
The impact of non-genetic factors on drug metabolism:
towards better phenotype predictions
Jong, L.M. de

Citation
Jong, L. M. de. (2025, June 5). The impact of non-genetic factors on drug
metabolism: towards better phenotype predictions. Retrieved from
https://hdl.handle.net/1887/4249242
 
Version: Publisher's Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/4249242
 
Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/4249242


TOC_Laura.indd   6 5-4-2025   15:34:57



Chapter 1

Introduction and thesis outline

Chapter_1_Laura.indd   7 31-3-2025   10:44:11



Chapter 18

Drug metabolism: a key determinant of 
pharmacokinetics 
The response to drug treatments varies significantly among individuals, with 
20–75% of patients failing to achieve the desired outcomes due to adverse drug 
reactions (ADRs) or inadequate therapeutic responses (1). ADRs are a significant 
cause of hospital admissions, accounting for approximately 5% of cases in the 
Netherlands (2), and about 15% of hospitalized patients experience ADRs during 
their stay (3). These high incidences highlight the need to address the underlying 
causes of variability in treatment outcomes. A fundamental determinant of drug 
efficacy and safety is the concentration of the drug in both blood and tissue, which 
is determined by its absorption, distribution, metabolism and excretion (ADME) 
(4). These physiological processes collectively shape the pharmacokinetic (PK) 
profile of a drug, influencing both its therapeutic effectiveness and toxic potential. A 
deeper understanding of the factors contributing to ADME variability is necessary 
to mitigate ADRs and enhance the efficacy of drug treatments. 

Among the ADME processes, drug metabolism is a key factor that influences 
PK parameters, as it dictates the rate at which drugs are biotransformed and 
eliminated from the body. Drug metabolism primarily involves the enzymatic 
conversion of lipophilic drugs into more hydrophilic metabolites, which facilitates 
their excretion (5). This transformation predominantly occurs in the liver, though 
other tissues, such as the kidneys and gastrointestinal tract may also contribute to 
drug metabolism (6). Enzymatic transformation occurs by mechanism categorized 
as either phase I or phase II reactions (7). Phase I enzymes typically catalyze either 
oxidation, reduction or hydrolysis reactions, whereas most phase II enzymes 
catalyze conjugation reactions. Drugs are often metabolized through sequential 
reactions involving both phase I and phase II drug metabolizing enzymes (DMEs). 

Cytochrome P450 enzymes (CYPs) are a key family of phase I enzymes 
responsible for the metabolism of ~75% of clinically administered drugs. 
These enzymes belong to a diverse superfamily of heme-containing proteins, 
systematically classified into families and subfamilies based on similarities in 
their amino acid sequences (8). Each enzyme is identified by a family number 
(e.g., CYP2), a subfamily letter (e.g., CYP2C), and an unique isoform identifier 
(e.g., CYP2C19). Among these, five key isoforms – CYP3A4, CYP2D6, 
CYP2C9, CYP2C19 and CYP1A2 – are primarily responsible for catalyzing the 
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biotransformation of most drugs. Of the 100 most prescribed drugs in European 
countries, 43 are mainly metabolized by CYP3A4, followed by 23 for CYP2D6, 23 
for CYP2C9, 22 for CYP2C19 and 14 for CYP1A2 (9). Table 1 provides examples 
of sensitive drug substrates for these main DMEs, along with probe substrates 
used to quantify their activity in vitro and in vivo. Other important phase I 
enzymes that catalyze oxidations include the flavin-containing monooxygenases 
(FMOs) and the alcohol dehydrogenases (ADHs) (10). Beyond phase I, phase II 
enzymes also play a crucial role in drug metabolism. Notably, it is estimated that 
approximately 25% of the top 200 most prescribed small molecule drugs approved 
by the FDA rely predominantly on non-CYP enzymes for their clearance (11). 
Of these, 45% of biotransformation is executed by the phase II enzymes UDP-
glucuronosyltransferases (UGTs), 10% by sulfotransferases (SULTs) and 7% by 
carboxylesterases (CESs). The activity of DMEs is a significant determinant of 
drug clearance, half-life and plasma concentrations, thereby influencing drug 
exposure and subsequent therapeutic efficacy or toxicity. As such, understanding 
the factors that govern drug metabolism is crucial for predicting and managing 
drug PK and ensuring both safe and effective treatment.

Table 1 Examples of commonly used drug substrates for the main DMEs, and in vitro and in vivo probes 
used to quantify their activity

Drug substrates  In vitro probes (12) In vivo probes (13)

CYP3A4 Carbamazepine, cyclosporine, 
imatinib, ketoconazole, midazolam, 
nifedipine, sildenafil, simvastatin, 
tacrolimus 

Midazolam, 
testosterone 

Midazolam 

CYP2D6 Codeine, haloperidol, metoprolol 
oxycodone, paroxetine, tamoxifen

Bufuralol, 
dextromethorphan

Dextromethorphan, 
metoprolol  

CYP2C9 Diclofenac, glimepiride, phenytoin, 
valproic acid warfarin

Diclofenac, 
tolbutamide 

Diclofenac, 
flurbiprofen, 
losartan, s-warfarin, 
tolbutamide   

CYP2C19 Citalopram, clopidogrel, escitalopram, 
fluvoxamine, omeprazole, 
pantoprazole, sertraline, voriconazole

S-mephenytoin Omeprazole 

CYP1A2 Clozapine, duloxetine, theophylline Phenacetin  Caffeine 
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Interindividual variability in drug metabolism 
One of the major challenges in the drug metabolism field is the significant 
interindividual variability that can lead to differences in systemic drug exposure 
between patients upon administration of a fixed dose. These interindividual 
differences in drug metabolism can stem from both genetic and non-genetic factors.

Pharmacogenetics
Pharmacogenetics (PGx) studies how inheritance impacts the individual variation 
in drug response. Over the past two decades, considerable attention has been 
devoted to genetic polymorphisms in metabolic enzymes as a key factor to explain 
interindividual variability in drug metabolism. Genetic polymorphisms are thought 
to explain ~30% of this variability (14). Importantly, these polymorphisms are 
generally considered to impact the treatment efficacy or safety of approximately 
20-25% of all drugs (14). Currently, there are over 400 polymorphic CYP variants 
reported in the PharmVar repository that impact metabolic function (15). 
Variants can include loss-of-function alterations that result in lower or absence 
of protein activity, or gain-of-function alterations that cause increased protein 
expression and/or enhanced functional activity. To enable their use in clinical 
practice, identified variants are translated into haplotypes and corresponding 
predicted drug metabolizing phenotypes. For most CYP enzymes, four predicted 
phenotypes categories are recognized: poor, intermediate, normal and ultrarapid 
metabolizers. These phenotypes are incorporated into dosing recommendations 
provided by the Dutch Pharmacogenetic Working Group (DPWG) and the Clinical 
Pharmacogenetics Implementation Consortium (CPIC), aiding clinicians in 
adjusting patient therapy based on the individual’s genetic profile (16,17). Currently, 
guidelines are available for over 300 drug-gene pairs, with CYP2D6, CYP2C19 and 
CYP2C9 most extensively covered (18). Various randomized controlled trials have 
demonstrated that individualizing drug dosing based upon the pharmacogenetic 
profile results in better outcomes for specific drug-gene combinations (19,20). More 
recently, a large multicenter study has proven that genotype-guided treatment using 
a pre-emptive 12-gene pharmacogenetic panel approach significantly reduces the 
incidence of clinically relevant adverse reactions among patients with actionable 
genotypes (21).  

Chapter_1_Laura.indd   10 31-3-2025   10:44:11



11Introduction and thesis outline

1

While the implementation of PGx has significantly advanced the shift from a 
one-size-fits-all approach to a more individualized strategy, challenges remain that 
have to be addressed. PGx-guided drug dosing doesn’t account for the impact of 
non-genetic factors on drug response, such as age, diet, sex, environmental factors, 
concomitant medication use or underlying disease conditions (22). Subsequently, in 
clinical practice we often see a mismatch between the phenotype we would predict 
based on the genetic testing and the actual observed phenotype, a phenomenon 
known as phenoconversion (23,24) (Figure 1). 

Figure 1  Overview of how inflammation and concomitant medication use alters drug metabolism, leading 
to discrepancies between genotype-predicted and measured DME phenotypes. Top panels depict baseline 
genotype-predicted phenotype relationships under normal conditions (middle) and phenoconversion 
scenarios induced by inflammation (left) and concomitant medication (right).
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Various clinical studies have indeed highlighted that concomitant medication 
use, or patient/disease-specific factors impact the activity of key CYP enzymes, 
resulting in a shift in phenotype that could not have been predicted based on 
genotype alone (24). As an example, in CYP2C19-genotyped patients, escitalopram 
serum concentrations showed considerable overlap across all phenotype 
categories, illustrating that genotype alone does not always accurately predict 
metabolic capacity (25). Experimental studies using large cohorts of biobank liver 
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samples allow for a more controlled evaluation of metabolism-related variability, 
considering clinical features like adherence or variability introduced by differences 
in absorption or distribution are not confounding factors. These studied showed 
that significant variability in CYP activity persists within a single genotype group 
or among individual with similar gene activity scores (26–29). This highlights 
the need to incorporate the impact of non-genetic factors into drug metabolizer 
phenotype prediction in order to better reflect real-time metabolic capacity in 
patients.

Drug-drug-gene interactions as contributors to interindividual variability 
and phenoconversion  
Similar to how genetically inherited variants can alter DME activity, administering 
concomitant drugs that inhibit or induce a DME can shift metabolic capacity, 
leading to a drug-drug interaction (DDI). Decades of experience have led to the 
establishment of standardized protocols for the clinical management of DDIs, 
including explicit warnings in drug labeling and clinical decision support systems. 
However, current approaches largely overlook the combined effects of DDIs with 
genetic variation, which can influence the likelihood or clinical significance of 
these interactions (30). For instance, individuals with one nonfunctional CYP2D6 
allele are at increased risk of phenoconversion to a poor metabolizer (PM) status 
when exposed to a CYP2D6 inhibitor as compared to individuals with normal 
functioning alleles (31). These so-called drug–drug–gene interactions (DDGIs) 
thus occurs when the patient‘s genotype and another drug in the patient‘s regimen 
affect the individual‘s ability to clear a drug. Notably, DDGIs account for up to 20% 
of significant drug interactions, making them a substantial clinical concern (32–34). 

Phenoconversion resulting from concomitant medication can thus compromise 
the accuracy of PGx-based drug dosing for specific drug-gene pairs. While 
studies have examined the impact of DDGIs through changes in drug exposure 
or clearance (30), this information is challenging to translate into clinical-decision 
making. A more practical approach would involve determining the switch in drug 
metabolizer phenotype when specific drug-gene pairs are combined with inhibitory 
or inducing concomitant medication, and subsequently add this information to 
existing drug-gene guidelines. In order to achieve this, more data is needed to 
quantify how PGx-based phenotype predictions are impacted by inhibitory or 
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inducing concomitant medication use affecting the same DME, and to determine 
whether this switch is genotype specific. 

Inflammation as a contributor to interindividual variability and 
phenoconversion
Inflammation has emerged as another critical factor contributing to variability in 
drug metabolism. Inflammation is a critical component of the immune response 
to harmful stimuli, including pathogens, cellular injury and toxins (35). It involves 
a complex network of immune cells, signaling molecules and inflammatory 
mediators like cytokines and chemokines, which coordinate the body’s defense 
and initiate tissue repair. Inflammatory mediators are central in initiating acute-
phase responses and sustaining chronic inflammation. Mounting non-clinical and 
clinical evidence shows that elevated production of cytokines during inflammation, 
such as IL-1β, IL-6 and TNF-α, can significantly affect the expression and activity 
of certain DMEs (36–39) as well as drug transporters (40). These inflammation-
driven changes in metabolism can result in an increased variability in drug exposure 
and may cause a transient and/or acute shift away from the genotype-predicted 
phenotype, resulting in phenoconversion. Considering the high prevalence of 
both acute and chronic inflammatory conditions, it is essential to consider how 
inflammation impacts hepatic metabolism for both new and existing drugs. 

Clinical studies have demonstrated alterations in drug PK of CYP substrates 
in individuals with chronic inflammatory conditions and during episodes of 
acute inflammation or infection, presumable attributed to inflammation-induced 
modifications in drug metabolism (41). This is of specific relevance to drugs 
with a narrow therapeutic window, which are routinely subject to therapeutic 
drug monitoring (TDM). PK alterations during acute inflammatory episodes 
have been demonstrated for various drug classes, including antipsychotics 
(e.g., clozapine), antidepressants (e.g., citalopram), sedatives (e.g., midazolam), 
immunosuppressants (e.g., tacrolimus and cyclosporine) and antifungals (e.g., 
voriconazole) (41). Decreased CYP-mediated drug metabolism is also reported 
in several chronic inflammatory conditions including rheumatoid arthritis (42) 
and Crohn’s disease (43), but also in metabolic diseases such as non-alcoholic 
fatty liver disease (NAFLD) (44) and type II diabetes (45), although it is unclear 
to what extent the inflammatory component of these latter diseases is responsible 
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for the alterations in drug PK. Less evidence is available for the potential impact 
of pro-inflammatory cytokines on non-CYP enzyme families, such as the UGTs, 
SULTs, FMOs and CESs, and the resulting alterations of non-CYP mediated drug 
PK during inflammation.  

A few studies have attempted to quantify the phenotypic shift caused by 
inflammation, combing genotype data with alterations in DME activity (24). 
Generally, a shift towards a lower drug metabolizing phenotype is observed, 
where the shift depends on both the degree of inflammation/infection and the 
initial genotype. As such, inflammation adds an extra layer of variability to drug 
metabolism, which may necessitate adjustments in drug dosage regimens for 
patients with acute or chronic inflammatory conditions. 

The use of immunomodulating therapeutics to battle conditions where 
excessive or chronic inflammation plays a role is on the rise (46). These include 
monoclonal antibodies (mAbs) that target cytokine (receptors) or modalities 
aimed at inhibiting the signaling pathways induced by inflammation. These anti-
inflammatory treatments may, through the resolution of inflammation, restore 
CYP metabolic capacity resulting in a disease-drug-drug interaction (DDDI) 
which further introduces PK variability. As an example, treatment with the anti-IL6 
receptor mAb tocilizumab in RA patient resulted in a 57% lower exposure of 
simvastatin as compared to treatment with simvastatin alone, mechanistically 
explained by restored CYP3A4 activity (42). Regulatory agencies have now installed 
guidelines to investigate the risk for such DDDIs with therapeutic proteins (47,48). 
Despite the recognized potential for DDDIs in patients receiving anti-inflammatory 
treatments, there is a lack of clarity regarding which patient population and 
medications carry the highest risk for these interactions. Furthermore, the potential 
effects of these interactions on therapeutic outcomes remain poorly understood. 

Methodological strategies for studying drug 
metabolism and phenoconversion 
Considering the numerous intrinsic and extrinsic factors that can influence drug 
metabolism, there is a need for tools to evaluate an individual’s drug metabolizing 
phenotype. 
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In vitro or ex vivo models
In vitro models or ex vivo biopsy samples can be instrumental in quantifying how 
PGx impact drug metabolism. The functional relevance and substrate specificity of 
rare variants in e.g. CYP enzymes is often hard to tackle in clinical trials considering 
their low frequency. Thus, in vitro systems, such as liver microsomes, cell-based 
expression systems, ex vivo primary samples or purified variant proteins can be 
used to characterize the impact of rare variants. Large screens have been conducted 
to systematically characterize a wide range of rare variants on DME functionality 
in vitro, for example by utilizing deep mutational scanning methods to study 
the functional implications of missense variants in CYP2C9 and CYP2C19 (49), 
providing a first step towards evidence for potential clinically actionable variants.  

Furthermore, cellular models such as hepatocyte cultures allow for the 
examination of drug metabolism under various experimental conditions, including 
the presence of inflammatory cytokines or DDIs. These models facilitate the 
assessment of specific quantitative parameters of e.g. enzyme kinetics, but can also 
yield mechanistic insights into the underlying molecular pathways. A fundamental 
prerequisite for these studies is the sustained and robust expression of DMEs. 
Primary human hepatocytes have long been considered the golden standard for 
drug metabolism studies, but their utility is significantly constrained by a rapid 
decline in DME activity when cultured in 2D and marked inter-donor variability 
(50,51). To overcome these limitations, advanced culture techniques such as 3D 
spheroids or liver-on-a-chip models have been developed to recreate a more 
physiologically relevant microenvironment for studying drug metabolism (52,53). 
Additionally, the HepaRG cell line has emerged as a robust alternative due to its 
capacity to maintain consistent metabolic activity over prolonged culture periods, 
making it a valuable tool for studying both baseline metabolism and the effects of 
non-genetic factors (54). 

Modeling approaches 
Physiologically-based pharmacokinetic (PBPK) models have been effectively 
employed to predict and understand the determinants of interindividual variability 
in drug PK. These models distinguish drug-specific and system-specific parameters 
and allow for simulation of concentration-time profiles under a range of clinical 
conditions. Over the past decade, this approach has gained substantial prominence 
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in drug development and has been increasingly endorsed by regulatory agencies 
(55). The interindividual variability in PK can be simulated in PBPK modeling 
by accounting for variations in key system parameters, such as changes in drug 
metabolism caused by genetic polymorphisms, inflammation or DDIs.  

Multiple efforts have been made to apply PBPK modeling to predict the clinical 
impact of disease-drug or disease-drug-drug interactions in, for example, patients 
with rheumatoid arthritis, leukemia or surgical traumas (56–60). Additionally, 
PBPK modeling has shown useful in predicting the extent and clinical impact of 
drug-gene or drug-drug-gene interactions (61–65). A key advantage of bottom-up 
PBPK approaches is their ability to predict drug PK across various scenarios, 
leveraging systemic parameters and in vitro data to make quantitative predictions 
without requiring clinical data for every drug. This underscores the importance of 
robust in vitro data as a foundation for these models. As such, the integration of 
disease parameters or other non-genetic factors which impact ADME into PBPK 
models appears to be a promising method to approach personalized treatments 
by predicting individuals phenotypes. 

Clinical approaches 
The phenotyping cocktail approach is the most commonly employed method 
to assess real-time enzyme activity in patients (13). This method involves the 
simultaneous administration of probe substrates, each selective for a specific CYP 
isoform, followed by measurements of either the probe clearance or metabolite-
to-parent drug ratio in plasma or urine. It operates on the assumption that the 
observed changes in probe drug clearance or metabolite-to-parent ratios are 
solely driven by alterations in CYP enzyme activity, and results are thus used to 
quantify how the factor studied impacts CYP activity. The phenotyping approach 
has long been a valuable tool in traditional pharmacokinetic studies, particularly 
for investigating drug-drug and drug-gene interactions (66,67). In recent years, 
its application has expanded to include the evaluation of how various (patho)
physiological conditions – such as inflammation, obesity and pregnancy – affect 
in vivo enzyme activity (68–70). As such, the phenotyping cocktail approach is 
an important tool to study the impact of genetic and non-genetic factors on drug 
metabolism, and can be effectively utilized to predict drug metabolizer phenotypes 
in patient populations. 
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Aim and outline of this thesis
The aim of this thesis is to investigate how non-genetic factors, such as inflammation 
and concomitant medication, impact hepatic drug metabolism and subsequent 
drug metabolizing phenotype predictions. This work is grounded in the hypothesis 
that these factors significantly affect drug metabolism and, therefore, should be 
incorporated into PGx-based phenotype predictions. To address this, section one 
focusses on the impact of concomitant medication on drug metabolizing phenotype 
predictions based on PGx. Section two provides novel insights into the impact of 
inflammation on hepatic drug metabolism and its underlying mechanisms, as well 
as the potential of immunomodulating therapies to reverse these inflammation-
induced alterations in drug metabolism. Finally, section three evaluates in vivo 
tools that are used to study alterations in drug metabolism under (inflammatory) 
disease conditions. 

Section I – Impact of concomitant medication on drug metabolizer phenotype 
predictions 
In chapter 2, we quantify the phenoconversion in various CYP2C19 genotype 
groups following administration of CYP2C19 inhibitors in a cohort of microsomal 
liver fractions from 40 patients. Additionally, clinical features will be matched 
to measured CYP2C19 activity to find the source of the discrepancy between 
genotype-predicted phenotype and actual measured phenotype in the cohort. 

Section II – (Pre)clinical evaluation of inflammation-induced alterations in 
drug metabolism 
In chapter 3, we summarize evidence assembled through human in vitro liver 
models on the effect of inflammatory mediators on expression and metabolizing 
capacity of clinically relevant CYP isoforms. Furthermore, we examine the distinct 
mechanistic pathways by which inflammation can modulate drug metabolism in 
hepatocytes. Subsequently, in chapter 4, we utilize the HepaRG in vitro model to 
study how non-CYP DME family members are affected by inflammatory mediators, 
and set out to establish a hierarchy of their sensitivity towards inflammation as 
compared to the CYPs. In the last part of this section, we focus on reversal of the 
impact of inflammation by immunomodulating therapeutics, which might result 
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in DDDIs. As such, chapter 5 systematically summarizes the clinical and non-
clinical evidence for reversion of inflammation-driven alterations in metabolic 
capacity of CYP enzymes upon treatment with immunomodulating therapeutics. 
It subsequently compares the available evidence for DDDIs to the risks that are 
described in the drug labeling information of both the FDA and the EMA.

Section III – In vivo tools to study alterations in drug metabolism during 
(inflammatory) disease 
In chapter 6 we investigate whether the CYP phenotyping cocktail approach 
accurately reflects alterations in enzyme activity under inflammatory and other 
(patho)physiological conditions. Using a PBPK workflow, we aim to investigate the 
sensitivity and specificity of plasma clearance of CYP probe drugs as a surrogate 
marker of enzyme activity in vivo. 

Finally, in chapter 7, the results of this thesis will be summarized and discussed 
alongside the prospects for the implementation of inflammatory status and 
concomitant medication use into drug metabolizing phenotype predictions to 
enhance a more personalized medicine approach.  
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