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What are the novel findings of this work?
A deep-learning model designed to screen for normal
hearts in fetal surveys outperformed experts in a cohort
in which over 50% of cases of congenital heart disease
(CHD) were initially missed clinically. Notably, the model
performed well on community-acquired images in a
low-risk population, including lesions on which it had
not been trained.

What are the clinical implications of this work?
These findings support the proposition that deep-learning
models can improve prenatal detection of CHD.

ABSTRACT

Objectives Despite nearly universal prenatal ultrasound
screening programs, congenital heart defects (CHD) are
still missed, which may result in severe morbidity or
even death. Deep machine learning (DL) can automate
image recognition from ultrasound. The main aim of
this study was to assess the performance of a previously
developed DL model, trained on images from a tertiary
center, using fetal ultrasound images obtained during the
second-trimester standard anomaly scan in a low-risk
population. A secondary aim was to compare initial
screening diagnosis, which made use of live imaging at
the point-of-care, with diagnosis by clinicians evaluating
only stored images.

Methods All pregnancies with isolated severe CHD in the
Northwestern region of The Netherlands between 2015
and 2016 with available stored images were evaluated, as
well as a sample of normal fetuses’ examinations from the
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same region and time period. We compared the accuracy
of the initial clinical diagnosis (made in real time
with access to live imaging) with that of the model
(which had only stored imaging available) and with
the performance of three blinded human experts who
had access only to the stored images (like the model).
We analyzed performance according to ultrasound study
characteristics, such as duration and quality (scored
independently by investigators), number of stored images
and availability of screening views.

Results A total of 42 normal fetuses and 66 cases of
isolated CHD at birth were analyzed. Of the abnormal
cases, 31 were missed and 35 were detected at the
time of the clinical anatomy scan (sensitivity, 53%).
Model sensitivity and specificity were 91% and 78%,
respectively. Blinded human experts (n = 3) achieved
mean ± SD sensitivity and specificity of 55 ± 10% (range,
47–67%) and 71 ± 13% (range, 57–83%), respectively.
There was a statistically significant difference in model
correctness according to expert-graded image quality
(P = 0.03). The abnormal cases included 19 lesions that
the model had not encountered during its training; the
model’s performance in these cases (16/19 correct) was not
statistically significantly different from that for previously
encountered lesions (P = 0.41).

Conclusions A previously trained DL algorithm had
higher sensitivity than initial clinical assessment in
detecting CHD in a cohort in which over 50% of CHD
cases were initially missed clinically. Notably, the DL
algorithm performed well on community-acquired images
in a low-risk population, including lesions to which it had
not been exposed previously. Furthermore, when both
the model and blinded human experts had access to only
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stored images and not the full range of images available
to a clinician during a live scan, the model outperformed
the human experts. Together, these findings support the
proposition that use of DL models can improve prenatal
detection of CHD. © 2023 International Society of
Ultrasound in Obstetrics and Gynecology.

INTRODUCTION

Congenital heart disease (CHD) is the most common
birth defect but nevertheless affects only approximately
1% of births per year1,2. Prenatal diagnosis of CHD
reduces morbidity and mortality and increases therapeutic
options. Second-trimester ultrasound examination is
recommended universally due to the potential to identify
90% of cases of severe CHD3,4. However, in practice,
as few as 30% of these are detected5. This failure is
hypothesized to be due to poor image quality and clinician
failure to recognize CHD, and is greater outside of expert
centers5. Quality improvement programs can increase
detection6–9, but these cannot be applied and sustained
universally5. Therefore, automated, scalable and robust
approaches to prenatal CHD screening are needed.

Previously, we showed that a deep-learning (DL) model
could be used to detect CHD10. DL, a form of artificial
intelligence11, is a computational method which has the
potential for automated and scalable image analysis12.
Our ensemble model had three steps: view detection
on individual images; normal/abnormal decision on
individual images by view; and integration of predictions
for individual images into a single overall prediction
per ultrasound study. This model performed well in two
tertiary centers. However, for DL to democratize accurate
prenatal detection of CHD13, it must also perform well
in the community. Community imaging may differ from
that of tertiary centers: scanning expertise may be lower,
and captured images may be fewer and may be stored
in low-resolution formats. Different scanning protocols
may capture different screening views4,14 (Figure 1) and
may vary among sonographers15. Finally, the patient
population may vary with respect to several factors, for
example the prevalence of CHD and body habitus.

An optimal DL-based fetal screening tool should
provide explainability. Our DL model was designed
such that the model-learned image features correlated
with relevant screening views and important anatomic
structures within those views10, inviting analysis of model
performance with respect to these features. However, few
community imaging cohorts with these types of annota-
tions exist. In a study by van Nisselrooij et al.16 in 2020,
screening ultrasound studies for complex CHD births in
2015–2016 in the northwestern Netherlands were col-
lected and graded for completeness and quality, providing
an excellent opportunity to test DL model performance
in a well-phenotyped community imaging cohort. We
hypothesized that our DL model could be applied
successfully to a community-based screening cohort.

METHODS

Datasets

From the PRECOR registry14,17, ultrasound studies of all
pregnancies affected by isolated severe CHD that deliv-
ered in the Northwestern region of The Netherlands in
2015 or 2016 were extracted, regardless of whether they
had been detected prenatally. Severe CHD was defined
by the child requiring surgery in the first year of life. In
all cases, the parents were asked to provide consent for
collection of images from the second-trimester anomaly
scan at the initial community-based screening facility16. In
order to test the algorithm on images from normal preg-
nancies as well, we also collected, with consent and from
the same screening facilities during the same time period,
ultrasound studies without cardiac or other birth defects.

Expert grading

Non-blinded expert grading of ultrasound study quality

Quality assessment for both CHD and normal cases was
performed as described previously16. Briefly, each of the
four cardiac views that was standard in The Netherlands
at the time (three-vessel view (3VV), right (RVOT)
and left (LVOT) ventricular outflow tract views and
four-chamber view (4CV)) was scored for completeness
and technical correctness on a scale of 0 to 5 by two
fetal echocardiography experts. For each ultrasound
study, the experts also noted the duration in minutes
and total number of stored images, and graded the fetal
position, amount of amniotic fluid, image quality and
magnification. Finally, they determined whether the CHD
was discernible from the stored images.

Non-blinded annotation of views

To obtain ground-truth labels against which to evaluate
the model’s performance at the view-sorting step, an
expert fetal cardiologist labeled each image frame by
view, as described previously10.

Blinded diagnosis of normal vs CHD by clinicians based
only on stored images

Three fetal cardiac experts who were blinded to the diag-
nosis, clinical impression, composition (i.e. proportion
that was abnormal) of the dataset and purpose of the
study served as the human study subjects. They viewed
the stored images and were instructed to grade each
heart as normal vs CHD. Indicating a specific lesion was
optional and was converted to a binary label if provided.
Human subjects had access to both color Doppler and
grayscale images and videos (Table S1) in their native
format (.jpg for still images and .avi for videos). Their
fetal cardiac ultrasound experience ranged from 15 years
to more than 25 years.

Model inference and screening diagnosis

Clinical images in .jpg (still image) and .avi (video)
formats were de-identified and converted to .png, as

© 2023 International Society of Ultrasound in Obstetrics and Gynecology. Ultrasound Obstet Gynecol 2024; 63: 44–52.
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46 Athalye et al.

described previously10. As before, only grayscale images
were used (Table S1). Images were input into the ensemble
model, which includes a DL view classification step, a DL
diagnostic classification step, and a final algorithmic step
to integrate model predictions for individual images into
an overall ultrasound-study-level decision, as described
previously10 but with the following modifications to the
method for filtering low-quality predictions. A neural
network’s classification of a particular image is actually
a set of probabilities of the image belonging to each of
the possible classes (these being view classes for the first
step of the ensemble, and normal vs abnormal classes for
the second step10); by default, the image is assigned to
the class with the highest probability. Previously, only
images for which the highest prediction probability was
at or above the first quartile of probabilities for that view
were deemed of sufficient quality. For the purposes of
the current study, entropy across all view predictions per
image was calculated18, such that high entropy indicated
model confusion among view categories. High-entropy
images were discarded as being of low quality and were
not used in the next step of predicting normal vs CHD.
Similarly, for normal vs abnormal prediction for each
image, entropy was used to discard low-quality images.
An entropy threshold of 0.85 was used, corresponding
to the model being at least 70% sure of its diagnostic
classification decision. Gradient-weighted class activation
maps (GradCAMs) were computed for test images
according to standard techniques19.

Statistical testing

Unless specified otherwise, the Mann–Whitney U-test was
used for all statistical tests.

Ethics and approval

All investigations were performed in accordance
with relevant national guidelines and regulations. All
experimental protocols were approved by local institu-
tional review/ethics committees. Participation of clinical
experts as human subjects was deemed exempt research
by the University of California San Francisco (UCSF)

institutional review board (IRB). The ethics board of
Leiden University Medical Center (LUMC) approved
collection and analysis of images (IRB number P15.374),
with written informed consent obtained from all subjects.

RESULTS

Study cohort characteristics

The test dataset included 108 ultrasound studies from
patients at 18–22 weeks of gestation, comprising studies
of normal hearts and of a range of CHD lesions, as
described previously16 (Table 1). Imaging was collected
according to the national protocol in The Netherlands at
the time (Figure 1). The mean ± SD total number of items
(still images or cine, grayscale and color) per ultrasound
study was 41 ± 18 (range, 6–103) and the number was
not statistically different between normal and CHD cases
(one sample t-test, P = 0.44). The DL model operates on
grayscale images only (Table S1); the number of grayscale
still images or cine clips per study was 35 ± 18 (range,
2–78). Therefore, the DL model had fewer stored items on
which to base its decision (one-sample t-test between all
items and grayscale items, P < 0.01). Ten CHD ultrasound
studies and no normal studies had cine clips stored.

Overall performance

In the test dataset, the sensitivity and specificity of the
clinical diagnosis were 53% and 100%, respectively.
(Of note, these are not the same as the overall
clinical sensitivity and specificity in the northwestern
Netherlands14 due to dataset construction; see Methods.)
In contrast, the DL model’s sensitivity and specificity on
stored grayscale images from this dataset were 91% and
78%, respectively. The model was able to grade 106 of
the 108 studies; two studies could not be graded by the
model due to insufficient stored image data. Finally, the
blinded clinical experts, with access to all stored clinical
images, had a mean ± SD sensitivity of 55 ± 10% (range,
47–67%) and specificity of 71 ± 13% (range, 57–83%).

Clinical sensitivity was statistically similar to that of
the blinded experts (P = 0.76, one-sample t-test), while

3VT

ISUOG
recommended

views
(DL model)

Netherlands
national
protocol
2015–16

3VV RVOT LVOT 4CV ABDO

Figure 1 Differences in fetal cardiac view acquisition protocol between development dataset10 and current study cohort. Three-vessel view
(3VV), left ventricular outflow tract (LVOT) view and four-chamber view (4CV) are common to ISUOG and The Netherlands national
protocols and represent views used for detection of congenital heart defects in this study. Of note, our deep-learning (DL) model was trained
to recognize both 3VV and right ventricular outflow tract (RVOT) view as 3VV and to recognize axial and sagittal LVOT views. 3VT, three-
vessel-and-trachea; ABDO, abdomen view. Netherlands national protocol images reprinted from van Nisselrooij et al.16 with permission.

© 2023 International Society of Ultrasound in Obstetrics and Gynecology. Ultrasound Obstet Gynecol 2024; 63: 44–52.
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model sensitivity was higher than that of the blinded
experts (P = 0.03, one-sample t-test). Model specificity
was statistically similar to that of the blinded experts
(P = 0.49, one-sample t-test). (Note that because clinically
normal studies were specifically chosen in construction
of the test dataset, a comparison of specificity between
clinical diagnosis and blinded experts is less relevant.)

Performance in CHD cases

In 66 ultrasound studies the fetus had CHD; 35 of these
cases were initially detected clinically and 31 were missed.
Expert non-blinded retrospective grading determined that,
of the 31 misses, 10 were evident on imaging but not
recognized, 14 were due to imaging of low technical
quality and seven were considered inevitable based on
stored imaging, despite adequate imaging quality. Of the
31 CHDs missed clinically, the model detected an anomaly
in 27 cases, including five of the seven which were deemed
to be inevitable misses, while blinded clinicians detected a
mean ± SD of 11 ± 5 (range, 8–17) of the 31 missed cases,
including 0–2 of the seven cases considered inevitable. Of
42 clinically confirmed normal fetal hearts, the model
identified 32 correctly, while blinded clinicians detected
32 ± 4. These data are summarized in Table 2.

Of the 66 CHD cases, 47 were lesion types that the
model had encountered during its training (Table 1),
while 19 cases represented lesions that the model had not
encountered during training: anomalous left coronary
artery from the pulmonary artery, aortopulmonary
window, double arch, interrupted aortic arch, pulmonary
sling, Shone complex and ventricular septal defect.

Despite not having been trained on these lesions, the
model detected 16 of these 19 cases.

When the model classifies a particular image, one
can visualize the areas in the image most important
to the model’s decision using GradCAM. For several
CHD lesions, the per-image prediction of normal
vs not normal was largely consistent with clinical
knowledge about which views are abnormal in a given
lesion (Figures 2 and 3). GradCAMs often, but not
always, corresponded to anatomical structures of interest
(Figures 2–4). Additionally, we examined failures in
model prediction, which can include errors in view

Table 2 Performance of clinical detection, deep-learning model and
blinded clinical experts in the Netherlands cohort

Cases

Clinical
diagnosis
correct

Model
decision
correct

Blinded
clinicians
correct

(mean ± SD)

Normal (n = 42) 42 32 32 ± 4
Abnormal, clinically correct

(n = 35)
35 32 25 ± 3

Abnormal, clinically missed
(n = 31)

Not recognized* (n = 10) 0 8 4 ± 2
Technically poor imaging*

(n = 14)
0 14 6 ± 4

Inevitable*† (n = 7) 0 5 1 ± 1
Overall sensitivity (%) 53 91 55 ± 10
Overall specificity (%) 100 78 71 ± 13

Data are given as n or % as indicated. *According to non-blinded
expert assessment. †Considered inevitable by non-blinded expert
graders based on stored imaging and despite adequate imaging
quality16.

Table 1 Congenital heart defects (CHD) present in the Netherlands cohort, indicating lesions included in model training and numbers of
lesions detected originally by clinicians as well as by model

n (%)
Original clinical

diagnosis correct (n)
Lesion included
in model training

Model decision
correct (n)

Normal 42 (39) 42 Yes 32
Lesion

ALCAPA 1 (1) 0 No 0
Aortic stenosis 4 (4) 1 Yes 3
Aortopulmonary window 1 (1) 0 No 1
Atrioventricular septal defect 7 (6) 5 Yes 6
Coarctation of aorta 11 (10) 3 Yes 11
Double outlet right ventricle 4 (4) 4 Yes 4
Double arch 2 (2) 0 No 1
D-TGA 12 (11) 11 Yes 10
Interrupted aortic arch 1 (1) 1 No 1
L-TGA 1 (1) 1 Yes 1
PAIVS 1 (1) 1 Yes 1
Pulmonary sling 1 (1) 0 No 1
Pulmonary stenosis 1 (1) 0 Yes 1
Right atrial isomerism 1 (1) 1 Yes 1
Shone complex 2 (2) 2 No 2
TAPVR 2 (2) 0 Yes 2
Tetralogy of Fallot 2 (2) 1 Yes 2
Truncus arteriosus 1 (1) 1 Yes 1
Ventricular septal defect 11 (10) 3 No 10

ALCAPA, anomalous left coronary artery from pulmonary artery; D-TGA, dextro-transposition of the great arteries; L-TGA, levo-trans-
position of the great arteries; PAIVS, pulmonary atresia with intact ventricular septum; TAPVR, total anomalous pulmonary venous return.

© 2023 International Society of Ultrasound in Obstetrics and Gynecology. Ultrasound Obstet Gynecol 2024; 63: 44–52.
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classification and/or normal/abnormal detection steps
(Figure S1); some of these per-image errors did not result
in an overall incorrect prediction at the patient level.

Factors affecting ability of clinical examination, model
and retrospective blinded human expert review
to identify CHD correctly

For detection of CHD clinically, by DL model and by
the blinded experts, we tested whether certain ultrasound
study features graded and described by van Nisselrooij
et al.16 were statistically different from each other based
on whether the model and/or clinicians were correct or
incorrect. We report P-values for these tests in Table 3.
For example, study duration in minutes was statistically
different by correctness for the initial clinical CHD detec-
tion and the DL model but not for the blinded human
experts. As in van Nisselrooij et al.16, clinical correctness
also varied according to quality and completeness of
the cardiac screening views, i.e. with respect to the 4CV
and LVOT view quality scores. Overall, quality and
completeness of views mattered to blinded human experts
as well; for the model, image quality was significant.
Number of frames mattered less, both for the model and
for the blinded human experts. The performance of only
one human expert improved with a greater total number
of items. Whether or not non-blinded expert grading con-
sidered the diagnosis to be clearly evident in stored images
had a statistically significant impact on clinical detection
and the blinded human experts, but not the model.

Cine

Though not part of the screening anatomy scan recom-
mendations at the time of the clinical examinations, 10
of the CHD patient studies had cine captures archived.
Nine of these fetuses were initially recognized to be
abnormal clinically, and the patients with cine stored
were statistically more likely to be diagnosed prenatally
(9/10 vs 27/57, Fisher’s exact test P = 0.016). The model
was correct in all 10 (100%) cases for which cine was
available. In the same 10 cases, the human expert review-
ers averaged only a 57% pick-up rate, suggesting that cine
clips may be only a surrogate for adequate information
and do not necessarily contain the information itself.

Model detection of axial screening cardiac views

While for clinical detection and blinded human experts,
view detection is implicit, for the DL model view
detection is an explicit step. We compared model view
detection to that of a non-blinded expert grader as a
ground truth. Overall (in both normal and CHD hearts,
all grayscale images) the F-score comparing model view
classification to ground truth was 0.86, representing
good agreement. For normal hearts only, the F-score was
even higher, at 0.96. The F-score for CHD hearts only
was 0.85. Examples of views detected from both normal
and abnormal hearts, along with their corresponding
GradCAMs, are shown in Figure 4.

The model is compared against ground truth according
to the number of subjects containing a given view, as well
as the average number of frames per view, in Table 4.

4C
V

LV
O

T
3V

T
/3

V
V

Normal Tetralogy of Fallot Aortic stenosis

Figure 2 Diagnostic classifier in studies that the model got correct and blinded experts missed. Model-labeled views (grayscale) with
corresponding GradCAM images representing heat maps showing areas of the image most important in model decision-making (red shows
most important areas). The model correctly identified normal views (a–c), focusing on the aorta (a), left ventricular outflow tract (LVOT)
and right ventricle (b), and interatrial and interventricular septa (c). The model identified the abnormal three-vessel-and-trachea (3VT) view
and LVOT (d,e) and abnormal four-chamber view (4CV) cardiac axis (f) in tetralogy of Fallot, and abnormal LVOT in aortic stenosis (h).
The human experts misclassified these tetralogy and aortic stenosis patients as ‘normal’. 3VV, three-vessel view.

© 2023 International Society of Ultrasound in Obstetrics and Gynecology. Ultrasound Obstet Gynecol 2024; 63: 44–52.
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Deep-learning model for CHD screening in the community 49

Consistent with the F-scores above, agreement between
model and ground truth was good. In addition to there
being more image frames stored for CHD hearts than
for normal hearts, there was wide variability as to the
number of images per view stored, especially for the
CHD hearts, reflecting the presence of cine in some
studies.

Finally, although the 3VT view was not part of the
imaging protocol for this cohort, 3VT (ground truth)
images were present in 14% of the normal studies and
42% of the CHD studies, and these were detected by
the model as well (Table 4). Thus, the model can find
views even when these are not explicitly acquired per the
protocol.

DISCUSSION

Previously, we showed that a DL model could be
used to differentiate normal hearts from those with
CHD using images from tertiary medical centers10.
The model design parallels clinician tasks, first finding
guideline-recommended views, then classifying images
from these views as normal or not normal, and finally
aggregating these per-image predictions into a single
decision per ultrasound study. In the current work, we
expanded testing of the model to anatomy scans obtained
in the community, a critical step in ensuring that DL
solutions are inclusive of all healthcare settings13. These

scans were from a group of patients with known out-
comes and image-by-image, view-by-view, expert-graded
study quality.

Using a community-based cohort that had been
well-characterized by non-blinded experts, we compared
the model’s performance both with clinical detection at
the point of care and with the performance of additional
human experts who were blinded to the study cohort’s
composition and outcomes and had access only to stored
images. The model had higher sensitivity than did clinical
detection, as it flagged the majority of CHD cases that had
been missed clinically. Non-blinded expert grading found
that the most substantial diagnostic errors arose from
either the sonographer’s failure to capture adequate (with
respect to quality and number) images or the clinician’s
failure to recognize the abnormality from captured
images. Our model represents a potential improvement
on clinical performance, being less vulnerable to these
obstacles.

While, for the sake of simplicity, the DL model can be
said to detect normal hearts vs CHD, the model was not, in
fact, trained to detect specific CHD lesions (a task already
performed quite well by fetal cardiologists)20,21. Rather,
the model is designed as a screening tool with which
to distinguish normal screening ultrasound studies from
those that either are abnormal or require further review
(e.g. due to incomplete or poor-quality imaging). As such,
the model’s false-positive rate was high (10/42), and it

4C
V

LV
O

T
3V

T
/3

V
V

Atrioventricular
septal defect

Dextro-transposition
of the great arteries

Figure 3 Examples of diagnostic classifier performance in studies that the model got correct but for which blinded expert performance was
variable. Model-labeled views (grayscale) with corresponding GradCAM images representing heat maps showing areas of the image most
important in model decision-making (red indicates most important areas). (a–c) Atrioventricular septal defect. The model was correct and
all three experts recognized the lesion. (d–f) Dextro-transposition of the great arteries (d-TGA). The model identified this study correctly,
but two of three experts incorrectly classified it as normal. The GradCAM of the normal-appearing d-TGA four-chamber view (4CV) (f) has
similar pattern to normal (Figure 2c), suggesting that the model may function as an anomaly detector. 3VT, three-vessel-and-trachea view;
3VV, three-vessel view; LVOT, left ventricular outflow tract.

© 2023 International Society of Ultrasound in Obstetrics and Gynecology. Ultrasound Obstet Gynecol 2024; 63: 44–52.
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50 Athalye et al.

cannot currently replace a trained clinician in deciding to
refer patients for fetal echocardiography. However, it may
be a useful aid for clinicians, decreasing the number of
obviously normal ultrasound studies that require review,
and flagging studies that are abnormal or that could
benefit from more image acquisition at the point of care.

Our study has several strengths. First is the diversity
of the imaging cohort22. This cohort was external to the
dataset on which the model was trained, differed with
respect to image formats and scanning protocol (Figure 1)
and included imaging studies from several clinics and
sonographers. The numbers of still images and cine clips
per ultrasound study differed from those in the model’s
training dataset and were highly variable. Finally, our

cohort included a range of CHD lesions, several of which
the model had not encountered during training. Despite
this diversity, the model’s performance was robust and
compatible with the model’s suspected function as an
anomaly detector, which is appropriate for screening. A
second strength of our study is the selection of cases from
a regional registry which captures CHD cases that have
been missed as well as those detected by clinicians. A
third strength is our inclusion of blinded human experts
to evaluate stored images. While clinical detection was an
important comparator, sonographers at the point of care
had access to more imaging than that stored. Therefore,
the evaluation of blinded clinical experts assessing stored
images alone allowed closer comparison to the task that

4C
V

A
B

D
O

LV
O

T
3V

V
3V

T

Figure 4 Model view finder is working and clinical features are used in model decisions. Example ultrasound images with corresponding
GradCAM images from view-finding step of deep-learning model, illustrating that clinical features are used in model decisions. Images are
from fetuses with normal heart (a–e) or congenital heart defect ((f) dextro-transposition of the great arteries (d-TGA); (g) aortic stenosis;
(h) d-TGA; (i) levo-TGA; (j) right atrial isomerism). GradCAM images represent heat map showing areas of image most important in model
decision-making (red indicates most important areas). (a,f) In both normal and abnormal three-vessel-and-trachea (3VT) views, GradCAM
focused on confluence of aortic and ductal arches. (b,g) In normal and abnormal three-vessel views (3VV), GradCAM focused on pulmonary
artery and aortic region. (c,h) In normal and abnormal left ventricular outflow tract (LVOT) views, GradCAM focused on LVOT. (d,i) In
normal and abnormal four-chamber views (4CV), GradCAM focused on interatrial septum. (e,j) In abdomen view (ABDO), GradCAM
focused on stomach.

© 2023 International Society of Ultrasound in Obstetrics and Gynecology. Ultrasound Obstet Gynecol 2024; 63: 44–52.
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the model performed. A final strength was our ability
to compare clinical, model and blinded human expert
performance using a community-based imaging dataset
that had been graded for quality and completeness. We
found that correctness of the model, like that of the
blinded human experts, was associated with quality mea-
sures, suggesting that the model’s performance was based
largely on clinically relevant features. It is interesting
that the model performed well in cases of missed CHD
that were felt to have been inevitable based on the stored
imaging: either the model detected features present in the
stored images that were not evident to the human experts,
or the model was again acting as an anomaly detector.

Despite its strengths, there were also weaknesses of
both the current DL model and the dataset evaluated.
Selection of patients for our cohort was limited according
to which parents consented to participate. Another
important limitation of the model is that it could only
evaluate grayscale imaging; in the future, the model may
be redesigned to accommodate color imaging. Additional
model training and algorithmic improvements may
decrease its false-positive rate. However, it is worthwhile

noting that the number of model false positives in this
study may be at least partly attributable to the limited
number of stored images. This theory is supported by
the fact that the F-score on detected views was high, as
well as by the similar specificity of the blinded human
experts, who, like the model, lacked additional imaging
that would have been available in the clinical setting and
were stripped of cognitive bias about the prevalence of
CHD in the community. Another limitation of the model
might be suggested by the more variable GradCAM results
for the model’s diagnostic step compared with the view
detection step. However, while GradCAM is a useful way
to visualize areas of the image that were important to the
model in making its decision, and GradCAM heatmaps
that focus on anatomical structures of clinical interest is
encouraging, a ‘poor GradCAM,’ i.e. a heatmap that does
not focus clearly on clinically relevant features does not
necessarily mean that the model’s performance is poor.
How best to analyze GradCAMs to understand model
function is still an active area of research and is beyond
the scope of this work23–25. Nevertheless, one might

Table 3 P-values* for difference between correct and incorrect detection of congenital heart defect (CHD), clinically, by deep-learning (DL)
model and by blinded experts, according to ultrasound (US) study characteristics

US study characteristic Clinical DL model Blinded expert 1 Blinded expert 2 Blinded expert 3

Study duration (in min) 0.01† 0.02† 0.47 0.21 0.38
Number of items (grayscale only, still or cine) 0.44 0.40 0.3 0.36 0.04†
Number of cines 0.08 0.09 0.26 0.5 0.43
Number of cardiac image frames (grayscale only) 0.39 0.46 0.33 0.17 0.03†
Number of 3VV, LVOT and 4CV image frames 0.37 0.42 0.28 0.15 0.03†
Number of 4CV image frames 0.13 0.4 0.29 0.41 0.02†
Diagnosis clear according to non-blinded expert grader 7 × 10−6† 0.39 < 0.001† 3 × 10−6† 0.25
View quality score

Sum of all views < 0.001† 0.34 0.01† 0.02† 0.05
3VV view quality 0.19 0.15 0.13 0.03† 0.002†
LVOT view quality < 0.001† 0.44 0.01† 0.03† 0.14
4CV view quality 3.4 × 10−6† 0.24 < 0.001† 0.17 0.44

Image quality 0.3 0.03† 0.16 0.17 < 0.001†
CHD lesion encountered by model during training 1.4 × 105† 0.41 0.04† 0.03† 0.14

*Mann–Whitney U-test. †Statistically significant. 3VV, three-vessel view; 4CV, four-chamber view; LVOT, left ventricular outflow tract.

Table 4 Model view detection compared to ground truth

Ground truth (non-blinded expert) Deep-learning model

Subjects containing view Frames per subject (n) Subjects containing view Frames per subject (n)

View Normal CHD Overall Normal CHD Overall Normal CHD Overall Normal CHD Overall

3VT 6
(14)

28
(42)

34
(31)

0.14 ± 0.35
(0–1)

1.7 ± 6
(0–45)

1 ± 4.7
(0–45)

3
(7)

28
(42)

31
(28)

0.07 ± 0.26
(0–1)

5.4 ± 17
(0–86)

3.3 ± 13
(0–86)

3VV 40
(95)

56
(85)

96
(89)

1.9 ± 1.1
(0–6)

7.6 ± 27
(0–193)

5.4 ± 21
(0–193)

35
(83)

56
(85)

91
(84)

1.4 ± 1.1
(0–5)

10 ± 34
(0–209)

6.9 ± 27
(0–209)

LVOT 33
(79)

56
(85)

89
(82)

1.6 ± 1.5
(0–8)

16 ± 55
(0–304)

11 ± 44
(0–304)

24
(57)

52
(79)

76
(70)

1.2 ± 1.2
(0–5)

37 ± 136
(0–935)

23 ± 108
(0–935)

4CV 41
(98)

64
(97)

105
(97)

2.2 ± 1.7
(0–8)

29 ± 108
(0–807)

19 ± 86
(0–807)

41
(98)

63
(95)

104
(96)

2.2 ± 1.7
(0–2506)

72 ± 327
(0–2506)

45 ± 257
(0–2506)

ABDO 30
(71)

59
(89)

89
(82)

1.1 ± 0.95
(0–4)

1.9 ± 2.7
(0–19)

1.6 ± 2.2
(0–19)

32
(76)

64
(97)

96
(89)

1.8 ± 1.4
(0–5)

11 ± 57
(0–465)

7.3 ± 45
(0–465)

NT 32
(76)

65
(98)

97
(90)

24 ± 17
(0–64)

102 ± 360
(0–2542)

71 ± 284
(0–2542)

34
(81)

66
(100)

100
(93)

23 ± 17
(0–60)

126 ± 372
(0–2535)

85 ± 295
(0–2535)

Data are given as n (%) or mean ± SD (range). 3VT, three-vessel-and-trachea view; 3VV, three-vessel view; 4CV, four-chamber view;
ABDO, abdomen view; CHD, congenital heart defect; LVOT, left ventricular outflow tract; NT, non-target view.

© 2023 International Society of Ultrasound in Obstetrics and Gynecology. Ultrasound Obstet Gynecol 2024; 63: 44–52.
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imagine that a more robustly trained model in the future
may yield even better diagnostic performance.

Through this evaluation of stored ultrasound studies,
we have demonstrated how variable stored imaging can
be, in terms of both numbers of images stored and the
views covered. In fact, the model lacked sufficient stored
images to analyze two of the studies. While recent recom-
mendations to store cine clips from screening ultrasound
examinations are helpful26, further standardization of
stored imaging, through a combination of guidelines
and point-of-care integration, will likely improve clinical
evaluation as well as computational screening.

In the future, a larger study evaluating a consecutive
series of normal and CHD studies in a community
population, making use of more standardized image
storage and/or integration of a DL model at the point
of care, perhaps with an updated DL model, should help
to move prenatal screening forward.
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SUPPORTING INFORMATION ON THE INTERNET

The following supporting information may be found in the online version of this article:

Figure S1 Poor model performance: errors made by model in view-finding and in diagnostic classification. (a)
Correct view (three-vessel view (3VV)) classified incorrectly as abnormal; (b) incorrect view (left ventricular
outflow tract (LVOT)) classified appropriately as abnormal; (c) correct view (four-chamber view (4CV))
classified incorrectly as abnormal (possibly due to poor image quality); (d) correct view (three-vessel-and-
trachea (3VT) view) classified incorrectly as abnormal (possibly due to low magnification).

Table S1 Imaging data available for clinical decision-making, for blinded human experts and for deep-learning
model
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