Zn. Assume that Zn has full rank. A maximally
invariant function of the data is given by Mn =

(
A′

nY n

∥A′
nY n∥ , Xn, Zn

)
, where An is

an (n − d) × n matrix whose columns form an orthonormal basis for the orthogonal
complement of the column space of Zn (Kariya, 1980; Bhowmik and King, 2007). In
order to compute the likelihood ratio for Mn, we assume that the mechanism that
generates Xn and Zn is the same under both hypotheses, so that we only need to
consider the distribution of Un = A′

nY n

∥A′
nY n∥ conditionally on Xn and Zn. Bhowmik

and King (2007) show that for arbitrary effect size δ, the density of this distribution
is given by

pUn

δ (u|Xn, Zn) = 1
2Γ
(

k

2

)
π− k

2 ec(δ)
[

1F1

(
k

2 ,
1
2 ,

a2(u, δ)
2

)
+

√
2a(u, δ) Γ((1 + k)/2)

Γ(k/2) 1F1

(
1 + k

2 ,
3
2 ,

a2(u, δ)
2

)]
,

where k = n−d, u is a unit vector in Rk, 1F1 is the confluent hypergeometric function,
a (u, δ) = δXn′Anu, and c (δ) = − 1

2 δ2Xn′AnA′
nXn. This can be used to compute the

likelihood ratio for Mn, which is the relatively GROW e-statistic for testing (8.22).
In fact, Bhowmik and King compute in more generality the density of the maximally
invariant statistic when X is allowed to have a nonlinear effect on Y . This does not
impact the group invariance structure of the model, so that our results can also be
used in this semilinear setting if the hypotheses are adjusted accordingly.

8.5 Discussion and Future Work

In this concluding section we bring up an issue that deserves further discussion and
may inspire future work. We also use this issue to highlight the differences between
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our work and related work in a Bayesian context.

8.5.1 Amenability Is Not Always Necessary

We have shown that, if a hypothesis testing problem is invariant under a group G and
our assumptions are satisfied, then amenability of G is a sufficient condition for the
likelihood ratio of the maximal invariant to be GROW. A natural question is therefore
whether amenability is also a necessary condition for the latter to hold. This is not
only of theoretical relevance: some groups that are important for statistical practice
are not amenable. For instance, the general linear group GL(d), which is the relevant
group in Hotelling’s test, is nonamenable. The setup of Hotelling’s test is similar to
that in Section 8.4.1, except that the hypotheses are given by

H0 : ∥Λ−1µ∥2 = 0 vs. H1 : ∥Λ−1µ∥2 = γ. (8.23)

A maximally invariant statistic is the T 2-statistic nX̄ ′
nV̄ −1

n X̄n, where, as in Sec-
tion 8.4.1, X̄n and V̄n are the unbiased estimators of the mean and the covariance
matrix, respectively. Notice that this test is equivalent to (8.20) with the alternative
expanded to ∆ = {δ : ∥δ∥2 = γ}, but that T 2 is not a maximal invariant under the
lower triangular group. However, Giri et al. (1963) have shown that for d = 2 and
n = 3, the likelihood ratio of the T 2-statistic can be written as an integral over the
likelihood ratio in (8.21) with a proper prior on δ ∈ ∆ as defined there. It follows as a
result of Proposition 8.7 that the likelihood ratio of the T 2-statistics is also GROW in
the case that d = 2 and n = 3. These results can be extended to the case that d = 2
with arbitrary n by the work of Shalaevskii (1971). An interesting question is whether
amenability can be replaced by a weaker condition, and/or whether a counterexample
to Theorem 8.2 for nonamenable groups can be given.

8.5.2 Nonuniqueness Issues Do Not Arise

As the above example illustrates, it is sometimes possible to represent the same H0

and H1 via (at least) two different groups. As we explain in full detail in Appendix F.2,
this is generally unproblematic: as soon as the assumptions of Theorem 8.2 hold for
at least one of the two groups, we can construct the GROW e-statistic, and it is
uniquely defined. Superficially, this may seem to contradict Sun and Berger (2007)
who point out that in some settings, the underlying group is not uniquely determined
and then the right Haar prior for the considered model P is not uniquely defined.
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Then, different choices of right Haar prior give different Bayesian posteriors—a fact
that has sometimes been taken as a criticism of objective Bayesian approaches. Such
nonuniqueness is avoided in our approach. The reason is, essentially, that whereas
the GROW e-statistic T ∗

n is a ratio between Bayes marginals for different models H0

and H1 at the same sample size n, the Bayes predictive distribution based on a single
model P is a ratio between Bayes marginals for the same P at different sample sizes n

and n−1. The role of “same” and “different” being interchanged, it turns out that this
Bayes predictive distribution can depend on the group on which the right Haar prior
for P is based. Since the Bayes predictive distribution can be rewritten as a marginal
over the Bayes posterior, which is Sun and Berger (2007)’s quantity of interest, it is
then not surprising that this Bayes posterior may also change if the underlying group
is changed. Instead, one may quantify uncertainty by the e-posterior, an e-statistic-
based measure of uncertainty recently put forward by Grünwald (2023): if one replaces
the standard Bayes posterior on δ by the e-posterior based on the GROW e-statistic
T ∗

n , the nonuniqueness issue disappears as well.

8.6 Proofs

In this section, we give all the proofs that were omitted earlier. We first provide two
remarks that will be useful throughout the proofs.

Remark. Without loss of generality, we may modify 3 in Assumption 8.1 as follows:

3’ The models {Pg}n∈N and {Qg}n∈N are invariant and have densities with respect
to a common measure ν on X n that is left invariant.

The reason that there is no loss in generality is that from any relatively left-invariant
measure µ with multiplier χ, a left-invariant measure ν can be constructed. Indeed,
Bourbaki (2004, Chap. 7, §2 Proposition 7) shows that, under our assumptions,
for any multiplier χ there exists a function φ : X n → R with the property that
φ(gx) = χ(g)φ(x) for any x ∈ X and g ∈ G. With this function at hand, one can define
the measure dν(x) = dµ(x)/φ(x), which is left invariant. After multiplication by φ,
probability densities with respect to µ are readily transformed into probability densities
with respect to ν. The invariance of the models implies that the densities of Pg and
Qg with respect to ν take the form pg(xn) = p1(g−1xn) and qg(xn) = q1(g−1xn) for
any xn ∈ X n, where 1 denotes the unit element of the group G. It follows that for
any g, h ∈ G it holds that pg(xn) = ph(hg−1xn) for all xn ∈ X n. A similar statement
can be made for qg.
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Remark. So far, we have only considered the right Haar measure ρ on G, however on
any locally compact group G there also exists a left-invariant measure λ, called the left
Haar measure. It can be shown that λ is relatively right invariant with a multiplier
∆, that is, for any measurable B ⊆ G and g ∈ G it holds that λ{Bg} = ∆(g)λ{B} for
any g ∈ G. Moreover, a computation shows that the measure ρ′ defined by ρ′{B} =
λ{B−1} for each measurable B ⊆ G, is right invariant; in other words, ρ′ is a right
Haar measure. We may therefore choose ρ to be equal to ρ′ and in the following,
we always refer to right and left Haar measures that are related to each other by
that identity. In our proofs we will use that for any integrable function f defined on
G, the identities

∫
f(h)dρ(h) =

∫
f(h)/∆(h)dλ(h) and

∫
f(h−1)dλ(h) =

∫
f(h)dρ(h)

hold (see Eaton, 1989, Section 1.3).

8.6.1 Proofs of Theorem 8.4, Proposition 8.6, Proposition 8.7

Here we prove all results in the main text except the main Theorem 8.2, which is
deferred to the next subsection.

Proof of Theorem 8.4. Let g be a fixed group element of G. Recall from Remark 8.6
that we may assume that both models are dominated by a left invariant measure ν on
X . Theorem 1 by GHK (its simplest instantiation in their Section 2) implies that

sup
Tn e-stat.

EQ
g [ln Tn] = inf

Π0
KL(Qg, Πg′

0 Pg′), (8.24)

where the infimum is over all distributions Π0 on G. We will show that for any pair
g, h ∈ G and any prior Π on G, there exists a prior Π̃ such that

KL(Qg, Πg′
Pg′) = KL(Qh, Π̃g′

Pg′). (8.25)

From this, our claim will follow: by symmetry, the previous display implies that g 7→
supTn e-stat. EQ

g [ln Tn] is constant over G because of its relation to the KL minimization
in (8.24). Let p̄ =

∫
pg′dΠ(g′), use both the invariance of ν and of Q, and compute

KL(Qg, Πg′
Pg′) = EQ

g

[
ln qg(Xn)

p̄(xn)

]
=
∫

qg(xn) ln qg(xn)
p̄(xn) dν(xn)

=
∫

qh(hg−1xn) ln qh(hg−1xn)
p̄(xn) dν(xn).

Next, define Π̃ as the probability distribution on G that assigns Π̃{H ∈ B} = Π{H ∈
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gh−1B} for any measurable set B ⊆ G. Then

p̄(xn) =
∫

pg′(xn)dΠ(g′) =
∫

pgh−1g′(xn)dΠ̃(g′) =
∫

pg′(hg−1xn)dΠ̃(g′).

Define p̃ =
∫

pg′dΠ̃(g′). The two last displays together imply that

KL(Qg, Πg′
Pg′) =

∫
qh(hg−1xn) ln qh(hg−1xn)

p̃(hg−1xn) dν(xn).

After a change of variable and using the invariance of ν, the right hand side of this
equation equals KL(Qg, Π̃g′Pg′). Thus, this last equation is nothing but (8.25), as
was our objective. By our previous discusion, the result follows.

Proof of Proposition 8.6. Let g ∈ G be arbitrary but fixed. We start by showing
that T Mn equals the likelihood ratio for Mn = (M1, . . . , Mn) between Pg and Qg.
For each t > 1, the maximally invariant statistic at n − 1, Mn−1 = mn−1(Xn−1)
is invariant if seen as a function of Xn. Hence, by the maximality of mn, Mn−1

can be written as a function of Mn. Repeating this reasoning n − 1 times yields
that Mn contains all information about the value of Mn−1 = (M1, . . . , Mn−1), all
the maximally invariant statistics at previous times. Two consequences fall from
these observations. First, no additional information about T Mn is gained by knowing
the value of Mn−1 = (M1, . . . , Mn−1) with respect to only knowing Mn−1, that is,
EP

g

[
T Mn |Mn−1

]
= EP

g

[
T Mn |Mn−1]. Second, the likelihood ratio between Pg and

Qg for the sequence M1, . . . , Mn equals the likelihood ratio for Mn alone, that is,

T Mn = qM1,...,Mn(m1(X1), . . . , mn(Xn))
pM1,...,Mn(m1(X1), . . . , mn(Xn)) .

The previous two consequences, and a computation, together imply that (T Mn)n∈N

is an M -martingale under Pg, that is, EP
g

[
T Mn |Mn−1] = T Mn−1 . Since g ∈ G was

arbitrary, the result follows.

Proof of Proposition 8.7. Let Πg,δ
0 , Πg,δ

1 be two probability distributions on G × ∆0

and G × ∆1, respectively. If we call Πδ
0 and Πδ

1 their respective marginals on ∆0 and
∆1, then the information processing inequality implies that

KL(Πg,δ
1 Qg,δ, Πg,δ

0 Pg,δ) ≥ KL(Πδ
1QMn

δ , Πδ
0PMn

δ ) ≥ KL(Π⋆δ
1 QMn

δ , Π⋆δ
0 PMn

δ ).

This means that the right-most member of the previous display is a lower bound on
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our target infimum, that is,

inf
Π0,Π1

KL(Πg,δ
1 Qg,δΠg,δ

0 Pg,δ) ≥ KL(Π⋆δ
1 QMn

δ , Π⋆δ
0 PMn

δ ). (8.26)

To show that this is indeed an equality, it suffices to prove it when taking the infimum
over a smaller subset of probability distributions Π0, Π1. We proceed to build such a
subset. Let P(Π⋆δ

0 ) be the set of probability distributions on G × ∆0 with marginal
distribution Π⋆δ

0 . Define analogously the set of probability distributions P(Π⋆δ
1 ) on

G × ∆1. By our assumptions, Theorem 8.2 can be readily used to conclude that

inf
(Π0,Π1)∈P(Π⋆δ

0 )×P(Π⋆δ
1 )

KL(Πg,δ
1 Qg,δ, Πg,δ

0 Pg,δ) = KL(Π⋆δ
1 QMn

δ , Π⋆δ
0 PMn

δ ) (8.27)

holds; (8.26) and (8.27) together imply the result that we were after.

8.6.2 Proof of the Main Theorem, Theorem 8.2

For the proof of the main result, we use an equivalent definition of amenability to
the one that was already anticipated in Section 8.2.2. We take the one that suits our
purposes best (see Bondar and Milnes, 1981, p. 109, Condition A1). That is, a group
G is amenable if there exists an increasing sequence of symmetric compact subsets
C1 ⊆ C2 ⊆ · · · ⊂ G such that, for any compact set K ⊆ G,

ρ{Ci}
ρ{CiK}

→ 1, as i → ∞.

In this formulation, amenability is the existence of almost invariant symmetric com-
pact subsets of the group G. We use these sets to build a sequence of almost invariant
probability measures when G is noncompact.

Proof of Theorem 8.2. Under our assumptions, Theorem 2 of Bondar (1976) implies
the existence of a bimeasurable one-to-one map r : X n → G × X n/G such that
r(xn) = (h(xn), m(xn)) and r(gxn) = (gh(xn), m(xn)) for h(xn) ∈ G and m(xn) ∈
X n/G. Hence, by a change of variables, we can take densities with respect to the
image measure µ of ν under the map r on G × X n/G. Call the random variables
M = m(Xn) and H = h(Xn). We can therefore assume, without loss of generality,
that the data is of the form (H, M), that the group G acts canonically by multiplica-
tion on the first component, and that the measures are with respect to a G-invariant
measure µ = λ × β where λ is the left Haar measure on G and β is some measure
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on X n/G (see Remark 8.6). Note that rewriting the data in this way does not affect
our objective because the KL divergence remains unchanged under bijective trans-
formations of the data. For each g ∈ G, write PH|m

g and QH|m
g for the conditional

probabilities PH
g { · |M = m} and QH

g { · |M = m}, which can be obtained through
disintegration (see Chang and Pollard, 1997), and write pg( · |m) and qg( · |m) for
their respective conditional densities with respect to the left Haar measure λ.

We turn to our KL minimization objective. The chain rule for the KL divergence
implies that, for any probability distribution Π on G,

KL(ΠgQg, ΠgPg) = KL(QM , PM ) +
∫

KL(ΠgQH|m
g , ΠgPH|m

g )dQM (m). (8.28)

In order to prove our claim, we will build a sequence {Πi}i∈N of probability distribu-
tions on G such that the term in (8.28) pertaining the conditional distributions given
M—the second term on the right hand side—goes to zero, that is, such that∫

KL(Πg
i QH|m

g , Πg
i PH|m

g )dQM (m) → 0 as i → ∞. (8.29)

We define the distributions Πi as the normalized restriction of the right Haar measure
ρ to carefully chosen compact sets Ci ⊂ G, that we describe in brief. In other words,
for B ⊆ G measurable, we define Πi by

Πi{g ∈ B} := ρ{B ∩ Ci}
ρ{Ci}

, (8.30)

Next, the choice of compact sets Ci. For technical reasons that will become apparent
later, we pick Ci = JiKiLi, where Ji, Ki, and Li are increasing compact symmetric
neighborhoods of the unity of G with the growth condition that Ci is not much bigger—
measured by ρ–than Ji. More precisely, we choose Ci according to the following lemma.

Lemma 8.11. Under the amenability of G there exist sequences {Ji}i∈N, {Ki}i∈N

and {Li}i∈N of compact symmetric neighborhoods of the unity of G, each increasing
to cover G, such that

ρ{Ji}
ρ{JiKiLi}

→ 1 as i → ∞.

The proof of this lemma is given in Appendix F.4.1. There is no risk of dividing
by ∞ in (8.30): by the continuity of the group operation each Ci is compact, hence
ρ{Ci} < ∞. Lemma 8.11 ensures that Πi{g ∈ Ji} → 1 as i → ∞, a fact that will
be useful later in the proof. Write QH|m

i := Πg
i QH|m

g , and PH|m
i := Πg

i PH|m
g , and
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qi(h|m) and pi(h|m) for their respective densities. We use a change of variable and
split the integral in our quantity of interest from (8.29). To this end, notice that for
any function f = f(h, m), the expected value EQ

g [f(H, M)] = EQ
1 [f(gH, M)]. Indeed,∫∫

f(h, m)qg(h, m)dλ(g)dβ(m) =
∫∫

f(h, m)q1(g−1h, m)dλ(g)dβ(m)

=
∫∫

f(gh, m)q1(h, m)dλ(g)dβ(m).

Use this fact to obtain that∫
KL(Πg

i QH|m
g , Πg

i PH|m
g )dQ(m) =

∫
EQ

1

[
ln qi(gH|M)

pi(gH|M)

]
dΠi(g) (8.31)

=
∫

EQ
1

[
1 {gH ∈ JiKi} ln qi(gH|M)

pi(gH|M)

]
dΠi(g)︸ ︷︷ ︸

A

+

∫
EQ

1

[
1 {gH /∈ JiKi} ln qi(gH|M)

pi(gH|M)

]
dΠi(g)︸ ︷︷ ︸

B

.

(8.32)

We separate the rest of the proof in two steps, one for bounding each term in (8.31).
These steps use two technical lemmas that we prove in Appendix F.4.1.

Bound for A in (8.31): Recall that

ln qi(gh|m)
pi(gh|m) = ln

∫
1 {g′ ∈ JiKiLi} qg′(gh|m)dρ(g′)∫
1 {g′ ∈ JiKiLi} pg′(gh|m)dρ(g′)

.

Use N = JiKi—not necessarily symmetric—and L = Li in the following lemma.

Lemma 8.12. Let N and L be compact subsets of G. Assume that L is symmetric.
Then, for each m ∈ X n/G it holds that

sup
h′∈N

{
ln
∫

1 {g ∈ NL} qg(h′|m)dρ(g)∫
1 {g ∈ NL} pg(h′|m)dρ(g)

}
≤ − ln P1{H ∈ L | M = m}.

With this lemma at hand, conclude that, for all gh ∈ JiKi, and m ∈ M

ln qi(gh|m)
pi(gh|m) ≤ − ln P1{H ∈ Li | M = m}.
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At the same time this implies that A in (8.31) is smaller than

−
∫

ln P1{H ∈ Li | M = m}dQ(m).

Since the sets Li were chosen to satisfy Li ↑ G, the probability P1{H ∈ Li | M =
m} → 1 monotonically for each value of m. Consequently the quantity in last display
tends to 0 by the monotone convergence theorem, and so does A in (8.31). This ends
the first step of the proof. Now, we turn to the second term in (8.31).

Bound for B in (8.31): Our strategy at this point is to show that, as i → ∞,∫
Q1 {gH /∈ JiKi} dΠi(g) → 0, (8.33)

and to use (8.14) to show our goal, that B in (8.31) tends to zero. To show (8.33),
notice that if g ∈ Ji and h ∈ Ki, then gh ∈ JiKi, which implies that∫

Q1 {gH ∈ JiKi} dΠi(g) ≥ Πi {g ∈ Ji} Q1 {H ∈ Ki} .

Since the sets Ki increase to cover G, we have Q1 {H ∈ Ki} → 1 as i → ∞, and by
our initial choice of sets Ji, Ki, Li, the probability Πi {g ∈ Ji} → 1, as i → ∞. Hence
(8.33) holds. To bound the second term, we use the following lemma with Π = Πi.

Lemma 8.13. Let Π be a distribution on G. Then, for each h ∈ G and m ∈ X n/G,
setting dΠ(g|h, m) = qg(h|m)dΠ(g)∫

qg(h|m)dΠ(g)
, it holds that

ln
∫

qg(h|m)dΠ(g)∫
pg(h|m)dΠ(g)

≤
∫

ln qg(h|m)
pg(h|m)dΠ(g|h, m).

After invoking the previous lemma, apply Hölder’s and Jensen’s inequality consec-
utively to bound B in (8.31) by∫∫ [

1 {gh /∈ JiKi}
∫

ℓ (gh|m)dΠi(g′|h, m)
]

dQ1(h, m)dΠi(g) ≤ (8.34)(∫
Q1 {gH /∈ JiKi} dΠi(g)

)1/q

︸ ︷︷ ︸
→0 as i→∞ by (8.33)

(∫∫ ∣∣∣∣∫ ℓ (gh|m)dΠi(g′|h, m)
∣∣∣∣p dQ1(h, m)dΠi(g)

)1/p

where here and in the sequel, ℓ (gh|m) abbreviates ln qg′ (gh|m)
pg′ (gh|m) , and p = 1 + ε and q is

p’s Hölder conjugate, that is, 1/p + 1/q = 1. Next, we show that the second factor on
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the right of (8.34) remains bounded as i → ∞. By Jensen’s inequality, this quantity
is smaller than(∫∫∫

| ℓ (gh|m)|p dΠi(g′|h, m)dQ1(h, m)dΠi(g)
)1/p

.

After a series of rewritings and using our Assumption (8.14), we will show that this
quantity is bounded. First, we deduce that∫∫

| ℓ (gh|m)|p dΠi(g′|h, m)dQ1(h, m)dΠi(g) =∫∫
| ℓ (h|m)|p dΠi(g′|h, m)dQg(h, m)dΠi(g) =∫∫

| ℓ (h|m)|p dΠi(g′|h, m)dQi(h, m) = EQ
1

∣∣∣∣ln q1(H|M)
p1(H|M)

∣∣∣∣p ,

where we used again the change of variable that we used to obtain (8.31)—but now in
the opposite direction—and in the final equality, we used Bayes’ theorem. Hence, as

(
EQ

1

[∣∣∣∣ln q1(H|M)
p1(H|M)

∣∣∣∣p])1/p

≤
(

EQ
1

[∣∣∣∣ln q1(H, M)
p1(H, M)

∣∣∣∣p])1/p

+
(

EQ
1

[∣∣∣∣ln q1(M)
p1(M)

∣∣∣∣]p)1/p

< ∞

by (8.14), we have shown that (8.34) tends to 0 as i → ∞ and that consequently B in
(8.31) tends to 0 in the same limit.

After completing these two steps, we have shown that both A and B in (8.31) tend
to 0 as i → ∞, and that consequently the claim of the theorem follows. All that is left
is to prove lemmas 8.11, 8.12, and 8.13. The proofs being straightforward but tedious,
we delegated these to Appendix F.4.
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From a wider perspective, the content of this thesis was focused on the construction of
optimal anytime-valid hypothesis tests. The premise established in the introduction
was that these methods are valuable because they allow researchers to analyze and
learn from data in real time. This is not only advantageous due to the additional
flexibility in the design of experiments; it also solves the problem of inflated type-I
error rates due to optional stopping. Here, we discuss two implicit assumptions that
form the basis of this premise.

9.1 Publish or perish

The first assumption is that the adoption of anytime-valid methods will reduce the
inflation of type-I error rates. Although this sounds reasonable, it may overlook the
deeper reasons that explain why optional stopping is a problem in the first place. In
many academic disciplines, researchers are pushed to publish papers in order to secure
funding and maintain a good reputation, as the volume of publications is often used as
a measure of success. This culture, sometimes referred to as “publish or perish”, creates
strong incentives for researchers to find positive results. This is amplified by the fact
that papers are often not considered for publication unless they contain a statistical
analysis in which some null hypothesis is rejected. Statistical analyses have thus ceased
to play a supporting role in academia and have instead become the main target. The
problem with this is captured by Goodhart’s law: “When a measure becomes a target,
it ceases to be a good measure”. By themselves, the test statistics that hypothesis
tests are based on are reasonable measures of evidence. However, as soon as the goal
becomes finding evidence, statistical methods are bound to be abused. This applies
to anytime-valid methods as well. For example, researchers could start considering
multiple different test statistics and choosing the one that gives the most evidence, or
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leaving out data points that negatively impact the strength of the evidence. In fact,
in the same survey that was cited in Chapter 1 to show the scope of the problem with
optional stopping, 38% of participants admitted to “deciding whether to exclude data
after looking at the impact of doing so on the results” (John et al., 2012). While it
will likely help to a certain extent, there is little reason to believe that switching to
anytime-valid methods will fix the problem of inflated type-I errors entirely; the way
in which the system is being cheated will simply change.

Of course, this is only one side of the story. There are also many situations where
the only incentive for researchers performing statistical analyses is to draw accurate
conclusions. Think of, for example, farmers that are testing the impact of a new crop
variety on yield or companies that are testing whether some software version is better
than another. In such cases, the flexibility that anytime-valid tests offer might indeed
prevent researchers from accidentally misusing statistical tools, leading to a reduction
in the inflation of type-I error rates.

9.2 How Much Freedom Is Too Much?

The second assumption underlying the premise of this work is that more flexibility
in experimental design is always better. Indeed, anytime-valid methods offer exper-
imenters great flexibility in the sense that, no matter how data are collected, the
resulting conclusions will be valid (the type-I error probability is controlled). Never-
theless, the construction based on e-processes gives an idea about when to stop the
data collection: stop when the evidence is large enough to reject. However, as noted
by Schmitz (1993): “... a stopping rule gives, at any time point, only the advice
whether to stop or not but not how the next observations have to be made, which is
a design aspect of the experiment.” That is, while the construction hints at when to
stop data collection, it does not tell experimenters how to proceed with data collec-
tion. The idea is that there is no need to prescribe how this should be done, as one
can just proceed fully sequentially. That is, by collecting data one-by-one. However,
it was already noted by Wald (1947, p. 101) (the founder of the SPRT) that: “For
practical reasons, it may sometimes be preferable to take the observations in groups,
rather than singly.” A fitting example is given by Barnard (1946), who was working
on sequential methods at the same time as Wald: “If we are experimenting with the
growth of trees, for example, it may take years for a tree to grow to maturity; in such a
case it would be absurd, in our present system of society, to grow one tree first, and see
what happened, and, then to plant another, and so on.” On the other hand, there are
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also applications where data do naturally come in one-by-one. In the current theory
of anytime-valid testing, it is left to the experimenter to decide which situation they
are in and how they should proceed with the data collection. However, the number
of data points to be collected at any moment should ideally be based on a trade-off
between how close the e-process already is to the desired threshold, and the costs of
data collection (see also Schmitz, 1993; Novikov, 2024). For example, if the e-process
is very close to 1/α, it might be beneficial to only collect a few data points, but only
if the cost of collecting a small number of data points is not disproportionately high
compared to collecting a larger batch. It seems unfair to leave such decisions entirely
up to the experimenters, and a theory of optimal data collection may be a promis-
ing direction for future research that could lead to a wider adoption of anytime-valid
methods.
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Summary

In this dissertation, we study hypothesis testing: evaluating whether sample data
support a claim regarding a broader population. The approach is to assume that
the claim is false and to examine whether this assumption, called the null hypothesis,
holds up in light of the data. For example, researchers in a clinical trial wish to use the
data to refute the hypothesis that their medication does not work. Hypothesis tests
help guide decision-making in all walks of life, from finance to agriculture, by offering
a structured framework to evaluate the strength of evidence against hypotheses.

This dissertation is a contribution to the theory of anytime-valid hypothesis tests,
which are tools that are compatible with flexible experimental design. That is, anytime-
valid methods allow researchers to stop or continue their experiment based on observed
data, which is not possible with traditional methods. Anytime-valid methods work
by keeping track of a numerical measure of evidence—the e-process—against the null
hypothesis. In particular, we consider e-processes obtained through the combination
of e-statistics, which measure the evidence that can be derived from each data point
separately. The hypothesis can be refuted if the combined evidence against it grows
too large. The goal is therefore to construct e-statistics that give as much evidence as
possible if the hypothesis is not true. These are called log-optimal e-statistics.

In Chapter 3, we discuss the abstract problem of finding log-optimal e-statistics,
which leads to a general recipe for their construction. In Chapters 4–7, we use this
recipe to find the log-optimal e-statistics for specific hypotheses of interest (expo-
nential families, conditional independence and group invariance). A key assumption
underlying the optimality results in these chapters is that we know (or can learn) what
exactly happens if the null hypothesis is not true. In Chapter 8, we take a different ap-
proach and consider the worst case over a set of possible alternative hypotheses. That
is, we study a setting where it is possible to compute the e-statistic that maximizes
the rate at which evidence is accumulated in the worst case over the alternative.
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Samenvatting

In dit proefschrift, getiteld Optimale Toetsstatistieken Voor Altijd-Valide Hypothese
Toetsen, bestuderen we hypothese toetsen. Dit zijn methodes om te bepalen of een
bepaalde veronderstelling over een populatie ondersteund wordt door een steekproef.
Bij een hypothese toets neemt men aan dat de veronderstelling in kwestie onjuist is
en gaat dan na of deze aanname, de nulhypothese genoemd, stand houdt met oog
op de gevonden resultaten. Onderzoekers in klinische studies kunnen zo bijvoorbeeld
de data uit hun studie gebruiken om de hypothese dat hun medicatie niet werkt te
verwerpen. Zo kunnen zij concluderen dat de medicatie wél werkt. Hypothese toetsen
helpen bij het maken van besluiten in allerlei facetten van het leven, van financiën
tot agricultuur, door het bieden van een gestructureerde methode om bewijs tegen
hypotheses te evalueren.

Dit proefschrift levert een bijdrage aan de theorie van altijd-valide hypothese toet-
sen. Dit zijn methodes die geschikt zijn voor flexibele onderzoeksopzetten. Deze
toetsen staan onderzoekers namelijk toe om hun experiment te stoppen of voort te
zetten op basis van geobserveerde data, wat niet mogelijk is met traditionele meth-
odes. Altijd-valide methodes werken door een maat van bewijs—het e-proces—tegen
de nulhypothese over de tijd bij te houden. In dit proefschrift, beschouwen we in het
bijzonder e-processen die het resultaat zijn van de combinatie van e-statistieken. Een
e-statistiek meet het bewijs dat uit één afzonderlijk datapunt kan worden gewonnen.
De hypothese kan verworpen worden als het bewijs, gecombineerd over alle datapun-
ten, ertegen te groot wordt. Het doel is zodoende om e-statistieken te construeren die
zo veel mogelijk bewijs geven als de hypothese niet waar is. Dat worden log-optimale
e-statistieken genoemd.

In Hoofdstuk 3 beschouwen we het abstracte probleem van het vinden van log-
optimale e-statistieken, wat leidt tot een algemeen recept voor hun constructie. In
Hoofdstukken 4–7 gebruiken we dit recept om de log-optimale e-statistieken voor spec-
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ifieke nulhypotheses te vinden (exponentiële families, conditionele onafhankelijkheid
en groepsinvariantie). Een belangrijke aanname achter de optimaliteits resultaten in
deze hoofdstukken is dat we weten (of kunnen leren) wat er precies gebeurt als de nul-
hypothese niet waar is. In Hoofdstuk 8 volgen we een andere aanpak en beschouwen
we het ergste geval over een verzameling alternatieve hypotheses. Dat wil zeggen, we
bestuderen een context waarin het mogelijk is om de e-statistiek vast te stellen die het
meeste bewijs accumuleert in het ergste geval over het alternatief.
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A.1 Proofs

A.1.1 Proofs for Section 3.3

Before giving the intended results, we note that we introduced mP as the averaged
Bregman divergence associated with γ(x) = x − 1 − ln(x). For the proof, it will be
useful to also define the Bregman divergence associated with γ(x) = x−1−ln(x) itself,
which is the so-called Itakura-Saito divergence. For f, g ∈ M (Ω,R>0), it is given by

ISP (f, g) =
∫

Ω

(
f

g
− 1 − ln f

g

)
dP.

By definition, it holds that

m2
P (f, g) = 1

2IS

(
f,

f + g

2

)
+ 1

2IS

(
g,

f + g

2

)
.

Furthermore, for Q ∈ C, we have ISP (q, p) = D(P∥Q). We now state some auxiliary
results before giving the proofs for Section 3.3.

Lemma A.1. For x, y ∈ R>0, we have

|ln(x) − ln(y)| = g(m2
γ(x, y)),

where g denotes the function

g(t) = 2t + 2 ln
(

1 + (1 − exp (−2t))1/2
)

.

The function g is concave and satisfies g(t) ≥ 2t.
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Proof. Let m = x+y
2 . Our goal is to determine the function g function such that

|ln(x) − ln(y)| = g(m2
γ(x, y)).

We first rewrite the right-hand side

g(m2
γ(x, y)) = g

(
ln (m) − 1

2 ln (x) − 1
2 ln (y)

)
= g

(
1
2 ln

(
m2

x · y

))

= g

1
2 ln


(

m
y

)2

x
y




= g

1
2 ln


( 1+ x

y

2

)2

x
y


 .

Plugging this back in and replacing x
y by w leads to

|ln (w)| = g

(
1
2 ln

(( 1+w
2
)2

w

))

Then we solve the equation
1
2 ln

(( 1+w
2
)2

w

)
= t,

which gives
w = 2 exp (2t) − 1 + 2 · (exp (4t) − exp (2t))1/2

g (t) = ln
(

2 exp (2t) − 1 + 2 · (exp (4t) − exp (2t))1/2
)

= 2t + ln
(

2 − exp (−2t) + 2 · (1 − exp (−2t))1/2
)

= 2t + 2 ln
(

1 + (1 − exp (−2t))1/2
)

.
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The derivatives of g are

g′(t) = 2 + 2(1 − exp (−2t))−1/2 exp (−2t)
1 + (1 − exp (−2t))1/2

= 2
(1 − exp(−2t))1/2

g′′(t) = − exp (−t/2)
21/2 (sinh t)3/2

.

We see that g′′(t) < 0 and conclude that g is concave. Finally, we have

g (t) = 2t + 2 ln
(

1 + (1 − exp (−2t))1/2
)

≥ 2t,

because 1 − exp (−2t) ≥ 0.

Lemma A.2. Let (fn)n∈N be a sequence of elements of M(Ω,R>0), then

lim sup
m,n→∞

mP (fm, fn) = 0 ⇔ lim sup
m,n→∞

∫
Ω

∣∣∣∣ln(fm

fn

)∣∣∣∣ dP = 0.

Proof. By Lemma A.1, we have for m, n ∈ N,

m2
P (fn, fm) =

∫
Ω

m2
γ(fn, fm) dP

≤ 1
2

∫
Ω

∣∣∣∣ln(fm

fn

)∣∣∣∣ dP,

as well as ∫
Ω

∣∣∣∣ln( fn

fm

)∣∣∣∣ dP =
∫

Ω
g(m2

γ(fn, fm)) dP

≤ g

(∫
Ω

m2
γ(fn, fm) dP

)
= g

(
m2

P (fn, fm)
)

.

The result then follows by continuity of g.

Lemma A.3. For Q1, Q2 ∈ C such that P ≪ Qi for i ∈ {1, 2}, we have

m2
P (q1, q2) ≤ D(P∥Q1 ⇝ C) + D(P∥Q2 ⇝ C)

2 .
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Proof. Let Q̄ denote the midpoint between Q1 and Q2. Then we have

D(P∥Q1 ⇝ C) + D(P∥Q2 ⇝ C)
2

=
supQ∈C D(P∥Q1 ⇝ Q) + supQ∈C D(P∥Q2 ⇝ Q)

2

≥ D(P∥Q1 ⇝ Q̄) + D(P∥Q2 ⇝ Q̄)
2 = m2

P (q1, q2).

Proof of Proposition 3.4. This follows as a direct corollary of Lemma A.2.

We now deviate slightly from the order of the results in Section 3.3 and first state
the proof of Proposition 3.6, so that we can use its results in the proof of Theorem 3.5.

Proof of Proposition 3.6. The implications (3) → (2) → (1) are obvious, so we show
here only the implication (1) → (3). Assume that P ′ is a measure such that −∞ <

D(P∥P ′ ⇝ C) < ∞. Then there exists a sequence of measures Qn ∈ C such that

D(P∥P ′ ⇝ Qn) → D(P∥P ′ ⇝ C)

for n → ∞. Without loss of generality we may assume that −∞ < D(P∥P ′ ⇝ Qn) <

∞ for all n. The result follows because

D(P∥P ′ ⇝ C) = D(P∥P ′ ⇝ Qn) + D(P∥Qn ⇝ C)

and all involved quantities are finite.

Proof of Theorem 3.5 (1). Let (Qn)n∈C denote a sequence in C such that

lim
n→∞

D(P∥Qn ⇝ C) = inf
Q∈C

D(P∥Q⇝ C) = 0,

where the last equality follows from Proposition 3.6. Without loss of generality, we
may assume that D(P∥Qn ⇝ C) < ∞ for all n, so that P ≪ Qn for all n. It then
follows from Lemma A.3 that for m, n ∈ N we have

m2
P (qm, qn) ≤ D(P∥Qm ⇝ C) + D(P∥Qn ⇝ C)

2 .

It follows that (qn)n∈N is a Cauchy sequence with respect to mP , so that (qn)n∈N

converges to some function q̂ in mP . The latter follows from the completeness of
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(M (Ω, (0, ∞)) , mP ), i.e. Proposition 3.4.
Furthermore, suppose that (Q′

n)n∈C is another sequence in C such that

lim
n→∞

D(P∥Q′
n ⇝ C) = 0.

Then, by the same reasoning as before, Q1, Q′
1, Q2, Q′

2, Q3, Q′
3, . . . is also a Cauchy

sequence that converges and since a Cauchy sequence can only converge to a single
element this implies the desired uniqueness.

Proof of Theorem 3.5 (2). The equality∫
Ω

ln p′

q̂
dP = lim

n→∞

∫
Ω

ln p′

qn
dP

follows from Theorem 3.5 (1) together with the fact that convergence of qn in mP

implies convergence of the logarithms in L1(P ).

Proof of Theorem 3.5 (3). Let (Qn)n∈C denote a sequence in C such that

lim
n→∞

D(P∥Qn ⇝ C) = 0.

Without loss of generality, we may assume that D(P∥Qn ⇝ C) < ∞ for all n and
that qn converges to q̂ P -almost surely. The latter is valid, because convergence in
mP implies convergence of the logarithms in L1(P ) by Lemma A.2, which gives the
existence of an almost surely converging sub-sequence.

Let Q̃ = (1 − t)Q1 + tQ for fixed Q ∈ C and fixed 0 < t < 1. Let Qn,s denote the
convex combination Qn,s = (1 − sn)Qn + snQ̃ and sn ∈ [0, 1]. By Theorem 3.5 (1),
we know that there exists some Q̂ such that qn → q̂ in mP .

Since Qn,s ∈ C by convexity, we have that D(P∥Qn ⇝ Qn,s) ≤ D(P∥Qn ⇝ C).
We also have

D(P∥Qn ⇝ Qn,s) = snD(P∥Qn ⇝ Q̃) + snISP (q̃, qn,s)

+ (1 − sn)ISP (qn, qn,s)

≥ snD(P∥Qn ⇝ Q̃) + snISP (q̃, qn,s).

Hence
snD(P∥Qn ⇝ Q̃) + snISP (q̃, qn,s) ≤ D(P∥Qn ⇝ C).

199



A.1 Proofs

Division by sn gives

D(P∥Qn ⇝ Q̃) + ISP (q̃, qn,s) ≤ D(P∥Qn ⇝ C)
sn

.

Choosing sn = D(P∥Qn ⇝ C)1/2, this gives

D(P∥Qn ⇝ Q̃) + ISP (q̃, qn,s) ≤ s
1/2
n .

Then we get

ISP (q̃, qn,s) ≤ D(P∥Q̃⇝ Qn) + s
1/2
n .∫

Ω

(
q̃

qn,s
+ ln qn,s

qn

)
dP ≤ P (Ω) + Q̃(Ω) − Qn(Ω) + s

1/2
n .

Writing qn as qn,s−snq̃
1−sn

, we see

ln qn,s

qn
= ln qn,s

qn,s−snq̃
1−sn

= ln(1 − sn) − ln qn,s − snq̃

qn,s

= ln(1 − sn) − ln
(

1 − sn
q̃

qn,s

)
≥ ln(1 − sn) + sn

q̃

qn,s
.

Hence

ln(1 − sn) + (1 + sn)
∫

Ω

q̃

qn,s
dP ≤ P (Ω) + Q̃(Ω) − Qn(Ω) + s

1/2
n .

As limn→∞ sn = 0, taking the limit inferior as n → ∞ on both sides gives

lim inf
n→∞

∫
Ω

q̃

qn,s
dP ≤ P (Ω) + Q̃(Ω) − lim inf

n→∞
Qn(Ω).

An application of Fatou’s lemma gives∫
Ω

dP

dQ̂
dQ̃ ≤ P (Ω) + Q̃(Ω) − lim inf

n→∞
Qn(Ω).
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Since Q̃ = (1 − t)Q1 + tQ we get the inequality∫
Ω

dP

dQ̂
d ((1 − t) Q1 + tQ)

≤ P (Ω) + (1 − t)Q1(Ω) + tQ(Ω) − lim inf
n→∞

Qn(Ω),

(1 − t)
∫

Ω

dP

dQ̂
dQ1 + t

∫
Ω

dP

dQ̂
dQ

≤ P (Ω) + (1 − t)Q1(Ω) + tQ(Ω) − lim inf
n→∞

Qn(Ω).

Finally we let t tend to one and obtain the desired result.

Proof of Proposition 3.7. Let Q ∈ C arbitrarily. Then there exists a sequence (wi)n
i=1

in [0, 1] with
∑

i wi = 1 such that Q =
∑n

i=1 wiQi. It follows that

D

(
P∥ 1

n

∑
i

Qi ⇝ Q

)
=
∫

Ω
ln
∑

i wiQi

1
n

∑
i Qi

dP

≤
∫

Ω
ln

maxi wi

∑
i Qi

1
n

∑
i Qi

dP

= ln(n) + ln(max
i

wi) ≤ ln(n).

The proposition follows by taking the supremum over Q on both sides.

Proof of Proposition 3.8. Since Q∗ is the normalized maximum likelihood distribution
we have supQ supω ln dQ

dQ∗ < ∞. In particular

sup
Q∈C

D(P∥Q∗ ⇝ Q) = sup
Q∈C

∫
Ω

ln dQ

dQ∗ dP

≤ sup
Q∈C

sup
ω

ln dQ

dQ∗ (ω) < ∞.

Proof of Proposition 3.10. We can write

D(P∥Qθ ⇝ Q∗) = D(P∥Qθ ⇝ Q) + D(P∥Q⇝ Q∗).

By assumption all terms are finite so that minimising D(P∥Qθ ⇝ Q∗) over θ must be
equivalent to minimising D(P∥Qθ ⇝ Q) over θ. The same argument holds for step 5 in
Algorithm 1. The result then follows from (Brinda, 2018, Theorem 3.0.13). Whereas
the algorithm described there works by choosing θk to minimize

∫
Ω log((1−αk)qθk−1 +
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αkqθ) dP , the proof relies on (Li, 1999, Lemma 5.9), which indeed uses minimization
of D(P∥(1 − αk)Qθk−1 + αkQθ ⇝ Q) as described here.

Proof of Theorem 3.9. For any a ∈ R we have

f0 (i) + a · f1 (i) = f0 (i) ·
(

1 + a · f1 (i)
f0 (i)

)
. (A.1)

Since f1(i)
f0(i) → 0 for i → ∞ we have that f0 (i) + a · f1 (i) ≥ 0 for i sufficiently large.

Therefore, we can apply Fatou’s lemma to the function and obtain∑
f0 (i) · q∗ (i) + a ·

∑
f1 (i) · q∗ (i)

=
∑

(f0 (i) + a · f1 (i)) · q∗ (i)

=
∑

lim inf
n→∞

(f0 (i) + a · f1 (i)) · qn (i)

≤ lim inf
n→∞

∑
i

(f0 (i) + a · f1 (i)) · qn (i)

= lim inf
n→∞

(∑
i

f0 (i) · qn (i) + a ·
∑

i

f1 (i) · qn (i)
)

= lim inf
n→∞

(λ0 + a · λ1) = λ0 + a · λ1.

Hence
a ·
(∑

f1 (i) · q∗ (i) − λ1

)
≤ λ0 −

∑
f0 (i) · q∗ (i) . (A.2)

This inequality should hold for all a ∈ R, which is only possible if∑
f1 (i) · q∗ (i) − λ1 = 0.∑

f1 (i) · q∗ (i) = λ1.

A.1.2 Proofs for Section 3.4

Proof of Proposition 3.12. Assume that E1, E2, E3, . . . is a sequence of e-variables
such that ∫

Ω
ln
(

En

E′

)
dP → sup

E

∫
Ω

ln
(

E

E′

)
dP
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for n → ∞. Then En,m = (Em + En) /2 are also e-variables and by convexity∫
Ω

ln
(

Em,n

E′

)
dP → sup

E

∫
Ω

ln
(

E

E′

)
dP ,

which implies that m2
γ (Em, En) → 0 for m, n → ∞. By completeness En converges

to some e-variable E∞. Using Lemma A.2 we see that mγ (En, E∞) → 0 implies that∫
Ω

ln
(

Em

E′

)
dP →

∫
Ω

ln
(

E∞

E′

)
dP

so that

sup
E

∫
Ω

ln
(

E

E′

)
dP =

∫
Ω

ln
(

E∞

E′

)
dP .

Hence

sup
E

∫
Ω

ln
(

E

E∞

)
dP = 0

Therefore E∞ is a strongest e-statistic.
Assume that both E1 and E2 are strongest e-variables. Then they are both stronger

than the average Ē = (E1 + E2) /2. Hence

0 ≤ m2
γ (E1, E2) = 1

2

∫ (
ln
(

Ē

E1

)
+ ln

(
Ē

E2

))
dP ≤ 0.

Therefore E1 = E2 P -almost surely.

Proof of Theorem 3.13. Firstly, since Ê > 0 holds P -almost surely, we have that Ê is
stronger than any E′ ∈ EC with P (E′ = 0) > 0.

Secondly, let E ∈ EC be an e-statistic for which E > 0 holds P -almost surely.
Furthermore, let Qn be a sequence of measures in C such that D(P∥Qn ⇝ C) → 0.
We can define a sequence of sub-probability measures Rn by Rn(F ) =

∫
F

E dQn,
which satisfies dRn/dQn = E. We see

∫
Ω

ln
(

Ê

E

)
dP =

∫
Ω

ln
(

dQn

dQ̂

)
dP + D(P∥Rn)

+ (P (Ω) − Rn(Ω))

≥
∫

Ω
ln
(

dQn

dQ̂

)
dP.
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The last expression goes to zero as n → ∞, so we see that Ê is stronger than E.

Proof of Proposition 3.14. Using the fact that ln(x) ≤ x − 1 for x > 0, we see

D(P∥Q∗ ⇝ Q) =
∫

Ω
ln dQ

dQ∗ dP

≤
∫

Ω

(
dQ

dQ∗ − 1
)

dP

=
∫

Ω

dP

dQ∗ dQ − 1 ≤ 0,

where the last inequality follows from the fact that dP/dQ∗ is an e-statistic.

Proof of Theorem 3.16. Without loss of generality, assume that
∫

Ω
q′
/q dP = 1 + ϵ for

some ϵ > 0. For the sake of brevity, we write cβ := ∥q′
/q∥1+β

1+β . We now define a
function g : [0, 1] → R≥0 as

g(α) := D (P∥(1 − α)Q + αQ′ ⇝ C) .

Notice that g(0) = δ and g(α) ≥ 0, since (1 − α)Q + αQ′ ∈ C. This function and its
derivatives will guide the rest of the proofs, and we now list some properties that we
will need:

g′(α) := d
dα

g(α) =
∫

Ω

q − q′

(1 − α)q + αq′ dP, (A.3)

so that

g′(0) =
∫

Ω

(
1 − q′

q

)
dP = −ϵ, (A.4)

g′′(α) := d2

dα2 g(α) =
∫

Ω

(
q′ − q

(1 − α)q + αq′

)2
dP, (A.5)

so that

g′′(0) =
∫

Ω

(
1 − q′

q

)2
dP = 1 − 2(1 + ϵ) + c1

and

0 ≤ g′′(α) ≤ 1
(1 − α)2 g′′(0). (A.6)
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We now prove (3.10). We start with the case β = 1 and will use the result for β = 1
to prove the case for β < 1. The proof for the case β > 1 comes later; it requires a
completely different proof.

Case β = 1. The general idea is simple: at α = 0 the function g(α) is equal to
δ and has derivative −ϵ. Its second derivative is positive and bounded by constant
times g′′(0) ≤ c1 for all α ≤ 1/2. Thus, if ϵ is larger then a certain threshold, g(α)
will become negative at some α ≤ 1/2, but this is not possible since g is a description
gain and we would arrive at a contradiction. The details to follow simply amount to
calculating the threshold as a function of δ.

By Taylor’s theorem, we have for any α ∈ [0, 1/2] that

g(α) = g(0) + g′(0)α + max
0≤α◦≤α

g′′(α◦)
2 α2

≤ g(0) + g′(0)α + 2g′′(0)α2

≤ δ − ϵα + 2α2c1,

where we use the properties derived above. This final expression has a minimum in
α∗ = min{ϵ/4c1, 1/2}. By nonnegativity of g, we know that δ − ϵα∗ + 2α∗2c1 ≥ 0. This
gives ϵ ≤ (8c1δ)1/2 in the case that α∗ = ϵ/4c1 < 1/2, and ϵ ≤ 2δ + c1 otherwise. In the
latter case, it holds that c1 < ϵ/2, so the bound can be loosened slightly to find the
simplification ϵ ≤ 4δ. This concludes the proof for β = 1, which we now use to prove
Case β < 1.

Case β < 1. For any a > 0, it holds that∫
Ω

q′

q
dP =

∫
Ω

q′

q
1{q′/q≤a} dP +

∫
Ω

q′

q
1{q′/q>a} dP. (A.7)

We write q′′ := q′1{q′/q≤a} and we will bound the first term on the right-hand side
of (A.7) using the proof above with Q′ replaced by Q′′. Since Q′′ is not necessarily
an element of C, we need to verify nonnegativity, which follows because for each
α ∈ (0, 1), we have that D(P∥(1−α)Q+αQ′′ ⇝ C) ≥ D(P∥(1−α)Q+αQ′ ⇝ C) ≥ 0.
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Furthermore, it holds that∥∥∥∥q′′

q

∥∥∥∥2

2
=
∫

Ω

(
q′′

q

)2
dP

=
∫

Ω

(
q′′

q

)1+β (
q′′

q

)1−β

dP

≤ a1−βcβ

The results above therefore give∫
Ω

q′′

q
dP ≤ 1 + max{(8a1−βcβδ)1/2, 2δ}.

For the second term on the right-hand side of (A.7), we use a Markov-type bound, i.e.

∫
Ω

q′

q
1{q′/q>a} dP ≤

∫
Ω

q′

q

(
q′
/q

a

)β

1{q′/q>a} dP

≤ a−βcβ .

Putting this together gives∫
Ω

q′

q
dP ≤ 1 + max{(8a1−βcβδ)1/2, 4δ} + a−βcβ .

Since this holds for any a, we now pick it to minimize this bound. To this end, consider

d
da

(8a1−βcβδ)1/2 + a−βcβ

= (1 − β)(8cβδ)1/2

2 a−(1+β)/2 − βa−(1+β)cβ .

Setting this to zero, we find

a∗ =
(

βc
1/2
β

(1 − β)(2δ)1/2

) 2
1+β

.
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The proof is concluded by noting that

(8a∗1−βcβδ)1/2 =

8
(

βc
1/2
β

(1 − β)(2δ)1/2

)2 1−β
1+β

cβδ


1/2

= 2c
1/(β+1)
β (2δ)β/(β+1)

(
β

1 − β

) 1−β
1+β

and

a∗−βcβ =
(

βc
1/2
β

(1 − β)(2δ)1/2

)−2β
1+β

cβ

= c
1/(β+1)
β

(
β

1 − β

)−2β
1+β

(2δ)β/(1+β).

Case β > 1. We now prove the result for β ∈ (1, ∞); the proof for β = ∞ follows
by a minor modification of (A.9). If ϵ ≤ 0 there is nothing to prove, so without loss
of generality we can write ϵ = γδ for some γ > 0; we will bound γ. Whereas the
previous proof exploited the fact that the second derivative g′′(α) was bounded above
in terms of δ and hence ‘not too large’, the proof below uses the condition that cβ

is finite to show first, (a), that g′′(α) can also be bounded below in terms of (γ, δ).
Therefore, if ϵ exceeds a certain threshold, as α moves away from the α∗ at which g(α)
achieves its minimum in the direction of the furthest boundary point (i.e. if α∗ < 1/2,
we consider α ↑ 1, if α∗ ≥ 1/2 we consider α ↓ 0), g(α) will become larger than Kδ or δ

respectively, and we arrive at a contradiction. (b) below gives the detailed calculation
of this threshold.

Proof of (a). Fix some 0 ≤ α̃ < 1 (we will derive a bound for any such α̃ and
later optimize for α̃; for a sub-optimal yet easier derivation take α̃ = 1/2). By Taylor’s
theorem, we have 0 ≤ g(α̃) = δ − α̃ϵ + (1/2)α̃2g′′(α◦) for some 0 ≤ α◦ ≤ α̃. Plugging
in ϵ = γδ we find that

g′′(α◦) ≥ 2
α̃2 (α̃γ − 1)δ.

This gives a lower bound on g′′(α◦) for some α◦ in terms of (γ, δ). We now turn this
into a weaker lower bound on all α. First, using (A.6) and then α◦ ≤ α̃ and then the
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above lower bound, we find

g′′(0) ≥ max
α∈[0,α̃]

(1 − α)2g′′(α) ≥ (1 − α◦)2g′′(α◦)

≥ (1 − α̃)2g′′(α◦) ≥ 2fα̃(γ, δ), (A.8)

where fα̃(γ, δ) := ((1− α̃)/α̃)2(α̃γ −1)δ is a function that is linear in γ and δ. We have
now lower bounded g′′(0) in terms of γ, δ. We next show that, under our condition
that cβ < ∞, this implies a (weaker) lower bound on g′′(α) for all α. For this, fix any
C > 1. We have for all 0 < α ≤ 1:

g′′(α) ≥
∫

Ω
1q′≤Cq ·

(
q′ − q

(1 − α)q + αq′

)2
dP

≥
∫

Ω
1q′≤Cq ·

(
q′ − q

(1 − α)q + αCq

)2
dP

=
∫

Ω
1q′≤Cq ·

(
q′ − q

q

)2
dP · 1

(1 + α(C − 1))2

≥ 1
(1 + (C − 1))2

(
g′′(0) −

∫
Ω

1q′>Cq

(
q′

q
− 1
)2

dP

)

≥ 1
C2

(
2fα̃(γ, δ) − C1−βcβ

)
, (A.9)

where in the fourth line we used the definition of g′′(0), and in the fifth line we
used (A.8) and a Markov-type bound on the integral, i.e. we used that

∫
Ω 1q′>Cq ·

(q′/q − 1)2 dP is bounded by∫
Ω

1q′>Cq ·
(

q′

q

)2
dP ≤

∫
Ω

(
q′
/q

C

)β−1

·
(

q′

q

)2
dP

= C1−βcβ .

By differentiation we can determine the C that maximizes the bound (A.9). This gives
C1−β = fα̃(γ, δ)(4/cβ(1+β)). and with this choice of C, (A.9) becomes

g′′(α) ≥ fα̃(γ, δ)(β+1)/(β−1)c
2/(1−β)
β h(β) (A.10)

where h(β) = (4/(1 + β))2/(β−1) · 2(β − 1)/(1 + β). We are now ready to continue to:
Proof of (b). Let α∗ ∈ [0, 1] be the point at which g(α) achieves its minimum. If
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α∗ ≤ 1/2, a second-order Taylor approximation of g(1) around α∗ gives that

Kδ ≥ g(1) ≥ 1
2(1 − α∗)2 min

α∈[α∗,1]
g′′(α)

≥ 1
8fα̃(γ, δ)(β+1)/(β−1)c

2/(1−β)
β h(β),

so that after some manipulations

fα̃(γ, δ)(1+β)/(β−1) ≤ 8K ′c
2/(β−1)
β · h(β)−1δ, (A.11)

with K ′ = K. If α∗ > 1/2, we perform a completely analogous second-order Taylor
approximation of g(0) around α∗, which will then give (A.11) again but with K ′

replaced by 1. We thus always have (A.11) with K ′ = max{K, 1}. Unpacking fα̃ in
(A.11) and rearranging gives:

γ ≤ α̃

(1 − α̃)2 · V + 1
α̃

with

V = c
2/(1+β)
β ·

(
8K ′

h(β)

) β−1
1+β

δ
−2

1+β .

We now pick the α̃ that makes both terms on the right equal, so that the right-hand
side becomes equal to 2/α̃. This is the solution to the equation (α̃/(1−α̃))2V = 1 which
must clearly be obtained for some 0 < α̃ < 1, so this α̃ satisfies our assumptions.
Basic calculation gives

γ ≤ 2
α̃

= 2 ·
(

V
1/2 + 1

)
and unpacking V we obtain

ϵ = γδ ≤ c∗ · δ
β

1+β + 2δ.

where

c∗ = c
1/(1+β)
β ·

(
8K ′

h(β)

) β−1
2(1+β)

.

Unpacking h(β) gives the desired result.
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A.2 RIPr Strict Sub-Probability Measure

In this appendix, we discuss a general way to construct a measure P and convex set
of distributions C such that the reverse information projection of P on C is a strict
sub-probability measure. For simplicity, we take Ω = N and F = 2N, though the idea
should easily translate to more general settings.

Proposition A.4. Let g : N → R>0 be a function, and let C denote the set of measures
{Q :

∑
i g (i) q(i) ≤ ν} for some ν > 0. Then for any P that is not in C we have that

E (i) = g(i)/ν is the optimal e-statistic.

Proof. The extreme points in C are the measure with total mass 0 and measures of the
form ν

g(i) δi, i.e. measures concentrated in single points. An e-statistic E must satisfy

∑
j

E (j) ν

g (i)δi (j) ≤ 1

or, equivalently, E (i) ν
g(i) ≤ 1. Hence E ≤ g/ν so the optimal e-statistic is g/ν.

Let g : N → R>0 be any function that satisfies

lim
n→∞

g(n) = 0.

Furthermore, let P denote a probability measure on the natural numbers such that

∑
i

p(i)
g(i) = c

for some c ∈ R>0. Fix ν∗ ∈ (0, 1/c) and let Cν∗ denote the set of measures {Q :∑
i g (i) q(i) ≤ ν∗}. Note that we do not yet require all measures in Cν∗ to be prob-

ability measures so that the set Cν∗ is compact. It follows that there exists a unique
element of Cν∗ that minimizes

∑
i p(i) ln (p(i)/q(i)).

The optimal e-statistic is Eν∗ = g/ν∗, and we may define the measure Qν∗ by

qν∗(i) = p(i)
Eν∗(i) = ν∗p(i)/g(i),

and we can check that Qν∗ ∈ Cν∗ . Hence Qν∗ minimizes
∑

i p(i) ln (p(i)/q(i)).
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This is a strict sub-probability measure:

∑
i

qν∗(i) = ν∗
∑

i

p(i)
g(i)

= ν∗c

< 1,

where we use that ν∗ < 1/c.
The next step is to prove that the information projection does not change if we

restrict to the set of probability measures in Cν∗ , which we denote by C̃ν∗ . To this
end, note first that for ν < ν∗, we have that

∑
g (i) qν(i) < ν∗, so that for all ν < ν∗

there exists nν ∈ N such that the probability measure defined by

qν(i) +

1 −
∑

j

qν(j)

 δnν
(i)

is an element of C̃ν∗ . Hence

D(P∥C̃ν∗) ≤ D

P

∥∥∥∥∥∥Qν +

1 −
∑
j∈N

qν(j)

 δnν


=
∑
i∈N

p(i) ln

 p(i)
Qν(i) +

(
1 −

∑
j∈N qν(j)

)
δnν

(i)


= −p(nν) ln

(
p(nν)
qν(nν)

)
+ p(nν) ln

(
p(nν)

qν(nν) + 1 −
∑

j∈N qν(j)

)

+
∑
i∈N

p(i) ln
(

p(i)
qν(i)

)
.

The first term can be written as

p(nν) ln
(

p(nν)
qν(nν)

)
= qν(nν) p(nν)

qν(nν) ln
(

p(nν)
qν(nν)

)
= qν(nν)g (nν)

ν
ln
(

g (nν)
ν

)
Then notice that for ν → ν∗, we must have that nν → ∞. Using that c ln (c) → 0 for
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c → 0 we see the first term tends to 0 for ν → ν∗. Similarly, the second term can be
written as

p(nν) ln
(

p(nν)
qν(nν) + 1 −

∑
j∈N qν(j)

)

=

qν(nν) + 1 −
∑
j∈N

qν(j)

 p(nν)
qν(nν) + 1 −

∑
j∈N qν(j)

· ln
(

p(nν)
qν(nν) + 1 −

∑
j∈N qν(j)

)
.

We also have
p(nν)

qν(nν) + 1 −
∑

i qν(i) → 0

for ν → ν∗ and using that c ln (c) → 0 for c → 0 we get the second term tends to 0 for
ν → ν∗. Therefore we see

D(P∥C̃ν∗) ≤ lim
ν→ν∗

D

(
P

∥∥∥∥∥Qν +
(

1 −
∑

i

qν(i)
)

δnν

)

≤
∑

i

p(i) ln
(

p(i)
qν∗(i)

)
= inf

Q∈Cν∗

∑
i

p(i) ln
(

p(i)
q(i)

)
.

The inequality trivially also holds the other way around, so we find that

D(P∥C̃ν∗) = inf
Q∈Cν∗

∑
i

p(i) ln
(

p(i)
q(i)

)
.

It follows that Qν∗ is a strict sub-probability measure, and at the same time it is the
reverse information projection of P onto C̃ν∗ .

A.3 Convexity

One of the main assumptions made throughout the main text is that the set of measures
C is convex, i.e. closed under finite mixtures. However, one can also consider stronger
notions of convexity, such as σ-convexity and Choquet-convexity. In this appendix,
we investigate whether considering different levels of convexity can change the reverse
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information projection.

Definition A.5. A set C′ of measures is said to be σ-convex if Q1 , Q2 , Q3 · · · ∈ C′

implies that
∑∞

i=1 wiQi ∈ C′ when wi ≥ 0 and
∑∞

i=1 wi = 1. The σ-convex hull of a
set of measures C, denoted by σ-conv(C), is the smallest σ-convex set containing C.

In order to avoid topological complications we will restrict the discussion of Choquet-
convexity to Polish spaces, i.e. spaces for which there exists a complete metric that
generates the topology. That is, assume that Ω is a Polish space equipped with the
Borel σ-algebra. Let Θ be another Polish space and let {Qθ : θ ∈ Θ} denote a param-
eterized set of probability measures on Ω such that θ →

∫
Ω f dQθ is Borel measurable

for any measurable function f : Ω → R. Then for any probability measure ν on Θ the
Choquet-convex mixture µν can be defined by∫

Ω
f dµν =

∫
Θ

(∫
Ω

f dµθ

)
dν,

for any measurable function f : Ω → R.

Definition A.6. A set C′ of measures is said to be Choquet-convex if it is closed
under Choquet convex mixtures. The Choquet-convex hull of a set of measures C is
the smallest Choquet-convex set that contains C.

So far, we have assumed that all of the measures in C are finite. However, a
countable or Choquet convex mixture of finite measures may not be finite. It follows
that our results on the existence of the RIPr might not be applicable to the σ-convex
and Choquet-convex hull of C. We therefore assume for the remainder of this section
that all involved measures are sub-probability measures, in which case this problem
does not arise. With all of this in place, it is relatively straightforward to construct
examples where the RIPr of P on a convex set does not exist, whereas the RIPr of P

on its σ-convex hull does exist.

Example A.1. Let P denote a geometric distribution on N0 and let C denote the set
of probability measures on N0 with finite support. Then D(P∥Q⇝ C) = −∞ for any
Q ∈ C. Therefore the reverse information projection of P on C is not defined according
to the definitions given in Chapter 3. However, the σ-convex hull of C consists of all
probability measures on N0, which implies that the reverse information projection on
the σ-convex hull is well-defined and equals P .

However, as the following results show, if the RIPr of P on C does exist, then it
must coincide with the RIPr of P on σ-conv(C).
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Lemma A.7. Let P and Q be sub-probability measures and let Q1, Q2, . . . be a se-
quence of sub-probability measures such that D(P∥Q⇝ Q1) > −∞, and let w1, w2, . . .

be a sequence of positive numbers with sum 1. Then

D

(
P

∥∥∥∥Q⇝

∑n
i=1 wi · Qi∑n

i=1 wi

)
→ D

(
P

∥∥∥∥∥Q⇝
∞∑

i=1
wi · Qi

)

for n → ∞.

Proof. Firstly, note that

ln
d
∑n+1

i=1 wiQi

dQ
≥ ln

d
∑n

i=1 wiQi

dQ

and ∫
Ω

ln
d
∑n

i=1 wiQi

dQ
dP ≥

∫
Ω

ln dw1Q1

dQ
dP

= D(P∥Q⇝ Q1) + ln w1

+ (Q1(Ω) − Q(Ω))

> −∞.

Since
∑n

i=1 wiqi →
∑∞

i=1 wiqi pointwise, applying the monotone convergence the-
orem to the sequence (

ln
d
∑n

i=1 wiQi

dQ
− ln dw1Q1

dQ

)
n∈N

gives that ∫
Ω

ln
d
∑n

i=1 wiQi

dQ
− ln dw1Q1

dQ
dP

→
∫

Ω
ln

d
∑∞

i=1 wiQi

dQ
− ln dw1Q1

dQ
dP.

We get ∫
Ω

ln
d
∑n

i=1 wiQi

dQ
dP →

∫
Ω

ln
d
∑∞

i=1 wiQi

dQ
dP
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for n → ∞. Finally, we see that

D

(
P

∥∥∥∥Q⇝

∑n
i=1 wi · Qi∑n

i=1 wi

)
=
∫

Ω
ln

d
∑n

i=1 wiQi

dQ
dP − (Qn(Ω) − Q(Ω)) − ln

n∑
i=1

wi

→
∫

Ω
ln

d
∑∞

i=1 wiQi

dQ
dP − (Q∞(Ω) − Q(Ω))

= D(P∥Q⇝ Q∞),

where Q∞ :=
∑∞

i=1 wiQi and we use that ln
∑n

i=1 wi → 0 and Qn(Ω) → Q∞(Ω). To
see the latter, note that

Qn(Ω) =
∫

Ω

∑n
i=1 qi(ω)wi∑n

i=1 wi
dµ(ω),

and 0 ≤
∑n

i=1
qi(ω)wi/

∑n

i=1
wi ≤ q∞(ω)/w1, where the RHS integrates, so that the desired

convergence follows from the dominated convergence theorem.

Theorem A.8. Let P be a finite measure and C a convex set of sub-probability mea-
sures such that D(P∥Q ⇝ C) = 0. If Q1, Q2, . . . is a sequence of measures in C such
that D(P∥Qn ⇝ C) → 0, then D(P∥Qn ⇝ σ-conv(C)) → 0.

Proof. Fix Q∗ ∈ C such that D(P∥Q∗ ⇝ C) ≤ ε and let Q̄ =
∑∞

i=1 wiQi ∈ σ-conv(C)
arbitrarily. Let s ∈ (0, 1) and consider Q̃ := s · Q∗ + (1 − s) · Q̄ =

∑∞
i=0 w̃iQi, where

Q0 := Q∗, w̃0 = s and w̃i = (1−s) ·wi for i = 1, 2, . . . . Note that D(P∥Q∗ ⇝ Q0) = 0,
so it follows from Lemma A.7 that

lim
n→∞

D

(
P

∥∥∥∥Q∗ ⇝

∑n
i=0 w̃iQi∑n

i=0 w̃i

)
= D(P∥Q∗ ⇝ Q̃).

The left hand side is, by definition of Q∗, bounded by ε since
∑n

i=0
w̃iQi/

∑n

i=0
w̃i ∈ C,

so that we find D(P∥Q∗ ⇝ Q̃) ≤ ε. Furthermore, by concavity of the log,

ε ≥ D(P∥Q∗ ⇝ Q̃)

≥ s · D(P∥Q∗ ⇝ Q0) + (1 − s) · D(P∥Q∗ ⇝ Q̄)

= (1 − s) · D(P∥Q∗ ⇝ Q̄).

Taking the limit of s → 0, we see D(P∥Q∗ ⇝ Q̄) ≤ ε. Finally, the result follows by
taking the supremum over Q̄.
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We conjecture that if C is a σ-convex set of sub-probability measures and C′ is the
Choquet-convex hull of C then D(P∥Q⇝ C) = D(P∥Q⇝ C′) for any sub-probability
measures P and Q such that P, Q, and the sub-probability measures in C all have
densities with respect to a common σ-finite measure.
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B.1 Application in Practice: k Separate I.I.D. Data
Streams

In the simplest practical applications, we observe one block at a time, i.e. at time n,
we have observed X(1), . . . , X(n), where each X(i) = (Xi,1, . . . , Xi,k) is a block, i.e. a
vector with one outcome for each of the k groups. This is a rather restrictive setup, but
we can easily extend it to blocks of data in which each group has a different number
of outcomes. For example, if data comes in blocks with mj outcomes in group j, for
j = 1 . . . k, X(i) = (Xi,1,1, . . . , Xi,1,m1 , Xi,2,1, . . . , Xi,2,m2 , . . . , Xi,k,1, . . . , Xi,k,mk

), we
can re-organize this having k′ =

∑k
j=1 mj groups, having 1 outcome in each group,

and having an alternative in which the first m1 entries of the outcome vector share
the same mean µ′

1 = . . . = µ′
m1

= µ1; the next m2 entries share the same mean
µ′

m1+1 = . . . = µ′
m1+m2

= µ2, and so on.
Even more generally though, we will be confronted with k separate i.i.d streams

and data in each stream may arrive at a different rate. We can still handle this case by
pre-determining a multiplicity m1, . . . , mk for each stream. As data comes in, we fill
virtual ‘blocks’ with mj outcomes for group j, j = 1 . . . k. Once a (number of) virtual
block(s) has been filled entirely, the analysis can be performed as usual, restricted
to the filled blocks. That is, if for some integer B we have observed Bmj outcomes
in stream j, for all j = 1 . . . k, but for some j, we have not yet observed (B + 1)mj

outcomes, and we decide to stop the analysis and calculate the evidence against the
null, then we output the product of e-variables for the first B blocks and ignore any
additional data for the time being. Importantly, if we find out, while analyzing the
streams, that some streams are providing data at a much faster rate than others, we
may adapt m1, . . . , mk dynamically: whenever a virtual block has been finished, we
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may decide on alternative multiplicities for the next block; see Turner et al. (2024) for
a detailed description for the case that k = 2.

B.2 Proofs for Section 4.2

In the proofs we freely use, without specific mention, basic facts about derivatives
of (log-) densities of exponential families. These can all be found in, for example,
Barndorff-Nielsen (1978).

B.2.1 Proof of Proposition 4.6

Proof. Since Sgro(M) was already shown to be an E-variable in Lemma 4.4, the ‘if’
part of the statement holds. The ‘only-if’ part follows directly from Corollary 2 to
Theorem 1 in (Grünwald et al., 2024), which states that there can be at most one
E-variable of the form pµ(Xk)/r(Xk) where r is a probability density for Xk.

B.2.2 Proof of Proposition 4.7

Proof. Define g(µ0) := Ep⟨µ0⟩

[
Spseudo(M)

]
and B(µi) := A (λ(µi) + λ(µ0) − λ(µ∗

0)).

g(µ0) = Ep⟨µ0⟩

[
k∏

i=1

pµi
(Xi)

pµ∗
0

(Xi)

]
=

k∏
i=1

EY ∼pµ0

[
pµi

(Y )
pµ∗

0
(Y )

]

=
k∏

i=1

∫
exp (λ(µ0)y − A (λ(µ0))) · exp (λ(µi)y − A (λ(µi)))

exp (λ(µ∗
0)y − A (λ(µ∗

0)))dρ(y)

=
k∏

i=1

∫
exp ((λ(µi) + λ(µ0) − λ(µ∗

0)) y − A (λ(µi)) − A (λ(µ0)) + A (λ(µ∗
0))) dρ(y)

=
k∏

i=1
exp (A (λ(µ∗

0)) − A (λ(µi)) − A (λ(µ0))) exp (B(µi))

·
∫

exp ((λ(µi) + λ(µ0) − λ(µ∗
0)) y − B(µi)) dρ(y)

=
k∏

i=1
exp (A (λ(µ∗

0)) − A (λ(µi)) − A (λ(µ0))) exp (B(µi)) · 1

= exp
(

kA (λ(µ∗
0)) −

k∑
i=1

A (λ(µi)) − kA (λ(µ0)) +
k∑

i=1
B(µi)

)
. (B.1)
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Taking first and second derivatives with respect to µ0, we find

d

dµ0
g(µ0) = g(µ0) · d

dµ0

(
k∑

i=1
B(µi) − kA (λ(µ0))

)
(B.2)

and

d2

dµ2
0

g(µ0) =
(

d

dµ0
g(µ0)

)
· d

dµ0

(
k∑

i=1
B(µi) − kA (λ(µ0))

)

+ g(µ0) · d2

dµ2
0

(
k∑

i=1
B(µi) − kA (λ(µ0))

)

=g(µ0)
(

k∑
i=1

(µi + µ0 − µ∗
0) − kµ0

)2

+ g(µ0)
(

k∑
i=1

varPµi+µ0−µ∗
0
[X] − kvarPµ0

[X]
)

=g(µ0)
(

k∑
i=1

varPµi+µ0−µ∗
0
[X] − kvarPµ0

[X]
)

= g(µ0) · f(µ0).

(B.3)

where the second equality holds because of (B.2), (d/dλ(µ))A(λ(µ)) = EPµ
[X] and

(d2/dλ(µ)2)A(λ(µ)) = varPµ
[X]. (B.3) is continuous with respect to µ0. Therefore, if

f(µ∗
0) > 0 holds, it means that there exists an interval M∗ ⊂ M with µ∗

0 in the interior of
M∗ on which (B.1) is strictly convex. Then there must exist a point µ′

0 ∈ M∗ satisfying
EP⟨µ′

0⟩

[
Spseudo(M)

]
> EP⟨µ∗

0 ⟩

[
Spseudo(M)

]
= 1, i.e. Spseudo(M) is not an E-variable.

Conversely, f(µ∗
0) < 0 means that there exists an interval M∗ ⊂ M with µ∗

0 in the interior
of M∗, on which (B.1) is strictly concave. The result follows.

B.2.3 Proof of Theorem 4.8

To prepare for the proof of Theorem 4.8, let us first recall Young’s [1912] inequality:

Lemma B.1. [Young’s inequality] Let p, q be positive real numbers satisfying 1
p +

1
q = 1. Then if a, b are nonnegative real numbers, ab ≤ ap

p + bq

q .

The proof of Theorem 4.8 follows exactly the same argument as the one used by
Turner et al. (2024) to prove this statement in the special case that M is the Bernoulli
model.

Proof. We first show that Sgro(iid) as defined in the theorem statement is an E-variable.
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For this, we set p∗
0(X) = 1

k

k∑
i=1

pµi
(X). We have:

EXk∼P⟨µ0⟩

[
Sgro(iid)

]
= EX1∼Pµ0

[
pµ1(X1)
p∗

0(X1)

]
· . . . · EXk∼Pµ0

[
pµk

(Xk)
p∗

0(Xk)

]
. (B.4)

We also have

1
k
EX1∼Pµ0

[
pµ1(X1)
p∗

0(X1)

]
+ · · · + 1

k
EXk∼Pµ0

[
pµk

(Xk)
p∗

0(Xk)

]

= 1
k
EX∼Pµ0

 pµ1(X)
1
k

k∑
i=1

pµi
(X)

+ · · · + pµk
(X)

1
k

k∑
i=1

pµi
(X)

 = 1. (B.5)

We need to show that (B.4) ≤ 1, for which we can use (B.5). Stated more simply, it is

sufficient to prove
k∏

i=1
ri ≤ 1 with 1

k

k∑
i=1

ri ≤ 1, ri ∈ R+. But this is easily established:

1
k

k∑
i=1

ri = k − 1
k

·
∑k−1

i=1 ri

k − 1 + rk

k
≥

(∑k−1
i=1 ri

k − 1

) k−1
k

r
1
k

k

=
(

k − 2
k − 1 ·

∑k−2
i=1 ri

k − 2 + rk−1

k − 1

) k−1
k

r
1
k

k

≥

(∑k−2
i=1 ri

k − 2

) k−2
k

r
1
k

k−1r
1
k

k

...

≥
(

r1 + r2

2

) 2
k

k∏
i=3

r
1
k
i ≥

k∏
i=1

r
1
k
i (B.6)

where the first inequality holds because of Young’s inequality, by setting 1
p := k−1

k , 1
q :=

1
k , ap :=

∑k−1
i=1

ri

k−1 , bq := rk in Lemma B.1. The other inequalities are established in the

same way. It follows that
k∏

i=1
r

1
k
i ≤ 1 and further

k∏
i=1

ri ≤ 1.

This shows that Sgro(iid) is a e-variable. It remains to show that Sgro(iid) is indeed
the GRO e-variable relative to H0(iid); once we have shown this, it follows by Lemma
2 that it is the unique such e-variable and therefore by Lemma 1 that P ∗

0 achieves the
minimum in Lemma 1. Since we already know that Sgro(iid) is an e-variable, the fact
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that it is the GRO e-variable relative to H0(iid) follows immediately from Corollary
2 of Theorem 1 in Grünwald et al. (2024), which states that there can be at most one
e-variable of form pµ(Xk)/r(Xk) where r is a probability density. Since Sgro(iid) is
such an e-variable, Lemma 1 gives that it must be the GRO e-variable.

B.2.4 Proof of Proposition 4.11

Proof. The observed values of X1, X2, . . . , Xk are denoted as xk (:= x1, . . . , xk). With
Xk(xk−1, z) := z −

∑k−1
i=1 xi and C(z) as in (4.12) and pµ;[Z] (z) and ρ(xk−1) as in

(4.11), we get:

pµ

(
xk−1∣∣Z = z

)
=

pµ

(
xk
)

pµ;[Z] (z)

=
exp

(
k∑

i=1
(λ(µi)xi − A(λ(µi)))

)
∫

C(z)
exp

(
k−1∑
i=1

(λ(µi)yi − A(λ(µi)) + λ(µk)Xk(yk−1, z)) − A(λ(µk)))
)

dρ(yk−1)

=
exp

(
λ(µk)z +

k−1∑
i=1

(λ(µi) − λ(µk))xi)
)

∫
C(z)

exp
(

λ(µk)z +
k−1∑
i=1

(λ(µi) − λ(µk))yi

)
dρ(yk−1)

=
exp

(
k−1∑
i=1

(λ(µi) − λ(µk))xi

)
∫

C(z)
exp

(
k−1∑
i=1

(λ(µi) − λ(µk))yi

)
dρ(yk−1)

.

B.3 Proofs for Section 4.3

B.3.1 Proof of Theorem 4.12

Proof. We prove the theorem using an elaborate Taylor expansion of F (δ), defined
below, around δ = 0. We first calculate the first four derivatives of F (δ). Thus we

define and derive, with µi = µ0 + αiδ and fy(δ) =
k∑

i=1
pµi

(y) defined as in the theorem
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statement,

F (δ) :=EP⟨µ0⟩+αδ

[
log Spseudo(M) − log Sgro(iid)

]
=EPµ

log
k∏

j=1

(
1
k

k∑
i=1

pµi
(Xj)

)
− log p⟨µ0⟩(Xk)


=EPµ

 k∑
j=1

log fXj
(δ) −

k∑
j=1

log pµ0(Xj)

− k log k

(a)=
k∑

j=1
EX∼Pµj

[log fX(δ) − log pµ0(X)] − k log k

(b)=

F1(δ)︷ ︸︸ ︷∫
y∈X

fy(δ) log fy(δ)dρ(y) +

F2(δ)︷ ︸︸ ︷(
−
∫

y∈X
fy(δ) log pµ0(y)dρ(y)

)
−k log k, (B.7)

where we define F1(δ) to be equal to the leftmost term in (B.7) and F2(δ) to be equal
to the second, and (a) and (b) both hold provided that

for all j ∈ {1, . . . , k}: EXj∼Pµj

[
| log fXj

(δ) − log pµ0(Xj) |
]

< ∞ (B.8)

is finite. In Appendix B.6 we verify that this condition, as well as a plethora of related
finiteness-of-expectation-of-absolute-value conditions hold for all δ sufficiently close to
0. Together these not just imply (a) and (b), but also (c) that we can freely exchange
integration over y and differentiation over δ for all such δ when computing the first k

derivatives of F1(δ) and F2(δ), for any finite k and (d) that all these derivatives are
finite for δ in a compact interval including 0 (since the details are straightforward but
quite tedious and long-winded we deferred these to Appendix B.6). Thus, using (c),
we will freely differentiate under the integral sign in the remainder of the proof below,
and using (d), we will be able to conclude that the final result is finite.

For each derivative, we first compute the derivative of F1(δ) and then that of F2(δ).

F ′
1(δ) =

∫
f ′

y(δ)dρ(y) +
∫

f ′
y(δ) log fy(δ)dρ(y) = 0,

F ′
2(δ) = −

∫
f ′

y(δ) log pµ0(y)dρ(y) = 0, so F ′(0) = F ′
1(0) + F ′

2(0) = 0, (B.9)

where the above formulas hold since f ′
x(0) = 0 for all x ∈ X , which can be obtained
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by

f ′
x(δ◦) =

k∑
j=1

dpµj (x)
dµj

dµj

dδ
(δ◦),

f ′
x(0) =dpµ0(x)

dµ0

k∑
j=1

dµj

dδ
(0) = dpµ0(x)

dµ0

k∑
j=1

αj = 0, (B.10)

where we used that all µj are equal to µ0 at δ = 0. We turn to the second derivatives:

F ′′
1 (δ) =

∫
f ′′

y (δ)dρ(y) +
∫ (

f ′′
y (δ) log fy(δ) +

(
f ′

y(δ)
)2

fy(δ)

)
dρ(y)

=
∫ (

f ′′
y (δ) log fy(δ) +

(
f ′

y(δ)
)2

fy(δ)

)
dρ(y)

F ′′
1 (0) =

∫ (
f ′′

y (0) log fy(0) +
(
f ′

y(0)
)2

fy(0)

)
dρ(y);

=
∫

f ′′
y (0) log pµ0(y)dρ(y) +

∫
y∈X

(
f ′′

y (0) log k
)

dρ(y) (B.11)

=
∫ (

f ′′
y (0) log pµ0(y)

)
dρ(y),

where
∫

f ′′
y (δ)dρ(y) = 0 because

∫
fy(δ)dρ(y) = k, in which k is a constant that does

not depend on δ. Then F ′′
2 (δ) is given by

F ′′
2 (δ) = −

∫
f ′′

y (δ) log pµ0(y)dρ(y) ; F ′′
2 (0) = −

∫
f ′′

y (0) log pµ0(y)dρ(y), so

F ′′(0) =F ′′
1 (0) + F ′′

2 (0) = 0. (B.12)

Now we compute the third derivative of F (δ), denoted as F (3)(δ).

F
(3)
1 (δ) =

∫ (
f (3)

y (δ) log fy(δ) +
f ′′

y (δ)f ′
y(δ)

fy(δ) +
2f ′′

y (δ)f ′
y(δ)fy(δ) − (f ′

y(δ))3

(fy(δ))2

)
dρ(y)

F
(3)
1 (0) =

∫
f (3)

y (0) log fy(0)dρ(y) =
∫

f (3)
y (0) log pµ0(y)dρ(y) +

∫
f (3)

y (0) log kdρ(y)

=
∫

f (3)
y (0) log pµ0(y)dρ(y)

F
(3)
2 (δ) = −

∫
f (3)

y (δ) log pµ0(y)dρ(y)

223



B.3 Proofs for Section 4.3

F
(3)
2 (0) = −

∫
f (3)

y (0) log pµ0(y)dρ(y), so F (3)(0) = F
(3)
1 (0) + F

(3)
2 (0) = 0,

which holds since f ′
y(0) = 0 and

∫
fy(0)dρ(y) = k.

The fourth derivative of F (δ) can be computed as follows:

F
(4)
1 (δ) =

∫ (
f (4)

y (δ) log fy(δ) +
f

(3)
y (δ)f ′

y(δ)
fy(δ)

)
dρ(y)

+
∫

3 ·

(
f

(3)
y (δ)f ′

y(δ) + (f ′′
y (δ))2

)
fy(δ) − f ′′

y (δ)
(
f ′

y(δ)
)2

(fy(δ))2 dρ(y)

−
∫ 3

(
fy(δ)f ′

y(δ)
)2 · f ′′

y (δ) − 2
(
f ′

y(δ)
)4 · fy(δ)

(fy(δ))4 dρ(y) ; (B.13)

F
(4)
1 (0) =

∫ (
f (4)

y (0) log fy(0) +
3
(
f ′′

y (0)
)2

fy(0)

)
dρ(y)

=
∫

f (4)
y (0) log pµ0(y)dρ(y) + log k

∫
y∈X

f (4)
y (0)dρ(y) +

∫
y∈X

3
(
f ′′

y (0)
)2

fy(0) dρ(y)

=
∫

f (4)
y (0) log pµ0(y)dρ(y) +

∫
y∈X

3
(
f ′′

y (0)
)2

fy(0) dρ(y),

and F
(4)
2 (δ) can be computed by

F
(4)
2 (δ) = −

∫
f (4)

y (δ) log pµ0(y)dρ(y), F
(4)
2 (0) = −

∫
f (4)

y (0) log pµ0(y)dρ(y), so

F (4)(0) =F
(4)
1 (0) + F

(4)
2 (0) =

∫ 3
(
f ′′

y (0)
)2

fy(0) dρ(y) > 0.

Based on the above derivatives, we can now do a fourth-order Taylor expansion of
F (δ) around δ = 0, which gives:

EPµ

[
log Spseudo(M) − log Sgro(iid)

]
= 1

4!F
(4)(0)δ4 + o(δ4)

=1
8

∫
y∈X

(
f ′′

y (0)
)2

fy(0) dρ(y) · δ4 + o
(
δ4) ,
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where fy(0) =
∑k

i=1 pµ0(y) = kpµ0(y) and f ′′
y (0) =

(
k∑

i=1
α2

i

)
· d2

dµ2 pµ(y) |µ=µ0=
d2

dµ2 pµ(y) |µ=µ0 .

B.3.2 Proof of Theorem 4.13

Proof. We obtain the result using an even more involved Taylor expansion than in the
previous theorem. As in that theorem, we will freely differentiate (with respect to δ)
under the integral sign — that this is allowed is again verified in Appendix B.6.

Let µ, α, C(z), ρ(xk−1), Pµ etc. be as in the theorem statement. We have:

f(δ) := EPµ

[
log Spseudo(M) − log Scond

]
=EPµ

[
log

pµ

(
Xk
)

p⟨µ0⟩ (Xk) − log
pµ

(
Xk−1 | Z

)
p⟨µ0⟩ (Xk−1 | Z)

]

=EPµ

[
log

pµ

(
Xk
)

p⟨µ0⟩ (Xk) − log
pµ

(
Xk
)

p⟨µ0⟩ (Xk) + log

∫
C(z) pµ

(
xk
)

dρ(xk−1)∫
C(z) p⟨µ0⟩ (xk) dρ(xk−1)

]
=D

(
P⟨µ0⟩+αδ;[Z]∥P⟨µ0⟩;[Z]

)
.

We will prove the result by doing a Taylor expansion for f(δ) around δ = 0. It is
obvious that f(0) = 0 and the first derivative f ′(0) = 0 since f(0) is the minimum
of f(δ) over an open set, and f(δ) is differentiable. We proceed to compute the
second derivative of f(δ), using the notation gz(δ) = p⟨µ0⟩+αδ;[Z](z) as in the theorem
statement, with g′

z and g′′
z denoting first and second derivatives.

f ′(δ) =
∫

g′
z(δ) log gz(δ)

gz(0)dρ[Z](z) +
∫

g′
z(δ)dρ[Z](z) =

∫
g′

z(δ) log gz(δ)
gz(0)dρ[Z](z).

f ′′(δ) =
∫

g′′
z (δ) log gz(δ)

gz(0)dρ[Z](z) +
∫ (g′

z(δ))2

gz(δ) dρ[Z](z),

where in the first line, the second equality follows since the second term does not change
if we interchanging differentiation and integration and the fact that

∫
gz(δ)dz = 1 is

constant in δ. We obtain

f ′′(0) =
∫ (g′

z(0))2

gz(0) dρ[Z](z), (B.14)
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and, with xk set to Xk(xk−1, z) and recalling that µ = ⟨µ0⟩ + αδ and µj = µ0 + αjδ,

g′
z(δ) =

∫
C(z)

d

dδ
p⟨µ0⟩+αδ(xk)dρ(xk−1)

=
∫

C(z)

k∑
j=1

∏
i∈{1,...,k}\j

pµi
(xi)

dpµj (xj)
dδ

dρ(xk−1)

=
∫

C(z)

k∑
j=1

pµ1,...,µj−1,µj+1,...,µk
(x1, . . . , xj−1, xj+1, . . . , xk)

dpµj
(xj)

dµj

dµj

dδ
dρ(xk−1)

=
∫

C(z)

k∑
j=1

pµ(xk)
d log pµj (xj)

dµj
αjdρ(xk−1)

=
∫

C(z)

k∑
j=1

pµ(xk) (I(µj)xj − µjI(µj)) αjdρ(xk−1)

where I(µj) is the Fisher information. The final equality follows because, with λ(µj)
denoting the canonical parameter corresponding to µj , we have dλ(µj)/dµj = I(µj)
and dA(β)/dβ) |β=λ(µj)= µj ; see e.g. (Grünwald, 2007, Chapter 18). Now

g′
z(0) =

∫
C(z)

k∑
j=1

p⟨µ0⟩(xk) (I(µ0)xj − µ0I(µ0)) αjdρ(xk−1)

=
∫

C(z)
p⟨µ0⟩(xk)I(µ0)

k∑
j=1

xjαjdρ(xk−1) (B.15)

=I(µ0) ·
∫

C(z)
p⟨µ0⟩(xk)

k∑
j=1

xjαjdρ(xk−1) (B.16)

where the second equality follows from
k∑

j=1
αj = 0. Because Xk i.i.d. ∼ Pµ0 under P⟨µ0⟩

and the integral in (B.15) is over a set of exchangeable sequences, (For understanding
the statement, we can consider the simple case k = 2, X1 and X2 can be exchangeable
because they are ‘symmetric’ for given C(z).) we must have that (B.15) remains valid
if we re-order the αj ’s in round-robin fashion, i.e. for all i = 1..k, we have, with
αj,i = α(j+i−1) mod k,

g′
z(0) = I(µ0) ·

∫
C(z)

p⟨µ0⟩(xk)
k∑

j=1
xjαj,idρ(xk−1).
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Summing these k equations we get, using that
k∑

i=1
αi = 0, that kg′

z(0) = 0 so that

g′
z(0) = 0. From (B.14) we now see that

f ′′(0) = 0.

Now we compute the third derivative of f(δ), denoted as f (3)(δ):

f (3)(δ) =
∫ (

g(3)
z (δ) log gz(δ)

gz(0) + g′′
z (δ)g′

z(δ)
gz(δ)

)
dρ[Z](z)

+
∫ (2g′′

z (δ)g′
z(δ)gz(δ) − (g′

z(δ))3

(gz(δ))2

)
dρ[Z](z)

So since g′
z(0) = 0 we must also have

f (3)(0) = 0.

The fourth derivative of f(δ) is now computed as follows:

f (4)(δ) =
∫ (

g(4)
z (δ) log gz(δ)

gz(0) + g
(3)
z (δ) · g′

z(δ)
gz(δ)

)
dρ[Z](z)

+
∫

3 ·

(
g

(3)
z (δ) · g′

z(δ) + (g′′
z (δ))2

)
gz(δ) − g′′

z (δ) · (g′
z(δ))2

(gz(δ))2 dρ[Z](z).

Then

f (4)(0) =
∫ 3 (g′′

z (0))2

gz(0) dρ[Z](z) > 0.

We now have all ingredients for a fourth-order Taylor expansion of f(δ) around δ = 0,
which gives:

EPµ

[
log Spseudo(M) − log Scond

]
= 1

8

∫ (g′′
z (0))2

gz(0) dρ[Z](z) · δ4 + o
(
δ4)

which is what we had to prove.

B.4 Proofs for Section 4.4

In this section, we prove all the statements in Table 4.1.
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B.4.1 Bernoulli Family

We prove that for M equal to the Bernoulli family, we have Spseudo(M) = Sgro(M) =
Sgro(iid) ≻ Scond.

Proof. We set µ∗
0 = 1

k

k∑
i=1

µi.

Sgro(iid) := pµ(Xk)
k∏

j=1

(
1
k

k∑
i=1

pµi
(Xj)

) = pµ(Xk)
k∏

j=1

(
1
k

k∑
i=1

(
µ

Xj

i (1 − µi)1−Xj

)) (B.17)

= pµ(Xk)
k∏

j=1
((µ∗

0)Xj (1 − µ∗
0)1−Xj )

= pµ(Xk)
k∏

j=1
pµ∗

0
(Xj)

= Spseudo(M) (B.18)

where the third equality holds since Xi ∈ {0, 1}. So Spseudo(M) is an E-variable and
Spseudo(M) = Sgro(M) according to Theorem 4.6. Then the claim follows using (4.9)
together with the fact that when Z = 0 or Z = 2, we have Scond = 1, while this is not
true for the other e-variables, so that Scond ̸= Sgro(M) = Spseudo(M) = Sgro(iid). The
result then follows from (4.9).

B.4.2 Poisson and Gaussian Family With Free Mean and Fixed
Variance

We prove that for M equal to the family of Gaussian distributions with free mean and
fixed variance σ2, we have Spseudo(M) = Sgro(M) = Scond ≻ Sgro(iid). The proof that
the same holds for M equal to the family of Poisson distributions is omitted, as it is
completely analogous.

Proof. Note that if we let Z :=
∑k

i=1 Xi, then we have that Z ∼ N (
∑k

i=1 µi, kσ2) if
Xk ∼ Pµ. Let µ∗

0 be given by (4.8) relative to fixed alternative Pµ as in the definition
of Spseudo(M) underneath (4.8). Since kµ∗

0 =
∑k

i=1 µi, we have that Z has the same
distribution for Xk ∼ P⟨µ∗

0⟩. This can be used to write

Scond =
pµ

(
Xk | Z

)
p⟨µ∗

0⟩ (Xk | Z) =
pµ

(
Xk
)

p⟨µ∗
0⟩ (Xk)

p⟨µ∗
0⟩(Z)

pµ(Z) =
pµ

(
Xk
)

p⟨µ∗
0⟩ (Xk) = Spseudo(M).
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Therefore, Spseudo(M) is also an e-variable, so we derive that Spseudo(M) = Sgro(M)

by Theorem 4.6. Furthermore, we have that the denominator of Sgro(iid) is given by
a different distribution than p⟨µ∗

0⟩, so that Sgro(iid) ̸= Sgro(M) = Spseudo(M) = Scond.
The result then follows from (4.9).

B.4.3 The Families for Which Spseudo(M) Is Not an E-variable

Here, we prove that Spseudo(M) is not an e-variable for M equal to the family of beta
distributions with free β and fixed α. It then follows from (4.9) that Spseudo(M) ≻
Sgro(M). (4.9) also gives Sgro(M) ⪰ Sgro(iid) and Sgro(M) ⪰ Scond. The same is
true for M equal to the family of geometric distributions and the family of Gaussian
distributions with free variance and fixed mean, as the proof that Spseudo(M) is not an
e-variable is entirely analogous to the proof for the beta distributions given below. In
all of these cases, one easily shows by simulation that in general, Sgro(M) ̸= Sgro(iid)

and Sgro(M) ̸= Scond, so then Sgro(M) ≻ Sgro(iid) and Sgro(M) ≻ Scond follow.

Proof. First, let Qα,β represent a beta distribution in its standard parameterization,
so that its density is given by

qα,β(u) = Γ(α + β)
Γ(α)Γ(β)uα−1(1 − u)β−1, α, β > 0; u ∈ [0, 1].

To simplify the proof, we assume α = 1 here. Then

q1,β(u) = Γ(1 + β)
Γ(β) (1 − u)β−1 = 1

1 − u
exp

(
β log(1 − u) − log 1

β

)
where the first equality holds since Γ(1 + β) = βΓ(β). Comparing this to (4.1), we see
that β is the canonical parameter corresponding to the family {Q1,β : β > 0}, and we
have

λ(µ) = β, t(u) = log(1 − u), A(β) = log 1
β

.

To prove the statement, according to Proposition 4.7, we just need to show, for any
µ1, . . . , µk that are not all equal to each other, that, with X = t(U) = log(1 − U) and

µ∗
0 = 1

k

k∑
i=1

µi defined as in (4.8), we have

k∑
i=1

varPµi
[X] − kvarPµ∗

0
[X] > 0. (B.19)
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Straightforward calculation gives

varPµi
[X] = varQ1,βi

[X] = d2

d2βi
(log 1

βi
) = 1

β2
i

in particular varPµ∗
0
[X] = 1

(β∗
0)2

(B.20)
where βi corresponds to µi, i.e. EQ1,βi

[(X)] = µi. We also have:

EPβ∗
0

[(X)] = µ∗
0 = 1

k

k∑
i=1

µi = 1
k

k∑
i=1

EPβi
[(X)] . (B.21)

While EPβi
[(X)] = d

dβi
(log 1

βi
) = − 1

βi
, therefore 1

β∗
0

= 1
k

k∑
i=1

1
βi

. We obtain, together

with (B.20) and (B.21), that

k∑
i=1

varPµi
[(X)] − kvarPµ∗

0
[(X)] =

k∑
i=1

1
(βi)2 − k

(
1
k

k∑
i=1

1
βi

)2

. (B.22)

Jensen’s inequality now gives that (B.22) is strictly positive, whenever at least one of
the µi is not equal to µ∗

0, which is what we had to show.

B.5 Graphical Depiction of RIPr-Approximation
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Figure B.1: Exponential distribution. On the right, n represents number of iterations with
Li’s algorithm, starting at iteration 2

We illustrate RIPr-approximation and convergence of Li’s algorithm with four dis-
tributions: exponential, beta with free β and fixed α, geometric and Gaussian with
free variance and fixed mean, each with one particular (randomly chosen) setting of
the parameters. The pictures on the left in Figure B.1– B.4 give the probability den-
sity functions (for geometric distributions, discrete probability mass functions) after
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Figure B.2: beta with free β and fixed α. On the right, n represents number of iterations
with Li’s algorithm, starting at iteration 2
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Figure B.3: geometric distribution. On the right, n represents number of iterations with
Li’s algorithm, starting at iteration 3

n = 100 iterations of Li’s algorithm. The pictures on the right illustrate the speed of
convergence of Li’s algorithm. The pictures on the right do not show the first (or the
first two, for geometric and Gaussian with free variance) iteration(s), since the worst-
case expectation supµ0∈M[Sgro(M)] is invariably incomparably larger in these initial
steps. We empirically find that Li’s algorithm converges quite fast for computing the
true Sgro(M). In each step of Li’s algorithm, we searched for the best mixture weight
α in P(m) over a uniformly spaced grid of 100 points in [0, 1], and for the novel com-
ponent P ′ = Pµ′,µ′ by searching for µ′ in a grid of 100 equally spaced points inside the
parameter space M where the left- and right- endpoints of the grid were determined
by trial and error. While with this ad-hoc discretization strategy we obviously cannot
guarantee any formal approximation results, in practice it invariably worked well: in
all cases, we found that max

µ0∈M
EPµ0,µ0

[Sgro(M)] ≤ 1.005 after 15 iterations. For compar-
ison, we show the best approximation that can be obtained by brute-force combining
of just two components, for the same parameter values, in Table B.1.
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Figure B.4: Gaussian with free variance and fixed mean. On the right, n represents
number of iterations with Li’s algorithm, starting at iteration 3

Distributions (µ1, µ2) α (µ01, µ02) sup
µ0∈M

EX1,X2∼Pµ0,µ0
[S]

beta ( 1
6 , 1

10 ) 0.57 (0.12, 0.16) 1.00071
geometric (5, 2) 0.39 (2.52, 4.21) 1.00035

Exponential ( 1
2 , 1

9 ) 0.53 (0.13, 0.51) 1.00083
Gaussian with free variance

and fixed mean (2, 6) 0.41 (5.82, 3.36) 1.00035

Table B.1: Analogue of Table 4.2 for µ1, µ2 corresponding to the parameters used in
Figures B.1–B.4

B.6 Further Details

In this section, we verify that all conditions are met for the implicit use of Fubini’s
theorem and differentiation under the integral sign in the proofs of Theorem 2 and 3,
and that all derivatives of interest are bounded.

B.6.1 Theorem 2

In the chapter, notation is as follows:

µj = µ0 + δαj

λ(µj) = nat. param. λ corresponding to mean µ = µj

pµ(y) = eλ(µ)y−A(λ(µ))

fy(δ) =
k∑

j=1
pµi(y).
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As this will simplify the notation for the derivatives, we write gy(λ) = eλy−A(λ), so
that

fy(δ) =
k∑

j=1
gy(λ(µj)) and pµ0(y) = gy(λ(µ0)). (B.23)

To stress dependence on δ, we write µj(δ) instead of µj in the following.

Step 1 We first establish the finiteness condition (B.8). We note that

log
k∑

j=1
gy(λ(µj(δ))) ≤ log(max

j
gy(λ(µj(δ)))k)

= max
j

log(gy(λ(µj(δ)))) + log k

≤ max
j

log(max{gy(λ(µj(δ))), 1}) + log k

≤
∑

j

log(max{gy(λ(µj(δ))), 1}) + log k

≤
∑

j

|λ(µj(δ))y − log A(λ(µj(δ)))| + log k.

and

log
k∑

j=1
gy(λ(µj(δ))) = log 1

k

k∑
j=1

gy(λ(µj(δ))) + log k

≥ 1
k

k∑
j=1

log gy(λ(µj(δ))) + log k

= 1
k

k∑
j=1

λ(µj(δ))y − A(λ(µj(δ))) + log k.

Putting these together, we see that

| log fy(δ)| ≤

max

∑
j

|λ(µj(δ))y − A(λ(µj(δ)))| + log k,

∣∣∣∣∣∣1k
k∑

j=1
(λ(µj(δ))y − A(λ(µj(δ)))) + log k

∣∣∣∣∣∣


≤
∑

j

|λ(µj(δ))y − A(λ(µj(δ)))| + log k, (B.24)
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and, more trivially,

| log gy(λ(µ0))| ≤ |λ(µ0)y − A(λ(µ0)| . (B.25)

We know that λ(µj(δ)) and A(λ(µj(δ))) are smooth, hence finite functions for µj(δ)
in the interior of the mean-value parameter space M (see (Barndorff-Nielsen, 1978,
Chapter 9, Theorem 9.1 and Eq. (2))). Since M is open and for all j = 1..k, µj(0) =
µ0 ∈ M, it follows that | log f(y)(δ) − log gy(λ(µ0))| can be written as a smooth, in
particular finite function of |y| for all δ in a compact subset of R with 0 in its interior.
Since |y| ≤ 1 + y2 has finite expectation under all Pµ with µ ∈ M, finiteness of (B.8)
follows by (B.23).

Step 2 We now proceed to establish that we can differentiate with respect to δ for
δ in a compact subset of R with 0 in its interior. The proof will make use of (B.24)
and (B.25). We denote derivatives of functions fy and gy as

gs
y(λ) = ds

dλs
gy(λ) and fs

y (δ) = ds

dδs
fy(δ).

We will argue that, for any s ∈ N, the family { ds

dδs fy(δ) log fy(δ)−fy(δ) log gy(λ(µ0)) :
δ ∈ ∆} is uniformly integrable for any compact ∆ ⊂ R, so that we are allowed to
interchange differentiation and integration (see e.g. Williams, 1991, Chapter A16).

Using standard results for exponential families, we have, for λ in the interior of the
canonical parameter space,

g(1)
y (λ) = (y − µ(λ))gy(λ)

g(2)
y (λ) = −I(λ)gy(λ) + (y − µ(λ))2gy(λ),

where µ(λ) denotes the mean-value parameter corresponding to λ and I(λ) the corre-
sponding Fisher information.

Continuing this using the fact that (ds/dλs)A(λ) is continuous for all s, gives

g(s)
y (λ) = gy(λ) · hy,s(λ) with hy,s(λ) =

s∑
t=1

h[t,s](λ)(y − µ(λ))t (B.26)

for some smooth functions h[1,s], h[2,s], . . . , h[s,s] of λ (we do not need to know precise
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definitions of these functions). Similarly

f (1)
y (δ) =

∑
j

g(1)
y (λµj(δ)) · (λ(µj(δ)))′

where λ(µj(δ))′ = d
dδ λ(µj(δ)). We know that λ′(µj(δ)) and further derivatives are

smooth functions for µj(δ) in the interior of the mean-value parameter space M (see
(Barndorff-Nielsen, 1978, Chapter 9, Theorem 9.1 and Eq. (2))). Since this space
is open and for all j = 1..k, µj(0) = µ0 ∈ M, it follows that λ′(µj(δ)) are smooth
functions of δ for δ in a compact subset of R with 0 in its interior. Thus, analogously
to what we did above with g(s), we get that

f (s)
y (δ) =

∑
j

s∑
t=1

g(t)
y (λ(µj(δ))) · rt,s(µj) (B.27)

for some smooth functions rt,s, the details of which we do not need to know. In
particular this gives, with

b(s)
y := f

(s)
y (δ)
fy(δ)

that ∣∣∣b(s)
y

∣∣∣ ≤
∑

j gy(λ(µj(δ))) · (
∑s

t=1 |hy,t(λ(µj(δ))) · rt,s(µj(δ))|)∑
j gy(λ(µj(δ)))

≤
∑

j

s∑
t=1

|hy,t(λ(µj(δ))) · rt,s(µj(δ))|.

Inspecting the proof in the main text, we informally note that all terms without
logarithms in the first four derivatives of F0(δ) and F1(δ) can be written as products
fy(δ) · b

(s1)
y (δ) · . . . · b

(su)
y (δ) for the b

(s)
y we just bounded in terms of polynomials in |y|;

similarly, the terms involving logarithms can be bounded in terms of such polynomials
as well using (B.24) and (B.25), suggesting that all terms inside all integrals can be
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such bounded. This is indeed the case: formalizing the reasoning, we see that∫ ( ds

dδs
fy(δ) log fy(δ) − fy(δ) log gy(λ(µ0))

)2
dρ(y) =

∫ (
f (s)

y (log fy(δ) − log gy(λ(µ0))) + fy(δ)
∑

u

cu · b(s2)
y (δ) · . . . · b(su)

y (δ)
)2

dρ(y)

=
∫

(f (s)
y (log fy(δ) − log gy(λ(µ0))))2 +

(
fy(δ)

∑
u

cu · b(s1)
y (δ) · . . . · b(su)

y (δ)
)2

+ fy(δ)f (s)
y (log fy(δ) − log gy(λ(µ0)))

∑
u

cu · b(s1)
y (δ) · . . . · b(su)

y (δ)dρ(y).

By (B.24) and (B.25) and the bound on |b(s)
y | given above, all the terms within

the integral can be bounded by polynomials in y (or |y|), so the integral is given
by linear functions of moments of ρ and Pµ. Therefore, using also that ρ is it-
self a probability measure and a member of the exponential family under consider-
ation (equal to Pµ with λ(µ) = 0), the integral can be uniformly bounded over δ

in a compact subset of the mean-value parameter space. It follows that the fam-
ily { ds

dδs fy(δ) log fy(δ) − fy(δ) log gy(λ(µ0)) : δ ∈ ∆} is uniformly integrable (see e.g.
Williams, 1991, Chapter 13.3), so integration and differentiation may be interchanged
freely (see e.g. Williams, 1991, Chapter A16). It also follows that the quantity on the
right-hand side in the theorem statement is bounded.

B.6.2 Theorem 3

As in the proof of Theorem 3, let f(δ) = EPµ

[
log pµ(Xk)

p⟨µ0⟩(Xk) − log pµ(Xk|Z)
p⟨µ0⟩(Xk|Z)

]
.

To validate the proof in the main text we merely need to show that f(δ) is finite,
and that we can interchange differentiation and expectation with respect to δ in a
compact interval containing δ = 0. Thus, we want to show that, for any s ∈ N, we
have that

ds

dδs
f(δ) = E

[
ds

dδs

(
log pµ(Xk)

p⟨µ0⟩(Xk) − log pµ(Xk | Z)
p⟨µ0⟩(Xk | Z)

)]
.

To show this, first note that both EPµ

[
log pµ(Xk)

p⟨µ0⟩(Xk)

]
and EPµ

[
log pµ(Xk|Z)

p⟨µ0⟩(Xk|Z) | Z
]

are
KL divergences between members of exponential families (the fact that conditioning
on a sum of sufficient statistics results in a new, derived full exponential family is
shown by, for example, Brown (1986)), which are finite as long as δ is in a sufficiently
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small interval containing 0 in its interior (since then µ is in the interior of the mean-
value parameter space). This already shows that f(δ) is finite, and it also allows us
to rewrite

f(δ) = EPµ

[
log pµ(Xk)

p⟨µ0⟩(Xk)

]
− EPµ

[
log pµ(Xk | Z)

p⟨µ0⟩(Xk | Z)

]
.

Furthermore, (Brown, 1986, Theorem 2.2) in combination with Theorem 9.1. and
Chapter 9, Eq.2. of Barndorff-Nielsen (1978) shows that for any full exponential
family, for any finite k > 0, the k-th derivative of the KL divergence with respect to
its first argument, given in the mean-value parameterization, exists, is finite, and can
be obtained by differentiating under the integral sign, at any µ in the interior of the
mean-value parameter space. We are therefore allowed to interchange expectation and
differentiation for such terms separately for all δ in any compact interval containing
0. Thus, starting with the previous display, we can write

ds

dδs
f(δ) = ds

dδs
EPµ

[
log pµ(Xk)

p⟨µ0⟩(Xk)

]
− ds

dδs
EPµ

[
log pµ(Xk | Z)

p⟨µ0⟩(Xk | Z)

]
= EPµ

[
ds

dδs
log pµ(Xk)

p⟨µ0⟩(Xk)

]
− EPµ

[
ds

dδs
log pµ(Xk | Z)

p⟨µ0⟩(Xk | Z)

]
= EPµ

[
ds

dδs
log pµ(Xk)

p⟨µ0⟩(Xk)

]
− EPµ

[
ds

dδs
log pµ(Xk)

p⟨µ0⟩(Xk) + log
pµ;[Z](Z)

p⟨µ0⟩;[Z](Z)

]
=

EPµ

[
ds

dδs
log pµ(Xk)

p⟨µ0⟩(Xk)

]
− EPµ

[
ds

dδs
log pµ(Xk)

p⟨µ0⟩(Xk)

]
+ EPµ

[
ds

dδs
log

pµ;[Z](Z)
p⟨µ0⟩;[Z](Z)

]
= EPµ

[
ds

dδs
log

pµ;[Z](Z)
p⟨µ0⟩;[Z](Z)

]
,

where in the last line we use that all involved terms are finite. This is what we had to
show.
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C.1 Details for Section 5.4.4

We need to establish that Σp(µ)−Σ(θ◦)
q (µ) = Σ(0)

q (µ)−Σ(θ◦)
q (µ) is positive semidefinite

for all µ ∈ Rd.
Thus, take any µ∗ ∈ Rd. By (5.26), we have that q

(θ◦)
µ∗ = f

(θ◦)
λ◦,β◦ and pµ∗ =

q
(0)
µ∗ = f

(0)
λ∗,β∗ for some λ◦, β◦ and λ∗, β∗ that are related to each other via the normal

equations (5.27). Based on the sufficient statistics (5.25), we can thus write, for
θ ∈ {0, θ◦}, that

Σ(θ)
q (µ∗) =

(
A(θ) B(θ)

(B(θ))T C(θ)

)

where A(θ◦) is the variance of
∑

Y 2
i according to distribution F

(θ◦)
λ◦,β◦ and C(θ◦) is the

d × d covariance matrix of the tj(Y n) according to this distribution and

B(θ◦) =
(

cov
(∑

Y 2
i , t1(Y n)

)
, . . . , cov

(∑
Y 2

i , td(Y n)
))

where the covariances are again under this distribution. Similarly, A(0) is the variance
of
∑

Y 2
i according to distribution F

(0)
λ∗,β∗ and B(0), C(0) are defined accordingly.

Positive semidefiniteness of Σ(0)
q (µ∗) − Σ(θ◦)

q (µ∗) is easily seen to be implied1 if we
can show that C(0) − C(θ◦) is positive definite and that

(A(0) − A(θ◦)) − (B(0) − B(θ◦))T (C(0) − C(θ◦))−1(B(0) − B(θ◦)) ≥ 0. (C.1)

To show that C(0) −C(θ◦) is positive definite, note that C(θ◦) (as is readily established,
for example, by twice differentiating log Z

(θ◦)
q (λ, β; µ∗) at λ = 0, β = 0) is simply

1For an explicit derivation see https://math.stackexchange.com/questions/2280671/
definiteness-of-a-general-partitioned-matrix-mathbf-m-left-beginmatrix-bf.
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the standard covariance matrix in linear regression scaled by 1/σ◦2, i.e. C(θ◦) =
σ◦2∑xixT

i which by the maximal rank assumption is positive definite. Similarly
C(0) = σ∗2∑xixT

i so that, since by assumption θ◦ ̸= 0 and using the normal equations
(5.27), we have that C(0) − C(θ) = cC(θ) for c = σ∗2 − σ◦2 > 0 is also positive definite.

It only remains to show (C.1). As again easily established (for example, by
twice differentiating log Z

(θ◦)
q (λ, β; µ∗) at λ = 0, β = 0), we have that A(θ◦) =

2σ◦2 (2(
∑

ν◦2
i ) + nσ◦2) and similarly we find A(0) = 2σ∗2 (2(

∑
ν∗2

i ) + nσ∗2) and
B

(θ◦)
j = −2σ◦2 (

∑
ν◦

i xi,j) and similarly B
(0)
j = −2σ∗2 (

∑
ν∗

i xi,j). By the normal
equations (5.27) we find that B

(0)
j − B

(θ◦)
j = −2(σ∗2 − σ◦2)

∑
ν∗

i xi,j . After some
matrix multiplications (where we may use the cyclic property of the trace of a matrix
product) we get that (C.1) is equivalent to

(A(0) − A(θ)◦
) − 4(σ∗2 − σ◦2)

∑
ν∗2

i ≥ 0.

But this is easily verified: it is equivalent to

2σ∗2
(

2
(∑

ν∗2
i

)
+ nσ∗2 − 2

(∑
ν∗2

i

))
−2σ◦2

(
2
(∑

ν◦2
i

)
+ nσ◦2 − 2

(∑
ν∗2

i

))
≥ 0

which in turn is equivalent to

2nσ∗4 − 2nσ◦4 + 4(
∑

ν∗2
i −

∑
ν◦2

i )σ◦2 ≥ 0

which by the normal equations is equivalent to

σ∗4 − σ◦4 + 2(σ∗2 − σ◦2)σ◦2 ≥ 0

but this must be the case since by the normal equations, σ∗2 > σ◦2.
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D.1 Additional Simulations

D.1.1 Effect of Truncation on Power

Figure D.1 shows the same plot as Figure 1 in Chapter 6 but without truncation for
the probabilities in the e-statistics, i.e. ε = 0.
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Figure D.1: Sample sizes for different methods as in Figure 1 in Chapter 6 but with ε = 0
for the e-statistics.

D.1.2 Robustness With Respect to Misspecification

We test the robustness of the randomization based e-statistics with respect to mis-
specification of the conditional distribution of X in the same way as in the simulation
study of Berrett et al. (2020). All simulations in this section are under the null hy-
pothesis, i.e. β = 0. Rejection rates of the e-statistics are again computed with a
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maximal sample size of 2000 and with optional stopping, i.e. rejection if the level 1/α

is exceeded at least once, and with truncation level ε = 0.05. For comparison, the
conditional randomization test is applied to a sample of fixed size, for sizes 200, 1000,
and 2000, and additionally with the unconditional absolute correlation |cor(X, Y )| as
test statistic, as in Berrett et al. (2020), for sample sizes 200 and 2000.

First, instead of sampling X with conditional mean µZ as defined in (6.14), we set
the mean to

µZ − ξµ3
Z (cubic misspecification),

µZ + ξµ2
Z (quadratic misspecification),

tanh(ξµZ)/ξ (hyperbolic tangent),

which are the same misspecifications as in Berrett et al. (2020, Section 6.1.1). They
are illustrated in Figure D.2 for different values of ξ, the range of which has been
selected for each misspecification type in such a way that the relative misspecification
compared to the true mean approximately matches the one in the simulations by
Berrett et al. (2020). When the parameter ξ equals zero, understood as limit ξ →
0 for the hyperbolic tangent, the model is correctly specified. Panel (a) of Figure
D.3 shows that both the CRT and the e-statistics are robust with respect to slight
misspecifications of the conditional mean. The CRT based on the likelihood is much
more robust than the other two tests, due to the fact that re-estimating the logistic
regression model with simulated X is invariant under affine transformations of X and
Z and hence able to correct much of the misspecification. The e-statistic based test
is less robust than this variant of the CRT, since it does not re-estimate the logistic
model with simulated X, but still substantially more robust than the CRT based on
unconditional correlation, which already with n = 200, as compared to n = 2000 for
the e-values, has rejection rates strongly exceeding the nominal level as ξ increases.

In panel (b) of Figure D.3, the rejection rates of the tests are shown when the
distribution of Xp is estimated on an independent unlabeled data set, for different
sizes of this data set. The estimation of the conditional distribution is by linear
regression, with the maximum likelihood estimator for the conditional variance. Here
the e-statistics have rejection rates below the nominal level, even for unlabeled sample
size as small as 50. Also the CRT with logistic likelihood as test statistic has rejection
rate close to the nominal level.

Finally, in panel (c) of Figure D.3 the rejection rates are depicted for the case when
the same data is used both for estimating the distribution of X and for testing. The
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Figure D.2: Misspecification in the conditional mean of X given Z for the three different
functions from Section D.1.2. Upper row of plots: X | Z generated as in Berrett et al. (2020,
Section 6.1.1). Lower row: X | Z generated as in Section 6.4 with q = 4. The dashed line
shows the (height adjusted) density of the conditional expectation of X given Z. The values
for ξ given in the legend refer to the misspecifications in the same order as the panel colums
(cubic/quadratic/tanh), with the first triple giving ξ for X | Z as simulated by Berrett et al.
(2020) (upper three figures), and the second triple the values of ξ applied when X | Z is
generated as in Section 6.4 (lower three figures).

estimation is as described in the previous paragraph. For the CRT, the distribution
of X is estimated on the same data to which the test is applied, like in the simulation
study of Berrett et al. (2020). For the e-statistics, a slightly different approach is taken,
tailored to sequential settings. We start with a potentially small unlabeled sample,
and each time a new instance is observed, the estimate of the distribution of X is
updated with all the data available so far. Again, all tests except for the correlation
based CRT with sample size 2000 have rejection rate close to the nominal level.
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Figure D.3: (a) Rejection rates of e-values and conditional randomization test (with sample
sizes n = 200, 1000, 2000 and likelihood as test statistic, and n = 200, 2000 and correlation
as test statistic) at the level α = 0.05, under different misspecifications for the conditional
mean of X. (b) Rejection rates when the distribution of X is estimated on a separate sample,
for varying sample sizes. (c) Rejection rates when the same data is used both for estimating
the conditional distribution of X and applying the test, as described in the text.

D.2 Proofs of Main Results

D.2.1 Proof of Theorem 6.1

Proof. Let P ∈ H0 arbitrarily. The proof relies on the simple insight that we can
separate the expectation with respect to (Yn, Zn) from that with Xn,

EP [ECI
hn

(Xn, Yn, Zn) | Dn−1]

= EP

[
EP

[
hn(Xn, Yn, Zn)∫

X hn(x, Yn, Zn) dQZn
(x)

∣∣∣∣Yn, Zn, Dn−1
] ∣∣∣∣Dn−1

]
= EP

[∫
X hn(x′, Yn, Zn) dQZn

(x′)∫
X hn(x, Yn, Zn) dQZn(x)

∣∣∣∣Dn−1
]

= 1,

where in the last step we use that PXn|Yn,Zn
= PXn|Zn

= QZn .
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D.2.2 Proof of Proposition 6.2

Proof. Define X̃0 = Xn. The random variables X̃0, . . . , X̃M are exchangeable, so

ĚCI
hn;j(Dn) := hn(X̃j , Yn, Zn)∑M

i=0 hn(X̃i, Yn, Zn)/(M + 1)
, j = 0, . . . , M,

have the same expected value as ĚCI
hn

(Dn) = ĚCI
hn;0(Dn). Since

∑M
i=0 ĚCI

hn;i(Dn) ≡
M + 1, this implies EP [ĚCI

hn
(Dn) | Dn−1] = 1.

D.2.3 Proof of Theorem 6.3

Proof. Let f = fX,Y,Z(x, y, z) be the density of (X, Y, Z) with respect to a measure
σ × µ × ν on X × Y × Z. Then the conditional density fY |X,Z equals

fY |X,Z(y | x, z) = f(x, y, z)∫
Y f(x, s, z) dσ(s)

.

The density of QZ must equal the conditional density fX|Z , which is given by

fX|Z(x | z) =
∫

Y f(x, s, z) dσ(s)∫
X
∫

Y f(r, s, z) dσ(s) dµ(r)
,

so that, with h(x, y, z) = fY |X,Z(y|x, z),∫
X

h(x, y, z) dQz(x) =
∫

X

f(r, y, z)∫
X
∫

Y f(r′, s, z) dσ(s) dµ(r′)
dµ(r) = fY |Z(y | z).

Hence the e-statistic with this choice of h is equal to

ECI
fY |X,Z

(Xi, Yi, Zi) =
fY |X,Z(Yi | Xi, Zi)

fY |Z(Yi | Zi)
= fX,Y,Z(Xi, Yi, Zi)

fY |Z(Yi | Zi)fX|Z(Xi | Zi)fZ(Zi)
.

The denominator is the density of an element of H0 as in (6.1). Theorem 1 by Grünwald
et al. (2024) states that this e-statistic must therefore be the GRO e-statistic for a
single data point (Xi, Yi, Zi) and the same argument can be applied to the product of
these e-statistics. Finally, a slight rewriting shows that the e-statistic corresponds to
the ratio of the joint conditional density of (X, Y ) given Z divided by the product of
its marginals. For all i, the expected value of log ECI

fY |X,Z
(Xi, Yi, Zi) conditional on Z

is therefore equal to the conditional mutual information of X and Y given Z.
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D.2.4 Proof of Proposition 6.4

Proof. Since the distribution QZ is well-specified, we denote gY |Z for the density∫
gY |X,Z dQZ . Then the quantity of interest is given by

Ef

[
log ECI

gY |X,Z
(x, y, z)

]
= Ef

[
log

gY |X,Z(y | x, z)
gY |Z(y | z)

]
= If (X; Y | Z) + Ef

[
log

gY |X,Z(y | x, z)
gY |Z(y | z) − log f(x, y, z)

fX|Z(x | z)fY |Z(y | z)fZ(z)

]
= If (X; Y | Z) + Ef

[
log

gY |X,Z(y | x, z)
gY |Z(y | z) − log

fY |X,Z(y | x, z)
fY |Z(y | z)

]
= If (X; Y | Z) + Ef [KL(fY |Z∥gY |Z)] − Ef [KL(fY |X,Z∥gY |X,Z)].

The desired result follows from the nonnegativity of KL divergence.

D.2.5 Proof of Theorem 6.6

Proof. Fix N ∈ N and α ∈ (0, 1). Conditional on Yi, Zi, i = 1, . . . , N , the randomness
of the process Sn = Sn(Xn) =

∏n
i=1 ẼCI

hn
, n = 1, . . . , N , solely stems from X1, . . . , XN ,

and we will write Yi, Zi with lower case letters yi, zi to reflect that all statements are
conditional on their values. So the e-value at time n writes as

ẼCI
hn

= hn(Xn, yn, zn | Xn−1, yn−1, zn−1)∫
X hn(x, yn, zn | Xn−1, yn−1, zn−1) dQ̂zn(x)

.

The condition hn > 0 ensures that this e-value is well-defined. For n > N , set hn ≡ 1,
so that Sn = SN for n > N . If XN has distribution Q̂N

ZN , then the process (Sn)n∈N is
a nonnegative martingale with respect to the filtration Fn = σ(X1, . . . , Xn), because

E
[
Sn|Xn−1] =

∫
X

hn(x, yn, zn | Xn−1, yn−1, zn−1)∫
X hn(x, yn, zn | Xn−1, yn−1, zn−1) dQ̂Zn

(x)
dQ̂Zn(x) = 1

almost surely. Hence by Ville’s inequality, P (∃ n ≤ N : Sn ≥ 1/α) ≤ α. Let

A = {xn ∈ X n : ∃ n ≤ N s.t. Sn(xn) ≥ 1/α} .

Then, since QN
ZN (A) = P (∃ n ≤ N : Sn ≥ 1/α | Y N = yN , ZN = zN ),

P (∃ n ≤ N : Sn ≥ 1/α | Y N , ZN ) ≤ Q̂N
zN

(A)+dTV(QN
ZN , Q̂N

ZN ) ≤ α+dTV(QN
ZN , Q̂N

ZN ).
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D.2.6 Proof of Proposition 6.7

Proof. The subgaussianity assumption (i) implies that

P
(
|u⊤((X, Z) − E[(X, Z)])| ≥ η) ≤ 2 exp(−η2/(2∥u∥2σ2)

)
, η > 0, u ∈ Rp+q, (D.1)

and that E[∥(X, Z)∥k] < ∞ for all k ∈ N. As a consequence of the latter and of
assumption (i)(a), Theorem 1 of Qian and Field (2002) implies that the MLE θ̂n

exists with asymptotic probability one and satisfies ∥θ̂n −θ∥ = O(n−1/2 log(log(n))1/2)
almost surely.

We now study the properties of the function θ 7→ log(pθ(y | x, z)) for θ ∈ Rp+q.
The derivative of log(pθ(y | x, z)) with respect to θj equals

d

dθj
log(pθ(y | x, z)) =

yxj − xjpθ(1 | x, z) if j ≤ p

yzj−p, −zj−ppθ(1 | x, z) else.

Consequently, for any θ, θ′ ∈ Rp+q,

| log(pθ(y | x, z)) − log(pθ′(y | x, z))| ≤ ∥(x, z)∥∥θ − θ′∥. (D.2)

This implies that

1
n

∣∣∣ n∑
i=1

log(pθ̂i−1
(Yi | Xi, Zi))− log(pθ(Yi | Xi, Zi))

∣∣∣ ≤ 1
n

n∑
i=1

∥θ̂i−1 − θ∥∥(Xi, Zi)∥

≤

(
1
n

n∑
i=1

∥θ̂i−1 − θ∥2

)1/2(
1
n

n∑
i=1

∥(Xi, Zi)∥2

)1/2

.

Since ∥(Xi, Zi)∥2, i ∈ N, are independent with expectation E[∥(X, Z)∥2] < ∞, the law
of large number implies that

∑n
i=1 ∥(Xi, Zi)∥2/n → E[∥(X, Z)∥2] < ∞ almost surely,

and
∑n

i=1 ∥θ̂i−1 − θ∥2/n → 0 since ∥θ̂n − θ∥ → 0 almost surely as n → ∞. It remains
to show an analogous convergence result for the denominator in SCI

n . Define

rn =
∫

pθ(Yn | x, Zn) dQZn
(x)∫

pθ̂n−1
(Yn | x, Zn) dQZn

(x)
.

We want to show that lim infn↣∞
∑n

i=1 log(ri)/n ≥ 0 almost surely. To this end,
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write

rn =
∫

pθ(Yn | x, Zn) dQZn
(x)∫

pθ(Yn | x, Zn) dQZn
(x) +

∫
(pθ̂n−1

(Yn | x, Zn) − pθ(Yn | x, Zn)) dQZn
(x)

≥
∫

pθ(Yn | x, Zn) dQZn
(x)∫

pθ(Yn | x, Zn) dQZn
(x) +

∫
|pθ̂n−1

(Yn | x, Zn) − pθ(Yn | x, Zn)| dQZn
(x)

.

Since log(1 + x) ≤ x, we have log(1/(1 + x)) = − log(1 + x) ≥ −x, for x > −1. So

log(rn) ≥ −
∫

|pθ̂n−1
(Yn | x, Zn) −

∫
pθ(Yn | x, Zn)| dQZn(x)∫

pθ(Yn | x, Zn) dQZn(x)

The function θ 7→ pθ(y | x, z) is Lipschitz continuous, because for k = 1, . . . , p + q,

∣∣∣ d

dθk
pθ(y | x, z)

∣∣∣ =

|xk|pθ(1 | x, z)(1 − pθ(1 | x, z)) ≤ |xk| if k = 1, . . . , p

|zk−p|pθ(1 | x, z)(1 − pθ(1 | x, z)) ≤ |zk−p| else.

This implies that

log(rn) ≥ −
∥θ̂n−1 − θ∥

∫
∥(x, Zn)∥ dQZn

(x)∫
pθ(Yn | x, Zn) dQZn

(x)
.

To bound this from below, we now show that the denominator
∫

pθ(Yn | x, Zn) dQZn
(x)

is small only with a small probability. Let κn = n−δ/2 for δ > 0. Define the events

An =
{

min
y=0,1

pθ(y | Xn, Zn) ≤ κn

}
.

Let logit(p) = log(p/(1 − p)). Then,

min
y=0,1

pθ(y | x, z) ≤ κn ⇐⇒ |θ⊤(x, z)| ≥ |logit(κn)|,

and therefore, since |logit(p)| ≥ | log(2p)| for p ∈ (0, 1/2],

An ⊆ {|θ⊤(Xn, Zn)| ≥ | log(2κn)|} = {|θ⊤(Xn, Zn)| ≥ δ log(n)},

The above derivations yield P (An) ≤ P (|θ⊤(Xn, Zn)| ≥ δ log(n)), and (D.1) implies,
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with B = ∥θ∥,

P (|θ⊤(X, Z)| ≥ δ log(n)) ≤ P
(
|θ⊤((X, Z) − E[(X, Z)])| ≥ δ log(n)) − |θ⊤E[(X, Z)]|

)
≤ 2 exp(−δ2 log(n)2/(8B2σ2)),

for n large enough such that δ log(n)/2 ≥ |θ⊤E[(X, Z)]|. In a next step, we use this
to bound miny=0,1

∫
pθ(y | x, Zn) dQZn

(x). First, note that for y ∈ {0, 1},∫
pθ(y | x, Zn) dQZn

(x) =
∫

pθ(y | x, Zn)1{pθ(y | x, Zn) ≥ 1 − κn} dQZn
(x)

+
∫

pθ(y | x, Zn)1{pθ(y | x, Zn) < 1 − κn} dQZn(x)

≤ QZn(pθ(y | Xn, Zn) ≥ 1 − κn) + 1 − κn.

It follows that for η > 0, if
∫

pθ(y | x, Zn) dQZn
(x) ≥ 1 − n−η, then QZn

(pθ(y |
Xn, Zn) ≥ 1 − κn) ≥ κn − n−η. Recall that κn = n−δ/2 with δ > 0 unspecified so
far. For n large enough such that n−η/2 ≤ 1/4, choosing δ = η/2 implies κn − n−η =
n−η/2(1/2 − n−η/2) ≥ n−η/2/4. Consequently, for large n, by Markov’s inequality,

P

(∫
pθ(y | x, Zn) dQZn

(x) ≥ 1 − n−η

)
≤ P

(
QZn

(pθ(y | Xn, Zn) ≥ 1 − κn) ≥ n−η/2/4
)

≤ 4nη/2E[QZn(pθ(y | Xn, Zn) ≥ 1 − κn)]

= 4nη/2P (pθ(y | Xn, Zn) ≥ 1 − κn). (D.3)

But it has already been shown that

P (pθ(y | Xn, Zn) ≥ 1−κn) = P (pθ(1−y | Xn, Zn) ≤ κn) ≤ 2 exp(−δ2 log(n)2/(8B2σ2))

for large n, which in (D.3) gives an upper bound of

8 exp
(
− log(n)(η2 log(n)/(32B2σ2) − η/2)

)
.

Since η2 log(n)/(32B2σ2) − η/2 → ∞ as n → ∞, it holds that η2 log(n)/(32B2σ2) −
η/2 > 1 for n large enough, and we can conclude

∞∑
n=1

P

(
min

y=0,1

∫
pθ(y | x, Zn) dQZn

(x) ≤ n−η

)
< ∞.
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Thus the Borel-Cantelli Lemma implies that miny=0,1
∫

pθ(y | x, Zn) dQZn(x) ≤ n−η

holds for only finitely many n with probability one. Now

1
n

n∑
i=1

log(ri) ≥ − 1
n

n∑
i=1

∥θ̂i−1 − θ∥
∫

∥(x, Zi)∥ dQZi
(x)∫

pθ(Yi | x, Zi) dQZi
(x)

≥ −M

n
−

n∑
i=1

iη∥θ̂i−1 − θ∥
∫

∥(x, Zi)∥ dQZi
(x)

= −M

n
− 1

n

n∑
i=1

iη∥θ̂i−1 − θ∥E[∥(Xi, Zi)∥ | Zi]

≥ −M

n
−

(
1
n

n∑
i=1

i2η∥θ̂i−1 − θ∥2

)1/2(
1
n

n∑
i=1

E[∥(Xi, Zi)∥ | Zi]2
)1/2

,

(D.4)

where

M =
∞∑

i=1
1
{∫

pθ(Yi | x, Zi) dQZi
(x) ≤ i−η

}
∥θ̂i−1 − θ∥

∫
∥(x, Zi)∥ dQZi

(x)∫
pθ(Yi | x, Zi) dQZi

(x)

is the sum of log(ri) over all almost surely finitely many i s.t.
∫

pθ(Yi | x, Zi) dQZi
(x) ≤

i−η. Since (Xi, Zi), i ∈ N, are independent and identically distributed with

E[E[∥(X, Z)∥|Z]2] ≤ E[∥(X, Z)∥2] < ∞,

the law of large numbers implies

1
n

n∑
i=1

E[∥(Xi, Zi)∥ | Zi]2 ≤ 1
n

n∑
i=1

E[∥(Xi, Zi)∥2 | Zi] → E[∥(X, Z)∥2] < ∞

almost surely as n → ∞. On the other hand, n2η∥θ̂n−1 − θ∥2 = O(n2η−1 log(log(n)))
almost surely, so that for η < 1/2, we have n2η∥θ̂n−1 − θ∥2 → 0 almost surely as
n → ∞. Finally, since M only takes finite values, also M/n → 0 for n → ∞. Hence
(D.4) converges to 0 almost surely. It follows that

lim inf
n→∞

1
n

(
log(SCI

n ) − log
(

n∏
i=1

pθ(Yi | Xi, Zi)∫
pθ(Yi | x, Zi) dQZi(x)

))
≥ 0
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almost surely. Since

1
n

n∑
i=1

log
(

pθ(Yi | Xi, Zi)∫
pθ(Yi | x, Zi) dQZi

(x)

)
→ I(X; Y | Z) > 0, n → ∞,

almost surely, by the law of large numbers, this proves the theorem.

D.3 Anytime-Valid E-Statistics

In this section, we discuss an alternative way to define anytime-valid tests using e-
statistics and show that, in the setting of Chapter 6, this method coincides with the
method discussed in Section 6.2.2. In Section 6.2.2, we mentioned that a sequence
of conditional e-statistics gives rise to a test martingale (Sn(Dn))n∈N, which satisfies
EP [Sτ (Dτ )] ≤ 1 for any stopping time τ and P ∈ H0. Rather than taking the latter as
a consequence, Koolen and Grünwald (2022) take this as the definition of what they
call anytime-valid e-statistics. That is, they call a nonnegative process (En(Dn))n∈N

an anytime-valid e-statistic if EP [Eτ (Dτ )] ≤ 1 for any stopping time τ and P ∈ H0.
The same object is referred to as e-process in Ramdas et al. (2022), and it can be shown
that the class of anytime-valid e-statistics (or e-processes) is strictly larger than the
class of test martingales. A priori it is not obvious whether the GRO criterion, which
maximizes the expected growth rate without referring to any particular stopping time,
also yields powerful e-statistics when specific stopping rules τ are applied. Therefore,
Koolen and Grünwald (2022) propose, for fixed alternative distribution H1 = {P ∗}
and stopping time τ , to look for the anytime-valid e-statistic that maximizes

(En)n∈N 7→ EP ∗ [log Eτ (Dτ )]. (D.5)

It turns out that there are settings in which the optimal anytime-valid e-statistic is
actually equal to the GRO test martingale. One of the settings in which this happens
is given in their Theorem 12. We present a slightly rephrased version of this theorem
here.

Theorem D.1 (Koolen and Grünwald (2022)). Assume that the data is given by an
i.i.d. stream (Di)i∈N and that the alternative is given by H1 = {P ∗}, where P ∗ admits
a density p∗. Suppose further that the GRO e-statistic is given by the likelihood ratio
p∗/q, where q is the density of an element of H0. Then the process (p∗(Di)/q(Di))i∈N
also maximizes (D.5) for any stopping time τ .
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In the proof of our Theorem 6.3 (see Section D.2.3), we show that the GRO e-
variable is exactly of the form described in Theorem D.1. It therefore follows that
the test martingale that we give in (6.7) is actually also the optimal anytime-valid
e-statistic. We therefore chose to focus on the GRO property in Chapter 6.
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E.1 Proofs

E.1.1 Proof of Proposition 7.4

Proposition 7.4. For Xn−1 ∈ X n−1 and Xn ∈ X , define Fn(γn−1(Xn−1), Xn) =
γn((γn−1(Xn−1), Xn)), where, with a slight abuse of notation, we use (γn−1(Xn−1), Xn)
to refer to the concatenation of γn−1(Xn−1) and Xn. We will show that Fn has the
claimed properties. First, we will show that the vectors (γn−1(Xn−1), Xn) and Xn

are in the same orbit, so that also γn((γn−1(Xn−1), Xn)) = γn(Xn). To this end, let
g′ ∈ Gn−1 denote the group element such that g′Xn−1 = γn−1(Xn−1). Then it holds
that

{g(γn−1(Xn−1), Xn) : g ∈ Gn} = {g(g′Xn−1, Xn) : g ∈ Gn}

= {gın(g′)Xn : g ∈ Gn}

= {gXn : g ∈ Gn},

where we used (iii) of Definition 7.2 for the second equality and called Xn the con-
catenation of Xn−1 and Xn. This shows the first claim. For the second claim,
that Fn( · , Xn) is one-to-one for each fixed Xn, we show that we can reconstruct
γn−1(Xn−1) from Xn and γn(Xn).

Pick any gXn
∈ Gn such that (gXn

γn(Xn))n = Xn. We furthermore know that
there exists some g ∈ Gn such that gXn = γn(Xn). Note that gXn

g does nothing to
the final coordinate of Xn, so by item (iii) of Definition 7.2 there is a g∗

n−1 ∈ Gn−1
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such that gXngXn = ı(g∗
n−1)Xn. Then we see

{ı(gn−1)gXnγn(Xn) : gn−1 ∈ Gn−1} = {ı(gn−1)gXngXn : gn−1 ∈ Gn−1}

= {ı(gn−1)ı(g∗
n−1)Xn : gn−1 ∈ Gn−1}

= {ı(gn−1)Xn : gn−1 ∈ Gn−1}.

It follows from item (ii) of Definition 7.2 that Gn−1projn−1(gXnγn(Xn)) = Gn−1Xn−1.
It therefore follows that γn−1(projn−1(gXnγn(Xn))) = γn−1(Xn−1).

E.1.2 Proof of Theorem 7.8

Theorem 7.8. The proof can be divided in two main steps: (1) to show that, condition-
ally on γn(Xn), Rn is uniformly distributed for each n and (2) to show that R1, R2, . . .

are also independent. The second step is completely analogous to the proof of Theorem
3 by Vovk (2002). For each n, define the σ-algebra Gn = σ(γn(Xn), Xn+1, Xn+2, . . . ).
Notice that Gn contains—among others—all Gn-invariant functions of Xn because γn

is a maximally invariant function of Xn—any other Gn-invariant function of Xn is
a function of γn(Xn). Let g′ ∈ Gn such that γn(Xn) = g′Xn, then we have that
{g ∈ Gn : A((gXn)n, γn(Xn))n < αn} = {g ∈ Gn : A((gγn(Xn)n, γn(Xn))n < αn}g′.
Here, we define Bg = {bg : b ∈ B} for a subset B ⊆ Gn. By the invariance of µn—it
is the Haar probability measure—, it follows that

µn({g ∈ Gn : A((gXn)n, γn(Xn))n < αn})

= µn({g ∈ Gn : A((gγn(Xn))n, γn(Xn))n < αn}).

An analogous identity can be derived for the second term in (7.3). We have αn | Gn
D=

A((Uγn(Xn))n, γn(Xn))n | Gn.
We will denote F (b) := µ({g ∈ Gn : A((gγn(Xn))n, γn(Xn))n < b}) and define

G(δ) = sup{b ∈ R : F (b) ≤ δ}. If αn | Gn is continuous, then F is the CDF of that
distribution, otherwise it is the CDF minus the probability of equality. In any case,
F is is increasing and right-continuous. For any δ ∈ (0, 1), we have that F (G(δ)) = δ′

for some δ′ ≤ δ, with equality if F is continuous in G(δ). Then we can write

P(Rn ≤ δ | Gn) = P(Rn ≤ δ′ | Gn) + P(δ′ < Rn ≤ δ | Gn). (E.1)

For any θ ∈ (0, 1], we have that Rn = F (αn) + θ(F (α+
n ) − F (αn)) ≤ δ′ if and only if

either F (αn) < δ′ or F (α+
n ) − F (αn) = 0, which happens precisely when αn < G(δ).
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We therefore see

P(Rn ≤ δ′ | Gn) = P(αn < G(δ′) | Gn) = F (G(δ′)) = δ′.

If F is continuous in G(δ), then this shows that P(Rn ≤ δ | Gn) = δ, since δ′ = δ in
that case. If F is not continuous in G(δ), then we have that

P(δ′ < Rn ≤ δ | Gn) = P(δ′ < F (αn) + θ(F (α+
n ) − F (αn)) ≤ δ | Gn).

Notice that δ′ < F (αn) + θ(F (α+
n ) − F (αn)) ≤ δ if and only if αn = G(δ) and

θ < (δ − δ′)/(F (α+
n ) − F (αn)), so that we can write

P(δ′ < Rn ≤ δ | Gn) = P(αn = G(δ) | Gn)P
(

θ ≤ δ − δ′

F (G(δ′)+) − F (G(δ′)) | Gn

)
= (F (G(δ′)+) − F (G(δ′))) δ − δ′

(F (G(δ′)+) − F (G(δ′)))
= δ − δ′.

Putting everything together, we see that P(Rn ≤ δ | Gn) = δ. This shows the first
part, that Rn has a conditional uniform distribution on [0, 1].

For the second part of the proof, we show that the sequence R1, R2, . . . is also an
independent sequence. We have that Rn is Gn−1-measurable because it is invariant
under transformations of the form Xn 7→ (gXn−1, Xn) for g ∈ Gn−1 (see also Vovk,
2004, Lemma 2). We proceed (implicitly) by induction:

P(Rn ≤ δn, . . . , R1 ≤ δ1 | Gn) = E [1 {Rn ≤ δn, . . . , R1 ≤ δ1} | Gn]

= E [E [1 {Rn ≤ δn, . . . , R1 ≤ δ1} | Gn−1] | Gn]

= E [1 {Rn ≤ δn} E [1 {pn−1 ≤ δn−1, . . . , R1 ≤ δ1} | Gn−1] | Gn]

= E [1 {Rn ≤ δn}] δn−1 · · · δ1

= δn · · · δ1.

It follows by the law of total expectation that

P(Rn ≤ δn, . . . , R1 ≤ δ1) = δn · · · δ1,

which shows that R1, R2, . . . , Rn are independent and uniformly distributed on [0, 1]
for any n ∈ N. This implies that the distribution of R1, R2, . . . coincides with U∞
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by Kolmogorov’s extension theorem (see e.g. Shiryaev, 2016, Theorem II.3.3). This
shows the claim of the theorem.

E.1.3 Proof of Proposition 7.9

The proof of Proposition 7.9 follows directly from Lemma E.1. It states that, with
probability one, enough of the original data can be recovered using the smoothed ranks
and the orbit representative. We state Lemma E.1, prove Proposition 7.9 and then
prove Lemma E.1.

Lemma E.1. Suppose, for each n ∈ N, that A( · , γn(Xn)) is a one-to-one function
of Xn, then there exists a map Dn : [0, 1]n × X n → [0, 1]n × X n s.t. for any Q ∈ H0,
Q̃(Dn(Rn, γn(Xn)) = (θ̃n, Xn)) = 1. Here, θ̃n = (θ̃n)n∈N is the sequence given by
θ̃n = θn1 {µn({g ∈ Gn : A((gXn)n, γn(Xn))n = αn}) ̸= 0}.

Proposition 7.9. Consider, without loss of generality, the case that A(Xn, γn(Xn)) =
Xn. Because of the independence of Rn and γn under P and the assumption that the
marginal distribution of γn under Q∗ and under P are equal, Mn = dP̃ (Rn,γn(Xn))

dQ̃∗(Rn,γn(Xn))
.

Using the sequence of functions (Dn)n∈N from Lemma E.1 and that the external
randomization is independent of Xn, the claim follows.

Lemma E.1. As in the proof of Theorem 7.8, we will denote F (b) = µn({g ∈ Gn :
A((gXn)n, γn(Xn))n < b}) and define G(δ) = sup{b ∈ R : F (b) ≤ δ}. Furthermore,
we will write Pαn|γn(Xn) for the distribution of αn given γn(Xn) and denote its support
by

supp(Pαn|γn(Xn)) := {x ∈ R | for all I open, if x ∈ I then Pαn|γn(Xn)(I) > 0},

If b ∈ int(supp(Pαn|γn(Xn))), then there exists an open interval B with b ∈ B and
B ⊆ supp(Pαn|γn(Xn))). For all c ∈ B with c > b, we have that F (c) − F (b) =
Pαn|γn(Xn)([b, c)) > 0, since [b, c) contains an open neighborhood of an interior point
of the support. It follows that F (c) > F (b). In words, there are no points c to the
right of b such that F (c) > F (b). Consequently, we have

G(F (b)) = sup{a ∈ R : F (a) ≤ F (b)} = b.

In a similar fashion, we can conclude that the same identity holds whenever b ∈
supp(Pαn|γn(Xn))\int(supp(Pαn|γn(Xn))). Notice furthermore that G(Rn) = G(F (αn)+
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θn(F (α+
n ) − F (αn))) = G(F (αn)) whenever θn < 1, which happens with probabil-

ity one. Together with the fact that Pαn|γn(Xn)(supp(Pαn|γn(Xn))) = 1, this gives
Pαn|γn(Xn)(G(Rn) = αn) = 1, so also P(G(Rn) = αn) = 1. If (F (G(Rn)+) −
F (G(Rn))) = µn({g ∈ Gn : (gαn)n = αn}) = 0, set θ̃n = 0. If µn({g ∈ Gn : (gαn)n =
αn}) > 0, then it follows that P(θn = (Rn − F (G(Rn)))/(F (G(Rn)+) − F (G(Rn)))) =
1, so set θ̃n = (Rn − F (G(Rn)))/(F (G(Rn)+) − F (G(Rn))). Since A(·, γn(Xn)) is
one-to-one by assumption, its inverse maps αn to Xn. By Proposition 7.4, there also
exists a map from Xn and γn(Xn) to γn−1(Xn−1). At this point, we can repeat the
procedure above to recover Xn−1 from (Rn−1, γn−1(Xn−1)), from which we can then
recover γn−2(Xn−2), etc. Together, all of the maps involved give the function as in
the statement of the proposition.

E.1.4 Proof of Theorem 7.10

Theorem 7.10. We first show (7.6). Assume that P̃ is such that Rn ⊥ γn(Xn) for all
n. Let Q∗ denote the distribution under which the marginal of γn(Xn) coincides with
that under P , and such that Xn | γn(Xn) D= Uγn(Xn) | γn(Xn), where U ∼ µn is
uniform on Gn and independent from γn(Xn). First note that

Q̃∗

(
τ∏

i=1
fi(Ri) = dP

dQ∗ (Xτ )
)

≥ Q̃∗

(
∀t :

t∏
i=1

fi(Ri) = dP

dQ∗ (Xt)
)

= 1 − Q̃∗

(
∃t :

t∏
i=1

fi(Ri) ̸= dP

dQ∗ (Xt)
)

= 1 − Q̃∗

( ∞⋃
t=1

{
t∏

i=1
fi(Ri) ̸= dP

dQ∗ (Xt)
})

≥ 1 −
∞∑

t=1
Q̃∗

({
t∏

i=1
fi(Ri) ̸= dP

dQ∗ (Xt)
})

= 1.

In the last inequality, we used Lemma E.1. By assumption, we have P̃ ≪ Q̃∗, so we
also have P̃

(∏τ
i=1 fi(Ri) = dP

dQ∗ (Xτ )
)

= 1. We have shown that Mτ is a modification
of the likelihood ratio evaluated at Xτ . We now show that the latter is optimal.

Denote ℓn = dP
dQ∗ (Xn) and let f(α) = E

P̃
[ln((1 − α)ℓτ + αE′

τ )]; a concave func-
tion. We will show that the derivative of f in 0 is negative, which implies that f
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attains its maximum in α = 0. This in turn implies our claim. Indeed,

f ′(0) = E
P̃

[
E′

τ − ℓτ

ℓτ

]
=

∞∑
i=1

E
P̃

[
E′

i

ℓi
1 {τ = i}

]
− 1

=
∞∑

i=1
E

Q̃∗ [E′
i1 {τ = i}] − 1

= E
Q̃∗ [E′

τ ] − 1 ≤ 0,

where we use that differentiation and integration can be interchanged, because

|f ′(α)| =
∣∣∣∣ E′

τ − ℓτ

(1 − α)ℓτ + αE′
τ

∣∣∣∣ ≤ max
{

1
1 − α

,
1
α

}
,

so that the dominated convergence theorem is applicable. Finally, this gives that
E

P̃
[ln
∏τ

i=1 f(Ri)] = E
P̃

[ln E′
τ ] ≥ E

P̃
[ln E′

τ ]. The proof of (7.5) follows from the
same argument, but using ℓ′

n = dP
dQ∗ (Rn).

E.2 Linear Models and Isotropy Groups

The rotational symmetry described in Section 7.5.2 is that of symmetry around the
origin, which we argued is equivalent to testing whether Xi ∼ N (0, σ) for some σ ∈ R+.
Of course, there are many applications where it is not reasonable to assume that the
data is zero-mean and it is more interesting to test whether the data is spherically
symmetric around some point other than the origin. One particular instance of such
noncentered sphericity is to test whether, for each n, the data can be written as
Xn = µ1n + ϵn, where µ ∈ R, the error ϵn is spherically symmetric and 1n is the n-
vector of all ones. If µ is known, we can test for spherical symmetry of Xn −µ1n under
O(n) and the problem reduces to that of the previous section. It is still possible treat
the more realistic case where µ is unknown because the null model is still symmetric
under a family of rotations. Notice the following: for any On ∈ O(n) it holds that
OnXn = µOn1n + Onϵn. Unless µ = 0, it follows that Xn D= OnXn every time
that On1n = 1n. That is, the null distribution of Xn is invariant under the isotropy
group of 1n, i.e. Gn = {On ∈ O(n) : On1n = 1n}. Invariance under the action of
Gn has previously appeared in the literature as centered spherical symmetry (Smith,
1981). Through the lens of test martingales, testing sequentially for centered spherical
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symmetry is equivalent to testing whether the data was generated by any Gaussian.
This holds because any probability distribution on R∞ for which the marginal of the
first n coordinates is centered spherically symmetric for any n can be written as a
mixture of Gaussians (Smith, 1981; Eaton, 1989, Theorem 8.13).

Using some geometry, a test is readily obtained. Note that we can write Xn =
Xn

1n
+ Xn

⊥1n
, where Xn

1n
= ⟨Xn,1⟩

n 1n is the projection of Xn onto the span of 1n,
and Xn

⊥1n
the projection onto its orthogonal complement. We have that gXn =

Xn
1n

+ gXn
⊥1n

for any g ∈ Gn. Consequently, the orbit of Xn under Gn is given by the
intersection of Sn−1(∥Xn∥) and the hyperplane Hn(Xn) defined by Hn(Xn) = {x′n ∈
Rn : ⟨x′n, 1n⟩ = ⟨Xn, 1n⟩}. There is a unique line that is perpendicular to Hn(Xn)
and passes through the origin 0n = (0, . . . , 0); it intersects Hn(Xn) in the point
0Hn

:= ⟨Xn,1n⟩
n 1n. For any x′n ∈ Sn−1(∥Xn∥) ∩ Hn(Xn), Pythagoras’ theorem gives

that ∥x′n−0Hn
∥2 = ∥Xn∥2−∥0Hn

−0n∥2. In other words, Sn−1(∥Xn∥)∩Hn(Xn) forms
an (n − 2)-dimensional sphere of radius (∥Xn∥2 − ∥0Hn

− 0n∥2)1/2 around 0Hn
. If one

considers the projection of this sphere on the n-th coordinate, then the highest possible
value is given by ∥Xn∥, and the lowest value therefore by ⟨Xn,1n⟩

n − 1
2 (∥Xn∥− ⟨Xn,1n⟩

n ).
The relative value of Xn is therefore given by X̃n := Xn− ⟨Xn,1n⟩

n + 1
2 (∥Xn∥− ⟨Xn,1n⟩

n ).
As a result, Rn is the relative surface area of the (n − 2)-dimensional hyper-spherical
cap with co-latitude angle φ = π − cos−1(X̃n/(∥Xn∥2 − ∥0Hn

− 0n∥2)1/2), so that
equation (7.9) can again be used to determine Rn. With this construction, we recover
what Vovk (2023) refers to as the “full Gaussian model”, which is an online compression
model that is defined in terms of the summary statistic σn = (⟨Xn, 1n⟩, ∥Xn∥).

This model can be extended to the case in which there are covariates, i.e. Xn =
(Yn, Zd

n) for some Yn ∈ R and Zd
n ∈ Rd. Denote Zn for the matrix with row-vectors

Zd
n and, as is a standard assumption in regression, assume that Zn is full rank for

every n. The model of interest is Y n = Znβ + ϵn where β ∈ Rd and ϵn is spherically
symmetric for each n. Similar to the reasoning above, this model is invariant under
the intersection of the isotropy groups of the column vectors of Zn, i.e. Gn = {On ∈
O(n) : OnZn = Zn}. The orbit of Xn under Gn is given by the intersection of
Sn−1(∥Xn∥) with the intersection of the d hyperplanes defined by the columns of Zn,
so that for αn(Y n, Zn) = Y n, computing Rn is analogous. Interestingly, however, it
does not always hold that testing for invariance under Gn is equivalent to testing for
normality with mean Znβd. A sufficient condition for the equivalence to hold is that
limn→∞(Z ′

nZn)−1 = 0, which is essentially the condition that the parameter vector β

can be consistently estimated by means of least squares (Eaton, 1989, Section 9.3).
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F.1 Invariance and Sufficiency

The relationship between invariance and sufficiency has been thoroughly investigated
(Hall et al., 1965, 1995; Berk, 1972; Nogales and Oyola, 1996). Consider a G-invariant
hypothesis testing problem such that a sufficient statistic is available. If the action of
G on the original data space induces a free action on the sufficient statistic—that is, if
the sufficient statistic is equivariant—, there must be a maximally invariant function
of the sufficient statistic. With this structure in mind, the results presented thus
far suggest two approaches for solving the hypothesis testing problem. The first is
to reduce the data using the sufficient statistic, and to test the problem using the
maximally invariant function of the sufficient statistic. The second approach is to use
the maximally invariant function of the original data. These two approaches yield two
potentially different growth-optimal e-statistics, and one question arises naturally: are
both approaches equivalent? In this section we show that this is indeed the case, under
certain conditions.

We now introduce the setup formally. At the end of this section we revisit our
guiding example, the t-test, and show how the results of this section apply to it. Let
Θ be the parameter space, and let δ = δ(θ) be a maximally invariant function of θ

for the action of G on Θ. Let sn : X n → Sn be a sufficient statistic for θ ∈ Θ.
Consider again the hypothesis testing problem in the form presented in (8.1). Assume
further that G acts freely and continuously on the image space Sn of the sufficient
statistic Sn = sn(Xn). Denote by (g, s) 7→ gs the action of G on Sn. We assume
that sn is equivariant, that is, sn is compatible with the action of G in the sense
that, for any Xn ∈ X n and any g ∈ G, the identity gsn(Xn) = sn(gXn) holds. Let
MX ,n = mX ,n(Xn) and MS,n = mS,n(Sn) be two maximally invariant functions for the
actions of G on X n and Sn, respectively. Because of their invariance, the distributions
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of MX ,n and MS,n depend only on the maximally invariant parameter δ. Hall et al.
(1965, Section II.3) proved that, under regularity conditions, if SX ,n = sX ,n(Xn)
is sufficient for θ ∈ Θ, then the statistic MS,n = mS,n(sn(Xn)) is sufficient for δ.
In that case, we call MS,n invariantly sufficient. Here we state the version of their
result, attributed by Hall et al. (1965) to C. Stein, that suits best our purposes (see
Remark F.1).

Theorem F.1 (C. Stein). If there exists a right Haar measure on the group G and
G is σ-finite, the statistic MS,n = mS,n(sn(Xn)) is invariantly sufficient, that is, it is
sufficient for the maximally invariant parameter δ.

With this theorem at hand, and the fact that the KL divergence does not decrease
by the application of sufficient transformations, we obtain the following proposition.

Proposition F.2. Let sn : X n → Sn be sufficient statistic for θ ∈ Θ. Assume that G

acts freely on Sn and that sn(gXn) = gsn(xn) for all Xn ∈ X n and g ∈ G. Let mS,n

be a maximal invariant for the action of G on Sn, and let MS,n = mS,n(sn(Xn)).
Then,

KL
(

PMX ,n

δ1
, PMX ,n

δ0

)
= KL

(
PMS,n

δ1
, PMS,n

δ0

)
.

Proof. The function MS,n = mS,n(sn(Xn)) is invariant, and consequently its distribu-
tion only depends on the maximally invariant parameter δ. Since MX ,n is maximally
invariant for the action of G on X n, there is a function f such that MS,n = f(MX ,n).
By Stein’s theorem, Theorem F.1, MS,n is sufficient for δ. Consequently, f is a suffi-
cient transformation. Hence, from the invariance of the KL divergence under sufficient
transformations, the result follows.

Via the factorization theorem of Fisher and Neyman, the likelihood ratio for the
maximal invariant MX ,n coincides with that of the invariantly sufficient MS,n. As a
consequence, we obtain the answer to the motivating question of this section: per-
forming an invariance reduction on the original data and on the sufficient statistic are
equivalent.

Corollary F.3. Under the assumptions of Proposition F.2, if Sn = sn(Xn),

qMX ,n(mX ,n(Xn))
pMX ,n(mX ,n(Xn)) = qMS,n(mS,n(Sn))

pMS,n(mS,n(Sn)) .

Hence, if assumptions of Corollary 8.3 also hold, the likelihood ratio for the invariantly
sufficient statistic MS,n is (relatively) GROW.
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Example F.1 (continues=ex:t-test). We have seen that a maximally invariant func-
tion of the data is MX ,n = mX ,n(Xn) = (X1/ |X1| , . . . , Xn/ |X1|) while the t-statistic
MS,n = mS,n(Xn) ∝ µ̂n/σ̂n is a maximally invariant function of the sufficient statistic
sn(Xn) = (µ̂n, σ̂n). Stein’s theorem (Theorem F.1) shows that the t-statistic MS,n is
sufficient for the maximally invariant parameter δ = µ/σ. Corollary F.3 shows that
the likelihood ratio for the t-statistic is relatively GROW.

Remark. In the present form, the assumptions in Theorem F.1 avoid issues that
may arise with almost-invariant functions (see Lehmann and Romano, 2005, Section
6.5). Almost-invariant functions are functions that are invariant under the action of
a group almost surely up to a null set that may depend on the group element in
question. Under the assumptions in Theorem F.1, every almost invariant function is
equivalent to an invariant one (Lehmann and Romano, 2005, Theorem 6.5.1). In turn,
the assumptions in Theorem F.1 are implied by Assumption 8.1, so that the same is
true in the general setting of Chapter 8. See also Hall et al. (1965, discussion in p.
581).

F.2 Detailed Comparison to Sun and Berger (2007)
and Liang and Barron (2004)

As the example in Section 8.5.1 illustrates, it is sometimes possible to represent the
same H0 and H1 via (at least) two different groups, say Ga and Gb. Group Ga

is combined with parameter of interest in some space ∆a and priors Π∗δa
j on ∆a

achieving (8.18) relative to group Ga, for j = 0, 1; group Gb has parameter of in-
terest in ∆b and priors Π∗δb

j achieving (8.18) relative to group Gb; yet the tuples
Ta = (Ga, ∆a, {Π∗δa

j }j=0,1) and Tb = (Gb, ∆b, {Π∗δb
j }j=0,1) define the same hypothe-

ses H0 and H1. That is, the set of distributions {P∗
g}g∈Ga obtained by applying

Proposition 8.7 with group Ga (representing H0 defined relative to group Ga) coin-
cides with the set of distributions {P∗

g}g∈Gb
obtained by applying Proposition 8.7 with

group Gb (representing H0 defined relative to group Gb); and analogously for the set
of distributions {P∗

g}g∈Ga and the set of distributions {P∗
g}g∈Gb

. In the example, Ga

was GL(d) and the priors Π∗δa
0 , Π∗δa

1 were degenerate priors on 0 and γ as in (8.23),
respectively; Gb was the lower triangular group with a specific prior as indicated in
the example. In such a case with multiple representations of the same H0 and H1,
using the fact that the notion of "GROW" does not refer to the underlying group,
Corollary 8.8 can be used to identify the GROW e-statistic as soon as the assump-

263



F.2 Detailed Comparison to Sun and Berger and Liang and Barron

tions of Proposition 8.7 hold for at least one of the tuples Ta or Tb. Namely, if the
assumptions hold for just one of the two tuples, we use Corollary 8.8 with that tuple;
then T ∗ as defined in the corollary must be GROW, irrespective of whether T ∗ based
on the other tuple is the same (as it was in the example above) or different. If the
assumptions hold for both groups, then, using the fact that the GROW e-statistic is
essentially unique (see Theorem 1 of GHK for definition and proof), it follows that
T ∗(Xn) as defined in Corollary 8.8 must coincide for both tuples.

Superficially, this may seem to contradict Sun and Berger (2007) who point out that
in some settings, the right Haar prior is not uniquely defined, and different choices for
right Haar prior give different posteriors. To resolve the paradox, note that, whereas
we always formulate two models H0 and H1, Sun and Berger (2007) start with a single
probabilistic model, say P, that can be written as in (8.3) for some group G. Their
example shows that the same P can sometimes arise from two different groups, and
then it is not clear what group, and hence what Haar prior to pick, and their quantity
of interest, the Bayesian posterior, can depend on the choice.

In contrast, our quantity of interest, the GROW e-statistic T ∗
n , is uniquely defined

as soon as there exists one group G with H0 and H1 as in (8.1) for which the as-
sumptions of Theorem 8.2 hold; or more generally, as soon as there exists one tuple
T = (G, ∆, {Π∗δ

j }j=0,1) for which the assumptions of Proposition 8.7 hold, even if
there exist other such tuples.

To reconcile uniqueness of the GROW e-statistic T ∗
n with nonuniqueness of the

Bayes posterior, note that the former is a ratio between Bayes marginals for different
models H0 and H1 at the same sample size n. In contrast, the Bayes predictive
distribution based on a single model P is a ratio between Bayes marginals for the
same P at different sample sizes n and n − 1. The role of ‘same’ and ‘different’
being interchanged, it turns out that this Bayes predictive distribution can depend on
the group on which the right Haar prior for P is based. Since the Bayes predictive
distribution can be rewritten as a marginal over the Bayes posterior for P, it is then
not surprising that this Bayes posterior may also change if the underlying group is
changed.

The consideration of two families H0 and H1 vs. a single P is also one of the main
differences between our setting and the one of Liang and Barron (2004), who provide
exact min-max procedures for predictive density estimation for general location and
scale families under Kullback-Leibler loss. Their results apply to any invariant proba-
bilistic model P as in (8.3) where the invariance is with respect to location or scale (and
more generally, with respect to some other groups including the subset of the affine
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group that we consider in Section 8.4.2). Consider then such a P and let pMn(mn(Xn))
be as in (8.5). As is well-known, provided that n′ is larger than some minimum value,
for all n > n′, r(Xn′+1, . . . , Xn | X1, . . . , Xn′) := pMn(mn(Xn))/pMn′ (mn′(Xn′)) de-
fines a conditional probability density for Xn′+1, . . . , Xn; this is a consequence of the
formal-Bayes posterior corresponding to the right Haar prior becoming proper after n′

observations, a.s. under all P ∈ P. For example, in the t-test setting, n′ = 1. Liang
and Barron (2004) show that the distribution corresponding to r minimizes the Pn′ -
expected KL divergence to the conditional distribution Pn | Xn′ , in the worst case
over all P ∈ P. Even though their optimal density r is defined in terms of the same
quantities as our optimal statistic T ∗

n , it is, just as Berger and Sun (2008), considered
above, a ratio between likelihoods for the same model at different sample sizes, rather
than, as in our setting, between likelihoods for different models, both composite, at
the same sample sizes. Our setting requires a joint KL minimization over two families,
and therefore our proof techniques turn out quite different from their information- and
decision-theoretic ones.

F.3 Anytime-Valid Testing Under Optional Stopping
and Optional Continuation

Consider the setting of Section 8.2.2. Let X = (Xn)n∈N be a random process, where
each Xn is an observation that takes values on a space X . Let (Mn)n∈N be a sequence
where, for each n, Mn = mn(Xn) is a maximally invariant function for the action of
G on X n.

Suppose that data X1, X2, . . . are gathered one by one. Here, a sequential test is
a sequence of zero-one-valued statistics ξ = (ξn)n∈N adapted to the natural filtration
generated by X1, X2, . . . . We consider the test defined by ξn = 1

{
T Mn ≥ 1/α

}
for

some value α. We note that Wald-style—Sequential Probability Ratio Tests—tests
are different because they would output "no decision" until a particular sample size n.
Afterwards, they would output 1 ("reject the null") or 0 ("there is no evidence to reject
the null") forever. In contrast, in the present setting ξn = 1 means "if you stop now, for
whatever reason, it is safe to reject the null". Below we prove the anytime validity of ξ.
Additionally, we show that, for certain stopping times τ ≤ ∞, the optionally stopped
e-statistic T Mτ remains an e-statistic. This fact validates the use of the stopped T Mτ

for optional continuation because we can multiply the e-statistics T Mτ across studies
while retaining type-I error control. This result is not new and we add it merely for
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completeness; it follows by standard arguments as Ramdas et al. (2023) or GHK.

Proposition F.4. Let T ∗ = (T Mn)n∈N, where, for each n, T Mn is the likelihood ratio
for the maximally invariant function Mn = mn(Xn) for the action of G on X n. Let
ξ = (ξn)n∈N be the sequential test given by ξn = 1

{
T Mn ≥ 1/α

}
. Then, the following

two properties hold:

1. The sequential test ξ is anytime valid at level α, that is,

for any random time N , sup
θ0∈Θ0

Pθ0 {ξN = 1} ≤ α.

2. Suppose that τ ≤ ∞ is a stopping time with respect to the filtration induced by
M = (Mn)n∈N. Then the optionally stopped e-statistic T Mτ is also an e-statistic,
that is,

sup
θ0∈Θ0

EP
θ0

[T Mτ ] ≤ 1. (F.1)

It is natural to ask whether (F.1) also holds for stopping times that are adapted
to the full data (Xn)n∈N but not to the reduced (Mn)n∈N. In our t-test example, this
could be a stopping time τ∗ such as “τ∗ := 1 if |X1| ̸∈ [a, b]; τ∗ = 2 otherwise” for
some 0 < a < b. The answer is negative: after proving Proposition F.4, we show that,
for appropriate choice of a and b, this τ∗ is a counterexample. This means that such
nonadapted τ∗ cannot be safely used under optional continuation. However, using
such a stopping time has no repercussions for optional stopping, since the time N in
part 1 of the proposition above is not even required to be a stopping time—N is not
restricted by the filtration induced by M and it is even allowed to depend on future
observations.

Proof of Proposition F.4. From Proposition 8.6, we know that T ∗ = (T Mn)n∈N is a
nonnegative martingale with expected value equal to one. Let ξ = (ξn)n be the
sequential test given by ξn = 1

{
T Mn ≥ 1/α

}
. The anytime-validity at level α of ξ,

is a consequence of Ville’s inequality, and the fact that the distribution of each T Mn

does not depend on g. Indeed, these two, together, imply that

sup
g∈G

Pg{T Mn ≥ 1/α for some n ∈ N} ≤ α.
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This implies the first statement. Now, let τ ≤ ∞ be a stopping time with respect to
the filtration induced by M . If the stopping time τ is almost surely bounded, T Mτ

is an e-statistic by virtue of the optional stopping theorem. However, since T ∗ is a
nonnegative martingale, Doob’s martingale convergence theorem implies the existence
of an almost sure limit T ∗

∞. Even when τ might be infinite with positive probability,
Theorem 4.8.4 of Durrett (2019) implies that T Mτ is still an e-statistic.

F.3.1 Importance of the Filtration for Randomly Stopped E-
Statistics

Consider the t-test as in Example 8.1. Fix some 0 < a < b, and define the stopping
time τ∗ := 1 if |X1| ̸∈ [a, b]. τ∗ = 2 otherwise. Then τ∗ is not adapted to (hence not
a stopping time relative to) (Mn)n as defined in that example, since M1 ∈ {−1, 1}
coarsens out all information in X1 except its sign. Now let δ0 := 0 (so that H0

represents the normal distributions with mean µ = 0 and arbitrary variance). Let
T ∗,δ1

n (Xn) be equal to the GROW e-statistic T Mn(Xn) as in (8.6); here we make
explicit its dependence on δ1. For H1, to simplify computations, we put a prior Π̃δ

1

on ∆1 := R. We take Π̃δ
1 to be a normal distribution with mean 0 and variance κ.

We can now apply Corollary 8.9 (with prior Π̃δ
0 putting mass 1 on δ = δ0 = 0), which

gives that T̃n = t̃n(Xn) is an e-statistic, where

t̃n(xn) =
∫ 1√

2πκ2
exp

(
− δ2

1
2κ2

)
· T ∗,δ1

n (xn)dδ1

coincides with a standard type of Bayes factor used in Bayesian statistics. By exchang-
ing the integrals in the numerator, this expression can be calculated analytically. The
Bayes factor T̃1 for x1 = x1 is found to be equal to 1 for all x1 ̸= 0, and the Bayes
factor for (x1, x2) is given by:

T̃2 =
√

2κ2 + 1 · (x2
1 + x2

2)
κ2(x1 − x2)2 + (x2

1 + x2
2) .

Now we consider the function

f(x) := EX2∼N(0,1)[t̃2(x, X2)].

f(x) is continuous and even. We want to show that, with τ∗ as above, T̃τ∗ is not
an E-variable for some specific choices of a, b and κ. Since, for any σ > 0, the null
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contains the distribution under which the Xi are i.i.d. N(0, σ), the data may, under
the null, in particular be sampled from N(0, 1). It thus suffices to show that

EX1,X2∼N(0,1)[T̃τ∗ ] = PX1∼N(0,1){|X1| ̸∈ [a, b]} + EX1∼N(0,1)[1|X1|∈[a,b]f(X1)] > 1.

From numerical integration we find that f(x) > 1 on [a, b] and [−b, −a] if we take
κ = 200, a ≈ 0.44 and b ≈ 1.70. The above expectation is then approximately equal
to 1.19, which shows that, even though T̃n is an e-statistic at each n by Corollary 8.9
(it is even a GROW one), T̃τ∗ is not an e-statistic (its expectation is 0.19 too large),
providing the claimed counterexample.

F.4 Further Derivations, Computations and Proofs

In this appendix, we prove the technical lemmas whose proof was omitted from the
main text. In Section F.4.1, we prove the lemmas used in the proof of Theorem 8.2.
In Section F.4.2, we show the computations omitted from Section 8.4.1.

F.4.1 Proof of Technical Lemmas 8.11, 8.12, and 8.13 for The-
orem 8.2

Proof of Lemma 8.11. Let {εi}i be a sequence of positive numbers decreasing to zero.
Let {Ki}i∈N and {Li}i∈N be two arbitrary sequences of compact symmetric subsets
that increase to cover G. Fix i ∈ N. The set KiLi is compact and by our assumption
there exists a sequence {Jl}l∈N and such that ρ{Jl}/ρ{JlKiLi} → 1 as l → ∞. Pick
l(i) to be such that ρ{Jl(i)}/ρ{Jl(i)KiLi} ≥ 1−εi. The claim follows from a relabeling
of the sequences.

Proof of Lemma 8.12. Let h ∈ N . Then we can write∫
1 {g ∈ NL} qg(h|m)dρ(g) =

∫
1 {g ∈ NL} q1(g−1h|m)dρ(g)

=
∫

1
{

g ∈ (NL)−1} q1(gh|m)dλ(g) = ∆(h−1)
∫

1
{

g ∈ (NL)−1h
}

q1(g|m)dλ(g)

=∆(h−1)Q1{H ∈ (NL)−1h | M = m}
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The same computation can be carried out for p. Consequently

ln
∫

1 {g ∈ NL} qg(h|m)dρ(g)∫
1 {g ∈ NL} pg(h|m)dρ(g)

= ln Q1{H ∈ (NL)−1h | M = m}
P1{H ∈ (NL)−1h | M = m}

≤ − ln P1{H ∈ (NL)−1h | M = m}.

By our assumption that h ∈ N , we have that (NL)−1h = L−1N−1h ⊇ L−1 = L. This
implies that the last quantity of the previous display is smaller than − ln P1{H ∈
L | M = m}. The result follows.

Proof of Lemma 8.13. The result follows from a rewriting and an application of Jensen’s
inequality. Indeed,

− ln
∫

pg(h|m)dΠ(g)∫
qg(h|m)dΠ(g)

= − ln

∫
qg(h|m) pg(h|m)

qg(h|m) dΠ(g)∫
qg(h|m)dΠ(g)

= − ln
∫

pg(h|m)
qg(h|m) dΠ(g|h, m)

≤ −
∫

ln pg(h|m)
qg(h|m) dΠ(g|h, m) =

∫
ln qg(h|m)

pg(h|m)dΠ(g|h, m),

as it was to be shown.

F.4.2 Derivation and Computation for Section 8.4.1

We now provide Proposition F.5, giving the derivation underlying Lemma 8.10 in
the main text about the likelihood ratio T ∗

S,n for δ0 = 0, followed by details about
numerical computation.

Proposition F.5. Let X ∼ N(γ, I), and let mS ∼ W (m, I) be independent random
variables. Let LL′ = S be the Cholesky decomposition of S, and let M = 1√

m
L−1X.

If P0,n is the probability distribution under which X ∼ N(0, I), then, the likelihood
pM

γ,m/pM
0,m ratio is given by

pM
γ,m(M)

pM
0,m(M)

= e− 1
2 ∥γ∥2

∫
e⟨γ,T A−1M⟩dPm+1,I(T )

where A ∈ L+ is the Cholesky factor AA′ = I + MM ′, and PT
m+1,I is the probability

distribution on L+ such that TT ′ ∼ W (m + 1, I).

Proof. Let Σ = ΛΛ′ be the Cholesky decomposition of Σ. The density pX
γ,Λ of X with
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respect to the Lebesgue measure on Rd is

pX
γ,Λ(X) = 1

(2π)d/2 det(Λ)
etr
(

−1
2(Λ−1X − γ)(Λ−1X − γ)′

)
,

where, for a square matrix A, we define etr(A) to be the exponential of the trace of
A. Let W = mS. Then, the density pW

γ,Λ of W with respect to the Lebesgue measure
on Rd(d−1)/2 is

pW
γ,Λ(W ) = 1

2md/2Γd(n/2) det(Λ)m
det(S)(m−d−1)/2etr

(
−1

2(ΛΛ′)−1W

)
.

Now, let W = TT ′ be the Cholesky decomposition of W . We seek to compute the
distribution of the random lower lower triangular matrix T . To this end, the change of
variables W 7→ T is one-to-one, and has Jacobian determinant equal to 2d

∏d
i=1 td−i+1

ii .
Consequently, the density pT

γ,Λ(T ) of T with respect to the Lebesgue measure is

pT
γ,Λ(T ) = 2d

2md/2Γd(m/2)
det(Λ−1T )metr

(
−1

2(Λ−1T )(Λ−1T )′
) d∏

i=1
t−i
ii .

We recognize dν(T ) =
∏d

i=1 t−i
ii dT to be a left Haar measure on L+, and consequently

p̃T
γ,Λ(T ) = 2d

2md/2Γd(m/2)
det(Λ−1T )metr

(
−1

2(Λ−1T )(Λ−1T )′
)

is the density of T with respect to dν(T ). After these rewritings, The density p̃X,T
γ,Λ (X, T )

of the pair (X, T ) with respect to dX × dν(T ) is given by

p̃X,T
γ,Λ (X, T ) = 2d

K

det(Λ−1T )m

det(Λ) etr
(

−1
2(Λ−1T )(Λ−1T )′ − 1

2(Λ−1X − γ)(Λ−1X − γ)′
)

with K = (2π)d/22md/2Γd(n/2). The change of variables (X, T ) 7→ (T −1X, T ) has
Jacobian determinant equal to det(T ). If M = T −1X, then, the density p̃M,T

γ,Λ of
(M, T ) with respect to dM × dν(T ) is given by

det(Λ−1T )m+1

K ′′ etr
(

−1
2(Λ−1T )(Λ−1T )′ − 1

2(Λ−1TM − γ)(Λ−1TM − γ)′
)

.

We now marginalize T to obtain the distribution of the maximal invariant M . Since
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the integral is with respect to the left Haar measure dν(T ), we have that∫
T ∈L+

p̃M,T
γ,Λ (M, T )dν(T ) =

∫
T ∈L+

p̃M,T
γ,I (M, Λ−1T )dν(T ) =

∫
T ∈L+

p̃M,T
γ,I (M, T )dν(T ),

and consequently,

pM
γ,Λ(M) = 2d

K

∫
T ∈L+

det(T )m+1etr
(

−1
2TT ′ − 1

2(TM − γ)(TM − γ)′
)

dν(T )

= 2d

K
e− 1

2 ∥γ∥2
∫

T ∈L+
det(T )m+1etr

(
−1

2T (I + MM ′)T ′ + γ(TM)′
)

dν(T ).

The matrix I +MM ′ is positive definite and symmetric. It is then possible to perform
its Cholesky decomposition (I+MM ′) = AA′. With this at hand, the previous display
can be written as

pM
γ,Λ(M) = e− 1

2 ∥γ∥2

K

∫
T ∈L+

det(T )m+1etr
(

−1
2(TA)(TA)′ + γ(TM)′

)
dν(T ).

We now perform the change of variable T 7→ TA−1. To this end, notice that dν(A−1) =
dν(T )

∏d
i=1 a

−(d−2i+1)
ii , and consequently

pM
γ,Λ(M) = 2d

K

e− 1
2 ∥γ∥2 ∏d

i=1 a2i
ii

det(A)m+d+2

∫
T ∈L+

det(T )m+1etr
(

−1
2TT ′ + γ(TA−1M)′

)
dν(T )

=
Γd

(
m+1

2
)

πd/2Γd

(
m
2
) ∏d

i=1 a2i
ii

det(A)m+d+2 e− 1
2 ∥γ∥2

PT
m+1

[
e⟨γ,T A−1M⟩

]
,

so that that at γ = 0 the density pM
0,Λ(M) takes the form

pM
0,Λ(M) =

Γd

(
m+1

2
)

πd/2Γd

(
m
2
) ∏d

i=1 a2i
ii

det(A)m+d+2 ,

and consequently the likelihood ratio is

pM
γ,Λ(M)

pM
0,Λ(M)

= e− 1
2 ∥γ∥2

∫
e⟨γ,T A−1M⟩dPm+1(T ).

Remark (Numerical computation). Computing the optimal e-statistic is feasible nu-
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merically. We are interested in computing∫
e⟨x,T y⟩dPm+1(T ),

where T is a L+-valued random lower triangular matrix such that TT ′ ∼ W (m+1, I),
and x, y ∈ Rd. Define, for i ≥ j, the numbers aij = xiyj . Then ⟨x, Ty⟩ =

∑
i≥j aijTij .

By Bartlett’s decomposition, the entries of the matrix T are independent and T 2
ii ∼

χ2((m + 1) − i + 1), and Tij ∼ N(0, 1) for i > j. Hence, our target quantity satisfies∫
[e⟨x,T y⟩]Pm+1(T ) =

∫
e
∑

i≥j
aijTij dPm+1(T ) =

∫ ∏
i≥j

eaijTij dPm+1(T ).

On the one hand, for the off-diagonal elements satisfy, using the expression for the
moment generating function of a standard normal random variable,

EP
m+1[eaijTij ] = exp

(
1
2a2

ij

)
.

For the diagonal elements the situation is not as simple, but a numerical solution is
possible. Indeed, for aii ≥ 0, and ki = (m + 1) − i + 1

EP
m[eaiiTii ] = 1

2
ki
2 Γ
(

ki

2
) ∫ ∞

0
x

ki
2 −1 exp

(
−1

2x + aii

√
x

)
dx

= 1F1

(
ki

2 ,
1
2 ,

a2
ii

2

)
+

√
2aiiΓ

(
ki+1

2
)

Γ
(

ki

2
) 1F1

(
ki + 1

2 ,
3
2 ,

a2
ii

2

)
,

where 1F1(a, b, z) is the Kummer confluent hypergeometric function. For aii < 0,

1
2ki/2Γ

(
ki

2
) ∫ ∞

0
xki/2−1 exp

(
−1

2x + aii

√
x

)
dx = Γ (ki)

2ki−1Γ
(

ki

2
)U

(
ki

2 ,
1
2 ,

a2
ii

2

)
,

and U is Kummer’s U function.
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