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Chapter 1

Introduction and thesis outline



Drug metabolism: a key determinant of
pharmacokinetics

The response to drug treatments varies significantly among individuals, with
20-75% of patients failing to achieve the desired outcomes due to adverse drug
reactions (ADRs) or inadequate therapeutic responses (1). ADRs are a significant
cause of hospital admissions, accounting for approximately 5% of cases in the
Netherlands (2), and about 15% of hospitalized patients experience ADRs during
their stay (3). These high incidences highlight the need to address the underlying
causes of variability in treatment outcomes. A fundamental determinant of drug
efficacy and safety is the concentration of the drug in both blood and tissue, which
is determined by its absorption, distribution, metabolism and excretion (ADME)
(4). These physiological processes collectively shape the pharmacokinetic (PK)
profile of a drug, influencing both its therapeutic effectiveness and toxic potential. A
deeper understanding of the factors contributing to ADME variability is necessary
to mitigate ADRs and enhance the efficacy of drug treatments.

Among the ADME processes, drug metabolism is a key factor that influences
PK parameters, as it dictates the rate at which drugs are biotransformed and
eliminated from the body. Drug metabolism primarily involves the enzymatic
conversion of lipophilic drugs into more hydrophilic metabolites, which facilitates
their excretion (5). This transformation predominantly occurs in the liver, though
other tissues, such as the kidneys and gastrointestinal tract may also contribute to
drug metabolism (6). Enzymatic transformation occurs by mechanism categorized
as either phase I or phase II reactions (7). Phase I enzymes typically catalyze either
oxidation, reduction or hydrolysis reactions, whereas most phase II enzymes
catalyze conjugation reactions. Drugs are often metabolized through sequential
reactions involving both phase I and phase II drug metabolizing enzymes (DMEs).

Cytochrome P450 enzymes (CYPs) are a key family of phase I enzymes
responsible for the metabolism of ~75% of clinically administered drugs.
These enzymes belong to a diverse superfamily of heme-containing proteins,
systematically classified into families and subfamilies based on similarities in
their amino acid sequences (8). Each enzyme is identified by a family number
(e.g., CYP2), a subfamily letter (e.g., CYP2C), and an unique isoform identifier
(e.g., CYP2C19). Among these, five key isoforms - CYP3A4, CYP2D6,
CYP2C9, CYP2C19 and CYP1A2 - are primarily responsible for catalyzing the
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biotransformation of most drugs. Of the 100 most prescribed drugs in European
countries, 43 are mainly metabolized by CYP3A4, followed by 23 for CYP2D6, 23
for CYP2C9, 22 for CYP2C19 and 14 for CYP1A2 (9). Table 1 provides examples
of sensitive drug substrates for these main DMEs, along with probe substrates
used to quantify their activity in vitro and in vivo. Other important phase I
enzymes that catalyze oxidations include the flavin-containing monooxygenases
(FMOs) and the alcohol dehydrogenases (ADHs) (10). Beyond phase I, phase II
enzymes also play a crucial role in drug metabolism. Notably, it is estimated that
approximately 25% of the top 200 most prescribed small molecule drugs approved
by the FDA rely predominantly on non-CYP enzymes for their clearance (11).
Of these, 45% of biotransformation is executed by the phase II enzymes UDP-
glucuronosyltransferases (UGTs), 10% by sulfotransferases (SULTs) and 7% by
carboxylesterases (CESs). The activity of DMEs is a significant determinant of
drug clearance, half-life and plasma concentrations, thereby influencing drug
exposure and subsequent therapeutic efficacy or toxicity. As such, understanding
the factors that govern drug metabolism is crucial for predicting and managing

drug PK and ensuring both safe and effective treatment.

Table 1 Examples of commonly used drug substrates for the main DMEs, and in vitro and in vivo probes
used to quantify their activity

Drug substrates In vitro probes (12)  Invivo probes (13)
CYP3A4 Carbamazepine, cyclosporine, Midazolam, Midazolam
imatinib, ketoconazole, midazolam, testosterone
nifedipine, sildenafil, simvastatin,
tacrolimus
CYP2D6 Codeine, haloperidol, metoprolol Bufuralol, Dextromethorphan,
oxycodone, paroxetine, tamoxifen dextromethorphan metoprolol
CYP2C9  Diclofenac, glimepiride, phenytoin, Diclofenac, Diclofenac,
valproic acid warfarin tolbutamide flurbiprofen,
losartan, s-warfarin,
tolbutamide
CYP2C19  Citalopram, clopidogrel, escitalopram, S-mephenytoin Omeprazole

fluvoxamine, omeprazole,
pantoprazole, sertraline, voriconazole

CYP1A2  Clozapine, duloxetine, theophylline Phenacetin Caffeine
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Interindividual variability in drug metabolism

One of the major challenges in the drug metabolism field is the significant
interindividual variability that can lead to differences in systemic drug exposure
between patients upon administration of a fixed dose. These interindividual

differences in drug metabolism can stem from both genetic and non-genetic factors.

Pharmacogenetics

Pharmacogenetics (PGx) studies how inheritance impacts the individual variation
in drug response. Over the past two decades, considerable attention has been
devoted to genetic polymorphisms in metabolic enzymes as a key factor to explain
interindividual variability in drug metabolism. Genetic polymorphisms are thought
to explain ~30% of this variability (14). Importantly, these polymorphisms are
generally considered to impact the treatment efficacy or safety of approximately
20-25% of all drugs (14). Currently, there are over 400 polymorphic CYP variants
reported in the PharmVar repository that impact metabolic function (15).
Variants can include loss-of-function alterations that result in lower or absence
of protein activity, or gain-of-function alterations that cause increased protein
expression and/or enhanced functional activity. To enable their use in clinical
practice, identified variants are translated into haplotypes and corresponding
predicted drug metabolizing phenotypes. For most CYP enzymes, four predicted
phenotypes categories are recognized: poor, intermediate, normal and ultrarapid
metabolizers. These phenotypes are incorporated into dosing recommendations
provided by the Dutch Pharmacogenetic Working Group (DPWG) and the Clinical
Pharmacogenetics Implementation Consortium (CPIC), aiding clinicians in
adjusting patient therapy based on the individual’s genetic profile (16,17). Currently,
guidelines are available for over 300 drug-gene pairs, with CYP2D6, CYP2C19 and
CYP2C9 most extensively covered (18). Various randomized controlled trials have
demonstrated that individualizing drug dosing based upon the pharmacogenetic
profile results in better outcomes for specific drug-gene combinations (19,20). More
recently, a large multicenter study has proven that genotype-guided treatment using
a pre-emptive 12-gene pharmacogenetic panel approach significantly reduces the
incidence of clinically relevant adverse reactions among patients with actionable

genotypes (21).
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While the implementation of PGx has significantly advanced the shift from a
one-size-fits-all approach to a more individualized strategy, challenges remain that
have to be addressed. PGx-guided drug dosing doesn’t account for the impact of
non-genetic factors on drug response, such as age, diet, sex, environmental factors,
concomitant medication use or underlying disease conditions (22). Subsequently, in
clinical practice we often see a mismatch between the phenotype we would predict
based on the genetic testing and the actual observed phenotype, a phenomenon

known as phenoconversion (23,24) (Figure 1).
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Figure1 Overview of how inflammation and concomitant medication use alters drug metabolism, leading
to discrepancies between genotype-predicted and measured DME phenotypes. Top panels depict baseline
genotype-predicted phenotype relationships under normal conditions (middle) and phenoconversion
scenarios induced by inflammation (left) and concomitant medication (right).

Various clinical studies have indeed highlighted that concomitant medication
use, or patient/disease-specific factors impact the activity of key CYP enzymes,
resulting in a shift in phenotype that could not have been predicted based on
genotype alone (24). As an example, in CYP2C19-genotyped patients, escitalopram
serum concentrations showed considerable overlap across all phenotype
categories, illustrating that genotype alone does not always accurately predict

metabolic capacity (25). Experimental studies using large cohorts of biobank liver
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samples allow for a more controlled evaluation of metabolism-related variability,
considering clinical features like adherence or variability introduced by differences
in absorption or distribution are not confounding factors. These studied showed
that significant variability in CYP activity persists within a single genotype group
or among individual with similar gene activity scores (26-29). This highlights
the need to incorporate the impact of non-genetic factors into drug metabolizer
phenotype prediction in order to better reflect real-time metabolic capacity in

patients.

Drug-drug-gene interactions as contributors to interindividual variability
and phenoconversion
Similar to how genetically inherited variants can alter DME activity, administering
concomitant drugs that inhibit or induce a DME can shift metabolic capacity,
leading to a drug-drug interaction (DDI). Decades of experience have led to the
establishment of standardized protocols for the clinical management of DDIs,
including explicit warnings in drug labeling and clinical decision support systems.
However, current approaches largely overlook the combined effects of DDIs with
genetic variation, which can influence the likelihood or clinical significance of
these interactions (30). For instance, individuals with one nonfunctional CYP2D6
allele are at increased risk of phenoconversion to a poor metabolizer (PM) status
when exposed to a CYP2D6 inhibitor as compared to individuals with normal
functioning alleles (31). These so-called drug-drug-gene interactions (DDGIs)
thus occurs when the patient’s genotype and another drug in the patient's regimen
affect the individual’s ability to clear a drug. Notably, DDGIs account for up to 20%
of significant drug interactions, making them a substantial clinical concern (32-34).
Phenoconversion resulting from concomitant medication can thus compromise
the accuracy of PGx-based drug dosing for specific drug-gene pairs. While
studies have examined the impact of DDGIs through changes in drug exposure
or clearance (30), this information is challenging to translate into clinical-decision
making. A more practical approach would involve determining the switch in drug
metabolizer phenotype when specific drug-gene pairs are combined with inhibitory
or inducing concomitant medication, and subsequently add this information to
existing drug-gene guidelines. In order to achieve this, more data is needed to

quantify how PGx-based phenotype predictions are impacted by inhibitory or
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inducing concomitant medication use affecting the same DME, and to determine

whether this switch is genotype specific.

Inflammation as a contributor to interindividual variability and
phenoconversion
Inflammation has emerged as another critical factor contributing to variability in
drug metabolism. Inflammation is a critical component of the immune response
to harmful stimuli, including pathogens, cellular injury and toxins (35). It involves
a complex network of immune cells, signaling molecules and inflammatory
mediators like cytokines and chemokines, which coordinate the body’s defense
and initiate tissue repair. Inflammatory mediators are central in initiating acute-
phase responses and sustaining chronic inflammation. Mounting non-clinical and
clinical evidence shows that elevated production of cytokines during inflammation,
such as IL-1f, IL-6 and TNF-aq, can significantly affect the expression and activity
of certain DMEs (36-39) as well as drug transporters (40). These inflammation-
driven changes in metabolism can result in an increased variability in drug exposure
and may cause a transient and/or acute shift away from the genotype-predicted
phenotype, resulting in phenoconversion. Considering the high prevalence of
both acute and chronic inflammatory conditions, it is essential to consider how
inflammation impacts hepatic metabolism for both new and existing drugs.
Clinical studies have demonstrated alterations in drug PK of CYP substrates
in individuals with chronic inflammatory conditions and during episodes of
acute inflammation or infection, presumable attributed to inflammation-induced
modifications in drug metabolism (41). This is of specific relevance to drugs
with a narrow therapeutic window, which are routinely subject to therapeutic
drug monitoring (TDM). PK alterations during acute inflammatory episodes
have been demonstrated for various drug classes, including antipsychotics
(e.g., clozapine), antidepressants (e.g., citalopram), sedatives (e.g., midazolam),
immunosuppressants (e.g., tacrolimus and cyclosporine) and antifungals (e.g.,
voriconazole) (41). Decreased CYP-mediated drug metabolism is also reported
in several chronic inflammatory conditions including rheumatoid arthritis (42)
and Crohn’s disease (43), but also in metabolic diseases such as non-alcoholic
fatty liver disease (NAFLD) (44) and type II diabetes (45), although it is unclear

to what extent the inflammatory component of these latter diseases is responsible
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for the alterations in drug PK. Less evidence is available for the potential impact
of pro-inflammatory cytokines on non-CYP enzyme families, such as the UGTs,
SULTs, FMOs and CESs, and the resulting alterations of non-CYP mediated drug
PK during inflammation.

A few studies have attempted to quantify the phenotypic shift caused by
inflammation, combing genotype data with alterations in DME activity (24).
Generally, a shift towards a lower drug metabolizing phenotype is observed,
where the shift depends on both the degree of inflammation/infection and the
initial genotype. As such, inflammation adds an extra layer of variability to drug
metabolism, which may necessitate adjustments in drug dosage regimens for
patients with acute or chronic inflammatory conditions.

The use of immunomodulating therapeutics to battle conditions where
excessive or chronic inflammation plays a role is on the rise (46). These include
monoclonal antibodies (mAbs) that target cytokine (receptors) or modalities
aimed at inhibiting the signaling pathways induced by inflammation. These anti-
inflammatory treatments may, through the resolution of inflammation, restore
CYP metabolic capacity resulting in a disease-drug-drug interaction (DDDI)
which further introduces PK variability. As an example, treatment with the anti-IL6
receptor mAb tocilizumab in RA patient resulted in a 57% lower exposure of
simvastatin as compared to treatment with simvastatin alone, mechanistically
explained by restored CYP3A4 activity (42). Regulatory agencies have now installed
guidelines to investigate the risk for such DDDIs with therapeutic proteins (47,48).
Despite the recognized potential for DDDIs in patients receiving anti-inflammatory
treatments, there is a lack of clarity regarding which patient population and
medications carry the highest risk for these interactions. Furthermore, the potential

effects of these interactions on therapeutic outcomes remain poorly understood.

Methodological strategies for studying drug
metabolism and phenoconversion

Considering the numerous intrinsic and extrinsic factors that can influence drug
metabolism, there is a need for tools to evaluate an individual’s drug metabolizing

phenotype.
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In vitro or ex vivo models
In vitro models or ex vivo biopsy samples can be instrumental in quantifying how
PGx impact drug metabolism. The functional relevance and substrate specificity of
rare variants in e.g. CYP enzymes is often hard to tackle in clinical trials considering
their low frequency. Thus, in vitro systems, such as liver microsomes, cell-based
expression systems, ex vivo primary samples or purified variant proteins can be
used to characterize the impact of rare variants. Large screens have been conducted
to systematically characterize a wide range of rare variants on DME functionality
in vitro, for example by utilizing deep mutational scanning methods to study
the functional implications of missense variants in CYP2C9 and CYP2C19 (49),
providing a first step towards evidence for potential clinically actionable variants.
Furthermore, cellular models such as hepatocyte cultures allow for the
examination of drug metabolism under various experimental conditions, including
the presence of inflammatory cytokines or DDIs. These models facilitate the
assessment of specific quantitative parameters of e.g. enzyme kinetics, but can also
yield mechanistic insights into the underlying molecular pathways. A fundamental
prerequisite for these studies is the sustained and robust expression of DMEs.
Primary human hepatocytes have long been considered the golden standard for
drug metabolism studies, but their utility is significantly constrained by a rapid
decline in DME activity when cultured in 2D and marked inter-donor variability
(50,51). To overcome these limitations, advanced culture techniques such as 3D
spheroids or liver-on-a-chip models have been developed to recreate a more
physiologically relevant microenvironment for studying drug metabolism (52,53).
Additionally, the HepaRG cell line has emerged as a robust alternative due to its
capacity to maintain consistent metabolic activity over prolonged culture periods,
making it a valuable tool for studying both baseline metabolism and the effects of

non-genetic factors (54).

Modeling approaches

Physiologically-based pharmacokinetic (PBPK) models have been effectively
employed to predict and understand the determinants of interindividual variability
in drug PK. These models distinguish drug-specific and system-specific parameters
and allow for simulation of concentration-time profiles under a range of clinical

conditions. Over the past decade, this approach has gained substantial prominence
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in drug development and has been increasingly endorsed by regulatory agencies
(55). The interindividual variability in PK can be simulated in PBPK modeling
by accounting for variations in key system parameters, such as changes in drug
metabolism caused by genetic polymorphisms, inflammation or DDIs.

Multiple efforts have been made to apply PBPK modeling to predict the clinical
impact of disease-drug or disease-drug-drug interactions in, for example, patients
with rheumatoid arthritis, leukemia or surgical traumas (56-60). Additionally,
PBPK modeling has shown useful in predicting the extent and clinical impact of
drug-gene or drug-drug-gene interactions (61-65). A key advantage of bottom-up
PBPK approaches is their ability to predict drug PK across various scenarios,
leveraging systemic parameters and in vitro data to make quantitative predictions
without requiring clinical data for every drug. This underscores the importance of
robust in vitro data as a foundation for these models. As such, the integration of
disease parameters or other non-genetic factors which impact ADME into PBPK
models appears to be a promising method to approach personalized treatments

by predicting individuals phenotypes.

Clinical approaches

The phenotyping cocktail approach is the most commonly employed method
to assess real-time enzyme activity in patients (13). This method involves the
simultaneous administration of probe substrates, each selective for a specific CYP
isoform, followed by measurements of either the probe clearance or metabolite-
to-parent drug ratio in plasma or urine. It operates on the assumption that the
observed changes in probe drug clearance or metabolite-to-parent ratios are
solely driven by alterations in CYP enzyme activity, and results are thus used to
quantify how the factor studied impacts CYP activity. The phenotyping approach
has long been a valuable tool in traditional pharmacokinetic studies, particularly
for investigating drug-drug and drug-gene interactions (66,67). In recent years,
its application has expanded to include the evaluation of how various (patho)
physiological conditions - such as inflammation, obesity and pregnancy - affect
in vivo enzyme activity (68-70). As such, the phenotyping cocktail approach is
an important tool to study the impact of genetic and non-genetic factors on drug
metabolism, and can be effectively utilized to predict drug metabolizer phenotypes

in patient populations.
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Aim and outline of this thesis

The aim of this thesis is to investigate how non-genetic factors, such as inflammation
and concomitant medication, impact hepatic drug metabolism and subsequent
drug metabolizing phenotype predictions. This work is grounded in the hypothesis
that these factors significantly affect drug metabolism and, therefore, should be
incorporated into PGx-based phenotype predictions. To address this, section one
focusses on the impact of concomitant medication on drug metabolizing phenotype
predictions based on PGx. Section two provides novel insights into the impact of
inflammation on hepatic drug metabolism and its underlying mechanisms, as well
as the potential of immunomodulating therapies to reverse these inflammation-
induced alterations in drug metabolism. Finally, section three evaluates in vivo
tools that are used to study alterations in drug metabolism under (inflammatory)

disease conditions.

Section I - Impact of concomitant medication on drug metabolizer phenotype
predictions

In chapter 2, we quantify the phenoconversion in various CYP2C19 genotype
groups following administration of CYP2C19 inhibitors in a cohort of microsomal
liver fractions from 40 patients. Additionally, clinical features will be matched
to measured CYP2C19 activity to find the source of the discrepancy between
genotype-predicted phenotype and actual measured phenotype in the cohort.

Section II - (Pre)clinical evaluation of inflammation-induced alterations in
drug metabolism

In chapter 3, we summarize evidence assembled through human in vitro liver
models on the effect of inflammatory mediators on expression and metabolizing
capacity of clinically relevant CYP isoforms. Furthermore, we examine the distinct
mechanistic pathways by which inflammation can modulate drug metabolism in
hepatocytes. Subsequently, in chapter 4, we utilize the HepaRG in vitro model to
study how non-CYP DME family members are affected by inflammatory mediators,
and set out to establish a hierarchy of their sensitivity towards inflammation as
compared to the CYPs. In the last part of this section, we focus on reversal of the

impact of inflammation by immunomodulating therapeutics, which might result
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in DDDIs. As such, chapter 5 systematically summarizes the clinical and non-
clinical evidence for reversion of inflammation-driven alterations in metabolic
capacity of CYP enzymes upon treatment with immunomodulating therapeutics.
It subsequently compares the available evidence for DDDIs to the risks that are
described in the drug labeling information of both the FDA and the EMA.

Section III - In vivo tools to study alterations in drug metabolism during
(inflammatory) disease
In chapter 6 we investigate whether the CYP phenotyping cocktail approach
accurately reflects alterations in enzyme activity under inflammatory and other
(patho)physiological conditions. Using a PBPK workflow, we aim to investigate the
sensitivity and specificity of plasma clearance of CYP probe drugs as a surrogate
marker of enzyme activity in vivo.

Finally, in chapter 7, the results of this thesis will be summarized and discussed
alongside the prospects for the implementation of inflammatory status and
concomitant medication use into drug metabolizing phenotype predictions to

enhance a more personalized medicine approach.
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