

Synthesis, structure and epitope mapping of well-defined Staphylococcus aureus capsular polysaccharides Østerlid, K.E.

Citation

Østerlid, K. E. (2025, May 22). *Synthesis, structure and epitope mapping of well-defined Staphylococcus aureus capsular polysaccharides*. Retrieved from https://hdl.handle.net/1887/4246935

Version:	Publisher's Version
License:	<u>Licence agreement concerning inclusion of doctoral</u> <u>thesis in the Institutional Repository of the University</u> <u>of Leiden</u>
Downloaded from:	https://hdl.handle.net/1887/4246935

Note: To cite this publication please use the final published version (if applicable).

Chapter 5

Synthesis of a set of *Staphylococcus aureus* capsular polysaccharide type 1 oligosaccharides carrying taurine esters

Introduction

The cell wall of Staphylococcus aureus (S. aureus) comprises different cellwall components including different types of capsular polysaccharides (CPs), which have already been thoroughly elaborated on in Chapters 2-4. Besides the previously described CP type 5 and 8, also CP1 has been identified and characterized. From a synthetic perspective, CP1 is one of the most studied S. aureus CPs, together with CP5 and CP8.¹ It differs from other types of CPs from S. aureus due to the presence of 2-acetamido-2-deoxy-α-D-galactopyranosyl uronic acid (α-D-GalNAcA) residues. The first isolation of CP1 was reported by Smith in 1962 and the structure was later characterized by Scott in 1969 and designated as S. aureus Strain M.² In 1974. Liau et al. further investigated the chemical components of strain M and concluded that the surface antigen consists of three components, taurine, α-D-GalNAcA and D-fucosamine (D-FucNAc).³ However the ratio of the components remained unclear until 1977, when Liau et al. reported the CP1 structure to contain D-GalNAcA, D-FucNAc and taurine in a 4:2:1 ratio.⁴ The complete structure of strain M was determined by Murthy et al. in 1983 to comprise the repeating unit \rightarrow 4)-O-(2-acetamido-2-deoxy- α -D-galactopyranosyl uronic acid)- $(1\rightarrow 4)$ -O-(2-acetamido-2-deoxy- α -D-galactopyranosyl uronic acid)- $(1\rightarrow 3)$ -O-2acetamido-2-deoxy- α -D-fucopyranosyl-(1 \rightarrow , where taurine is linked to every fourth D-GalNAcA unit via an amide bond as shown in Figure 1A.⁵ A second strain of CP1, called strain D, was established in 1982 and found to consist of the same repeating unit without the taurine substituents.^{6,7}

The polysaccharide capsule of strain M has been associated with increased virulence and in mouse models found to increase resistance to phagocytosis.⁸ To understand how the polysaccharide interacts with receptors of the immune system or to explore the biosynthesis pathways, synthetic fragments of bacterial polysaccharide can be excellent tools. Also, for generation of well-defined synthetic vaccines these can be valuable molecules,⁹ as described in Chapters 2-4, which have shown the application of synthetic *S. aureus* CP fragments in the establishment of 3D structures, for epitope mapping and the construction of synthetic vaccine modalities. It follows that similar tools for CP1 would be very valuable.

Figure 1: A) A schematic representation of the repeating unit of CP1 and the possible taurine pattern. B) Previous synthetic work of the CP1-trisaccharide by Hagen *et al.* C) Previous synthetic work of the CP1-trisaccharide by Kulkarni and co-workers.

In 2017, the first reported synthesis of CP1 strain M was reported by Hagen et al. (Figure 1B).¹⁰ The synthesis of a trisaccharide repeating unit (RU) relied on a post glycosylation oxidation strategy to ensure the 1,2-cis glycosylic linkages, through the use of silvlene-protected galactosazide (GalN₃) synthons. A pre-glycosvlation oxidation was also investigated, however using GalN₃A building blocks the α-selectivity was difficult to control. The trisaccharide was built from the reducing end by using a post-glycosylation oxidation method and oxidation was executed at both a monosaccharide and at a disaccharide level. Difficulties with oxidation of the disaccharide were encountered, and these were overcome by implementing a two-step, one-pot 2,2,6,6-tetramethylpiperidin-1-yl)oxidanyl (TEMPO)/ (diacetoxyiodo)benzene (BAIB)-Pinnick oxidation protocol. In 2023, Kulkarni and co-workers reported a synthesis of the trisaccharide repeating unit¹¹ relving on a 4.6-benzylidene protected D-galactosazide thioglycoside donor (Figure 1C). To ensure 1.2-cis glycosylation with the linker, a dimethylformamide (DMF) modulated pre-activation method¹² was implemented, while for the disaccharide glycosylation, solvent participation using diethyl ether (Et₂O) was used to ensure 1,2-cis linkage. Instead of a step-wise oxidation, a double oxidation on the disaccharide using TEMPO/BAIB/NaHCO3 was implemented,¹³ followed by alkylation to provide the benzyl esters. The protected trisaccharide was deprotected using a 2-step deprotection strategy. Both synthesized trisaccharides were equipped with a linker which allowed for conjugation, however no immunological evaluation of the synthetic material has been published to date.

Neither of the so fare published trisaccharides are equipped with the characteristic taurine. This Chapter describes the synthesis of the trisaccharides with all the possible taurine substitution patterns (*i.e.*, none, one or two taurines per repeating unit) obtaining four different trisaccharides as well as a non-taurinated hexasaccharide. The trisaccharides are constructed with the possibility for both elongation and taurine substitution of either of the two D-GalNAcA motifs. By using an orthogonal protecting group strategy on the C-6-OH of the GalN₃A residues several CP1 fragments can be provided. Opposite to the strategy in Chapters 2-4, the oxidations are now performed at a late stage on more complicated molecules to allow different taurine substitution patterns to be incorporated. The saccharides will be equipped with linker functionalities for future conjugation purposes.

Results and discussion

The retrosynthetic analysis is depicted in Scheme 1. For the synthesis of the CP1 trisaccharides, the implemented strategy relied on building of the saccharides from the reducing end and installing the linker on the monosaccharide level. For the stereoselective introduction of the 1,2-cis GalN₃ linkages Kiso's di-tert-butylsilylene (DTBS) protecting group strategy was used.^{14,15} This system can even overwrite neighboring group participation from a C-2 acyl group. Hagen et al. implemented this strategy with an azide moiety on the C-2 and found excellent aselectivity.¹⁰ In addition, a direct glycosylation using a galacturonic acid donor was found difficult by Hagen et al.¹⁰ and to open up for taurine substitution, a post-glycosylation oxidation of the C-6-OH of the GalN residues on the trisaccharide level was implemented. Therefore, two different temporary C-6-OH protecting groups were used – a levulinoyl (Lev) group as precursor for the carboxylic acids and an allyloxycarbonyl (Alloc) group as precursor for the taurine esters. Extensive work by Zhang et al. has shown that regioselective O-acylation of the primary alcohol after glycosylation and desilylation is effective.¹⁶ For the D-FucNAc residue, the C-3-OH was equipped with a p-methoxybenzyl (PMB) ether allowing for elongation. In all the building blocks, non-participating azides were used as precursors for the product acetamides, ensuring the formation of the 1,2cis linkages, while benzyl-like protecting groups were used for permanent protection of all other groups, allowing for a single global deprotection step. For the hexasaccharide only a non-taurinated hexasaccharide was targeted, implementing a [3+3] glycosylation approach. The acceptor trisaccharide was built using the same protocol as for the non-taurinated trisaccharide, while the donor

trisaccharide was constructed with a temporary phenylselenyl protecting group on the anomeric center, again building on the protecting group strategies described above.

Scheme 1: Retrosynthetic analysis of the four different trisaccharides and one hexasaccharide.

For the D-FucN₃ residue a route starting from intermedia **12** (see Chapter 2 for its synthesis) was developed as shown in Scheme 2A. First, the C-3-OH was protected with a PMB ether via a tin-acetal intermediate,¹⁷ followed by benzylation of the free C-4-OH giving fully protected **10a**.^{iv} Next, the selenophenyl group was hydrolyzed with *N*-iodosuccinimide (NIS) giving hemiacetal **14** in 93%, followed by installation of a *N*-phenyl trifluoroacetimidate to provide donor **10b**.¹⁸ The D-GalN₃ building block was synthesized following a route published by Hagen *et al*.¹⁰ giving phenylselenyl donor **11a** in 49% yield over 4 steps and imidate donor **11b** in 44% over 6 steps as shown Scheme 2B.

The assembly of the three target trisaccharides started with a glycosylation between donor **11a** and acceptor **19** in the presence of NIS and *tert*-butyldime-thylsilyl trifluoromethanesulfonate (TBSOTf), which proceeded in 80% yield and delivered only the α -anomer (Scheme 3). The yield was improved to 98% yield by switching to the imidate donor **11b** without affecting the α -selectivity. The newly formed α -linkage was confirmed by ¹H-NMR and ¹³C-NMR, with the anomeric proton and carbon having a CH-coupling constant of $J_{C1,H1} = 171.5$ Hz.

^{iv} It was found that shorter reaction times (from overnight to 4 h) improved the yield from 56% to 78% of the benzylation due to hydrolysis of the anomeric seleno acetal.

Scheme 2: Synthesis of the building blocks 10 (A) and 11 (B). *Reaction conditions*: A) a) Bu₂SnO, PMBCl, CsF, Bu₄NBr, toluene, 87%, b) BnBr, NaH, DMF, 78%, c) NIS, acetone/H₂O, 93%, d) ClC(=NPh)CF₃, K₂CO₃, acetone, 91%. B) e) i) (SePh)₂, TMSN₃, BAIB, DCM, -30 to -20 °C, 56% ii) NaOMe, MeOH, quant. f) (*t*-Bu)₂Si(OTf)₂, pyridine, DMF, 96%, g) BnBr, NaH, DMF, 92%, h) NIS, acetone/H₂O, 90% yield, j) ClC(=NPh)CF₃, K₂CO₃, acetone, 99%.

The DTBS group was removed with tetra-butylammonium fluoride (TBAF) followed by regioselective O-acylation on the newly liberated C-6-OH with either a Lev or an Alloc group. The Lev protection using levulinic acid (LevOH), N,N'diisopropylcarbodiimide (DIC) and 4-dimethylaminopyridine (DMAP) afforded a mixture of C-4 and C-6 protected product, but switching to a procedure using the intermediate tin-acetal, formed using dibutyltin oxide (Bu₂SnO) in toluene, followed by addition of levulinic anhydride (Lev₂O) gave 22 in excellent 93% vield. For the Alloc protection, allyl chloroformate and pyridine were used to give 25 in 84% yield. Next, the Lev-24 and Alloc-25 disaccharides were generated using the phenylselenyl-donor 11a in moderate yields (42% for 24 and 46% for 25). These yields improved drastically by changing to imidate-donor 11b (82% for 24 and 86% for 25), in line with the findings of Zhang et al.¹⁶ Desilvlation with TBAF buffered by acetic acid (AcOH) and regioselective O-acylation of the C-6-OH with either a Lev or a Alloc group gave the three disaccharide acceptors 28, 29 and 30. Glycosylation with imidate-donor 10b and TBSOTf gave the trisaccharides 6, 7 and 8 in excellent 97%, 92% and 90% yield respectively.^v All newly formed α-linkages were confirmed by ¹H-NMR, ¹³C-NMR and CH-coupling constants.

^vAlso here, the imidate donor performed significantly better than the corresponding phenylselenyl donor **10a** (6 was formed in 47% when using **10a**).

Scheme 3: Synthesis of the three different trisaccharide intermediates **6**, **7** and **8**. *Reaction conditions*: a) TBSOTf, DCM, 0 °C, 98%, b) TBAF, THF, 91%, c) **22**: Bu₂SnO, toluene, Lev₂O, DCM, 93%; **23**: Alloc-Cl, pyridine, DCM, 84%. d) TBSOTf, DCM, 0 °C, **24**: 82%, **25**: 86%, e) TBAF, AcOH, THF, **26**: 91%, **27**: 92%, f) **28**: Bu₂SnO, toluene, Lev₂O, DCM, 92%; **29**: Alloc-Cl, pyridine, DCM, 74%; **40**: Bu₂SnO, toluene, Lev₂O, DCM, 71%, g) TBSOTf, DCM, 0 °C, **6**: 97%; **7**: 92%; **8**: 90%.

The oxidation and deprotection strategy used to furnish the trisaccharides depended on the taurination pattern of the products, as seen in Scheme 4. First, in all three trisaccharides (6, 7 and 8), the azides where reduced and the resulting amines acetylated in a one-pot fashion using the same method used in Chapters 2-4. For the non-taurinated trisaccharide (Scheme 4A), the Lev groups in 31 were removed with hydrazine-acetate followed by a double oxidation. First, a TEMPO/BAIB oxidation was investigated,^{19,20} but these conditions led to cleavage of the glycosidic linkages, as also reported by Hagen *et al.*¹⁰ In the literature, it has more often been reported that multiple oxidations on larger saccharides can be difficult. Zhang et al. found that multiple oxidations could best be achieved using TEMPO and BAIB together with NaHCO3 in a mixture of EtOAc/t-BuOH/H₂O at 4 °C to afford the desired oxidized products in good yields,¹³ as the basic conditions accelerate the formation of the hydrate from the newly formed aldehyde. These conditions were implemented, forming 33 in good yield (54%). It was observed however that a long reaction time was required (12 days), which led to partial or complete cleavage of the PMB ether. The oxidation was monitored by LC-MS to reveal a fast oxidation to the aldehyde and a slow subsequent oxidation to the carboxylic acid. Gao and co-workers have developed an oxidation strategy for complex long oligosaccharides using a minimal amount of water,²¹

by first oxidizing the alcohol to the aldehyde using TEMPO and BAIB in dry dichloromethane (DCM) followed by oxidation to the carboxylic acid by adding wet DCM^{vi} and extra BAIB. This protocol was implemented on **32** and the double oxidated product **33** was achieved in significantly shorter reaction time (1 day), however degradation of the starting material was observed and the yield not improved. Finally, hydrogenation afforded the first target trisaccharide **1** in 44% yield.

The second trisaccharide with taurines on both GalNAcA residues was obtained from intermediate 33 by installation of the taurine amide on both carboxylic acids using taurine in the presence of hexafluorophosphate azabenzotriazole tetramethyl uronium (HATU) and N,N-diisopropylethylamine (DIPEA). Hydrogenation and size exclusion gel-filtration chromatography gave target 4 in 17% yield over two steps. For the trisaccharide with the taurine on the first GalNAc residue, after the reduction of the azides, the Lev group was removed, followed by oxidation using the above described, basic TEMPO/BAIB conditions (Scheme 4B). The carboxylic acid intermediate was obtained after 4 days stirring at 4 °C, with the PMB ether intact and alkylation then gave 36. The Alloc-group was removed using palladium catalysis and the basic oxidation conditions provided the oxidized product 38 after 12 days of stirring at 4 °C. The long reaction time again led to partial PMB cleavage, resulting in an inseparable mixture, which was nonetheless used for the following transformations. For installation of the taurine amide, a similar coupling was performed as described for the double taurinated trisaccharide. After aqueous work-up the crude product was immediately hydrogenated and after size exclusion gel-filtration chromatography 2 was obtained in 21% yield. The position of the taurine was confirmed with ¹H-NMR and ¹³C-NMR. The same steps were implemented on $\mathbf{8}$ to obtain the trisaccharide with taurine on the 2nd GalNAcA residue, as can be seen in Scheme 4C. During the second oxidation the PMB was again partially cleaved, giving 51% of 44a with the PMB and 27% of 44b without PMB. The taurine was installed on the mixture of 44a/b and after hydrogenation and gel-filtration 3 was obtained in 35% yield over two steps and hydrolysis of the taurine amide was not observed.

^{vi} Wet DCM was obtained by shaking DCM with water and then adding only the DCM layer.

Scheme 4: Scheme 3: A) Deprotection towards 1 and 4. B) Deprotection towards 2. C) Deprotection towards 3. *Reaction conditions*: A) a) zinc, AcOH, Ac₂O, THF, 50 °C, 92%; b) hydrazine acetate, toluene/EtOH, 96%; c) TEMPO, BAIB, NaHCO₃, EtOAc/*t*-BuOH/H₂O, 4 °C, 54%; d) Pd(OH)₂, *t*-BuOH, H₂O, AcOH, H₂, 44%; e) i) Taurine, HATU, DIPEA, DMF, ii) Pd(OH)₂, *t*-BuOH, H₂O, AcOH, H₂, 44%; e) i) TeMPO, BAIB, NaHCO₃, EtOAc/*t*-BuOH/H₂O, 4 °C, 68%; g) hydrazine acetate, toluene/EtOH, 89%; h) i) TEMPO, BAIB, NaHCO₃, EtOAc/*t*-BuOH/H₂O, 4 °C, 76%; k) TEMPO, BAIB, NaHCO₃, EtOAc/*t*-BuOH/H₂O, 4 °C, 65%; l) taurine, HATU, DIPEA, DMF, m) Pd(OH)₂, *t*-BuOH, H₂O, AcOH, H₂, 21% over two steps; C) n) zinc, AcOH, Ac₂O, THF, 50 °C, 94%; o) hydrazine acetate, toluene/EtOH, 86%; p) TEMPO, BAIB, NaHCO₃, EtOAc/*t*-BuOH/H₂O, 4 °C, 65%; l) taurine, HATU, DIPEA, DMF, m) Pd(OH)₂, *t*-BuOH, H₂O, AcOH, H₂, 21% over two steps; C) n) zinc, AcOH, Ac₂O, THF, 50 °C, 94%; o) hydrazine acetate, toluene/EtOH, 86%; p) TEMPO, BAIB, NaHCO₃, EtOAc/*t*-BuOH/H₂O, 4 °C, 51% with PMB and 27% without PMB; s) Taurine, HATU, DIPEA, DMF; t) Pd(OH)₂, *t*-BuOH, H₂O, AcOH, H₂, 35% over two steps.

Next, the construction of the hexasaccharide without taurines was undertaken, to investigate whether multiple oxidations could be executed on the hexasaccharide precursor. A [3+3] glycosylation was implemented, necessitating two different trisaccharides - one acceptor and one donor. To this end a trisaccharide donor was synthesized having a phenylselenvl on the anomeric position to minimize modification steps. Donor formation started with formation of diol 47 from monosaccharide 46 by removal of the *p*-methoxy-benzylidene, which was selectively levulinoylated with LevOH, DIC and DMAP giving acceptor 48 (Scheme 5). Glycosylation with donor 11b afforded disaccharide 49 in 65% yield as the sole a-anomer. The lower yields found for the product with the anomeric phenylselenyl group can be explained by partial hydrolysis of the acceptor. Removal of the DTBS group followed by regioselective levulinoylation of the diol gave acceptor 51. Here, also 8% double levulinoylated product was found. Glycosylation between donor 10b and acceptor 51 gave trisaccharide 52 in 56% yield. Trisaccharide 52 was then converted into imidate donor 54 by hydrolysis of the phenylselenyl acetal, followed by N-phenyl trifluoroacetimidate installation. Hexasaccharide 56 was obtained by the glycosylation of acceptor 55 (which was synthesized by oxidative cleavage of the PMB ether in 6) and donor 54 in 58% yield and excellent α -selectivity. The newly formed α -linkage was confirmed by ¹H-NMR and ¹³C-NMR, with the J_{C1-H1} coupling constants all around 170 Hz, indicating the presence of only α -linkages. The same deprotection protocol as for the non-taurinated trisaccharide was followed and first the azides were reduced and the concomitant one-pot acetylation, was followed by deprotection of the Levesters. The four newly liberated primary alcohols were oxidized using the basic oxidation protocol by stirring the reaction at 4 °C for 12 days, to give the desired tetra-carboxylic acid 59 in 65% with cleavage of the PMB ether. The oxidation was also carried out under the same conditions at room temperature, which gave 59 after 6 days in 75%. Hydrogenation then gave hexasaccharide 5 in 26% yield.

Scheme 5: A) Synthesis of trisaccharide donor 54, B) Synthesis of the non-taurinated hexasaccharide 4. *Reaction conditions*: A) a) CSA, MeOH, 82%, b) LevOH, DIC, DMAP, DCM, 0 °C, 92%, c) TBSOTf, DCM, 0 °C, 65%, d) TBAF, AcOH, THF, 86%, e) LevOH, DIC, DMAP, DCM, 0 °C, 90%, f) TBSOTf, DCM, 0 °C, 56%, g) NIS, THF/H₂O, 99%, h) CIC(=NPh)CF₃, K₂CO₃, acetone, 80%, B) j) DDQ, DCM/H₂O 20:1, 86%, k) TBSOTf, DCM, 0 °C, 58% l) zinc, AcOH, Ac₂O, THF, 50 °C, 100%, m) hydrazine acetate, toluene/EtOH, 96%, n) TEMPO, BAIB, NaHCO₃, EtOAc/*t*-BuOH/H₂O, 4 °C, 65%, o) Pd(OH)₂, *t*-BuOH, H₂O, AcOH, H₂, 26%.

Conclusion

This Chapter described the construction of several CP1 strain M and D oligosaccharides with varying taurine substitution patterns and length. To be able to vary the taurine substitution pattern, different protecting groups were installed on the C-6-OH of the GalN₃ residues. The saccharides were constructed from the reducing end, relying on a DBST group on the GalN₃ donors for the 1,2-*cis* linkages. For the CP1 fragments, late-stage modification of the larger saccharides was required to install the wanted taurine substitution patterns, necessitating the use for multiple oxidations on larger saccharides. Basic TEMPO/BAIB oxidation conditions at low temperature, in combination with long reaction times were found to provide the carboxylic acids in good yields. The taurine amides could easily be introduced via a peptide coupling followed by hydrogenation to give the wanted taurine saccharides. A non-taurinated hexasaccharide was also synthetized, corresponding to a capsular oligosaccharide fragment of strain D. By implementing a [3+3] strategy, the hexasaccharide was obtained in good yield and excellent α selectivity. Notably the four-fold oxidation to introduce four carboxylates in a single transformation using the basic oxidation conditions proceeded well to effectively deliver the target hexasaccharide. The generated fragments can now be used for antigen mapping studies for the construction of synthetic vaccine modalities. The chemistry described can be applied to generate larger structures and generate different taurine substitution patterns as well as in the synthesis of other structurally related bacterial oligosaccharides.

Experimental

General experimental procedures

All reagents were of commercial grade and used as received unless otherwise noted. All moisture sensitive reactions were performed under an argon or nitrogen (N₂) atmosphere. Dried solvents (DCM, DMF, THF, toluene, Et₂O) were stored over flame-dried 3 or 4Å molecular sieves. Reactions were monitored by thin layer chromatography (TLC) analysis conducted with Merck aluminum sheets with 0.20 mm of silica gel 60. The plates were detected by UV (254 nm) and were applicable by spraying with 20% sulfuric acid in EtOH or with a solution of $(NH_4)_6Mo_7O_{24}$ ·4H₂O (25 g/L) and $(NH_4)_4Ce(SO_4)_4$ ·2H₂O (10 g/L) in 10% sulfuric acid (aq.) followed by charring at ~150 °C. Flash column chromatography was performed with silica gel (40-63µm). Size-exclusion chromatography was carried out using SephadexTM (LH-20, GE Healthcare Life Sciences) by isocratic elution with DCM/MeOH (1:1, v:v). High-resolution mass spectra were recorded on a Thermo Finigan LTQ Orbitrap mass spectrometer equipped with an electrospray ion source in positive mode (source voltage 3.5 kV, sheath gas flow 10, capillary temperature 275 °C) with resolution R=60.000 at m/z=400 (mass range 150-4000). ¹H and ¹³C spectra were recorded on a Bruker AV-400 (400 and 101 MHz respectively), Bruker AV-500 (500 and 126 MHz respectively), Bruker AV-600 (600 and 151 MHz respectively), Bruker AV-850 (800 and 214 MHz respectively) or a Bruker AV-1200 (1200 and 302 MHz respectively). Chemical shifts (δ) are given in ppm relative to the residual signal of the deuterated solvent (¹H-NMR: 7.26 ppm for CDCl₃, 3.31 ppm for MeOD, 1.94 for CNCD₃ or 4.79 for D₂O. ¹³C-NMR: 77.16 ppm for CDCl₃, 49.00 ppm for MeOD, 1.32 for CNCD₃). Coupling constants (J) are given in Hz. All ¹³C spectra are proton decoupled. NMR peak assignments were made using COSY and HSQC experiments, where applicable, HMBC and GATED experiments were used to further elucidate the structure. The anomeric product ratios were analyzed through integration of proton NMR signals.

General glycosylation procedure A with imidate donor

Acceptor (1 equiv.) and donor (1.5 equiv.) were co-evaporated with toluene (3x), dissolved in dry DCM (0.1 M), added 3Å molecular sieves and stirred for 30 min under argon. The solution was cooled to 0 °C, added TBSOTf (0.2 equiv.) and stirred until TLC showed full conversion at 0 °C. The reaction was quenched with Et₃N, dissolved in EtOAc, washed with NaHCO₃ (sat. aq.; x1) and brine (x1), dried over Na₂SO₄, filtered and concentrated *in vacuo*. Column chromatography gave the want product.

General azide reduction procedure B

The starting material was dissolved in THF (3 mL) and added zinc powder (300 equiv.), AcOH (1 mL) and $Ac_2O(0.5 \text{ mL})$. The reaction was stirred overnight at 50 °C until TLC (DCM/MeOH 95:5) showed full conversion of the starting material. The reaction was cooled to rt, filtered through Celite, evaporated *in vacuo* and co-evaporated with toluene x3. Column chromatography gave the wanted product.

General oxidation procedure C with TEMPO, BAIB and NaHCO3

The starting material was dissolved in EtOAc/t-BuOH/H₂O (1:1:1), cooled to 0 °C, added TEMPO (0.8 equiv. pr. hydroxy group) and NaHCO₃ (5 equiv. pr. hydroxy group) and stirred at 0 °C for 10 min before adding BAIB (4 equiv. pr. hydroxy group). The reaction was stirred at 4 °C until LC-MS showed full conversion from the hydroxy(s) over the aldehyde(s) to the acid group(s). The solution was quenched with Na₂S₂O₃ (aq., sat.) and diluted in EtOAc. NaH₂PO₄ (0.5 mL, aq., sat.) and brine (1 mL) was added and the aqueous phase was extracted with EtOAc (x3) and the combined organic layers was dried with Na₂SO₄, filtered and concentrated *in vacuo*. Column chromatography (DCM/MeOH + 1% AcOH) gave the want product.

General hydrogenation procedure D

The starting material was dissolved in *t*-BuOH (1.5 mL) and added AcOH (1 mL, 0.1 mL in 100 mL MilliQ). Another 1 mL *t*-BuOH was added to dissolve the compound. The solution was birched with argon for 20 min and added Pd(OH)₂/C (catalytic amount). The reaction was again birched with argon for 5 minutes before the atmosphere was changed for H₂. The mixture was stirred under H₂ atmosphere for three days or until completion by NMR was observed. The mixture was filtered over a Whatman filter and lyophilized. Purification by a HW40 column with NH₄OAc followed by lyophilization gave the wanted product.

Synthesis of the building blocks

Phenyl 2-azido-2-deoxy-3-O-(p-methoxybenzyl)-1-seleno-α-D-fucopyranoside (13)

Phenyl 2-azido-2-deoxy-1-seleno-α-D-fucopyranoside 12 (3.61 g, 10.96 mmol) was co-evaporated with toluene (x3) and dissolved in dry toluene (50 ml. 0.2 M). Bu₂SnO (2.784 g, 11.18 mmol, 1.02 equiv.) was added. The flask was equipped with a Dean-Stark and the reaction was heated to 140 °C for 3 h. The now clear solution was cooled to 60 °C before adding Bu₄NBr (3.711 g, 11.51 mmol, 1.05 equiv.), CsF (1.699 g, 11.18 mmol, 1.02 equiv.) and PMBCl (1.6 mL, 11.51 mmol, 1.05 equiv.). The reaction was heated to 120 °C for 1 h until TLC (pentane/EtOAc 3:2) showed full conversion. The reaction was allowed to cool to rt before a 10% KF solution was added and the reaction was stirred for 30 min. The aqueous phase was extracted with EtOAc (x3) and the combined organic phases were washed with brine (x1), dried over Na₂SO₄, filtered and concentrated. Column chromatography (pentane/EtOAc 9:1 \rightarrow 7:3) gave 13 in 87% yield (4.278 g, 9.525 mmol). ¹H NMR (400 MHz, CDCl₃) δ 7.60 – 7.54 (m, 2H, Ar-*H*), 7.36 – 7.26 (m, 5H, Ar-*H*), 6.95 – 6.88 (m, 2H, Ar-*H*), 5.88 (d, J = 5.3 Hz, 1H, H-1), 4.73 – 4.59 (m, 2H, Ar-*CH*₂), 4.29 (qd, J = 6.5, 1.4Hz, 1H, H-5), 4.15 (dd, J = 10.2, 5.3 Hz, 1H, H-2), 3.86 (dd, J = 3.1, 1.3 Hz, 1H, H-4), 3.82 (s, 3H, PMB-OCH₃), 3.69 (dd, J = 10.2, 3.1 Hz, 1H, H-3), 2.37 (s, 1H, OH), 1.26 (d, J = 6.6 Hz, 3H, H-6). ¹³C NMR (101 MHz, CDCl₃) & 159.83 (Ar-C_a), 134.52 (Ar-C), 129.93 (Ar-C), 129.24 (Ar-C), 128.79 (Ar-C_a), 128.68 (Ar-C_a), 127.91 (Ar-C), 114.24 (Ar-C), 85.38 (C-1), 78.99 (C-3), 71.95 (Ar-CH₂), 68.70 (C-4/ C-5), 68.61 (C-4/ C-5), 60.23 (C-2), 55.44 (PMB-OCH₃), 16.20 (C-6). HRMS: [M+Na]⁺ calculated for C₂₀H₂₃N₃O₄SeNa: 472.07515; found 472.07463

Phenyl 2-azido-4-*O*-benzyl-2-deoxy-3-*O*-(*p*-methoxybenzyl)-1-seleno-α-D-fucopyranoside (10a)

BnO

РМВО

13 (4.278 g, 9.525 mmol) was dissolved in DMF (95 mL, 0.1 M) and cooled to 0 °C. NaH (60% suspension in mineral oil, 495 mg, 12.38 mmol, 1.3 equiv.) and BnBr (1.5 mL, 12.38 mmol, 1.3 equiv.) were added and the solution was

warmed to rt and stirred under N₂ for 4 h until TLC (pentane/EtOAc 9:1) showed full conversion. The reaction was quenched with H₂O and extracted with Et₂O (x3). The combined organic phases were washed with brine (x1), dried over Na₂SO₄, filtered and concentrated *in vacuo*. Column chromatography (pentane/EtOAc 95:5 \rightarrow 85:15) gave **10a** in 78% yield (3.983 g, 7.388 mmol). ¹H NMR (400 MHz, CDCl₃) δ 7.58 – 7.54 (m, 2H, Ar-*H*), 7.40 – 7.26 (m, 9H, Ar-*H*), 6.96 – 6.89 (m, 2H, Ar-*H*), 5.92 (d, *J* = 5.3 Hz, 1H, H-1), 4.95 (d, *J* = 11.4 Hz, 1H, Ar-*CH*₂), 4.70 (d, *J* = 1.6 Hz, 2H, Ar-*CH*₂), 4.60 (d, *J* = 11.4 Hz, 1H, Ar-*CH*₂), 4.33 (dd, *J* = 10.2, 5.3 Hz, 1H, H-2), 4.21 (dd, *J* = 7.0, 5.9 Hz, 1H, H-5), 3.83 (s, 3H, PMB-OCH₃), 3.76 – 3.66 (m, 2H, H-3, H-4), 1.12 (d, *J* = 6.5 Hz, 3H, H-6). ¹³C NMR (101 MHz, CDCl₃) δ 160.04 (Ar-*C_q*), 138.08 (Ar-*C_q*), 135.15 (Ar-*C*), 127.78 (Ar-*C*), 129.73 (Ar-*C*), 129.16 (Ar-*C*), 128.45 (Ar-*C*), 128.34 (Ar-*C*), 127.91 (Ar-*C*), 27.78 (Ar-*C*), 114.12 (Ar-*C*), 85.76 (C-1), 80.45 (C-3), 75.93 (C-4), 75.11 (Ar-*C*H₂), 72.37 (Ar-*C*H₂), 69.53 (C-5), 60.97 (C-2), 55.44 (PMB-OCH₃), 16.68 (C-6). **HRMS**: [M+Na]⁺ calculated for C₂₇H₂₉N₃O₄SeNa: 562.12210; found 562.12173

2-azido-4-O-benzyl-2-deoxy-3-O-(p-methoxybenzyl)-α/β-D-fucopyranose (14)

10a (1.592 g, 2.953 mmol) was dissolved in acetone/H₂O (10:1, 60 mL, 0.05 M) and cooled to 0 °C. NIS (1.329 g, 5.907 mmol, 2 equiv.) was added and the solution stirred for 20 min until TLC (pentane/EtOAc 8:2) showed full

conversion. The reaction was quenched with Na₂S₂O₃ (sat. aq.) and the acetone was evaporated. The residue was dissolved in EtOAc and washed with Na₂S₂O₃ (x1, sat. aq.), NaHCO₃ (x1, sat. aq.) and brine (x1), dried over Na₂SO₄, filtered and concentrated *in vacuo*. Column chromatography (pentane/EtOAc $8:2 \rightarrow 6:4$) gave 14 in 93% yield (1.0938 g, 2.738 mmol). ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.27 (m, 12H), 6.94 – 6.89 (m, 3H), 5.30 (t, J = 2.8 Hz, 1H), 4.94 (d, J = 11.5 Hz, 2H), 4.70 – 4.56 (m, 5H), 4.45 (td, J = 7.6, 1.6 Hz, 1H), 4.09 (dd, J = 7.2, 5.9 Hz, 1H), 3.99 – 3.89 (m, 2H), 3.82 (d, J = 0.9 Hz, 5H), 3.77 – 3.70 (m, 1H), 3.70 – 3.67 (m, 1H), 3.56 – 3.50 (m, 1H), 3.48 (q, J = 6.1 Hz, 1H), 3.35 (ddd, J = 10.3, 2.8, 1.0 Hz, 1H), 2.83 (ddd, J = 35.8, 18.3, 8.7 Hz, 1H), 1.19 (d, J = 6.5 Hz, 2H), 1.15 (d, J = 6.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 160.15, 140.15, 139.95, 129.74, 129.68, 128.59, 128.52, 128.44, 127.96, 127.93, 114.09, 114.07, 96.53, 92.55, 80.88, 77.55, 76.12, 74.96, 74.93, 74.87, 72.45, 72.16, 71.17, 66.94, 64.81, 60.26, 55.43, 17.05, 16.97. HRMS: [M+Na]⁺ calculated for C₂₁H₂₅N₃O₅Na: 422.16191; found 422.22625

2-azido-4-*O*-benzyl-2-deoxy-3-*O*-(*p*-methoxybenzyl)-1-*O*-(*N*-phenyl-2,2,2-trifluoroace-timidoyl)-α/β-D-fucopyranose (10b)

Bno NPh N_3 O CF_3 O **CD₃CN**) δ 7.42 – 7.26 (m, 8H), 7.19 – 7.09 (m, 1H), 6.97 – 6.89 (m, 2H), 6.93 – 6.83 (m, 2H), 6.26 (s, 0H), 4.88 (dd, J = 11.1, 3.2 Hz, 1H), 4.74 (dd, J = 24.8, 11.0 Hz, 1H), 4.67 – 4.54 (m, 2H), 4.07 – 3.93 (m, 2H), 3.82 (d, J = 8.4 Hz, 1H), 3.78 (d, J = 1.4 Hz, 3H), 1.25 – 1.16 (m, 3H). ¹³C NMR (101 MHz, CD₃CN) δ 138.90, 129.97, 128.99, 128.97, 128.38, 128.22, 128.19, 127.80, 127.76, 124.57, 119.22, 113.85, 113.83, 80.27, 76.96, 75.77, 75.07, 71.73, 71.62, 71.20, 69.67, 61.90, 58.78, 55.00, 16.06, 15.99, 0.49, 0.29.

Phenyl 3,4,6-tri-O-acetyl-2-azido-2-deoxy-1-seleno-a-D-galactopyranoside (16)

3,4,6-Tri-O-acetyl-D-galactal **15** (28.35 g, 104.1 mmol) and (PhSe)₂ (33.4 g, 104.1 mmol, 1 equiv.) was dissolved in DCM (350 mL, 0.3 M) and degassed under argon at rt for 30 min. The reaction was cooled to -30 °C, and added BAIB (33.5 g, 104.1 mmol, 1 equiv.) and TMSN₃ (28 mL, 208.3 mmol, 2 equiv.) and

stirred at -20 °C overnight until TLC (toluene/EtOAc 9:1) showed full conversion. Cyclohexene (50 mL) was added and the reaction was stirred at rt for 30 min before concentration. The lipophilic by products were removed by Column chromatography (pentane/EtOAc 98:2 \rightarrow 0:100) were all the carbohydrate positive fraction was collected. The crude residue was recrystallized in hot EtOAc/*i*-PrOH 1:4 to give the acetylated-**16** in 56% yield (27.65 g, 58.70 mmol). ¹**H NMR (400 MHz, CDCl₃)** δ 7.65 – 7.54 (m, 2H, Ar-*H*), 7.35 – 7.26 (m, 3H, Ar-*H*), 6.00 (d, *J* = 5.4 Hz, 1H, H-1), 5.47 (dd, *J* = 3.3, 1.3 Hz, 1H, H-4), 5.11 (dd, *J* = 10.9, 3.2 Hz, 1H, H-3), 4.67 (ddd, *J* = 7.3, 5.7, 1.3 Hz, 1H, H-5), 4.26 (dd, *J* = 10.9, 5.4 Hz, 1H, H-2), 4.10 – 3.99 (m, 2H, H-6), 2.15 (s, 3H, COCH₃), 2.06 (s, 3H, COCH₃), 1.97 (s, 3H, COCH₃). ¹³C NMR (101 MHz, CDCl₃) δ 170.48 (C=O), 170.08 (C=O), 169.76 (C=O), 134.90 (Ar-*C*), 129.34 (Ar-*C*), 128.34 (Ar-*C*), 127.63 (Ar-*C*_q), 85.07 (C-1), 77.48 (C-3), 77.16 (C-5), 76.84 (C-4), 71.28 (C-6), 69.06 (C-2), 66.18 (COCH₃), 61.64 (COCH₃), 58.82 (COCH₃), 20.76 (COCH₃). HRMS: [M+Na]⁺ calculated for C₁₈H₂₁N₃O₇SeNa: 494.04424; found 494.04380

The acetylated-**16** (25.55 g, 54.33 mmol) was dissolved in MeOH (180 mL, 0.3 M) and added NaOMe (2.5 mL, 10.87 mmol, 0.2 equiv.). The reaction was stirred at rt for 1 h until TLC (pentane/EtOAc 1:1) showed full conversion and thus neutralized with Amberlite IR-120 H⁺ resins, filtered and concentrated *in vacuo*. The crude product **16** (18.711 g, 54.33 mmol) was used without further purification. ¹H NMR (400 MHz, MeOD) δ 7.67 – 7.61 (m, 2H, Ar-*H*), 7.32 – 7.25 (m, 3H, Ar-*H*), 5.94 (d, *J* = 5.2 Hz, 1H, H-1), 4.23 (td, *J* = 6.1, 1.3 Hz, 1H, H-5), 4.07 (dd, *J* = 10.4, 5.3 Hz, 1H, H-2), 3.96 (dd, *J* = 3.2, 1.3 Hz, 1H, H-4), 3.73 – 3.67 (m, 2H, H-3, H-6), 3.60 (dd, *J* = 11.3, 6.4 Hz, 1H, H-6). ¹³C NMR (101 MHz, MeOD) δ 136.02 (Ar-*C*), 130.04 (Ar-*C*), 128.81 (Ar-*C*), 87.35 (C-1), 74.94 (C-5), 72.48 (C-3), 70.19 (C-4), 63.07 (C-2), 62.01 (C-6). HRMS: [M+Na]⁺ calculated for C₁₂H₁₅N₃O₄SeNa: 368.01225; found 368.01205

Phenyl 2-azido-2-deoxy-4,6-O-(di-tert-butylsilyene)-1-seleno-D-α-galactopyranoside (17)

16 (6.377 g, 18.53 mmol) was co-evaporated with toluene (x3) and dissolved in dry DMF (75 mL, 0.25 M) and cooled to -40 °C. $(t-Bu)_2Si(OTf)_2$ (7.2 mL, 22.23 mmol, 1.2 equiv.) and pyridine (3.7 mL, 46.32 mmol, 2.5 eq) was added and the reaction was stirred at rt under argon for 2 h until TLC (pentane/EtOAc 8:2) showed full conversion. The reaction was quenched with

 H_2O and extracted with $Et_2O(x3)$. The combined organic phases were washed with brine (x1), dried over Na₂SO₄, filtered and concentrated *in vacuo*. Column chromatography

(pentane/EtOAc 100:0 → 85:15) gave 17 in 96% yield (8.665 g, 17.85 mmol). ¹H NMR (400 MHz, CDCl₃) δ 7.58 – 7.52 (m, 2H, Ar-*H*), 7.32 – 7.27 (m, 3H, Ar-*H*), 5.93 (d, *J* = 5.2 Hz, 1H, H-1), 4.49 (dd, *J* = 3.4, 1.2 Hz, 1H, H-4), 4.30 (dd, *J* = 12.7, 2.3 Hz, 1H, H-6), 4.20 (q, *J* = 1.8 Hz, 1H, H-5), 4.05 – 3.98 (m, 2H, H-2, H-6), 3.79 (ddd, *J* = 11.0, 10.3, 3.4 Hz, 1H, H-3), 2.76 (d, *J* = 10.8 Hz, 1H, OH), 1.06 (s, 9H, (CH₃)₃CSi), 1.02 (s, 9H, (CH₃)₃CSi). ¹³C NMR (101 MHz, CDCl₃) δ 134.52 (Ar-C), 129.33 (Ar-C), 128.50 (Ar-C_q), 128.05 (Ar-C), 85.50 (C-1), 72.38 (C-4), 71.92 (C-3), 69.90 (C-5), 66.81 (C-6), 62.26 (C-2), 27.67 ((CH₃)₃CSi), 27.36 ((CH₃)₃CSi), 23.47 ((CH₃)₃CSi), 20.88 ((CH₃)₃CSi). HRMS: [M+Na]⁺ calculated for C₂₀H₃₁N₃O₄SeSiNa: 508.11467; found 508.11423

Phenyl 2-azido-3-*O*-benzyl-2-deoxy-4,6-*O*-(di-*tert*-butylsilyene)-1-seleno-D-α-galactopyranoside (11a)

17 (8.665 g, 17.85 mmol) was co-evaporated with toluene (x3) and dissolved in dry DMF (109 mL, 0.1 M) and cooled to 0 °C. BnBr (4.5 mL, 38.05 mmol, 2 equiv.) and NaH (913 mg, 22.83 mmol, 1.2 eq) were added and the reaction was stirred at rt under N₂ for 2 h until TLC (pentane/EtOAc 95:5) showed full conversion. The reaction was quenched with H₂O and extracted with

Et₂O (x3). The combined organic phases were washed with brine (x1), dried over Na₂SO₄, filtered and concentrated *in vacuo*. Column chromatography (pentane/EtOAc 100:0 \rightarrow 90:10) gave **11a** in 92% yield (9.3752 g, 16.31 mmol). ¹H **NMR (400 MHz, CDCl₃)** δ 7.57 – 7.53 (m, 2H, Ar-*H*), 7.46 – 7.26 (m, 9H, Ar-*H*), 5.94 (d, *J* = 5.3 Hz, 1H, H-1), 4.77 (d, *J* = 11.5 Hz, 1H, Ar-CH₂), 4.69 (d, *J* = 11.6 Hz, 1H, Ar-CH₂), 4.61 – 4.56 (m, 1H, H-4), 4.32 (ddd, *J* = 10.2, 5.3, 1.2 Hz, 1H, H-2), 4.24 (dd, *J* = 12.5, 2.2 Hz, 1H, H-6), 4.07 – 3.97 (m, 2H, H-5, H-6), 3.64 (ddd, *J* = 10.3, 3.0, 1.2 Hz, 1H, H-3), 1.06 (s, 9H, (CH₃)₃CSi), 1.03 (s, 9H, (CH₃)₃CSi). ¹³C **NMR (101 MHz, CDCl₃)** δ 137.71 (Ar-C_q), 134.61 (Ar-C), 129.28 (Ar-C), 128.70 (Ar-C), 128.10 (Ar-C), 128.03 (Ar-C), 127.98 (Ar-C), 86.08 (C-1), 78.89 (C-3), 70.75 (AriCH₂), 70.13 (C-5), 69.36 (C-4), 67.16 (C-6), 59.73 (C-2), 27.75 ((CH₃)₃CSi), 27.44 ((CH₃)₃CSi), 23.55 ((CH₃)₃CSi), 20.80 ((CH₃)₃CSi). **HRMS**: [M+Na]⁺ calculated for C₂₇H₃₇N₃O₄SeSiNa: 598.16162; found 598.20610

2-azido-3-O-benzyl-2-deoxy-4,6-O-(di-tert-butylsilyene)-D-α-galactopyranoside (18)

11b (5.028 g, 8.749 mmol) was dissolved in acetone/H₂O (10:1, 175 mL, 0.05 M) and cooled to 0 °C. NIS (3.937 g, 17.497 mmol, 2 equiv.) were added and the reaction was stirred for 15 min until TLC (pentane/EtOAc, 4:1) showed full conversion. The reaction mixture was quenched with Na₂S₂O₃ (aq., sat.) and acetone was evaporated. The residue was diluted in EtOAc and was

washed with Na₂S₂O₃ (x1, aq., sat.), NaHCO₃ (xa, aq., sat.) and brine, dried over Na₂SO₄, filtered and concentrated *in vacuo*. Column chromatography (pentane/EtOAc, 7:3 \rightarrow 5:5) yielded **18** in 90% yield (3.432 g, 7.861 mmol). ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.41 (m, 2H, Ar-*H*), 7.39 – 7.27 (m, 3H, Ar-*H*), 5.34 (t, *J* = 3.2 Hz, 1H, H-1), 4.77 (d, *J* = 11.7 Hz, 1H, Ar-CH₂), 4.68 (d, *J* = 11.7 Hz, 1H, Ar-CH₂), 4.56 (dd, *J* = 2.8, 1.1 Hz, 1H, H-4), 4.26 (dd, *J* = 12.6, 2.2 Hz, 1H, H-6), 4.18 – 4.11 (m, 1H, H-6), 3.95 – 3.82 (m, 3H, H-2, H-3, H-5), 2.78 – 2.69 (m, 1H, OH), 1.06 (s, 9H, (CH₃)₃CSi), 1.04 (s, 9H, (CH₃)₃CSi). ¹³C NMR (101 MHz, CDCl₃) δ 137.89 (Ar-C_q), 128.69 (Ar-C), 128.10 (Ar-C), 128.07 (Ar-C), 92.67 (C-1), 75.84 (C-3), 70.69 (Ar-CH₂), 69.82 (C-4), 67.62 (C-5), 67.40 (C-6), 59.12 (C-2), 27.76 ((CH₃)₃CSi), 27.45

 $((CH_3)_3CSi)$, 23.54 $((CH_3)_3CSi)$, 20.82 $((CH_3)_3CSi)$. **HRMS**: $[M+Na]^+$ calculated for $C_{21}H_{33}N_5O_5SiNa$: 458.20872; found 458.20803

2-azido-3-*O*-benzyl-2-deoxy-4,6-*O*-(di-*tert*-butylsilyene)-1-*O*-(*N*-phenyl-2,2,2-trifluoroa-cetimidoyl)-D-α-galactopyranoside (11b)

18 (3.431 g 7.859 mmol) was co-evaporated with toluene (x3) and dissolved in dry acetone (40 mL, 0.2 M). K_2CO_3 (1.629 g, 11.79 mmol, 1.5 equiv.) and ClC(=NPh)CF₃ (1.9 mL, 11.79 mmol, 1.5 equiv.) and was added and the reaction was stirred at rt under N₂ overnight until TLC (pentane/EtOAc,) showed full conversion. The reaction was filtered and concentrated *in vacuo*. Column chromatography (pentane/EtOAc 95:5 \rightarrow

85:15) gave **11b** in 99% yield (4.695g, 7.948 mmol). ¹H NMR (400 MHz, CD₃CN) δ 7.51 – 7.38 (m, 4H), 7.42 – 7.30 (m, 4H), 7.21 – 7.13 (m, 1H), 6.90 (d, J = 7.8 Hz, 2H), 6.38 (s, 1H), 4.85 (s, 1H), 4.84 – 4.72 (m, 1H), 4.66 (d, J = 11.3 Hz, 1H), 4.33 (d, J = 12.9 Hz, 1H), 4.17 – 4.04 (m, 2H), 3.98 (d, J = 10.7 Hz, 1H), 3.89 (s, 1H), 1.12 – 1.02 (m, 18H). ¹³C NMR (101 MHz, CD₃CN) δ 129.00, 128.53, 128.17, 127.96, 117.42, 75.87, 70.02, 70.01, 69.89, 68.73, 66.63, 66.61, 57.84, 27.12, 26.87, 26.81, 0.65, 0.45, 0.24.

5-(Benzyl(benzyloxycarbonyl)amino)pentyl 2-azido-3-*O*-benzyl-2-deoxy-4,6-*O*-(di-*tert*-butylsilyene)-galactopyranoside (20)

11b (1.353 mg, 2.291 mmol, 1 equiv.) and acceptor **19** (974 mg, 2.979 mmol, 1.3 equiv.) was co-evaporated with toluene (3x). The donor and acceptor was dissolved in dry DCM (23 mL, 0,1 M), added 3Å molecular sieves and stirred for 30 min. The solution was cooled to 0 °C and added TBSOTf (0.1 mL, 0.458 mmol, 0.2 equiv.) and stirred for 30 min until TLC (pentane/EtOAc 9:1) showed full conversion. The reaction was

quenched with Et₃N, dissolved in EtOAc, washed with Na₂S₂O₃ (sat. aq.; x1), NaHCO₃ (sat. aq.; x1) and brine (x1), dried over Na₂SO₄, filtered and concentrated *in vacuo*. Column chromatography (pentane/EtOAc 75:25 \rightarrow 60:34) gave 20 in 98% yield (1.704 g, 2.852 mmol) as only the α -anomer. ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.27 (m, 13H, Ar-H), 7.23 – 7.13 (m, 1H, Ar-H), 5.18 (d, J = 14.1 Hz, 2H, Ar-CH₂), 4.89 (d, J = 8.7 Hz, 1H, H-1), 4.76 (d, J = 11.5 Hz, 1H, Ar-CH₂), 4.66 (d, J = 11.5 Hz, 1H, Ar-CH₂), 4.63 – 4.56 (m, 1H, H-4), 4.50 (d, J = 7.9 Hz, 2H, Ar-CH₂), 4.30 - 4.19 (m, 1H, H-6), 4.19 - 4.09 (m, 1H, H-6), 3.91 - 3.80 (m, 1H, H-3), 3.77 (dd, J = 10.6, 3.5 Hz, 1H, H-2), 3.61 (d, J = 17.3 Hz, 2H, H-5, Linker-CH₂), 3.48 -3.34 (m, 1H, Linker-CH₂), 3.34 – 3.17 (m, 2H, Linker-CH₂), 1.49 (s, 4H, Linker-CH₂), 1.39 – 1.21 (m, 4H, Linker-CH₂), 1.07 (s, 9H, (CH₃)₃CSi), 1.05 (s, 9H, (CH₃)₃CSi). ¹³C NMR (101 MHz, CDCl₃) δ 137.98 (Ar-C_q), 128.67 (Ar-C), 128.63 (Ar-C), 128.06 (Ar-C), 128.03 (Ar-C), 127.96 (Ar-C), 127.93 (Ar-C), 127.44 (Ar-C), 127.31 (Ar-C), 98.43 (C-1), 75.55 (C-3), 70.51 (Ar-CH₂), 69.89 (C-4), 68.25 (Ar-CH₂), 67.50 (C-5), 67.30 (C-6), 57.99 (Linker-CH₂), 50.62 (Linker-CH₂), 50.33 (Linker-CH₂), 47.20 (Linker-CH₂), 46.23 (Linker-CH₂), 29.83 (Linker-CH₂), 29.16 (Linker-CH₂), 27.76 ((CH₃)₃CSi), 27.43 ((CH₃)₃CSi), 23.55 (Linker-CH₂), 23.44 $((CH_3)_3CSi)$, 20.84 $((CH_3)_3CSi)$. **HRMS**: $[M+Na]^+$ calculated for $C_{41}H_{56}N_4O_7SiNa$: 767.38160; found 767.38105

5-(Benzyl(benzyloxycarbonyl)amino)pentyl 2-azido-3-*O*-benzyl-2-deoxy-galactopyranoside (21)

20 (1.419 g, 1.903 mmol) was dissolved in THF (19 mL, 0.1 M) and cooled to 0 °C. TBAF (1 M in THF, 4.8 mL, 4.757 mmol, 2.5 equiv.) was added and the reaction was stirred at rt under N_2 overnight until TLC (pentane/EtOAc 8:2) showed full conversion. The reaction was quenched with

NH₄Cl (aq., sat.) and diluted with EtOAc. The organic phase was washed with H₂O (x3) and brine (x1), dried over Na₂SO₄, filtered and concentrated *in vacuo*. Column chromatography (pentane/EtOAc 6:4 → 3:7) gave **21** in 90% yield (1.041 g, 1.713 mmol). ¹H NMR (**400 MHz**, **CDCl₃**) δ 7.44 – 7.27 (m, 12H, Ar-*H*), 7.17 (d, *J* = 7.2 Hz, 1H, Ar-*H*), 5.17 (d, *J* = 16.6 Hz, 2H, Ar-CH₂), 4.94 – 4.85 (m, 1H, H-1), 4.78 – 4.65 (m, 2H, Ar-CH₂), 4.49 (d, *J* = 21.5 Hz, 2H, Ar-CH₂), 4.15 (d, *J* = 22.7 Hz, 1H, H-4), 3.96 – 3.85 (m, 2H, H-5, H-6), 3.85 – 3.71 (m, 1H, H-6), 3.71 – 3.51 (m, 2H, H-2, H-3), 3.50 – 3.27 (m, 2H, Linker-CH₂), 3.27 – 3.12 (m, 1H, Linker-CH₂), 2.83 (s, 1H, 6-OH), 2.62 (d, *J* = 22.1 Hz, 1H, 4-OH), 2.31 (s, 1H, 6-OH), 1.61 – 1.44 (m, 3H, Linker-CH₂), 1.42 – 1.19 (m, 3H, Linker-CH₂). ¹³C NMR (101 MHz, CDCl₃) δ 137.93 (Ar-C_q), 137.22 (Ar-C_q), 128.83 (Ar-C), 128.69 (Ar-C), 128.59 (Ar-C), 128.43 (Ar-C), 128.16 (Ar-C), 128.10 (Ar-C), 127.95 (Ar-C), 127.47 (Ar-C), 127.32 (Ar-C₁), 62.61 (C-6), 59.15 (C-2), 50.41 (Linker-CH₂), 47.09 (Linker-CH₂), 28.99 (Linker-CH₂), 27.21 (Linker-CH₂), 23.34 (Linker-CH₂). HRMS: [M+Na]⁺ calculated for C₃₃H₄₀N₄O₇Na: 627.27947; found 627.27892

5-(benzyl(benzoyloxycarbonyl)amino)pentyl 2-azido-3-*O*-benzyl-2-deoxy-6-*O*-levulinoylα-D-galactopyranoside (22)

21 (737 mg, 1.218 mmol) was co-evaporated with toluene (x3) and dissolved in dry toluene (12 mL, 0.1 M) and added Bu₂SnO (318 mg, 1.279 mmol, 1.05 equiv.) and heated to 110 °C for 4 h under nitrogen. The reaction was cooled to rt and added Lev₂O in DCM (4.9 mL, 2.436 mmol, 0.5 M, 2 equiv.) and stirred at rt under nitrogen overnight until TLC (pen-

tane/EtOAc, 1:1) showed full conversion. The reaction mixture was added MeOH and concentrated *in vacuo*. The residue was dissolved in EtOAc and washed with 10% KF (x1), and brine (x1), dried over Na₂SO₄, filtered and concentrated *in vacuo*. Column chromatography (pentane/EtOAc, 60:40 \rightarrow 45:55) yielded **22** in 93% yield (792 mg, 1.133 mmol). ¹H NMR (400 MHz, CDCl₃) δ 7.45 – 7.27 (m, 12H, Ar-*H*), 7.17 (d, *J* = 7.2 Hz, 1H, Ar-*H*), 5.17 (d, *J* = 15.5 Hz, 2H, Ar-*H*), 4.88 (dd, *J* = 7.0, 3.5 Hz, 1H, H-1), 4.77 – 4.65 (m, 2H, Ar-*H*), 4.50 (d, *J* = 6.8 Hz, 2H, Ar-*H*), 4.34 (dd, *J* = 11.4, 5.5 Hz, 1H, H-6), 4.24 (dd, *J* = 11.4, 7.1 Hz, 1H, H-6), 4.06 (s, 1H, H-4), 3.96 – 3.86 (m, 2H, H-3, H-5), 3.69 – 3.59 (m, 2H. H-2, Linker-CH₂), 3.46 – 3.32 (m, 1H, Linker-CH₂), 2.42 (t, *J* = 1.6 Hz, 1H, Linker-CH₂), 2.17 (s, 3H, Lev-CH₃), 1.60 – 1.47 (m, 3H, Linker-CH₂), 1.41 – 1.21 (m, 4H, Linker-CH₂). ¹³C NMR (101 MHz, CDCl₃) δ 172.74 (C=O), 138.06 (Ar-C_q), 137.22 (Ar-C_q), 128.83 (Ar-C), 128.68 (Ar-C), 128.43 (Ar-C), 128.20 (Ar-C), 128.07 (Ar-C), 127.95 (Ar-C), 127.43 (Ar-C), 99.01 (C-1), 75.89 (C-3), 72.14 (Ar-CH₂), 68.30 (Ar-CH₂), 67.77 (C-5), 67.28 (Ar-CH₂), 29.98 (Lev-CH₂), 29.15 (Lev-CH₂), 47.34 (Linker-CH₂), 37.96 (Lev-CH₂), 29.98 (Lev-CH₂), 29.15 (Lev-CH

CH₃), 27.92 (Linker-CH₂), 27.46 (Linker-CH₂), 23.53 (Linker-CH₂). **HRMS**: $[M+NH_4]^+$ calculated for C₃₈H₄₆N₄O₉Na: 720.36085; found 720.36030

5-(benzyl(benzoyloxycarbonyl)amino)pentyl 6-*O*-allyloxycarbonyl-2-azido-3-*O*-benzyl-2deoxy-α-D-galactopyranoside (23)

BnO N₃ Cbz

21 (119 mg, 0.197 mmol) was dissolved in DCM (2 mL, 0.1 M) and cooled to 0 °C. Allyl chloroformate (38 μ l, 0.296 mmol, 1.5 equiv.) and pyridine (32 μ L, 0.395 mmol, 2 eq) were added and the reaction was stirred for 30 min at 0 °C under nitrogen until TLC (pentane/EtOAc, 7:3) showed full conversion. The reaction mixture was diluted in EtOAc and washed with

1 M HCl (x1), NaHCO₃ (x1, aq., sat.) and brine, dried over Na₂SO₄, filtered and concentrated in vacuo. Column chromatography (pentane/EtOAc, $9:1 \rightarrow 7:3$) yielded 23 in 84% yield (115 mg, 0.187 mmol). ¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.27 (m, 14H, Ar-H), 7.18 (d, J = 7.2 Hz, 1H, Ar-H), 5.92 (ddt, J = 16.5, 10.5, 5.8 Hz, 1H, CH=CH₂), 5.35 (dq, J = 17.2, 1.5 Hz, 1H, $CH=CH_2$), 5.26 (dq, J = 10.5, 1.3 Hz, 1H, $CH=CH_2$), 5.19 (d, J = 14.5 Hz, 2H, Ar-CH₂), 4.88 $(d, J = 7.4 \text{ Hz}, 1H, H-1), 4.75 - 4.65 (m, 2H, Ar-CH_2), 4.62 (dt, J = 5.8, 1.4 \text{ Hz}, 2H, CH_2-allyl),$ 4.51 (d, J = 8.3 Hz, 2H, Ar-CH₂), 4.36 (d, J = 6.2 Hz, 2H, H-6), 4.08 (dt, J = 6.2, 3.5 Hz, 1H, H-4), 4.03 – 3.86 (m, 2H, H-5, H-3), 3.71 – 3.54 (m, 2H, H-2, Linker-CH₂), 3.47 – 3.34 (m, 1H. Linker-CH₂), 3.34 - 3.14 (m, 2H. Linker-CH₂), 2.52 (s, 1H, OH), 1.67 - 1.48 (m, 5H, Linker-CH₂), 1.45 – 1.22 (m, 5H, Linker-CH₂). ¹³C NMR (101 MHz, CDCl₃) & 154.89 (C=O), 137.99 (Ar-C_a), 137.10 (Ar-C_a), 131.48 (CH=CH₂), 128.78 (Ar-C), 128.62 (Ar-C), 128.55 (Ar-C), 128.39 (Ar-C), 128.10 (Ar-C), 128.01 (Ar-C), 127.91 (Ar-C), 127.38 (Ar-C), 127.26 (Ar-C), 128.01 (Ar-C), 127.26 (Ar-C), 128.01 (Ar-C), 12 C), 119.18 (CH=CH₂), 97.95 (C-1), 75.85 (C-3), 72.13 (Ar-CH₂), 68.74 (CH₃-allyl), 68.29 (Ar-CH₂), 67.67 (C-5), 67.24 (Ar-CH₂), 66.70 (C-6), 66.11 (C-4), 58.96 (C-2), 50.56 (Linker-CH₂), 50.26 (Linker-CH₂), 47.15 (Linker-CH₂), 46.16 (Linker-CH₂), 29.78 (Linker-CH₂), 29.07 (Linker-CH₂), 27.91 (Linker-CH₂), 27.49 (Linker-CH₂), 23.43 (Linker-CH₂). HRMS: [M+Na]⁺ calculated for C37H44N4O9Na: 711.30060; found 711.30005

Synthesis of the trisaccharide intermediates

5-(benzyl(benzoyloxycarbonyl)amino)pentyl 2-azido-3-*O*-benzyl-2-deoxy-4,6-*O*-(di-*tert*-butylsilyene)- α -D-galactopyrasyl-(1 \rightarrow 4)-2-azido-3-*O*-benzyl-2-deoxy-6-*O*-levulinoyl- α -D-galactopyranoside (24)

The reaction was carried out according to General glycosylationprocedure A using acceptor **22** (972 mg, 1.382 mmol, 1 equiv.), donor **11b** (1.225 g, 2.075 mmol, 1.5 equiv.) and TBSOTF (64 μ L, 0.276 mmol, 0.2 equiv.) in DCM (14 mL, 0.1 M). The reaction was followed by TLC (pentane/EtOAc 7:3) and column chromatography (pentane/EtOAc 80:20 \rightarrow 65:35) gave **24** in 82% yield (1.268 g, 1.134 mmol) as only the α-anomer. ¹H NMR (400 MHz, CDCl₃) δ 7.45 – 7.27 (m, 19H, Ar-H), 7.19 – 7.14 (m, 1H

Ar-*H*), 5.17 (d, *J* = 15.2 Hz, 2H, C*H*₂-Ar), 5.00 (s, 1H, H-1'), 4.94 (d, J = 6.9 Hz, 1H, H-1), 4.74 (dd, *J* = 7.5, 4.4 Hz, 2H, C*H*₂-Ar), 4.64 (t, *J* = 11.3 Hz, 2H, C*H*₂-Ar), 4.51 (s, 2H, C*H*₂-Ar), 4.48 (s, 1H, H-5'), 4.47 – 4.41 (m, 1H, H-6), 4.39 – 4.30 (m, 1H, H-6), 4.26 (s, 1H, H-4'), 4.04 (s, 1H, H-4), 3.96 – 3.91 (m, 1H, H-5), 3.89 – 3.84 (m, 2H, H-2', H-3'), 3.74 (dd, J = 11.4, 1.3 Hz, 1H, H-6'), 3.65 (dd, J = 12.7, 1.6 Hz, 2H, H-6', H-3), 3.58 (dd, J = 7.3, 3.5 Hz, 1H, H-2), 3.48 - 3.34 (m, 2H, CH_2 -Linker), 3.28 - 3.16 (m, 2H, CH_2 -Linker), 2.76 (q, J = 5.9 Hz, 2H, CH_2 -Lev), 2.57 (t, J = 6.4 Hz, 2H, CH_2 -Lev), 2.18 (s, 3H, CH_3 -Lev), 1.55 – 1.50 (m, 2H, CH_2 -Linker), 1.35 - 1.27 (m, 2H, CH_2 -Linker), 1.11 - 1.04 (m, 2H, CH_2 -Linker), 1.01 (s, 9H, H-t-Bu), 0.99 (s, 9H, H-t-Bu). ¹³**C NMR (101 MHz, CDCl₃)** δ 128.72 (Ar-C), 128.68 (Ar-C), 128.63 (Ar-C), 128.06 (Ar-C), 127.96 (Ar-C), 127.34 (Ar-C), 99.18 (C-1'), 98.09 (C-1), 75.58 (C-3'), 72.23 (C-4'), 71.96 (CH₂-Ar), 70.46 (CH₂-Ar), 69.57 (C-5'), 68.36 (C-5), 67.92 (C-4), 67.82 (C-3), 67.28 (C-6'), 67.04 (CH₂-Ar), 61.82 (C-6), 59.61 (C-2), 59.11 (CH₂-Linker), 58.78 (C-2'), 50.33 (CH₂-Ar), 46.66 (CH₂-Linker), 38.08 (CH₂-Lev), 29.93 (CH₃-Lev), 29.16 (CH₂-Linker), 28.02 (CH₂-Lev), 27.73 (CH₃-t-Bu), 27.46 (CH₃-t-Bu), 23.46 (CH₂-Linker). **HRMS**: [M+Na]⁺ calculated for C₅₉H₇₇N₇O₁₃SiNa: 1142.52463; found 1142.52408

5-(benzyl(benzoyloxycarbonyl)amino)pentyl 2-azido-3-*O*-benzyl-2-deoxy-4,6-*O*-(di-*tert*-butylsilyene)- α -D-galactopyrasyl-(1 \rightarrow 4)-6-*O*-allyloxycarbonyl-2-azido-3-*O*-benzyl-2-deoxy- α -D-galactopyranoside (25)

The reaction was carried out according to General glycosylationprocedure A using acceptor **23** (372 mg, 0.539 mmol, 1 equiv.), donor **11b** (478 mg, 0.809 mmol, 1.5 equiv.) and TBSOTf (25 μ L, 0.108 mmol, 0.2 equiv.) in DCM (5.4 mL, 0.1 M). The reaction was followed by TLC (pentane/EtOAc 1:4) and column chromatography (pentane/EtOAc 95:5 \rightarrow 80:20) gave **25** in 86% yield (514 mg, 0.464 mmol) as only the α -anomer. ¹H NMR (400 MHz, CDCl₃) δ 7.64 – 7.59 (m, 1H, Ar-H), 7.48 – 7.26 (m,

25H, Ar-H), 5.93 (ddt, J = 17.3, 10.4, 5.9 Hz, 1H, CH=CH₂), 5.37 (dq, J = 17.2, 1.5 Hz, 1H, $CH=CH_2$), 5.33 – 5.25 (m, 1H, $CH=CH_2$), 5.18 (d, J = 14.7 Hz, 3H, Ar- CH_2), 4.99 – 4.89 (m, 2H, H-1', H-1), 4.75 (dd, J = 11.5, 4.0 Hz, 3H, Ar-CH₂), 4.67 – 4.60 (m, 4H, Ar-CH₂, CH₂allyl), 4.56 – 4.44 (m, 6H, , CH₂-linker, H-6, H-5), 4.26 (d, J = 4.8 Hz, 1H, H-4), 4.03 (s, 1H, H-4'), 3.97 (p, J = 7.2 Hz, 1H, H-5'), 3.94 – 3.83 (m, 3H, H-2', H-3, H-3'), 3.80 – 3.62 (m, H, H-6'), 3.59 (dd, J = 10.8, 3.6 Hz, 2H, H-2, CH₂-linker), 3.49 – 3.32 (m, 2H, CH₂-linker), 3.32 - 3.12 (m, 3H, CH₂-linker), 1.54 (m, 7H, CH₂-linker), 1.37 - 1.19 (m, 6H, CH₂-linker), 1.01 (d, J = 8.1 Hz, 18H, (CH₃)₃CSi). ¹³C NMR (101 MHz, CDCl₃) δ 154.70 (C=O), 137.83 (Ar-C_q), 137.18 (Ar-C_a), 131.62 (Ar-C), 131.39 (Ar-C), 129.32 (Ar-C), 128.71 (Ar-C), 128.66 (Ar-C), 128.60 (Ar-C), 128.51 (Ar-C), 128.04 (Ar-C), 127.98 (Ar-C), 127.94 (Ar-C), 127.85 (Ar-C), 127.41 (Ar-C), 127.25 (Ar-C), 119.48 (CH=CH₂), 99.33 (C-1, C-1'), 98.06 (C-1, C-1'), 75.62 (C-3, C-3'), 72.59 (C-4), 72.07 (Ar-CH₂), 70.43 (CH₂-allyl), 69.50 (C-5), 68.97 (C-6), 67.28 (C-5', Ar-CH₂), 66.99 (C-6), 65.27 (CH₂), 59.61 (C-2), 58.80 (C-2'), 50.75 (CH₂-linker), 50.33 (CH₂-linker), 47.14 (CH₂-linker), 46.22 (CH₂-linker), 27.71 ((CH₃)₃CSi), 27.44 ((CH₃)₃CSi), 23.43 (CH₂-linker). **HRMS**: $[M+Na]^+$ calculated for $C_{58}H_{75}N_7O_{13}SiNa$: 1128.50898; found 1128.50833

5-(benzyl(benzoyloxycarbonyl)amino)pentyl 2-azido-3-*O*-benzyl-2-deoxy- α -D-galactopy-rasyl-(1 \rightarrow 4)-2-azido-3-*O*-benzyl-2-deoxy-6-*O*-levulinoyl- α -D-galactopyranoside (26)

Br

24 (1.268 g, 1.132 mmol) was dissolved in THF (11 mL, 0.1 M) and cooled to 0 °C. AcOH (0.16 mL, 2.823 mmol, 2.5 equiv.) and TBAF (1 M in THF, 2.8 mL, 2.823mmol, 2.5 equiv.) was added and the reaction was stirred at rt under N₂ overnight until TLC (pentane/EtOAc 8:2) showed full conversion. The reaction was quenched with NH₄Cl (aq., sat.) and diluted with EtOAc. The organic phase was washed with H₂O (x3) and brine (x1), dried over Na₂SO₄, fil-

tered and concentrated *in vacuo*. Column chromatography (pentane/EtOAc 5:5 \rightarrow 2:8) gave 26 in 86% yield (943 mg, 0.974 mmol). ¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.27 (m, 20H, Ar-*H*), 5.17 (d, J = 15.7 Hz, 2H, Ar-CH₂), 5.06 (d, J = 3.5 Hz, 1H, H-1'), 4.94 (d, J = 6.2 Hz, 1H, H-1), 4.85 (d, J = 11.7 Hz, 1H, Ar-CH), 4.74 – 4.65 (m, 3H, Ar-CH), 4.50 (d, J = 6.7 Hz, 2H, Ar-CH₂), 4.40 (q, J = 4.9 Hz, 2H, H-6), 4.26 (d, J = 2.7 Hz, 1H, H-4²), 4.14 (t, J = 1.9 Hz, 1H, H-4), 4.09 (t, J = 4.7 Hz, 1H, H-5[']), 3.97 (d, J = 7.3 Hz, 1H, H-5), 3.92 (d, J = 3.0 Hz, 1H, H-3'), 3.90 (d, J = 3.0 Hz, 1H, H-2'), 3.84 (dd, J = 10.5, 3.5 Hz, 1H, H-3), 3.68 - 3.61 (m, 2H, H-6'), 3.60 (d, J = 3.6 Hz, 1H, H-2), 3.48 – 3.44 (m, 2H, CH₂-Linker), 3.30 – 3.17 (m, 2H, CH₂-Linker), 2.84 (s, 1H, OH), 2.76 (td, J=6.0, 1.8 Hz, 2H, CH₂-Lev), 2.56 (t, J=6.2 Hz, 2H, CH₂-Lev), 2.21 (s. 1H, OH), 2.17 (s. 3H, CH₃-Lev), 1.58 – 1.49 (m. 3H, CH₂-Linker), 1.39 – 1.28 (m, 3H, CH₂-Linker). ¹³C NMR (101 MHz, CDCl₃) δ 206.64 (C=O), 172.29 (C=O), 137.30 (Ar-Cq), 137.04 (Ar-Cq), 128.69 (Ar-C), 128.64 (Ar-C), 128.56 (Ar-C), 128.47 (Ar-C), 128.30 (Ar-C), 128.11 (Ar-C), 128.05 (Ar-C), 127.95 (Ar-C), 127.83 (Ar-C), 127.49 (Ar-C), 127.31 (Ar-C), 127.21 (Ar-C), 99.10 (C-1'), 98.02 (C-1), 76.14 (C-3), 75.51 (C-3'), 73.27 (C-4'), 72.16 (CH₂-Ar), 71.87 (CH₂-Ar), 69.34 (C-5'), 68.32 (C-6'), 68.12 (C-5), 67.68 (C-4), 67.17 (CH₂-Ar), 62.77 (CH2-Linker), 61.86 (C-6), 59.55 (C-2'), 59.48 (C-2), 50.22 (CH2-Ar), 47.12 (CH2-Linker), 46.15 (CH₂-Linker), 37.94 (CH₂-Lev), 29.80 (CH₃-Lev), 29.04 (CH₂-Linker), 27.83 (CH_2-Lev) , 23.37 (CH_2 -Linker). **HRMS**: $[M+Na]^+$ calculated for $C_{51}H_{61}N_7O_{13}Na$: 1002.42250; found 1002.42196

5-(benzyl(benzoyloxycarbonyl)amino)pentyl 2-azido-3-*O*-benzyl-2-deoxy- α -D-galactopy-rasyl-(1 \rightarrow 4)-6-*O*-allyloxycarbonyl-2-azido-3-*O*-benzyl-2-deoxy- α -D-galactopyranoside (27)

25 (493 g, 0.446 mmol) was dissolved in THF (4.5 mL, 0.1 M) and cooled to 0 °C. AcOH (60 μ L, 1.114 mmol, 2.5 equiv.) and TBAF (1 M in THF, 1.1 mL, 1.114 mmol, 2.5 equiv.) was added and the reaction was stirred at rt under N₂ overnight until TLC (pentane/EtOAc 8:2) showed full conversion. The reaction was quenched with NH₄Cl (aq., sat.) and diluted with EtOAc. The organic phase was washed with H₂O (x3) and brine (x1), dried over Na₂SO₄, filtered and con-

centrated *in vacuo*. Column chromatography (pentane/EtOAc 7:3 \rightarrow 4:6) gave **279** in 92% yield (396 mg, 0.41 mmol). ¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.26 (m, 24H, Ar-*H*), 7.18 (m, 2H, Ar-*H*), 5.93 (ddt, *J* = 17.4, 10.4, 5.8 Hz, 1H, CH=CH₂), 5.37 (dq, *J* = 17.2, 1.5 Hz, 1H, CH=CH₂), 5.29 (dq, *J* = 10.5, 1.2 Hz, 1H, CH=CH₂), 5.18 (d, *J* = 15.1 Hz, 2H, Ar-CH₂), 5.00 (d, *J* = 3.6 Hz, 1H, H-1'), 4.97 – 4.91 (m, 1H, H-1), 4.82 (d, *J* = 11.6 Hz, 1H, Ar-CH₂), 4.76 – 4.60 (m, 6H, Ar-CH₂), 4.48 (m, 5H, Ar-CH₂, H-6), 4.22 (s, 1H, H-4'), 4.14 (d, *J* = 2.4 Hz, 1H,

H-4), 4.09 – 4.02 (m, 1H, H-5'), 3.98 (dd, J = 12.9, 6.8 Hz, 1H, H-5), 3.94 – 3.81 (m, 3H, H-3, H-3', H-2'), 3.74 – 3.55 (m, 3H, CH₂-linker, H-2), 3.52 – 3.31 (m, 4H, CH₂-linker, H-6'), 3.24 (dt, J = 26.3, 7.6 Hz, 2H, CH₂-linker), 2.79 (s, 1H, 4-OH'), 2.11 (dd, J = 8.4, 4.4 Hz, 1H, 6-OH'), 1.65 – 1.44 (m, 5H, CH₂-linker), 1.40 – 1.23 (m, 5H, CH₂-linker). ¹³C NMR (101 MHz, CDCl₃) δ 154.22 (C=O), 137.99 (Ar-C_q), 137.24 (Ar-C_q), 136.67 (Ar-C_q), 128.77 (Ar-C), 128.74 (Ar-C), 128.64 (Ar-C), 128.54 (Ar-C), 128.39 (Ar-C), 128.24 (Ar-C), 128.13 (Ar-C), 128.03 (Ar-C), 127.91 (Ar-C), 127.53 (Ar-C), 127.39 (Ar-C), 127.27 (Ar-C), 119.46 (CH₂-allyl), 99.36 (C-1'), 98.07 (C-1), 76.37 (C-3), 75.63 (C-3'), 73.72 (C-4'), 72.35 (Ar-CH₂), 71.97 (Ar-CH₂), 69.61 (C-5'), 68.95 (Ar-CH₂), 68.46 (CH₂-linker), 68.34 (C-5), 67.68 (C-4), 67.26 (CH₂), 65.07 (C-6), 62.82 (C-6'), 59.67 (C-2), 59.54 (C-2'), 50.58 (CH₂-linker), 50.30 (CH₂-linker), 47.17 (CH₂-linker), 46.19 (CH₂-linker), 29.79 (CH₂-linker), 28.12 (CH₂-linker), 27.49 (CH₂-linker), 23.42 (CH₂-linker). HRMS: [M+Na]⁺ calculated for C₅₀H₅₉N₇O₁₃Na: 988.40685; found 988.40566

5-(benzyl(benzoyloxycarbonyl)amino)pentyl 2-azido-3-*O*-benzyl-2-deoxy-6-*O*-levulinoyl- α -D-galactopyrasyl-(1 \rightarrow 4)-2-azido-3-*O*-benzyl-2-deoxy-6-*O*-levulinoyl- α -D-galactopyranoside (28)

`Bn

26 (558 mg, 0.569 mmol) was co-evaporated with toluene (x3) and dissolved in dry toluene (5.7 mL, 0.1 M) and added Bu₂SnO (149 mg, 0.598 mmol, 1.05 equiv.) and heated to 110 °C for 4 h under nitrogen. The reaction was cooled to rt and added Lev₂O (0.5 M in DCM, 2.3 mL, 1.138 mmol, 2 equiv.) and stirred at rt under nitrogen overnight until TLC (pentane/EtOAc, 4:6) showed full conversion. The reaction mixture was added MeOH and concentrated *in vacuo*.

The residue was dissolved in EtOAc and washed with 10% KF (x1), and brine (x1), dried over Na₂SO₄, filtered and concentrated in vacuo. Column chromatography (pentane/EtOAc, 60:40 → 40:60) yielded 28 in 92% yield (558 mg, 0.523 mmol). ¹H NMR (400 MHz, CDCl₃) δ 7.43 - 7.27 (m, 20H, Ar-H), 5.17 (d, J = 14.8 Hz, 2H, Ar-CH₂), 5.02 (d, J = 3.5 Hz, 1H, H-1'), 4.94 $(d, J = 5.5 \text{ Hz}, 1H, H-1), 4.85 (d, J = 11.9 \text{ Hz}, 1H, \text{Ar-C}H_2), 4.73 (d, J = 11.6 \text{ Hz}, 2H, \text{Ar-C}H_2),$ 4.68 (d, *J* = 11.9 Hz, 1H, Ar-CH₂), 4.49 (d, *J* = 6.0 Hz, 2H, Ar-CH₂), 4.39 (q, *J* = 3.9 Hz, 2H, *H*-6), 4.33 (t, *J* = 7.4 Hz, 1H. *H*-4), 4.26 – 4.19 (m, 2H, *H*-4', *H*-5'), 4.06 (s, 1H, *H*-5), 3.94 (dd, J = 7.6, 2.9 Hz, 2H, H-3', H-2', 3.83 (dd, J = 10.2, 2.9 Hz, 2H, H-3, H-6'), 3.59 (dd, J = 7.3, 10.23.4 Hz, 2H, H-6', H-2), 3.46 – 3.34 (m, 1H, CH₂ - Linker), 3.22 (dt, J = 11.6, 7.1 Hz, 3H, CH₂ - Linker), 2.76 (td, J = 6.1, 2.8 Hz, 2H, CH_2 - Lev), 2.67 (dt, J = 8.7, 6.4 Hz, 2H, CH_2 - Lev), 2.56 (t, J = 6.2 Hz, 2H, CH_2 - Lev), 2.48 – 2.43 (m, 2H, CH_2 - Lev), 2.17 (s, 4H, CH_3 – Lev, OH), 2.16 (s, 3H, CH₃ - Lev), 1.57 - 1.47 (m, 3H, CH₂ - Linker), 1.34 - 1.26 (m, 3H, CH₂ -Linker). ¹³C NMR (101 MHz, CDCl₃) δ 137.38 (Ar-C_a), 128.77 (Ar-C), 128.68 (Ar-C), 128.34 (Ar-C), 128.22 (Ar-C), 128.01 (Ar-C), 127.96 (Ar-C), 127.74 (Ar-C), 99.13 (C-1'), 98.16 (C-1), 76.06 (C-3), 75.00 (C-3'), 73.49 (C-4'), 72.05 (CH₂-Ar), 71.87 (CH₂-Ar), 68.28 (C-2'), 68.01 (C-4), 67.29 (CH₂-Ar), 65.25 (C-5), 62.57 (C-5'), 62.26 (C-6'), 62.13 (CH₂-Ar), 61.87 (C-6), 59.55 (C-2), 46.98 (CH2-Linker), 46.49 (CH2-Linker), 38.07 (CH2-Lev), 37.97 (CH2-Lev), 30.00 (CH₃-Lev), 28.43 (CH₂-Linker), 27.96 (CH₂-Lev), 27.81 (CH₂-Lev), 23.48 (CH₂-Linker). **HRMS**: [M+NH₄]⁺ calculated for C₅₆H₆₇N₇O₁₅Na: 1095.50289; found 1095.50334

5-(benzyl(benzoyloxycarbonyl)amino)pentyl 2-azido-3-*O*-benzyl-2-deoxy-6-*O*-levulinoyl- α -D-galactopyrasyl-(1 \rightarrow 4)-6-*O*-allyloxycarbonyl-2-azido-3-*O*-benzyl-2-deoxy- α -D-galactopyranoside (29)

27 (396 mg, 0.41 mmol) was co-evaporated with toluene (x3) and dissolved in dry toluene (4.1 mL, 0.1 M) and added Bu₂SnO (107 mg, 0.431 mmol, 1.05 equiv.) and heated to 110 °C for 4 h under nitrogen. The reaction was cooled to rt and added Lev₂O (0.5 M in DCM, 1.6 mL, 0.821 mmol, 2 equiv.) and stirred at rt under nitrogen overnight until TLC (pentane/EtOAc,) showed full conversion. The reaction mixture was added MeOH and concentrated *in vacuo*. The

residue was dissolved in EtOAc and washed with 10% KF (x1), and brine (x1), dried over Na₂SO₄, filtered and concentrated *in vacuo*. Column chromatography (pentane/EtOAc, \rightarrow) yielded **29** in 71% yield (308 mg, 0.291 mmol). ¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.27 (m, 19H, Ar-H), 7.25 - 7.14 (m, 2H, Ar-H), 5.92 (ddt, J = 17.3, 10.5, 5.9 Hz, 1H, CH=CH₂), 5.36Ar-CH₂), 4.96 (d, J = 3.6 Hz, 1H, H-1), 4.92 (d, J = 3.6 Hz, 1H, H-1'), 4.84 (d, J = 12.0 Hz, 1H, Ar-CH₂), 4.72 (s, 2H, Ar-CH₂), 4.68 – 4.60 (m, 3H, Ar-CH₂), 4.51 – 4.40 (m, 4H, CH₂linker, H-6'), 4.32 – 4.25 (m, 1H, H-5), 4.25 – 4.16 (m, 2H, H-6, H-4), 4.07 (t, J = 2.1 Hz, 1H, H-4'), 4.04 – 3.91 (m, 2H, H-5', H-3'), 3.91 – 3.77 (m, 3H, H-3, H-6, H-2'), 3.72 – 3.54 (m, 2H, H-2', CH₂-linker), 3.52 - 3.31 (m, 1H, CH₂-linker), 3.22 (dt, J = 26.3, 6.9 Hz, 2H, CH₂linker), 2.71 – 2.63 (m, 2H, CH₂-Lev), 2.48 – 2.34 (m, 2H, CH₂-Lev), 2.16 (s, 3H, CH₃-Lev), 1.67 – 1.47 (m, 5H, CH₂-linker), 1.39 – 1.16 (m, 4H, CH₂-linker).¹³C NMR (101 MHz, CDCl₃) δ 206.75 (C=O), 172.48 (C=O), 155.42 (Ar-C_q), 137.80 (Ar-C_q), 137.28 (Ar-C_q), 136.80 (Ar-C_q), 131.38 (CH=CH₂), 128.73 (Ar-C), 128.64 (Ar-C), 128.30 (Ar-C), 128.18 (Ar-C), 128.00 (Ar-C), 127.93 (Ar-C), 127.61 (Ar-C), 127.40 (Ar-C), 127.28 (Ar-C), 119.45 (CH=CH₂), 99.23 (C-1'), 98.09 (C-1), 76.13 (C-3'), 75.16 (C-3), 73.70 (C-4), 72.12 (Ar-CH₂), 71.81 (Ar-CH₂), 68.94 (Ar-CH₂), 68.42 (Ar-CH₂), 68.38 (C-5), 68.10 (C-5'), 67.26 (Ar-CH₂), 65.23 (C-6'), 65.19 (C-4'), 62.22 (C-6), 59.64 (C-2'), 59.52 (C-2), 50.58 (CH₂-linker), 50.28 (CH₂-linker), 47.17 (CH2-linker), 46.18 (CH2-linker), 37.94 (CH2-Lev), 29.9 (CH3-Lev)5, 28.23 (CH2-Lev), 23.40 (CH₂-linker). **HRMS**: $[M+Na]^+$ calculated for $C_{55}H_{65}N_7O_{15}Na$: 1086.44363; found 1086.44309

5-(benzyl(benzoyloxycarbonyl)amino)pentyl 6-*O*-allyloxycarbonyl-2-azido-3-*O*-benzyl-2deoxy-α-D-galactopyrasyl-(1→4)-2-azido-3-*O*-benzyl-2-deoxy-6-*O*-levulinoyl-α-D-galactopyranoside (30)

Cbz

.Ń ₅ Bn **26** (154 mg, 0.157 mmol) was dissolved in DCM (1.6 mL, 0.1 M) and cooled to 0 °C. Allyl chloroformate (30 μ l, 0.236 mmol, 1.5 equiv.) and pyridine (25 μ L, 0.315 mmol, 2 eq) were added and the reaction was stirred for 1 h at 0 °C under nitrogen until TLC (pentane/EtOAc, 1:1) showed full conversion. The reaction mixture was diluted in EtOAc and washed with 1 M HCl (x1), NaHCO₃ (x1, aq., sat.) and brine, dried over Na₂SO₄, filtered and concentrated *in*

vacuo. Column chromatography (pentane/EtOAc, $63:35 \rightarrow 50:50$) yielded **30** in 74% yield (123 mg, 0.116 mmol). ¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.27 (m, 20H, Ar-*H*), 5.94 – 5.83 (m, 1H, CH - Alloc), 5.33 (dd, J = 17.2, 1.5 Hz, 1H, CH₂ - Alloc), 5.25 (dd, J = 10.4, 1.4 Hz, 1H,

 CH_2 - Alloc), 5.17 (d, J = 14.6 Hz, 2H, Ar- CH_2), 5.02 (d, J = 3.5 Hz, 1H, H-1'), 4.93 (d, J = 6.2Hz, 1H, H-1), 4.88 (d, J = 12.1 Hz, 1H, Ar-CH₂), 4.70 (d, J = 9.0 Hz, 3H, Ar-CH₂), 4.55 (d, J = 5.8 Hz, 2H, CH_2 - Alloc), 4.50 (d, J = 6.7 Hz, 2H, Ar- CH_2), 4.40 (q, J = 3.7 Hz, 2H, H-6), 4.20 (s, 1H, H-4), 4.17 (t, J = 3.2 Hz, 1H, H-4'), 4.11 (t, J = 2.7 Hz, 1H, H-5'), 3.97 - 3.91 (m, 3H, H-5, H-3', H-2'), 3.83 (dd, J = 6.8, 3.5 Hz, 2H, H-3, H-6'), 3.59 (dd, J = 10.8, 3.6 Hz, 2H, H-6', H-2), 3.51 – 3.34 (m, 2H, CH₂ - Linker), 3.23 (dt, J = 25.7, 7.5 Hz, 2H, CH₂ - Linker), 2.76 $(q, J = 5.9 \text{ Hz}, 2\text{H}, CH_2 - \text{Lev}), 2.55 (t, J = 6.4 \text{ Hz}, 2\text{H}, CH_2 - \text{Lev}), 2.48 (s, 1\text{H}, OH), 2.17 (s, 100)$ 3H, CH_3 – Lev), 1.61 – 1.48 (m, 3H, CH_2 - Linker), 1.39 – 1.30 (m, 3H, CH_2 - Linker). ¹³C **NMR (101 MHz, CDCl₃)** δ 206.56 (C=O), 172.29 (C=O), 154.43 (Ar- C_{a}), 138.01 (Ar- C_{a}), 137.37 (Ar-C_a), 137.04 (Ar-C_a), 131.51 (CH-Alloc), 128.75 (Ar-C), 128.70 (Ar-C), 128.62 (Ar-C), 128.54 (Ar-C), 128.36 (Ar-C), 128.14 (Ar-C), 128.01 (Ar-C), 127.90 (Ar-C), 127.68 (Ar-C), 128.04 (Ar-C), 12 C), 127.62 (Ar-C), 127.38 (Ar-C), 127.27 (Ar-C), 119.07 (CH₂-Alloc), 99.00 (C-1'), 98.08 (C-1), 76.02 (C-3'), 74.89 (C-3), 73.38 (C-4), 71.98 (CH₂-Ar), 71.95 (CH₂-Ar), 68.62 (CH₂-Alloc), 68.32 (CH₂-Ar), 68.17 (C-2), 67.73 (C-5), 67.23 (C-6'), 65.52 (CH₂-Ar), 65.38 (C-5'), 65.18 (C-4') 61.95 (C-6), 59.57 (C-2), 50.27 (CH2-Linker), 47.18 (CH2-Linker), 46.19 (CH2-Linker), 38.01 (CH2-Lev), 29.84 (CH3-Lev), 27.90 (CH2-Linker), 27.51 (CH2-Lev), 23.39 (CH2-Linker). HRMS: [M+Na]⁺ calculated for C₅₅H₆₅N₇O₁₅Na: 1086.44363; found 1086.44309

5-(benzyl(benzoyloxycarbonyl)amino)pentyl 2-azido-4-*O*-benzyl-2-deoxy-3-*O*-(*p*-methoxybenzyl)-α-D-fucopyranosyl-(1→4)-2-azido-3-*O*-benzyl-2-deoxy-6-*O*-levulinoyl-α-D-galactopyrasyl-(1→4)-2-azido-3-*O*-benzyl-2-deoxy-6-*O*-levulinoyl-α-D-galactopyranoside (6)

The reaction was carried out according to General glycosylation procedure A using acceptor **28** (523 mg, 0.485 mmol, 1 equiv.), donor **10b** (420 mg, 0.737 mmol, 1.5 equiv.) and TBSOTf (22 µL, 0.0969 mmol, 0.2 equiv.) in DCM (5 mL, 0.1 M). The reaction was followed by TLC (pen-tane/EtOAc 1:1) and column chromatography (pen-tane/EtOAc 65:35 \rightarrow 50:50) gave **6** in 97% yield (687 mg, 0.470 mmol) as only the α -anomer. ¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.26 (m, 27H, Ar-*H*), 6.94 – 6.86 (m, 2H,

Ar-*H*), 5.16 (d, J = 14.7 Hz, 2H, CH_2 -Ar), 5.06 (d, J = 3.6 Hz, 1H, *H*-1'), 4.92 (d, J = 2.9 Hz, 1H, *H*-1), 4.88 (q, J = 5.5 Hz, 3H, *H*-1", CH_2 -Ar), 4.82 (s, 1H, CH_2 -Ar), 4.70 – 4.61 (m, 4H, CH_2 -Ar), 4.52 (d, J = 11.5 Hz, 1H, CH_2 -Ar), 4.49 (d, J = 7.0 Hz, 2H, CH_2 -Ar), 4.39 (dd, J = 11.0, 6.9 Hz, 2H, *H*-6), 4.30 (d, J = 5.1 Hz, 2H, *H*-4, *H*-5'), 4.22 (s, 1H, *H*-4'), 4.20 – 4.16 (m, 2H, *H*-5, *H*-3'), 3.99 (d, J = 4.5 Hz, 1H, *H*-3), 3.93 – 3.89 (m, 4H, *H*-2, *H*-5", *H*-6'), 3.81 (s, 3H, CH_3 -PMB), 3.75 (dd, J = 10.9, 3.6 Hz, 2H, *H*-2', *H*-3"), 3.62 (t, J = 1.9 Hz, 1H, *H*-4"), 3.52 (dd, J = 10.8, 3.5 Hz, 1H, *H*-2"), 3.43 – 3.32 (m, 1H, CH_2 -Linker), 3.27 – 3.15 (m, 3H, CH_2 -Linker), 2.75 (q, J = 5.4 Hz, 2H, CH_2 -Lev), 2.68 (q, J = 6.7 Hz, 2H, CH_2 -Lev), 2.57 (t, J = 5.5 Hz, 2H, CH_3 -Lev), 1.54 – 1.46 (m, 3H, CH_2 -Linker), 1.35 – 1.26 (m, 3H, CH_3 -Linker), 0.82 (d, J = 6.4 Hz, 3H, *H*-6"). ¹³C NMR (101 MHz, CDCl₃) δ 172.39 (C=O), 138.44 (Ar- C_q), 137.48 (Ar- C_q), 127.59 (Ar-C), 127.50 (Ar-C), 114.04 (Ar-C), 99.43 (C-1'), 98.89 (C-1), 98.08 (C-1"), 77.71 (C-3'), 76.20 (C-4'), 74.95 (CH_2 -Ar), 72.01 (C-4), 67.28 (CH_2 -Ar), 62.14 (C-6), 59.62

(C-2), 55.43(CH₃-PMB), 51.06 (CH₂-Ar), 45.97 (CH₂-Linker), 38.03 (CH₂-Lev), 37.38 (CH₂-Lev), 29.93 (CH₃-Lev), 28.41 (CH₂-Linker), 27.99 (CH₂-Lev), 27.61 (CH₂-Lev), 23.15 (CH₂-Linker), 16.72 (C-6"). **HRMS**: $[M+Na]^+$ calculated for C₇₇H₉₀N₁₀O₁₉Na: 1481.62814; found 1481.62759

5-(benzyl(benzoyloxycarbonyl)amino)pentyl 2-azido-4-*O*-benzyl-2-deoxy-3-*O*-(*p*-methoxybenzyl)-α-D-fucopyranosyl-(1→4)-2-azido-3-*O*-benzyl-2-deoxy-6-*O*-levulinoyl-α-D-ga-lactopyrasyl-(1→4)-6-*O*-allyloxycarbonyl-2-azido-3-*O*-benzyl-2-deoxy-α-D-galactopyranoside (7)

The reaction was carried out according to General glycosylation procedure A using acceptor **29** (190 mg, 0.179 mmol, 1 equiv.), donor **10b** (153 mg, 0.268 mmol, 1.5 equiv.) and TBSOTf (8 μ L, 0.0357 mmol, 0.2 equiv.) in DCM (1.8 mL, 0.1 M). The reaction was followed by TLC (pen-tane/EtOAc 7:3) and column chromatography (pen-tane/EtOAc 75:25 \rightarrow 60:40) gave **7** in 92% yield (237 mg, 0.164 mmol) as only the α -anomer. ¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.12 (m, 33H, Ar-*H*), 6.94 – 6.87 (m, 2H,

Ar-H), 5.92 (ddt, J = 16.5, 10.4, 5.9 Hz, 1H, CH=CH₂), 5.36 (dt, J = 17.2, 1.5 Hz, 1H, CH=CH₂), 5.30 - 5.25 (m, 1H, CH=CH₂), 5.17 (d, J = 14.2 Hz, 2H, Ar-CH₂), 5.03 (d, J = 3.6 Hz, 1H, H-1"), 4.92 (d, J = 3.3 Hz, 1H, H-1'), 4.93 - 4.84 (m, 4H, H-1, Ar-CH₂), 4.83 (d, J = 12.2 Hz, 1H, Ar-CH₂), 4.69 – 4.60 (m, 7H, Ar-CH₂, CH₂-allyl), 4.57 – 4.45 (m, 3H, Ar-CH₂, CH₂-linker), 4.41 (d, J = 6.9 Hz, 2H, H-6'), 4.36 - 4.25 (m, 2H, H-5', H-6), 4.23 - 4.13 (m, 3H, H-4', H-5, H-5"), 4.02 – 3.88 (m, 5H, H-6, H-2', H-3, H-3", H-4), 3.88 – 3.77 (m, 4H, H-4", CH₃-PMB), 3.76 (dd, J = 10.9, 3.5 Hz, 1H, H-2"), 3.66 - 3.59 (m, 2H, CH₂-linker, H-3), 3.54 (dd, J = 10.8, 3.54 (dd, J = 10.8))3.6 Hz, 1H, H-2), 3.46 – 3.30 (m, 1H, CH₂-linker), 3.30 – 3.13 (m, 2H, CH₂-linker), 2.68 (q, J = 6.7 Hz, 2H, CH₂-Lev), 2.41 (q, J = 7.2 Hz, 2H, CH₂-Lev), 2.15 (s, 3H, CH₃-Lev), 1.63 - 1.42 $(m, 5H, CH_2-linker), 1.36 - 1.12 (m, 3H, CH_2-linker), 0.82 (d, J = 6.4 Hz, 3H, H-6").$ ¹³C NMR (101 MHz, CDCl₃) δ 206.43 (C=O), 171.70 (C=O), 159.47 (Ar-C_a), 154.67 (Ar-C_a), 138.42 (Ar-C_a), 138.04 (Ar-C_a), 137.45 (Ar-C_a), 137.32 (Ar-C_a), 129.88 (Ar-C), 129.60 (Ar-C), 128.66 (Ar-C), 128.63 (Ar-C), 128.58 (Ar-C), 128.52 (Ar-C), 128.34 (Ar-C), 128.32 (Ar-C), 128.05 (Ar-C), 127.94 (Ar-C), 127.91 (Ar-C), 127.83 (Ar-C), 127.75 (Ar-C), 127.48 (Ar-C), 127.47 (Ar-C), 119.45 (CH=CH₂), 114.02 (Ar-C), 99.41 (C-1"), 98.99 (C-1"), 98.04 (C-1), 77.16 (C-3"/C-3), 76.16 (C-3'), 75.32 (C-3"/C-3), 74.93 (C-4", Ar-CH₂), 73.02 (C-5/ C-5"), 72.21 (C-5/ C-5"), 72.06 (Ar-CH₂), 71.98 (Ar-CH₂), 71.74 (Ar-CH₂), 68.95 (Ar-CH₂), 68.90 (C-5'), 68.38 (Ar-CH₂), 68.33 (C-4), 67.44 (C-4'), 67.26 (Ar-CH₂), 65.24 (C-6'), 61.19 (C-6), 60.33 (C-2'), 60.22 (C-2"), 59.62 (C-2), 55.83 (CH3-PMB), 50.58 (CH2-Linker), 50.29 (CH2-Linker), 47.08 (CH₂-Linker), 46.32 (CH₂-Linker), 38.02 (CH₂-Linker), 29.88 (CH₂-Lev), 27.78 (CH₃-Lev), 23.40 (CH₂-Lev), 16.68 (C-6"). **HRMS**: $[M+Na]^+$ calculated for $C_{76}H_{88}N_{10}O_{19}Na$: 1467.61249; found 1467.61194

5-(benzyl(benzoyloxycarbonyl)amino)pentyl 2-azido-4-*O*-benzyl-2-deoxy-3-*O*-(*p*-methoxybenzyl)- α -D-fucopyranosyl-(1 \rightarrow 4)-6-*O*-allyloxycarbonyl-2-azido-3-*O*-benzyl-2-deoxy- α -D-galactopyrasyl-(1 \rightarrow 4)-2-azido-3-*O*-benzyl-2-deoxy-6-*O*-levulinoyl- α -D-galactopyranoside (8)

The reaction was carried out according to General glycosylation procedure A using acceptor **30** (301 mg, 0.283 mmol, 1 equiv.), donor **10b** (242 mg, 0.425 mmol, 1.5 equiv.) and TBSOTf (13 µL, 0.0566 mmol, 0.2 equiv.) in DCM (2.8 mL, 0.1 M). The reaction was followed by TLC (pentane/EtOAc 3:2) and column chromatography (pentane/EtOAc 75:25 \rightarrow 60:40) gave **8** in 90% yield (370 mg, 0.255 mmol) as only the α-anomer. ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.27 (m, 28H, Ar-*H*), 6.93 – 6.89 (m, 1H,

Ar-H), 5.99 - 5.81 (m, 1H, CH-Alloc), 5.40 - 5.23 (m, 2H, CH₂-Alloc), 5.17 (d, J = 14.9 Hz, 2H, Ar-CH₂), 5.07 (d, J = 3.6 Hz, 1H, H-1'), 5.03 (d, J = 3.5 Hz, 1H, H-1), 4.97 - 4.91 (m, 3H, $H-1^{\circ}$, Ar-CH₂), 4.90 – 4.84 (m, 2H, Ar-CH₂), 4.68 (dd, J = 8.5, 4.5 Hz, 4H, Ar-CH₂), 4.55 (d, J= 6.0 Hz, 2H, CH₂-Alloc), 4.50 (d, J = 7.2 Hz, 2H, Ar-CH₂), 4.44 – 4.30 (m, 4H, H-6, H-4, H-5'), 4.24 – 4.14 (m, 3H, H-5, H-3', H-3), 4.11 (t, J = 1.8 Hz, 1H, H-4'), 3.97 – 3.88 (m, 4H, H-2, H-5", H-6'), 3.81 (s, 3H, CH₃-PMB), 3.63 (t, J = 1.7 Hz, 1H, H-4"), 3.59 (dd, J = 10.8, 3.6Hz, 2H, H-2', H-3"), 3.53 (dd, J = 10.8, 3.5 Hz, 1H, H-2"), 3.47 – 3.17 (m, 4H, CH₂-Linker), 2.76 (q, J = 6.3 Hz, 2H, CH₂-Lev), 2.57 (q, J = 6.6 Hz, 2H, CH₂-Lev), 2.18 (s, 3H, CH₃-Lev), 1.63 – 1.48 (m, 2H, CH₂-Linker), 1.40 – 1.25 (m, 4H, CH₂-Linker), 0.82 (d, J = 6.4 Hz, 3H, H-6"). ¹³C NMR (101 MHz, CDCl₃) δ 206.58 (C=O), 172.29 (C=O), 159.45 (Ar-C_q), 154.42 (Ar- C_q), 153.80 (Ar- C_q), 140.45 (Ar- C_q), 138.29 (Ar- C_q), 138.00 (Ar- C_q), 137.37 (Ar- C_q), 137.31 (Ar-C_q), 137.02 (Ar-C_q), 131.49 (CH-Alloc), 129.56 (Ar-C), 128.74 (Ar-C), 128.62 (Ar-C), 128.54 (Ar-C), 128.49 (Ar-C), 128.36 (Ar-C), 128.31 (Ar-C), 128.27 (Ar-C), 128.13 (Ar-C), 128.01 (Ar-C), 127.89 (Ar-C), 127.82 (Ar-C), 127.76 (Ar-C), 127.61 (Ar-C), 127.40 (Ar-C), 127.32 (Ar-C), 127.26 (Ar-C), 127.23 (Ar-C), 119.07 (CH2-Alloc), 113.98 (Ar-C), 99.40 (C-1'), 98.98 (C-1), 98.07 (C-1"), 77.65 (C-5"), 74.96 (C-2), 74.87 (CH2-Ar), 73.37 (C-3), 72.04 (CH2-Ar), 71.94 (CH2-Ar), 71.69 (CH2-Ar), 68.78 (CH2-Linker), 68.61 (C-6'), 68.31 (CH2-Alloc), 68.16 (C-4"), 67.72 (C-5), 67.48 (C-4), 67.23 (CH2-Ar), 65.52 (C-5'), 65.37 (C-4'), 65.04 (C-3'), 61.96 (C-6), 60.19 (C-5"), 60.04 (C-3"), 59.56 (C-2"), 59.51 (C-2"), 55.36 (CH₃-PMB), 50.26 (CH₂-Ar), 47.18 (CH₂-Linker), 46.20 (CH₂-Linker), 37.96 (CH₂-Lev), 29.86 (CH₃-Lev), 29.06 (CH₂-Linker), 27.90 (CH₂-Lev), 27.51 (CH₂-Linker), 23.40 (CH₂-Linker), 16.60 (C-6"). HRMS: [M+Na]⁺ calculated for C₇₆H₈₈N₁₀O₁₉Na: 1467.61249; found 1467.61194

Synthesis of the trisaccharide without taurine

Bn

 $\label{eq:2.2} 5-(benzyl(benzoyloxycarbonyl)amino)pentyl 2-acetamide-4-O-benzyl-2-deoxy-3-O-(p-methoxybenzyl)-a-D-fucopyranosyl-(1→4)-2-acetamide-3-O-benzyl-2-deoxy-6-O-levulinoyl-a-D-galactopyrasyl-(1→4)-2-O-acetamide-3-O-benzyl-2-deoxy-6-O-levulinoyl-a-D-galactopyranoside (31) 2-acetamide-3-O-benzyl-2-deoxy-6-O-levulinoyl-a-D-galactopyranoside (31) 2-acetamide-3-O-benzyl-3-acetamide-3-O-benzyl-3-Acetamide-3-O-benzyl-3-Acetamide-3-O-benzyl-3-O-b$

The azide reduction was carried out followed the general azide reduction procedure B using **6** (152 mg, 0.104 mmol, 1 equiv.) and zinc powder (1.36 g, 20.8 mmol, 200 equiv.). Purification by column chromatography (DCM/MeOH 98:2 \rightarrow 95:5) gave **31** in 92% yield (144 mg, 0.0918 mmol). ¹H NMR (400 MHz, CD₂Cl₂) δ 7.42 – 7.23 (m, 27H), 6.95 – 6.90 (m, 2H), 5.70 (d, *J* = 9.4 Hz, 1H), 5.19 – 5.14 (m, 2H), 5.07 (d, *J* = 6.6 Hz, 1H), 4.95 (d, *J* = 3.7 Hz, 1H), 4.91 – 4.80 (m, 3H), 4.78 (s, 2H), 4.69 – 4.64 (m, 1H), 4.53 – 4.46 (m,

8H), 4.42 - 4.34 (m, 3H), 4.33 - 4.26 (m, 2H), 4.25 - 4.16 (m, 3H), 4.03 - 3.95 (m, 2H), 3.95 - 3.82 (m, 2H), 3.79 (s, 3H), 3.66 (t, J = 2.6 Hz, 1H), 3.62 - 3.51 (m, 2H), 3.39 - 3.30 (m, 1H), 3.28 - 3.21 (m, 3H), 2.73 (q, J = 6.5 Hz, 2H), 2.67 (dd, J = 11.9, 5.7 Hz, 2H), 2.55 (t, J = 6.7 Hz, 2H), 2.42 - 2.38 (m, 2H), 2.14 (d, J = 3.3 Hz, 6H), 1.92 - 1.84 (m, 9H), 1.54 (s, 3H), 1.37 - 1.28 (m, 3H), 0.90 (d, J = 6.3 Hz, 3H). 13 **C** NMR (101 MHz, CD₂Cl₂) δ 206.96, 172.53, 170.52, 170.04, 159.66, 139.22, 138.67, 138.52, 130.88, 129.95, 129.80, 128.85, 128.82, 128.54, 128.48, 128.20, 128.03, 127.95, 127.90, 127.77, 127.58, 114.15, 113.84, 99.17, 97.91, 77.08, 76.71, 75.28, 75.09, 71.94, 71.79, 71.26, 68.80, 67.59, 67.30, 61.21, 55.59, 50.50, 49.20, 47.53, 38.13, 30.05, 29.92, 28.05, 23.46, 16.99. HRMS: [M+Na]⁺ calculated for C₈₃H₁₀₂N_nO₂₂Na: 1529.68834; found 1529.68788

5-(benzyl(benzoyloxycarbonyl)amino)pentyl 2-acetamide-4-*O*-benzyl-2-deoxy-3-*O*-(*p*-methoxybenzyl)- α -D-fucopyranosyl-(1 \rightarrow 4)-2-acetamide-3-*O*-benzyl-2-deoxy- α -D-galactopyranoside (32)

31 (127 mg, 0.0844 mmol, 1 equiv.) was dissolved in toluene/EtOH (1:2, 0.1 M, 0.9 mL) and added hydrazine acetate (78 mg, 0.844 mmol, 10 equiv.) and stirred at rt for 45 min until TLC analysis (DCM/MeOH 95:5) showed full conversion. The solution was diluted in DCM and NaHCO₃ (aq., sat.) and the organic layer was dried with Na₂SO₄, filtered and concentrated *in vacuo*. Column chromatography (DCM/MeOH 100:0 \rightarrow 95:5) gave **32** in 96% yield (107 mg, 0.0814 mmol). ¹H NMR (400 MHz, CD₂Cl₂) δ 7.36 – 7.29

(m, 27H), 6.93 - 6.89 (m, 2H), 5.61 (d, J = 9.5 Hz, 1H), 5.17 (s, 2H), 5.13 - 5.06 (m, 2H), 4.90 (d, J = 11.3 Hz, 2H), 4.86 (d, J = 3.5 Hz, 1H), 4.82 - 4.69 (m, 4H), 4.70 - 4.59 (m, 2H), 4.57 - 4.47 (m, 5H), 4.44 (dq, J = 12.0, 4.5 Hz, 6H), 4.32 - 4.23 (m, 2H), 4.18 (s, 1H), 4.09 (s, 1H), 3.78 (s, 3H), 3.74 (d, J = 14.4 Hz, 2H), 3.66 (d, J = 2.7 Hz, 1H), 3.57 (d, J = 6.0 Hz, 2H), 3.38 - 3.28 (m, 2H), 3.16 (d, J = 46.6 Hz, 2H), 2.57 (s, 1H), 2.27 (s, 1H), 1.94 (s, 3H), 1.91 (s, 3H), 1.80 (s, 3H), 1.51 - 1.44 (m, 3H), 1.35 - 1.28 (m, 3H), 0.96 (d, J = 6.4 Hz, 3H). 13 C NMR (101 MHz, CD₂Cl₂) δ 170.68, 159.63, 139.30, 138.70, 130.95, 130.02, 128.88, 128.79, 128.76, 128.14 + 128.

128.49, 128.30, 128.12, 127.98, 127.75, 127.65, 127.54, 114.15, 98.99, 98.21, 77.21, 76.78, 75.57, 75.09, 71.82, 71.35, 67.53, 55.61, 50.66, 49.23, 30.07, 26.42, 26.25, 23.54, 23.41, 22.92, 17.08. **HRMS**: $[M+Na]^+$ calculated for $C_{73}H_{90}N_4O_{18}Na$: 1333.61478; found 1333.61466

5-(benzyl(benzoyloxycarbonyl)amino)pentyl 2-acetamide-4-*O*-benzyl-2-deoxy-3-*O*(*p*-methoxybenzyl)- α -D-fucopyranosyl-(1 \rightarrow 4)-2-acetamide-3-*O*-benzyl-2-deoxy- α -D-galactopyranosiduronate-(1 \rightarrow 4)-2-*O*-acetamide-3-*O*-benzyl-2-deoxy- α -D-galactopyranosiduronic acid (33)

The reaction was carried out according to General oxidation procedure C using **32** (39 mg, 0.0299 mmol, 1 equiv.) in EtOAc/t-BuOH/H₂O (1:1:1, 0.9 mL) and TEMPO (7 mg, 0.0478 mmol, 1.6 equiv.), NaHCO₃ (25 mg, 0.299 mmol, 10 equiv.) and BAIB (77 mg, 0.239 mmol, 8 equiv.). The reaction was stirred for 6 days at 4 °C and purified by column chromatography (DCM/MeOH + 1% AcOH, 97:3 \rightarrow 90:10) to give **33** in 54% yield without the PMB (20 mg, 0.0161 mmol). ¹H NMR (400 MHz, CD₂Cl₂) δ 7.50 – 7.08 (m, 39H), 6.94 – 6.84 (m,

1H), 6.40 - 5.49 (m, 5H), 5.26 - 4.95 (m, 5H), 4.83 (dd, J = 18.4, 10.4 Hz, 5H), 4.74 - 4.16 (m, 17H), 3.92 - 3.71 (m, 4H), 3.70 - 3.49 (m, 3H), 3.38 - 3.14 (m, 3H), 2.12 - 1.92 (m, 23H), 1.92 - 1.77 (m, 3H), 1.33 - 1.08 (m, 7H), 0.90 - 0.82 (m, 3H). **HRMS**: [M+Na]⁺ calculated for $C_{65}H_{78}N_4O_{19}Na$: 1241.51580; found 1241.51548

5-amino-pentyl 2-acetamide-2-deoxy-α-D-fucopyranosyl-(1→4)-2-acetamide-2-deoxy-α-D-galactopyranosiduronate-(1→4)-2-*O*-acetamide-2-deoxy-α-D-galactopyranosiduronic acid (1)

O NH₂

The reaction was carried out according to General hydrogenation procedure D using **33** (21 mg, 0.0169 mmol, 1 equiv.) to yield **1** in 44% yield (5.4 mg, 0.00749 mmol). ¹H NMR (850 MHz, **D**₂**O**) δ 5.04 (d, J = 3.6 Hz, 1H, H-1), 4.96 (d, J = 3.7 Hz, 1H, H-1'), 4.88 (d, J = 3.8 Hz, 1H, H-1''), 4.75 (d, J = 1.3 Hz, 1H, H-5), 4.43 (d, J = 2.7 Hz, 1H, H-4'), 4.40 (q, J = 6.8 Hz, 1H, H-5''), 4.32 (s, 1H, H-4), 4.28 – 4.23 (m, 2H, H-2, H-5'), 4.18 – 4.11 (m, 3H, H-2'', H-3, H-2'), 4.09 (dd, J = 11.4, 3.1 Hz, 1H, H-3'), 3.97 (dd, J = 11.1, 3.2 Hz, 1H, H-3''), 3.83 (d, J = 3.2 Hz,

1H, H-4"), 3.69 (ddd, J = 10.2, 7.5, 5.7 Hz, 1H, CH₂-Linker), 3.54 (dt, J = 10.2, 6.0 Hz, 1H, CH₂-Linker), 2.98 (t, J = 7.7 Hz, 2H, CH₂-Linker), 2.09 (s, 6H, COCH₃), 2.03 (s, 3H, CH₂-Linker), 1.69 – 1.57 (m, 4H, CH₂-Linker), 1.44 (dhept, J = 13.6, 6.2 Hz, 2H, CH₂-Linker), 1.17 (d, J = 6.6 Hz, 3H, H-6"). ¹³C NMR (214 MHz, D₂O) δ 174.85 (C=O), 174.78 (C=O), 174.51 (C=O), 99.32 (C-1"), 98.33 (C-1), 96.80 (C-1"), 79.81 (C-4), 77.44 (C-4"), 71.91 (C-5), 71.20 (C-4"), 70.55 (C-5"), 67.98 (CH₂-Linker), 67.88 (C-3"), 67.63 (C-5"), 67.21 (C-3), 66.94 (C-3"), 49.81 (C-2), 49.51 (C-2"), 49.47 (C-2"), 39.33 (CH₂-Linker), 27.99 (CH₂-Linker), 26.28 (CH₂-Linker), 22.38 (COCH₃), 22.27 (COCH₃), 22.25 (CH₂-Linker), 21.84 (COCH₃), 15.38 (C-6"). HRMS: [M+H]⁺ calculated for C₂₉H₄₈N₄O₁₇H: 725.30927; found 725.30868

Synthesis of the trisaccharides with taurine on both GalNAc's

Trisaccharide with taurine on both GalNAc's (4)

33 (24 mg, 0.02 mmol, 1 eq) was dissolved in DMF (1 mL) and added HATU (23 mg, 0.0600 mmol, 2.4 equiv.) and DI-PEA (26 μ g, 0.150 mmol, 6 equiv.) stirred at rt for 10 min before adding taurine (13 mg, 0.100 mmol, 4 equiv.). The reaction was stirred overnight until LC-MS showed full conversion. The solution was diluted in EtOAc and washed with 1 M HCl (x1), NaHCO₃ (x1, aq., sat.) and brine (x1), dried with Na₂SO₄, filtered and concentrated *in vacuo*. The crude product

was used without further purification. The hydrogenation reaction was carried out according to General hydrogenation procedure D to 4 in 17% yield over two steps (3.1 mg, 0.0033 mmol). ¹**H NMR (600 MHz, D₂O)** δ 5.00 (d, J = 3.9 Hz, 1H, H-1'), 4.98 (d, J = 3.7 Hz, 1H, H-1), 4.79 -4.77 (m, 2H, H-1", H-5), 4.45 (dd, J = 3.1, 1.0 Hz, 1H, H-4), 4.37 - 4.34 (m, 3H, H-4', H-5, H-5"), 4.19 (dd, J = 11.3, 3.9 Hz, 1H, H-2'), 4.15 (dd, J = 11.3, 3.7 Hz, 1H, H-2), 4.08 - 4.03 (m, 2HH-3, H-3'), 4.01 (dd, J = 5.3, 3.4 Hz, 1H, H-2''), 3.99 (d, J = 3.9 Hz, 1H), 3.88 (dd, J = 3.9 Hz, 1H), 3.8 (dd, J = 3.911.2, 3.2 Hz, 1H, H-3"), 3.76 - 3.69 (m, 3H, H-4", Taurine-CH₂), 3.64 - 3.59 (m, 2H, Linker- CH_2), 3.46 (dt, J = 10.1, 6.1 Hz, 2H, Linker- CH_2), 3.35 (td, J = 13.6, 7.4 Hz, 2H, Taurine- CH_2), 3.01 (dtt, J = 8.1, 4.8, 2.1 Hz, 4H. Taurine-CH₂), 2.90 (dd, J = 8.4, 6.9 Hz, 3H, Linker-CH₂), 2.00 (s, 6H, COOCH₃), 1.95 (s, 3H, COOCH₃), 1.62 – 1.52 (m, 6H, Linker-CH₂), 1.36 – 1.32 (m, 2H, Linker-CH₂), 1.09 (d, J = 6.6 Hz, 3H, H-6").¹³C NMR (151 MHz, D₂O) δ 175.54 (C=O), 175.09 (C=O), 175.04 (C=O), 171.44 (C=O), 171.18 (C=O), 97.98 (C-1), 97.96 (C-1"), 97.67 (C-1), 75.35 (C-4'), 74.98 (C-4), 72.10 (C-4"), 71.41 (C-5'), 70.70 (C-5), 69.23 (Linker-CH₂), 68.43 (C-3"), 68.04 (C-5"), 67.68 (C-3/C-3"), 67.52 (C-3/C-3"), 50.47 (C-2/C-2"), 50.44 (C-2/C-2'), 50.28 (C-2"), 50.20 (Taurine-CH₂), 50.16 (Taurine-CH₂), 40.29 (Linker-CH₂), 35.92 (Taurine-CH₂), 35.90 (Taurine-CH₂), 28.91 (Linker-CH₂), 27.31 (Linker-CH₂), 23.21 (Linker-CH₂), 23.08 (COOCH₃), 22.95 (COOCH₃), 22.77 (COOCH₃), 16.27 (C-6"). HRMS: [M+H]⁺ calculated for C₃₃H₅₈N₆O₂₁S₂H: 939.31747; found 939.31760

Synthesis of the trisaccharides with taurine on 1st GalNAc

5-(benzyl(benzoyloxycarbonyl)amino)pentyl 2-acetamide-4-*O*-benzyl-2-deoxy-3-*O*(*p*-methoxybenzyl)- α -D-fucopyranosyl-(1 \rightarrow 4)-2-acetamide-3-*O*-benzyl-2-deoxy-6-*O*-le-vulinoyl- α -D-galactopyrasyl-(1 \rightarrow 4)-2-*O*-acetamide-6-*O*-allyloxycarbonyl-3-*O*-benzyl-2-deoxy- α -D-galactopyranoside (34)

The azide reduction was carried out followed the general azide reduction procedure B using 7 (265 mg, 0.183 mmol, 1 equiv.) and zinc powder (3.59 g, 54.89 mmol, 300 equiv.). Purification by column chromatography (DCM/MeOH $100:0\rightarrow95:5$) gave **34** in 80% yield (217 mg, 0.145 mmol). ¹H NMR (400 MHz, CD₂Cl₂) δ 7.42 – 7.12 (m, 33H), 6.96 – 6.88 (m, 2H), 5.99 – 5.80 (m, 2H), 5.62 (dd, J = 14.2, 9.0 Hz, 1H), 5.36 (p, J = 1.8 Hz, 1H), 5.32 (s, 1H), 5.25 (ddd, J = 11.2, 3.5, 2.2 Hz, 1H), 5.17 (s, 1H), 5.05 (d, J = 7.5 Hz, 1H), 4.93 (d, J = 3.7 Hz, 1H), 4.88 (d, J = 11.3 Hz, 2H), 4.82 (dd, J = 12.3, 2.7 Hz, 2H), 4.80 – 4.74 (m, 2H), 4.69 – 4.62 (m, 1H), 4.62 – 4.57 (m, 3H), 4.56 – 4.35 (m, 12H), 4.34 – 4.24 (m, 3H), 4.17 (d, J = 6.7 Hz, 2H), 4.12 – 3.98 (m, 3H), 3.99 – 3.85 (m, 2H), 3.83 – 3.74 (m, 6H), 3.68 – 3.47 (m, 4H), 3.37 – 3.16 (m, 4H), 2.01 – 1.66 (m, 12H), 1.63 – 1.31 (m, 6H), 1.43 – 1.04 (m, 5H), 0.95 – 0.83 (m, 3H). ¹³C **NMR (101 MHz, CD₂Cl₂)** δ 170.63, 170.29, 170.10, 159.69, 154.87, 139.21, 138.67, 138.50, 131.92, 130.83, 130.02, 129.84, 129.81, 129.70, 129.28, 128.85, 128.83, 128.75, 128.70, 128.54, 128.49, 128.20, 128.16, 128.10, 128.01, 127.95, 127.91, 127.86, 127.78, 127.59, 127.51, 119.18, 114.16, 114.09, 114.05, 113.84, 99.23, 97.92, 76.93, 76.68, 75.25, 75.10, 71.91, 71.77, 71.59, 71.33, 69.12, 68.96, 68.54, 67.63, 67.30, 65.94, 61.21, 55.60, 55.54, 50.72, 50.51, 49.26, 49.20, 49.04, 47.52, 46.56, 38.14, 29.92, 28.02, 25.10, 23.49, 23.45, 16.99. **HRMS**: [M+Na]⁺ calculated for C₈₂H₁₀₀N₄O₂₂Na: 1515.67269; found 1515.67424

34 (217 mg, 0.145 mmol, 1 equiv.) was dissolved in toluene/EtOH (1:2, 0.1 M, 1.2 mL) and added hydrazine acetate (67 mg, 0.728 mmol, 5 equiv.) and stirred at rt for 45 min until TLC analysis (DCM/MeOH 95:5) showed full conversion. The solution was diluted in DCM and NaHCO₃ (aq., sat.) and the organic layer was dried with Na₂SO₄, filtered and concentrated *in vacuo*. Column chromatography (DCM/MeOH 100:0 \rightarrow 95:5) gave **35** in 89% yield (180 mg, 0.129 mmol). ¹H NMR (**400 MHz, CD₂Cl₂**) δ 7.43 – 7.14

(m, 38H), 6.94 – 6.89 (m, 2H), 5.92 (ddd, J = 16.9, 11.1, 5.7 Hz, 2H), 5.74 (d, J = 9.6 Hz, 1H), 5.57 – 5.45 (m, 2H), 5.37 (s, 1H), 5.30 – 5.25 (m, 1H), 5.18 (s, 1H), 5.06 (dd, J = 16.9, 4.9 Hz, 2H), 4.96 – 4.87 (m, 3H), 4.87 – 4.68 (m, 5H), 4.66 – 4.56 (m, 5H), 4.56 – 4.31 (m, 13H), 4.31 – 4.18 (m, 4H), 4.12 (d, J = 6.8 Hz, 1H), 4.06 (ddt, J = 12.9, 6.5, 3.9 Hz, 2H), 3.94 (d, J = 7.4 Hz, 2H), 3.82 – 3.76 (m, 5H), 3.74 (dt, J = 11.1, 2.2 Hz, 2H), 3.69 – 3.43 (m, 5H), 3.43 – 3.13 (m, 6H), 2.00 – 1.84 (m, 13H), 1.64 – 1.42 (m, 6H), 1.37 – 1.16 (m, 4H), 0.94 (d, J = 6.4 Hz, 3H). ¹³C **NMR (101 MHz, CD₂Cl₂)** δ 170.59, 169.96, 167.52, 159.65, 155.51, 139.28, 138.60, 138.53, 131.93, 130.90, 129.92, 128.82, 128.72, 128.49, 128.46, 128.18, 128.07, 128.03, 127.92, 127.75, 127.59, 119.17, 114.14, 99.38, 99.03, 98.21, 77.28, 76.73, 75.33, 75.08, 71.81, 71.40, 70.73, 69.09, 67.44, 67.30, 66.26, 59.87, 55.60, 50.51, 49.19, 47.50, 26.42, 26.24, 23.54, 22.91, 17.03. **HRMS**: [M+Na]⁺ calculated for C₇₇H₉₄N₄O₂₀Na: 1417.63591; found 1417.63708

Benzyl (5-(benzyl(benzoyloxycarbonyl)amino)pentyl 2-acetamide-4-*O*-benzyl-2-deoxy-3-*O*-(*p*-methoxybenzyl)- α -D-fucopyranosyl-(1 \rightarrow 4)-2-*O*-acetamide-3-*O*-benzyl-2-deoxy- α -D-galactopyranosiduronasyl)-(1 \rightarrow 4)-2-acetamide-6-*O*-allyloxycarbonyl-3-*O*-benzyl-2-deoxy- α -D-galactopyranoside (36)

The oxidation was carried out according to General oxidation procedure C using **35** (110 mg, 0.0793 mmol, 1 equiv.) in EtOAc/t-BuOH/H₂O (1:1:1, 0.9 mL) and TEMPO (10 mg, 0.0635 mmol, 0.8 equiv.), NaHCO₃ (33 mg, 0.397 mmol, 5 equiv.) and BAIB (102 mg, 0.317 mmol, 4 equiv.). The reaction was stirred for 4 days at 4 °C. The crude product was dissolved in DMF and cooled to 0 °C and added Cs₂CO₃ (26 mg, 0.0793 mmol, 1 equiv.) and BnBr (19 μ L, 0.159 mmol, 2 equiv.) and stirred overnight at rt until TLC analysis

(DCM/MeOH, 95:5) showed full conversion. The solution was diluted in EtOAc, washed with brine (x1), dried with Na₂SO₄, filtered and concentrated in *vacuo*. Column chromatography (DCM/MeOH, 100:0 \rightarrow 95:5) gave **36** in 92% yield (110 mg, 0.0732 mmol). ¹**H NMR (400 MHz, CD₂Cl₂)** δ 7.51 – 7.07 (m, 57H), 6.96 – 6.88 (m, 2H), 5.56 – 5.34 (m, 3H), 5.29 – 5.20 (m, 2H), 5.17 (d, *J* = 4.4 Hz, 3H), 5.08 – 4.99 (m, 2H), 4.99 – 4.70 (m, 10H), 4.68 – 4.32 (m, 23H), 4.32 – 4.11 (m, 6H), 4.10 (d, *J* = 7.1 Hz, 2H), 3.85 – 3.72 (m, 6H), 3.70 – 3.44 (m, 6H), 3.44 – 3.11 (m, 6H), 2.18 – 1.78 (m, 18H), 1.65 – 1.37 (m, 9H), 1.37 – 1.08 (m, 9H), 0.88 – 0.77 (m, 3H). ¹³**C NMR (101 MHz, CD₂Cl₂)** δ 172.53, 170.00, 169.96, 168.31, 162.35, 159.38, 154.56, 139.37, 138.26, 138.21, 134.60, 131.68, 130.62, 129.80, 129.63, 129.61, 129.43, 129.15, 129.01, 128.95, 128.89, 128.85, 128.68, 128.64, 128.58, 128.53, 128.46, 128.31, 128.24, 128.21, 128.11, 128.00, 127.92, 127.68, 127.61, 127.55, 127.50, 127.32, 126.94, 113.87, 99.80, 98.80, 98.69, 97.74, 77.75, 77.17, 76.45, 75.22, 74.95, 74.79, 74.47, 73.86, 72.10, 71.70, 70.96, 69.91, 68.89, 68.29, 67.62, 67.39, 67.02, 55.35, 53.82, 53.56, 50.97, 50.47, 50.25, 48.71, 48.47, 48.38, 47.26, 46.31, 36.28, 31.11, 29.79, 29.06, 28.00, 27.23, 26.17, 25.73, 23.57, 23.22, 16.61.

Benzyl (5-(benzyl(benzoyloxycarbonyl)amino)pentyl 2-acetamide-4-*O*-benzyl-2-deoxy-3-*O*-(*p*-methoxybenzyl)- α -D-fucopyranosyl-(1 \rightarrow 4)-2-*O*-acetamide-3-*O*-benzyl-2-deoxy- α -D-galactopyranosiduronasyl)-(1 \rightarrow 4)-2-acetamide-2-deoxy-3-*O*-benzyl- α -D-galactopyranoside (37)

36 (121 mg, 0.0806 mmol, 1 equiv.) was dissolved in DCM (1 mL), cooled to 0 °C and added Bu₃SnH (43 μ L, 0.161 mmol, 2 equiv.) and Pd(PPh₃)₄ (9 mg, 0.00806 mmol, 0.1 equiv.). The reaction was stirred at 0 °C for 1 h until TLC analysis (DCM/MeOH 95:5) showed full conversion. The solution was concentrated. Column chromatography (DCM/MeOH 98:2 \rightarrow 95:5) gave **37** in 76% yield (87 mg, 0.0614 mmol). ¹H NMR (400 MHz, CD₂Cl₂) δ 7.43 – 7.12 (m, 40H), 6.96 – 6.82 (m, 2H), 5.58 (dd, *J* = 39.7, 9.3 Hz,

1H), 5.25 – 4.94 (m, 5H), 4.94 – 4.69 (m, 6H), 4.69 – 4.15 (m, 19H), 3.84 – 3.71 (m, 6H), 3.71 – 3.41 (m, 7H), 3.41 – 3.09 (m, 5H), 2.05 – 1.76 (m, 14H), 1.69 – 1.36 (m, 7H), 1.36 – 1.07 (m, 7H), 0.94 – 0.78 (m, 3H). ¹³C NMR (101 MHz, CD₂Cl₂) δ 170.47, 170.26, 168.76, 159.63,

130.01, 129.32, 128.88, 128.79, 128.73, 128.50, 128.28, 128.02, 127.93, 127.78, 127.64, 114.17, 99.13, 97.95, 76.51, 74.77, 72.44, 71.28, 67.96, 67.41, 55.64, 50.72, 49.18, 48.87, 48.04, 30.06, 23.56, 16.80. **HRMS**: $[M+Na]^+$ calculated for $C_{80}H_{94}N_4O_{19}Na$: 1437.64100; found 1437.64099

Benzyl (5-(benzyl(benzoyloxycarbonyl)amino)pentyl 2-acetamide-4-*O*-benzyl-2-deoxy-3-*O*-(*p*-methoxybenzyl)- α -D-fucopyranosyl-(1 \rightarrow 4)-2-*O*-acetamide-3-*O*-benzyl-2-deoxy- α -D-galactopyranosiduronate)-(1 \rightarrow 4)-2-acetamide-3-*O*-benzyl-2-deoxy- α -D-galactopyranosiduronate (38)

The oxidation was carried out according to General oxidation procedure C using **37** (53 mg, 0.0374 mmol, 1 equiv.) in EtOAc/*t*-BuOH/H₂O (1:1:1, 0.9 mL) and TEMPO (5 mg, 0.00299 mmol, 0.8 equiv.), NaHCO₃ (16 mg, 0.187 mmol, 5 equiv.) and BAIB (48 mg, 0.149 mmol, 4 equiv.) and stirred for 12 days at 4 C. Purification by column chromatography (DCM/MeOH 100:0 \rightarrow 95:5) gave **38** in 65% yield (37 mg, 0.0242 mmol). ¹H NMR (400 MHz, CD₂Cl₂) δ 7.72 – 7.62 (m, 5H), 7.62 – 7.52 (m, 3H), 7.52 – 7.42 (m, 6H), 7.46 –

7.09 (m, 64H), 6.94 – 6.87 (m, 2H), 5.75 (s, 1H), 5.20 (d, J = 25.9 Hz, 4H), 5.08 – 4.94 (m, 4H), 4.94 – 4.70 (m, 9H), 4.70 – 4.51 (m, 9H), 4.51 – 4.37 (m, 12H), 4.36 – 4.17 (m, 6H), 3.84 – 3.68 (m, 7H), 3.68 – 3.45 (m, 6H), 3.35 (s, 2H), 3.28 – 3.13 (m, 4H), 2.16 – 1.80 (m, 20H), 1.61 – 1.38 (m, 12H), 1.38 – 1.23 (m, 9H), 1.20 – 1.08 (m, 8H), 0.85 – 0.78 (m, 3H). ¹³C NMR (101 MHz, CD₂Cl₂) δ 139.00, 138.22, 132.10, 132.08, 132.00, 129.66, 129.05, 128.93, 128.69, 128.63, 128.57, 128.45, 128.24, 128.20, 127.92, 127.66, 127.50, 127.31, 125.32, 113.88, 99.72, 98.82, 97.74, 84.02, 76.60, 74.78, 71.88, 71.76, 67.59, 67.04, 55.36, 53.75, 50.77, 49.99, 48.52, 47.20, 39.82, 26.44, 23.52, 23.21, 17.50, 16.59.

Trisaccharide with taurine on 1st GalNAc deprotected (2)

38 (37 mg, 0.0259 mmol, 1 equiv.) was dissolved in DMF (1 mL) and added HATU (12 mg, 0.0311 mmol, 1.2 equiv.) and DIPEA (14 μ L, 0.0776 mmol, 3 equiv.) stirred at rt for 10 min before adding taurine (6 mg, 0.0518 mmol, 2 equiv.). The reaction was for 2 h until LC-MS showed full conversion. The solution was diluted in EtOAc and washed with 1 M HCl (x1), NaHCO₃ (x1, aq., sat.) and brine (x1), dried with Na₂SO₄, filtered and concentrated *in vacuo*. The crude product **39** (38 mg) was used without further purification. The hydrogenation reaction was carried out

 2H, Taurine- CH_2), 3.00 (t, J = 7.7 Hz, 2H, Linker- CH_2), 2.10 (s, 3H, COCH₃), 2.10 (s, 3H, COCH₃), 2.05 (s, 3H, COCH₃), 1.70 – 1.61 (m, 4H, Linker- CH_2), 1.46 – 1.41 (m, 2H, Linker- CH_2), 1.17 (d, J = 6.6 Hz, 3H, H-6"). ¹³C NMR (214 MHz, D₂O) δ 174.88 (C=O), 174.70 (C=O), 174.56 (C=O), 174.11 (C=O), 170.41 (C=O), 99.17 (C-1"), 97.00 (C-1'), 96.24 (C-1), 79.40 (C-4), 73.19 (C-4'), 71.54 (C-5), 71.20 (C-4"), 69.66 (C-5"), 68.28 (Linker- CH_2), 67.87 C-3"), 67.55 (C-5'), 66.77 (C-3"/C-3), 66.74 (C-3"/C-3), 49.65 (C-2/C-2"/C-2"), 49.56 (C-2/C-2"/C-2"), 49.45 (C-2/C-2"/C-2"), 49.19 (Taurine- CH_2), 39.34 (Linker- CH_2), 34.94 (Taurine- CH_2), 27.94 (Linker- CH_2), 26.34 (Linker- CH_2), 22.39 (COCH₃), 22.22 (COCH₃), 22.03 (Linker- CH_2), 21.81 (COCH₃), 15.35 (C-6"). HRMS: [M+H]⁺ calculated for C₃₁H₅₃N₅O₁₉SH: 832.31337; found 832.31293

Synthesis of the trisaccharides with taurine on 2nd GalNAc

5-(benzyl(benzoyloxycarbonyl)amino)pentyl 2-acetamide-4-*O*-benzyl-2-deoxy-3-*O*(*p*-methoxybenzyl)- α -D-fucopyranosyl-(1 \rightarrow 4)-2-acetamide-6-*O*-allyloxycarbonyl-3-*O*-benzyl-2-deoxy- α -D-galactopyrasyl-(1 \rightarrow 4)-2-*O*-acetamide-3-*O*-benzyl-2-deoxy-6-*O*-le-vulinoyl- α -D-galactopyranoside (40)

The azide reduction was carried out followed the general azide reduction procedure B using **10** (189 mg, 0.129 mmol, 1 equiv.) and zinc powder (1.687 g, 25.83 mmol, 200 equiv.). Purification by column chromatography (DCM/MeOH 100:0 \rightarrow 95:5) gave **40** in 94% yield (181 mg, 0.121 mmol). ¹H NMR (**400 MHz, CD₂Cl₂**) δ 7.42 – 7.16 (m, 27H), 6.94 – 6.86 (m, 2H), 5.96 – 5.83 (m, 1H), 5.78 – 5.53 (m, 1H), 5.25 (ddd, *J* = 9.0, 5.2, 2.2 Hz, 1H), 5.17 (s, 1H), 5.06 (t, *J* = 10.3 Hz, 1H), 4.95 (d, *J* = 3.7 Hz, 1H), 4.87 (dd, *J* = 12.0, 7.4

Hz, 2H), 4.80 (d, J = 12.4 Hz, 2H), 4.70 – 4.62 (m, 1H), 4.63 – 4.37 (m, 11H), 4.37 – 4.24 (m, 2H), 4.24 – 4.14 (m, 2H), 4.11 – 3.82 (m, 5H), 3.82 – 3.73 (m, 5H), 3.71 – 3.46 (m, 3H), 3.41 – 3.14 (m, 3H), 2.74 (t, J = 6.4 Hz, 2H), 2.58 – 2.46 (m, 2H), 2.36 (s, 1H), 2.14 (d, J = 3.2 Hz, 3H), 2.09 (s, 1H), 2.01 – 1.95 (m, 2H), 1.90 (d, J = 5.3 Hz, 7H), 1.54 (s, 4H), 1.39 – 1.21 (m, 3H), 0.90 (d, J = 6.4 Hz, 3H). ¹³**C NMR (101 MHz, CD₂Cl₂)** δ 206.91, 172.52, 159.68, 139.24, 138.53, 130.86, 129.99, 128.86, 128.79, 128.57, 128.43, 128.20, 128.12, 127.98, 127.77, 119.03, 98.99, 98.31, 97.88, 77.03, 76.60, 75.09, 71.93, 71.74, 71.21, 69.03, 68.80, 68.25, 67.68, 67.33, 62.47, 55.60, 54.38, 54.11, 53.84, 53.57, 53.30, 50.54, 49.31, 47.59, 38.13, 30.06, 29.93, 28.08, 25.10, 23.52, 16.98. **HRMS**: [M+Na]⁺ calculated for C₈₂H₁₀₀N₄O₂₂Na: 1515.67269; found 1515.67387

5-(benzyl(benzoyloxycarbonyl)amino)pentyl 2-acetamide-4-*O*-benzyl-2-deoxy-3-*O*-(*p*-methoxybenzyl)- α -D-fucopyranosyl-(1 \rightarrow 4)-2-acetamide-6-*O*-allyloxycarbonyl-3-*O*-benzyl-2-deoxy- α -D-galactopyrasyl-(1 \rightarrow 4)-2-*O*-acetamide-3-*O*-benzyl-2-deoxy- α -D-galactopyranoside (41)

40 (181 mg, 0.121 mmol, 1 equiv.) was dissolved in toluene/EtOH (1:2, 0.1 M, 1.2 mL) and added hydrazine acetate (56 mg, 0.606 mmol, 5 equiv.) and stirred at rt for 45 min until TLC analysis (DCM/MeOH 95:5) showed full conversion. The solution was diluted in DCM and NaHCO₃ (aq., sat.) and the organic layer was dried with Na₂SO₄, filtered and concentrated *in vacuo*. Column chromatography (DCM/MeOH 100:0 \rightarrow 95:5) gave **41** in 86% yield (145 mg, 0.104 mmol). ¹H NMR (**400 MHz**, CD₂Cl₂) δ 7.43 – 7.15

(m, 29H), 6.94 – 6.87 (m, 2H), 5.95 – 5.85 (m, 1H), 5.44 (dd, J = 14.2, 9.5 Hz, 1H), 5.24 (ddq, J = 10.4, 2.6, 1.2 Hz, 1H), 5.21 – 5.02 (m, 3H), 4.94 – 4.69 (m, 5H), 4.66 (dd, J = 11.5, 3.1 Hz, 1H), 4.61 – 4.33 (m, 13H), 4.31 (s, 2H), 4.17 (d, J = 2.6 Hz, 1H), 3.78 (d, J = 5.4 Hz, 6H), 3.69 – 3.46 (m, 5H), 3.44 – 3.16 (m, 4H), 1.99 (s, 2H), 1.94 – 1.82 (m, 13H), 1.63 – 1.41 (m, 5H), 1.38 – 1.16 (m, 4H), 0.90 (t, J = 6.2 Hz, 3H). ¹³C NMR (101 MHz, CD₂Cl₂) δ 172.78, 170.35, 169.94, 159.69, 139.27, 138.65, 132.04, 130.86, 130.21, 129.95, 129.71, 128.90, 128.87, 128.83, 128.79, 128.76, 128.51, 128.46, 128.43, 128.30, 128.13, 128.06, 128.01, 127.93, 127.77, 127.66, 127.55, 119.00, 114.21, 99.18, 98.01, 76.68, 75.36, 75.09, 71.89, 71.78, 71.24, 69.01, 67.72, 67.32, 65.25, 55.66, 55.61, 50.68, 49.15, 49.07, 33.15, 30.58, 29.43, 26.45, 26.28, 23.56, 22.92, 16.99. HRMS: [M+Na]⁺ calculated for C₇₇H₉₄N₄O₂₂Na: 1417.63591; found 1417.63572

Benzyl (5-(benzyl(benzoyloxycarbonyl)amino)pentyl 2-acetamide-4-*O*-benzyl-2-deoxy-3-*O*-(*p*-methoxybenzyl)- α -D-fucopyranosyl-(1 \rightarrow 4)-2-acetamide-6-*O*-allyloxycarbonyl-3-*O*-benzyl-2-deoxy- α -D-galactopyrasyl-(1 \rightarrow 4)-2-*O*-acetamide-3-*O*-benzyl-2-deoxy- α -D-galactopyranosiduronate) (42)

The oxidation was carried out according to General oxidation procedure C using **41** (37 mg, 0.0265 mmol, 1 equiv.) in EtOAc/t-BuOH/H₂O (1:1:1, 0.9 mL) and TEMPO (4 mg, 0.0212 mmol, 0.8 equiv.), NaHCO₃ (11 mg, 0.0133 mmol, 5 equiv.) and BAIB (34 mg, 0.106 mmol, 4 equiv.). The reaction was stirred for 4 days at 4 °C. The crude product was dissolved in DMF and cooled to 0 °C and added Cs₂CO₃ (9 mg, 0.0265 mmol, 1 equiv.) and BnBr (6 μ L, 0.053 mmol, 2 equiv.) and stirred overnight at rt until TLC analysis

(DCM/MeOH, 95:5) showed full conversion. The solution was diluted in EtOAc, washed with brine (x1), dried with Na₂SO₄, filtered and concentrated in *vacuo*. Column chromatography (DCM/MeOH, 100:0 \rightarrow 95:5) gave 42 in 71% yield (28 mg, 0.0287 mmol). ¹H NMR (400 MHz, CD₂Cl₂) δ 7.50 – 7.08 (m, 32H), 6.98 – 6.78 (m, 2H), 5.97 – 5.83 (m, 1H), 5.50 (dd, *J* = 36.0, 8.9 Hz, 2H), 5.27 – 5.17 (m, 2H), 5.17 – 5.00 (m, 3H), 4.91 – 4.80 (m, 3H), 4.81 – 4.71 (m, 2H), 4.71 – 4.63 (m, 1H), 4.60 – 4.21 (m, 15H), 4.21 – 4.14 (m, 1H), 4.12 – 3.86 (m, 2H), 3.81 – 3.73 (m, 4H), 3.70 – 3.48 (m, 4H), 3.36 (s, 1H), 3.21 (d, *J* = 10.2 Hz, 2H), 1.97 – 1.90

(m, 3H), 1.86 (s, 9H), 1.58 – 1.38 (m, 5H), 1.34 – 1.08 (m, 5H), 0.88 (dd, J = 7.9, 6.7 Hz, 3H). ¹³C NMR (101 MHz, CD₂Cl₂) δ 170.60, 169.83, 159.68, 139.25, 138.56, 135.46, 132.02, 129.88, 129.77, 129.23, 129.09, 129.04, 128.87, 128.80, 128.73, 128.51, 128.43, 128.20, 128.13, 127.95, 127.77, 127.60, 119.02, 114.18, 99.05, 98.20, 77.32, 76.66, 75.28, 75.09, 72.06, 71.74, 71.19, 70.13, 69.03, 67.68, 67.59, 67.32, 55.57, 54.04, 51.27, 50.53, 49.11, 48.71, 47.38, 46.71, 30.07, 29.08, 28.15, 27.57, 23.77, 23.57, 23.49, 16.97. HRMS: [M+Na]⁺ calculated for C₈₄H₉₈N₄O₂₁Na: 1499.68018; found 1499.68118

Benzyl (5-(benzyl(benzoyloxycarbonyl)amino)pentyl 2-acetamide-4-*O*-benzyl-2-deoxy-3-*O*-(*p*-methoxybenzyl)- α -D-fucopyranosyl-(1 \rightarrow 4)-2-acetamide-2-deoxy-3-*O*-benzyl- α -D-galactopyrasyl-(1 \rightarrow 4)-2-*O*-acetamide-3-*O*-benzyl-2-deoxy- α -D-galactopyranosiduronate) (43)

42 (28 mg, 0.0185 mmol, 1 equiv.) was dissolved in DCM (1 mL), cooled to 0 °C and added Bu₃SnH (10 μ L, 0.0371 mmol, 2 equiv.) and Pd(PPh₃)₄ (2 mg, 0.00185 mmol, 0.1 equiv.). The reaction was stirred at 0 °C for 30 min until TLC analysis (DCM/MeOH 95:5) showed full conversion. The solution was concentrated. Column chromatography (DCM/MeOH 100:0 \rightarrow 95:5) gave **43** in 86% yield (145 mg, 0.104 mmol). ¹H NMR (400 MHz, CD₂Cl₂) δ 7.42 – 7.17 (m, 51H), 6.95 – 6.81 (m, 3H), 5.67 (d, *J* = 9.6 Hz, 1H), 5.55 – 5.50 (m, 1H),

5.28 – 4.97 (m, 7H), 4.95 – 4.69 (m, 9H), 4.68 – 4.61 (m, 2H), 4.57 – 4.36 (m, 16H), 4.29 – 4.20 (m, 3H), 4.10 (dd, J = 8.6, 6.0 Hz, 2H), 3.78 (d, J = 6.6 Hz, 7H), 3.73 – 3.51 (m, 8H), 3.41 (s, 2H), 3.22 (s, 6H), 2.03 – 1.75 (m, 21H), 1.67 – 1.38 (m, 8H), 1.37 – 1.24 (m, 7H), 0.88 (d, J = 6.4 Hz, 3H). ¹³**C NMR (101 MHz, CD₂Cl₂)** δ 170.47, 169.83, 168.67, 159.32, 139.30, 138.79, 138.51, 130.99, 129.96, 129.80, 129.11, 128.99, 128.87, 128.77, 128.69, 128.55, 128.50, 128.47, 128.30, 128.22, 128.07, 127.94, 127.76, 127.72, 127.61, 114.13, 100.32, 99.00, 98.43, 77.40, 76.73, 76.59, 76.47, 75.54, 70.75, 67.46, 59.72, 50.54, 49.36, 49.20, 48.67, 30.07, 28.07, 23.80, 23.57, 16.99. **HRMS**: [M+Na]⁺ calculated for C₈₀H₉₄N₄O₁₉Na: 1437.61400; found 1437.64042

Benzyl (5-(benzyl(benzoyloxycarbonyl)amino)pentyl 2-acetamide-4-*O*-benzyl-2-deoxy-3-*O*-(*p*-methoxybenzyl)- α -D-fucopyranosyl-(1 \rightarrow 4)-2-acetamide-3-*O*-benzyl-2-deoxy- α -D-galactopyranosiduronate-(1 \rightarrow 4)-2-*O*-acetamide-3-*O*-benzyl-2-deoxy- α -D-galactopyranosiduronate) (44)

The oxidation was carried out according to General oxidation procedure C using **43** (19 mg, 0.0132 mmol, 1 equiv.) in EtOAc/t-BuOH/H₂O (1:1:1, 0.9 mL) and TEMPO (2 mg, 0.0106 mmol, 0.8 equiv.), NaHCO₃ (6 mg, 0.0660 mmol, 5 equiv.) and BAIB (17 mg, 0.0528 mmol, 4 equiv.) and stirred for 12 days at 4 °C. Purification by column chromatography (DCM/MeOH 100:0 \rightarrow 95:5) gave **44** in 51% yield of the product with the PMB (10 mg, 0.00672 mmol) and 27% yield of the product without the PMB (5 mg, 0.00351 mmol). ¹H

NMR (400 MHz, CD₂Cl₂) δ 7.50 - 7.10 (m, 68H), 6.98 - 6.79 (m, 3H), 5.23 - 4.96 (m, 11H),

4.96 – 4.70 (m, 12H), 4.70 – 4.40 (m, 20H), 4.33 (dd, J = 23.7, 10.6 Hz, 8H), 3.91 – 3.73 (m, 8H), 3.71 – 3.47 (m, 7H), 3.26 – 3.15 (m, 4H), 2.03 (s, 33H), 1.58 – 1.40 (m, 9H), 1.32 – 1.16 (m, 8H), 0.88 – 0.84 (m, 3H). ¹³**C NMR (101 MHz, CD₂Cl₂)** δ 174.25, 173.76, 172.89, 171.83, 171.26, 168.18, 139.21, 138.63, 138.43, 137.91, 129.99, 129.92, 129.75, 129.63, 129.33, 129.14, 129.10, 128.87, 128.81, 128.72, 128.67, 128.60, 128.56, 128.50, 128.45, 128.36, 128.24, 128.03, 127.94, 127.84, 127.78, 127.75, 127.63, 127.54, 126.53, 121.02, 114.21, 114.16, 99.45, 99.13, 98.92, 98.45, 97.99, 91.59, 80.44, 78.01, 77.01, 76.73, 76.47, 76.26, 76.12, 75.66, 75.58, 75.32, 74.29, 73.96, 72.20, 71.97, 71.90, 71.79, 71.14, 70.31, 70.17, 69.51, 68.29, 67.63, 67.40, 59.05, 55.59, 54.04, 51.53, 50.76, 49.74, 48.70, 47.49, 46.74, 30.06, 29.27, 28.03, 26.68, 23.54, 23.39, 23.18, 23.04, 20.96, 16.93, 16.78. **HRMS**: $[M+H]^+$ calculated for C₈₀H₉₁N₄O₂₀H: 1429.63832; found 1429.63810

Trisaccharide with taurine on 2nd GalNAc deprotected (3)

44 (15 mg, 0.0104 mmol, 1 equiv., combined product with and without the PMB) was dissolved in DMF (1 mL) and added HATU (5 mg, 0.0124 mmol, 1.2 equiv.) and DIPEA (5 μ g, 0.0311 mmol, 3 equiv.) stirred at rt for 10 min before adding taurine (3 mg, 0.0297 mmol, 2 equiv.). The reaction was stirred overnight until LC-MS showed full conversion. The solution was diluted in EtOAc and washed with 1 M HCl (x1), NaHCO₃ (x1, aq., sat.) and brine (x1), dried with Na₂SO₄, filtered and concentrated *in vacuo*. The crude product **45** (20 mg) was used without further

purification. The hydrogenation reaction was carried out according to General hydrogenation procedure D using 45 (20 mg, crude product) to 3 in 35% yield over two steps (3 mg, 0.00362 mmol). ¹H NMR (600 MHz, D₂O) δ 5.12 (d, J = 3.7 Hz, 1H, H-1), 4.97 (d, J = 2.7 Hz, 1H, H-1'), 4.88 – 4.86 (m, 2H, H-1", H-5), 4.47 – 4.43 (m, 2H, H-4, H-5"), 4.41 (q, J = 1.2 Hz, 1H, H-4'), 4.34 (dd, J = 11.3, 3.7 Hz, 1H, H-2), 4.27 – 4.25 (m, 1H, H-5'), 4.15 (d, J = 2.7 Hz, 1H, H-3), 4.13 (dt, J = 5.4, 2.6 Hz, 2H, H-3', H-2'), 4.09 (dd, J = 11.2, 3.9 Hz, 1H, H-2"), 3.98 (dd, J = 11.2, 3.2 Hz, 1H, H-3"), 3.81 - 3.80 (m, 1H, H-4"), 3.80 - 3.75 (m, 1H, Taurine-NH-CH₂), 3.72 - 3.67 (m, 1H, Linker-CH₂), 3.54 (dt, J = 10.1, 3.7 Hz, 1H, Linker-CH₂), 3.46 - 3.41 (m, 1H, Taurine-NH- CH_2), 3.14 – 3.04 (m, 2H, Taurine-NH- CH_2 - CH_2), 2.99 (t, J = 7.7 Hz, 2H, Linker-CH₂), 2.09 (s, 3H, COCH₃), 2.08 (s, 3H, COCH₃), 2.03 (s, 3H, COCH₃), 1.69 - 1.64 (m, 4H, Linker-CH₂), 1.46 – 1.42 (m, 2H, Linker-CH₂), 1.18 (d, J = 6.6 Hz, 4H, H-6"). ¹³C NMR (151 MHz, D₂O) & 175.81 (C=O), 175.54 (C=O), 175.10 (C=O), 175.07 (C=O), 171.57 (C=O), 99.49 (C-1), 98.10 (C-1"), 97.78 (C-1"), 79.03 (C-4"), 75.72 (C-4), 72.12 (C-4"), 71.70 (C-5), 71.53 (C-5"), 68.96 (Linker-CH2), 68.45 (C-3"), 68.09 (C-5"), 68.03 (C-3'), 67.72 (C-3), 50.63 (C-2'), 50.49 (C-2"), 50.34 (Taurine-NH-CH₂-CH₂), 50.19 (Linker-CH₂), 39.65 (Taurine-NH-CH₂), 35.83 (Linker-CH₂), 28.97 (Linker-CH₂), 27.27 (Linker-CH₂), 23.25 (COCH₃), 23.21 (COCH₃), 23.09 (COCH₃), 22.83 (COCH₃), 16.28 (C-6"). HRMS: [M+H]⁺ calculated for C31H53N5O19SH: 832.31337; found 832.31278

Synthesis of the hexasaccharide without taurine

Phenyl 2-azido-3-O-benzyl-2-deoxy-α-D-galactopyranoside (47)

HO OH BnO N₃SePh **46** (2.019 g, 3.655 mmol) was dissolved in MeOH (36 mL, 0.1 M), added CSA (85 mg, 0.366 mmol, 0.1 equiv.) and stirred at rt for 1 h until TLC (pentane/EtOAc, 6:4) showed full conversion. The reaction was quenched with Et_3N and concentrated *in vacuo*. Purification by column chromatography (pen-

tane/EtOAc, 7:3 \rightarrow 4:6) yielded 47 in 82% yield (1.305 g, 3.001 mmol). ¹H NMR (400 MHz, CDCl3) δ 7.62 – 7.55 (m, 2H, Ar-*H*), 7.42 – 7.32 (m, 5H, Ar-*H*), 7.32 – 7.26 (m, 3H, Ar-*H*), 5.96 (d, *J* = 5.3 Hz, 1H, H-1), 4.73 (dd, *J* = 16.9, 11.4 Hz, 2H, , Ar-*CH*₂), 4.25 – 4.18 (m, 2H, H-2, H-4), 4.12 (dt, *J* = 2.8, 1.3 Hz, 1H, H-3), 3.86 (ddd, *J* = 11.9, 5.9, 3.6 Hz, 1H, H-6), 3.75 – 3.65 (m, 2H, H-5, H-6), 2.75 (t, *J* = 1.4 Hz, 1H, 4-OH), 1.99 (dd, *J* = 8.7, 3.8 Hz, 1H, 6-OH). ¹³C NMR (101 MHz, CDCl₃) δ 136.94 (Ar-*C*_q), 135.02 (Ar-*C*), 129.35 (Ar-*C*), 128.89 (Ar-*C*), 128.58 (Ar-*C*), 128.25 (Ar-*C*), 128.22 (Ar-*C*), 127.86 (Ar-*C*_q), 84.66 (C-1), 78.81 (C-5), 72.37 (Ar-*C*H₂), 72.20 (C-4), 67.33 (C-3), 62.94 (C-6), 60.31 (C-2). HRMS: [M+H]⁺ calculated for C₁9H₂₁N₃O₄SeH: 436.07755; found 436.07702

Phenyl 2-azido-3-*O*-benzyl-2-deoxy-6-*O*-levulinoyl-α-D-galactopyranoside (48)

47 (1.286 g, 2.960 mmol) was dissolved in dry DCM (30 mL, 0.1 M) and но cooled to 0 C. LevOH (398 mg, 3.552 mmol, 1.2 equiv.), DIC (0.56 mL, 3.552 BnC N₃SePh mmol, 1.2 equiv.) and DMAP (36 mg, 0.296 mmol, 0.1 equiv.) were added and the reaction was stirred at rt under N₂ for 1 h until TLC (pentane/EtOAc, 1:1) showed full conversion. The solution was filtered over Celite and concentrated in vacuo. Purification by column chromatography (pentane/EtOAc, $8:2 \rightarrow 5:5$) yielded 48 in 92% yield (1.451 g, 2.724 mmol). ¹H NMR (400 MHz, CDCl₃) & 7.63 - 7.57 (m, 2H, Ar-H), 7.44 - 7.31 (m, 5H, Ar-H), 7.33 - 7.24 (m, 4H, Ar-H), 5.94 (d, J = 5.3 Hz, 1H, H-1), 4.78 - 4.67 (m, 2H, Ar-CH₂), 4.42 = 6.4, 4.1 Hz, 2H, CH₂-Lev), 2.54 (t, J = 1.6 Hz, 1H, 4-OH), 2.50 (td, J = 6.5, 1.5 Hz, 2H, CH₂-Lev), 2.17 (s, 3H, CH₃-Lev). ¹³C NMR (101 MHz, CDCl₃) δ 206.70 (C=O), 172.69 (C=O), 136.95 (Ar-C_a), 134.61 (Ar-C), 129.24 (Ar-C), 128.85 (Ar-C), 128.56 (Ar-C), 128.52 (Ar-C), 128.21 (Ar-C), 128.06 (Ar-C), 84.84 (C-1), 78.68 (C-3), 72.26 (Ar-CH₂), 70.40 (C-5), 65.88 (C-4), 63.25 (C-6), 60.18 (C-2), 37.96 (CH₂-Lev), 29.96 (CH₃-Lev), 27.85 (CH₂-Lev). HRMS: [M+Na]⁺ calculated for C₂₄H₂₇N₃O₆SeNa: 556.09628; found 556.09572

Phenyl 2-azido-3-*O*-benzyl-2-deoxy-4,6-*O*-(di-*tert*-butylsilyene)- α -D-galactopyrasyl-(1 \rightarrow 4)-2-azido-3-*O*-benzyl-2-deoxy-6-*O*-levulinoyl- α -D-galactopyranoside (49)

The reaction was carried out according to General glycosylationprocedure A using acceptor **48** (1.221 g, 2.293 mmol, 1 equiv.), donor **11b** (1.760 g, 2.980 mmol, 1.3 equiv.) and TBSOTf (120 μ L, 0.459 mmol, 0.2 equiv.) in DCM (23 mL, 0.1 M). The reaction was followed by TLC (pentane/EtOAc 7:3) and column chromatography (pentane/EtOAc 85:15 \rightarrow 70:30) gave **49** in 59% yield (1.296 g, 1.364 mmol) as only the α -anomer. ¹H NMR (**400 MHz, CDCl**₃) δ 7.73 –

 13 _{SePh} mmol) as only the α-anomer. ¹H NMR (400 MHz, CDCl₃) δ 7.73 – 7.56 (m, 2H, Ar-*H*), 7.44 – 7.25 (m, 17H, Ar-*H*), 6.00 (d, *J* = 5.3 Hz, 1H, H-1), 5.02 (d, *J* = 2.8 Hz, 1H, H-1'), 4.81 – 4.61 (m, 5H, Ar-CH₂), 4.53 (t, *J* = 1.6 Hz, 1H, H-3), 4.44 – 4.32 (m, 3H,

H-5, H-6), 4.28 (d, J = 2.8 Hz, 1Hm H-4), 4.14 (dd, J = 10.5, 5.3 Hz, 1H, H-2), 4.02 (s, 1H, H-4'), 3.94 – 3.84 (m, 2H, H-5', H-2'), 3.79 – 3.71 (m, 1H, H-6'), 3.71 – 3.63 (m, 2H, H-3, H-6'), 2.75 (td, J = 6.2, 1.8 Hz, 2H, CH_2 -Lev), 2.53 (t, J = 6.5 Hz, 2H, CH_2 -Lev), 2.19 (s, 3H, CH_3 -Lev), 1.01 (d, J = 4.8 Hz, 18H, H-t-Bu). ¹³C NMR (101 MHz, CDCl₃) δ 206.58 (C=O), 172.34 (C=O), 137.80 (Ar- C_q), 136.96 (Ar- C_q), 135.08 (Ar-C), 129.25 (Ar-C), 128.74 (Ar-C), 128.68 (Ar-C), 128.61 (Ar-C), 128.21 (Ar-C), 128.15 (Ar-C), 128.07 (Ar-C), 128.01 (Ar-C), 127.32 (Ar-C), 99.18 (C-1'), 84.93 (C-1), 78.54 (C-3), 75.44 (C-5'), 72.16 (Ar- CH_2), 71.82 (C-4'), 70.66 (C-5), 70.40 (Ar- CH_2), 69.51 (C-3), 67.90 (C-4), 66.94 (C-6'), 61.88 (C-6), 61.13 (C-2), 58.76 (C-2'), 38.10 (CH_2 -Lev), 29.92 (CH_3 -Lev), 27.98 (CH_2 -Lev), 27.72 ($C(CH_3)_3$), 27.44 ($C(CH_3)_3$), 23.44 ($C(CH_3)_3$), 20.77 ($C(CH_3)_3$). HRMS: [M+Na]⁺ calculated for C₄5H₅₈N₆O₁₀SeSiNa: 973.30466; found 973.30430

Phenyl 2-azido-3-*O*-benzyl-2-deoxy-α-D-galactopyrasyl-(1→4)-2-azido-3-*O*-benzyl-2-deoxy-6-*O*-levulinoyl-α-D-galactopyranoside (50)

49 (1.263 g, 1.330 mmol) was dissolved in THF (13 mL, 0.1 M) and cooled to 0 °C. AcOH (0.2 mL, 3.324 mmol, 2.5 equiv.) and TBAF (1 M in THF, 3.3 mL, 3.324 mmol, 2.5 equiv.) was added and the reaction was stirred at rt under N₂ overnight until TLC (pentane/EtOAc 1:1) showed full conversion. The reaction was quenched with NH₄Cl (aq., sat.) and diluted with EtOAc. The organic phase was washed with H₂O (x3) and

brine (x1), dried over Na₂SO₄, filtered and concentrated *in vacuo*. Column chromatography (pentane/EtOAc 5:5 \rightarrow 2:8) gave **50** in 86% yield (928 mg, 1.146 mmol). ¹H NMR (400 MHz, CDCl₃) δ 7.63 – 7.58 (m, 2H, Ar-*H*), 7.45 – 7.27 (m, 14H, Ar-*H*), 5.99 (d, *J* = 5.4 Hz, 1H, H-1), 5.06 (d, *J* = 3.4 Hz, 1H, H-1'), 4.85 (d, *J* = 11.7 Hz, 1H, Ar-CH₂), 4.76 – 4.65 (m, 3H, Ar-CH₂), 4.47 – 4.39 (m, 1H, H-5), 4.39 – 4.33 (m, 1H, H-6), 4.33 – 4.29 (m, 1H, H-6), 4.27 (d, *J* = 2.8 Hz, 1H, H-4), 4.21 – 4.14 (m, 2H, H-2, H-4'), 4.07 (t, *J* = 4.9 Hz, 1H, H-5'), 3.96 – 3.80 (m, 2H, H-2', H-3'), 3.67 (dd, *J* = 10.5, 2.8 Hz, 1H, H-3), 3.48 (q, *J* = 5.1, 3.5 Hz, 2H, H-6'), 2.81 (s, 1H, 4-OH'), 2.75 (dd, *J* = 7.2, 5.5 Hz, 2H, Lev-CH₂), 2.56 – 2.49 (m, 3H, Lev-CH₂, 6-OH'), 2.19 (s, 3H, Lev-CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 206.74 (C=O), 172.36 (C=O), 137.07 (Ar-C_q), 135.03 (Ar-C), 129.23 (Ar-C), 128.76 (Ar-C), 128.39 (Ar-C), 128.30 (Ar-C), 128.19 (Ar-C), 128.14 (Ar-C), 127.85 (Ar-C_q), 127.64 (Ar-C), 99.22 (C-1'), 84.89 (C-1), 78.58 (C-3), 76.22 (C-3'), 72.91 (C-4), 72.46 (Ar-CH₂), 71.94 (Ar-CH₂), 70.50 (C-5), 69.63 (C-5'), 67.62 (C-4'), 62.79 (C-6'), 61.73 (C-6), 61.00 (C-2), 59.65 (C-2'), 38.05 (Lev-CH₂), 29.88 (Lev-CH₃), 27.87 (Lev-CH₂). HRMS: [M+Na]⁺ calculated for C₃₇H₄₂N₆O₁₀SeNa: 833.20253; found 833.20203

Phenyl 2-azido-3-*O*-benzyl-2-deoxy-6-*O*-levulinoyl- α -D-galactopyrasyl- $(1\rightarrow 4)$ -2-azido-3-*O*-benzyl-2-deoxy-6-*O*-levulinoyl- α -D-galactopyranoside (51)

50 (974 mg, 1.203 mmol) was dissolved in dry DCM (12 mL, 0.1 M) and cooled to 0 C. LevOH (162 mg, 1.444 mmol, 1.2 equiv.), DIC (0.23 mL, 1.444 mmol, 1.2 equiv.) and DMAP (15 mg, 0.120 mmol, 0.1 equiv.) were added and the reaction was stirred at rt under N₂ for 1 h until TLC (pentane/EtOAc, 4:6) showed full conversion. The solution was filtered over Celite and concentrated *in vacuo*. Purification by column chromatography (pentane/EtOAc, 55:45 \rightarrow 40:60) yielded **51** in 98% yield

(1.073 g, 1.181 mmol). ¹H NMR (400 MHz, CDCl₃) δ 7.63 – 7.54 (m, 2H, Ar-*H*), 7.50 – 7.27 (m, 10H, Ar-*H*), 5.98 (d, *J* = 5.3 Hz, 1H, H-1), 5.03 (d, *J* = 3.6 Hz, 1H, H-1'), 4.87 (d, *J* = 12.1 Hz, 1H, Ar-C*H*₂), 4.78 – 4.69 (m, 3H, Ar-C*H*₂), 4.40 – 4.34 (m, 2H, H-5, H-6), 4.34 – 4.27 (m, 2H, H-5', H-6), 4.26 – 4.20 (m, 2H, H-4, H-6'), 4.18 (dd, *J* = 10.5, 5.3 Hz, 1H, H-2), 4.09 (dd, *J* = 3.1, 1.4 Hz, 1H, H-4'), 3.96 – 3.83 (m, 3H, H-3', H-6', H-2'), 3.64 (dd, *J* = 10.5, 2.7 Hz, 1H, H-3), 2.77 – 2.65 (m, 4H, Lev-C*H*₂), 2.54 – 2.42 (m, 4H, Lev-C*H*₂), 2.18 (s, 3H, Lev-C*H*₃), 2.17 (s, 3H, Lev-C*H*₃). ¹³C NMR (101 MHz, CDCl₃) δ 206.75 (C=O), 172.51 (C=O), 172.36 (C=O), 137.19 (Ar-*C*₉), 137.10 (Ar-*C*), 128.14 (Ar-*C*), 129.23 (Ar-*C*), 128.75 (Ar-*C*), 128.70 (Ar-*C*), 128.34 (Ar-*C*), 128.22 (Ar-*C*), 128.14 (Ar-*C*), 127.81 (Ar-*C*), 99.18 (C-1'), 84.93 (C-1), 78.00 (C-3), 76.10 (C-3'), 73.07 (C-4), 72.22 (Ar-CH₂), 71.86 (Ar-*C*H₂), 70.60 (C-5), 68.16 (C-5'), 65.26 (C-4'), 62.28 (C-6'), 61.84 (C-6), 61.05 (C-2), 59.67 (C-2'), 38.10 (Lev-*C*H₂), 37.97 (Lev-*C*H₂), 30.08 (Lev-*C*H₃), 29.74 (Lev-*C*H₃), 27.91 (Lev-*C*H₂), 27.81 (Lev-*C*H₂). HRMS: [M+Na]⁺ calculated for C₄₂H₄₆N₆O₁₂SeNa: 931.23931; found 931.23904

Phenyl 2-azido-4-*O*-benzyl-2-deoxy-3-*O*-(*p*-methoxybenzyl)-α-D-fucopyranosyl-(1→4)-2azido-3-*O*-benzyl-2-deoxy-6-*O*-levulinoyl-α-D-galactopyrasyl-(1→4)-2-azido-3-*O*-benzyl-2-deoxy-6-*O*-levulinoyl-α-D-galactopyranoside (52)

The reaction was carried out according to General glycosylation procedure A using acceptor **51** (824 mg, 0.908 mmol, 1 equiv.), donor **10b** (777 mg, 0.1362 mmol, 1.5 equiv.) and TBSOTf (48 μ L, mmol, 0.2 equiv.) in DCM (9 mL, 0.1 M). The reaction was followed by TLC (pentane/EtOAc 6:4) and column chromatography (pentane/EtOAc 70:30 \rightarrow 45:55) gave **52** in 56% yield (656 mg, 0.509 mmol) as only the α -anomer. ¹H NMR (400 MHz, CDCl₃) δ 7.61 – 7.55 (m, 2H, Ar-*H*), 7.43 –

ŚePh 7.26 (m, 25H, Ar-H), 6.93 – 6.88 (m, 2H, Ar-H), 5.93 (d, J = 5.3 Hz, 1H, H-1), 5.07 (d, J = 3.6 Hz, 1H, H-1'), 4.95 (d, J = 2.7 Hz, 1H, H-1"), 4.93 – 4.83 (m, 3H, Ar-CH₂), 4.73 (d, J = 12.3 Hz, 1H, Ar-CH₂), 4.70 - 4.61 (m, 4H, Ar-CH₂), 4.53 (d, J = 11.4 Hz, 1H, Ar-CH₂), 4.41 - 4.33(m, 1H, H-5'), 4.33 – 4.24 (m, 4H, H-5, H-6, H-6'), 4.23 – 4.18 (m, 3H, H-3", H-4, H-5"), 4.13 -4.03 (m, 2H, H-6', H-2), 3.95 - 3.86 (m, 3H, H-4', H-2", H-3'), 3.81 (s, 3H, PMB-CH₃), 3.77 (dd, J=11.0, 3.6 Hz, 1H, H-2'), 3.65 - 3.58 (m, 2H, H-4", H-3), 2.80 - 2.68 (m, 4H, Lev-CH₂), 2.52 (t, J = 6.4 Hz, 2H, Lev-CH₂), 2.48 – 2.40 (m, 2H, Lev-CH₂), 2.18 (s, 3H, Lev-CH₃), 2.16 (s, 3H, Lev-CH₃), 0.85 (d, J = 6.4 Hz, 3H, H-6"). ¹³C NMR (101 MHz, CDCl₃) δ 206.64 (C=O), 206.25 (C=O), 172.38 (C=O), 171.80 (C=O), 138.56 (Ar-C_a), 137.37 (Ar-C_a), 137.14 (Ar-C_a), 134.99 (Ar-C), 129.22 (Ar-C_a), 128.69 (Ar-C), 128.56 (Ar-C), 128.36 (Ar-C), 128.33 (Ar-C), 128.14 (Ar-C), 128.08 (Ar-C), 127.92 (Ar-C), 127.78 (Ar-C), 127.73 (Ar-C), 127.65 (Ar-C), 114.04 (Ar-C), 99.41 (C-1"), 98.89 (C-1"), 84.87 (C-1), 77.48 (C-4"), 76.84 (C-3), 76.20 (C-4"), 75.05 (C-3"), 74.97 (Ar-CH₂), 72.40 (C-4/ C-3"), 72.01 (Ar-CH₂), 71.69 (Ar-CH₂), 70.61 (C-5'), 68.91 (C-5), 67.48 (C-5''), 61.92 (C-6'), 61.18 (C-2), 61.11 (C-6''), 60.28 (C-2"), 60.19 (C-2'), 55.43 (PMB-CH₃), 38.07 (Lev-CH₂), 29.91 (Lev-CH₃), 27.84 (Lev-CH₂), 16.73 (C-6"). HRMS: [M+Na]⁺ calculated for C₆₃H₇₁N₉O₁₆SeNa: 1312.40817; found 1312.40957

2-azido-4-*O*-benzyl-2-deoxy-3-*O*-(*p*-methoxybenzyl)-α-D-fucopyranosyl-(1→4)-2-azido-3-*O*-benzyl-2-deoxy-6-*O*-levulinoyl-α-D-galactopyrasyl-(1→4)-2-azido-3-*O*-benzyl-2-deoxy-6-*O*-levulinoyl-α-D-galactopyranose (53)

52 (640 mg, 0.496 mmol) was dissolved in THF/H₂O (10:1, 10 mL, 0.05 M) and cooled to 0 °C. NIS (447 mg, 1.085 mmol, 4 equiv.) were added and the reaction was stirred for 30 min until TLC (pentane/EtOAc, 6:4) showed full conversion. The reaction mixture was quenched with Na₂S₂O₃ (aq., sat.) and diluted in EtOAc. The organic phases was washed with Na₂S₂O₃ (x1, aq., sat.), NaHCO₃ (xa, aq., sat.) and brine, dried over Na₂SO₄, filtered and concentrated *in vacuo*. Column chromatography (pen-

tane/EtOAc, 6:4 → 4:6) yielded **53** in 100% yield as a α/β =53:47 (582 g, 0.496 mmol). ¹**H NMR (400 MHz, CDCl₃)** δ 7.52 – 7.29 (m, 28H), 6.94 – 6.85 (m, 4H), 5.35 (t, *J* = 2.7 Hz, 1H), 5.13 (d, *J* = 3.5 Hz, 1H), 5.02 (d, *J* = 3.6 Hz, 1H), 4.97 (d, *J* = 2.0 Hz, 1H), 4.94 (d, *J* = 2.7 Hz, 1H), 4.92 – 4.85 (m, 5H), 4.82 (s, 1H), 4.74 – 4.59 (m, 9H), 4.53 (dd, *J* = 11.4, 5.3 Hz, 2H), 4.45 – 4.27 (m, 10H), 4.27 – 4.13 (m, 8H), 4.13 – 4.03 (m, 4H), 3.97 – 3.84 (m, 8H), 3.81 (s, 7H), 3.79 – 3.71 (m, 3H), 3.64 (dd, *J* = 8.9, 2.2 Hz, 3H), 3.60 – 3.50 (m, 2H), 3.26 (dd, *J* = 10.5, 2.7 Hz, 1H), 2.87 – 2.66 (m, 13H), 2.62 – 2.39 (m, 9H), 2.19 (s, 3H), 2.18 (s, 3H), 2.17 (s, 4H), 2.16 (s, 3H), 0.88 (d, *J* = 6.4 Hz, 3H), 0.84 (d, *J* = 6.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 207.94, 207.18, 206.86, 206.58, 172.49, 172.21, 171.79, 159.55, 138.40, 137.38, 129.63, 129.60, 128.64, 128.58, 128.54, 128.34, 128.03, 127.96, 127.88, 127.84, 127.79, 127.77, 127.70, 127.66, 127.53, 114.03, 99.42, 98.88, 98.62, 96.60, 92.37, 78.35, 77.61, 77.37, 76.17, 75.16, 75.00, 74.97, 74.95, 73.17, 72.33, 72.25, 72.16, 72.11, 71.97, 71.88, 71.69, 69.15, 68.89, 68.29, 67.46, 64.89, 62.83, 62.37, 61.65, 61.26, 60.48, 60.38, 60.26, 55.41, 38.41, 38.13, 38.04, 29.95, 29.90, 29.68, 28.24, 28.05, 27.87, 27.81, 23.58, 16.71. **HRMS**: [M+Na]⁺ calculated for C_{57H67}N₉O₁₇Na: 1172.45526; found 1172.45374

2-azido-4-*O*-benzyl-2-deoxy-3-*O*-(*p*-methoxybenzyl)-α-D-fucopyranosyl-(1→4)-2-azido-3-*O*-benzyl-2-deoxy-6-*O*-levulinoyl-α-D-galactopyrasyl-(1→4)-2-azido-3-*O*-benzyl-2-deoxy-6-*O*-levulinoyl-1-*O*-(*N*-phenyl, 2.2,2-trifluoroacetimidoyl)-α-D-galactopyranose (54)

53 (785 mg, 0.682 mmol) was co-evaporated with toluene (x3) and dissolved in dry acetone (3.4 mL, 0.2 M). K₂CO₃ (141 mg, 1.023 mmol, 1.5 equiv.) and ClC(=NPh)CF₃ (0.17 mL, 1.023 mmol, 1.5 equiv.) and was added and the reaction was stirred at rt under N₂ overnight until TLC (pentane/EtOAc, 7:3) showed full conversion. The reaction was filtered and concentrated *in vacuo*. Column chromatography (pentane/EtOAc $8:2 \rightarrow 5:5$) gave **54** in 80% yield (720 mg,

0.545 mmol). ¹H NMR (400 MHz, CD₃CN) δ 7.56 – 7.26 (m, 35H), 7.24 – 7.09 (m, 2H), 6.96 – 6.77 (m, 7H), 5.45 (s, 1H), 5.07 (d, *J* = 3.4 Hz, 1H), 5.04 (d, *J* = 3.5 Hz, 1H), 4.96 – 4.84 (m, 5H), 4.82 (d, *J* = 2.9 Hz, 1H), 4.79 (d, *J* = 2.9 Hz, 1H), 4.75 (d, *J* = 3.2 Hz, 1H), 4.72 (d, *J* = 3.2 Hz, 1H), 4.69 – 4.59 (m, 4H), 4.59 – 4.52 (m, 4H), 4.43 – 4.26 (m, 8H), 4.26 – 4.19 (m, 5H), 4.11 – 3.95 (m, 6H), 3.95 – 3.83 (m, 5H), 3.81 (t, *J* = 3.7 Hz, 3H), 3.78 (s, 6H), 3.50 (dt, *J* = 8.3, 4.5 Hz, 1H), 2.81 – 2.64 (m, 7H), 2.57 – 2.33 (m, 8H), 2.16 (s, 2H), 2.12 (s, 2H), 2.09 (d, *J* = 1.3 Hz, 9H), 0.85 (t, *J* = 6.3 Hz, 6H). ¹³C NMR (101 MHz, CD₃CN) δ 207.97, 173.15,

172.76, 160.42, 139.95, 139.18, 138.66, 131.20, 130.78, 129.92, 129.37, 129.35, 129.28, 129.18, 128.97, 128.72, 128.62, 128.51, 128.43, 128.36, 125.48, 120.03, 114.70, 100.29, 99.87, 79.06, 77.96, 77.58, 76.17, 75.82, 74.10, 73.76, 73.68, 73.34, 72.61, 72.55, 72.20, 72.14, 72.00, 71.85, 69.98, 69.84, 68.13, 62.91, 62.68, 62.49, 61.99, 61.56, 61.16, 61.06, 59.52, 55.88, 38.51, 29.87, 28.69, 28.56, 16.99. **HRMS**: $[M+Na]^+$ calculated for $C_{65}H_{71}F_3N_{10}O_{17}Na$: 1343.48485; found 1343.48284

5-(benzyl(benzoyloxycarbonyl)amino)pentyl 2-azido-4-*O*-benzyl-2-deoxy- α -D-fucopyranosyl-(1 \rightarrow 4)-2-azido-3-*O*-benzyl-2-deoxy-6-*O*-levulinoyl- α -D-galactopyrasyl-(1 \rightarrow 4)-2-azido-3-*O*-benzyl-2-deoxy-6-*O*-levulinoyl- α -D-galactopyranoside (55)

6 (560 mg, 0.383 mmol) was dissolved in DCM/H₂O (3.8 mL, 0.1 M, 20:1) and added DDQ (174 mg, 0.767 mmol, 2 equiv.). The reaction was stirred for 2 h under nitrogen until TLC (pentane/EtOAc, 6:4) showed full conversion. The reaction mixture was quenched with Na₂S₂O₃ (x1, aq., sat.), diluted in EtOAc and washed with, NaHCO₃ (x4, aq., sat.) and brine (x1), dried over Na₂SO₄, filtered and concentrated *in vacuo*. Column chromatography (pentane/EtOAc, 7:3 \rightarrow 4:6) yielded **55** in 86% yield (441 mg, 0.329 mmol). ¹H NMR (400 MHz, CDCl₃) δ

7.51 - 7.26 (m, 27H, Ar-H), 5.17 (d, J = 14.6 Hz, 2H, Linker-CH₂), 5.05 (d, J = 3.6 Hz, 1H, H-1'), 4.93 (d, J = 3.6 Hz, 1H, H-1"), 4.92 – 4.86 (m, 2H, H-1, Ar-CH₂), 4.84 (d, J = 12.1 Hz, 1H, Ar-CH₂), 4.74 (d, J = 11.5 Hz, 1H, Ar-CH₂), 4.66 (dd, J = 12.0, 4.3 Hz, 2H, Ar-CH₂), 4.60 (d, J = 11.5 Hz, 1H, Ar-CH₂), 4.49 (d, J = 6.6 Hz, 2H, Linker-CH₂), 4.44 – 4.24 (m, 5H, H-6, H-6', H-4", H-5"), 4.24 – 4.18 (m, 2H, H-4, H-4'), 4.08 – 3.99 (m, 1H, H-3"), 3.98 – 3.89 (m, 2H, H-5, H-6'), 3.89 - 3.79 (m, 2H, H-5', H-3), 3.76 (dd, J = 10.9, 3.6 Hz, 1H, H-2'), 3.67 - 2000 $3.59 \text{ (m, 1H, Linker-C}H_2), 3.58 \text{ (dd, } J = 3.6, 1.4 \text{ Hz}, 1\text{H}, \text{H-2}), 3.53 \text{ (ddd, } J = 10.8, 3.6, 1.8 \text{ Hz}, 1.8 \text{ Hz}$ 2H, H-2", H-3"), 3.49 – 3.31 (m, 1H, Linker-CH₂), 3.31 – 3.10 (m, 2H, Linker-CH₂), 2.80 – 2.60 (m, 4H, Lev-CH₂), 2.56 (t, J = 6.4 Hz, 2H, Lev-CH₂), 2.50 – 2.28 (m, 3H, Lev-CH₂), 2.17 (s, 3H, Lev-CH₃), 2.16 (s, 3H, Lev-CH₂), 1.53 (m, 4H, Linker-CH₂), 1.37 - 1.18 (m, 3H, Linker-CH₂), 0.90 (d, J = 6.5 Hz, 3H, H-6"). ¹³C NMR (101 MHz, CDCl₃) & 206.57 (C=O), 172.32 (C=O), 171.67 (C=O), 137.94 (Ar-C_a), 137.46 (Ar-C_a), 137.36 (Ar-C_a), 128.78 (Ar-C), 128.65 (Ar-C), 128.60 (Ar-C), 128.54 (Ar-C), 128.27 (Ar-C), 128.15 (Ar-C), 128.04 (Ar-C), 127.93 (Ar-C), 127.87 (Ar-C), 127.85 (Ar-C), 127.57 (Ar-C), 127.44 (Ar-C), 99.44 (C-1'), 98.87 (C-1"), 98.07 (C-1), 80.46 (C-3'), 76.22 (Ar-CH₂), 75.39 (C-5), 72.48 (C-4/C-4'), 71.95 (Ar-CH₂), 71.81 (Ar-CH₂), 68.87 (C-4"/C-5"), 68.71 (C-3"), 67.36 (C-4"/C-"), 67.25 (Linker-CH₂), 62.01 (C-6), 61.93 (C-2/C-2"), 61.22 (C-6'), 60.22 (C-2"), 59.58 (C-2/C-2"), 50.35 (Linker-CH₂), 50.30 (Linker-CH₂), 47.41 (Linker-CH₂), 46.32 (Lev-CH₂), 42.32 (Lev-CH₃), 38.01 (Linker-CH₂), 29.89 (Lev-CH₂), 29.10 (Linker-CH₂), 16.63 (C-6"). HRMS: [M+Na]⁺ calculated for C₆₉H₈₂N₁₀O₁₈Na: 1361.57063; found 1361.56885

Hexasaccharide - Protected (56)

The reaction was carried out according to General glycosylation procedure A using acceptor **55** (315 mg, 0.235 mmol, 1 equiv.), donor **54** (466 mg, 0.352 mmol, 1.5 equiv.) and TBSOTf (22 μ L, 0.0939 mmol, 0.4 equiv.) in DCM (2.4 mL, 0.1 M). The reaction was followed by TLC (pentane/EtOAc 6:4) and column chromatography (pentane/EtOAc 65:35 \rightarrow 50:50) followed by size exclusion gave **56** in 58% yield (338 mg, 0.136 mmol) as only the α -anomer. ¹H NMR (400 MHz, CDCl₃) δ 7.47 – 7.15 (m, 52H), 6.94 – 6.87 (m, 2H), 5.22 – 5.14 (m, 3H), 5.12

(d, J = 3.6 Hz, 1H), 5.05 (d, J = 3.6 Hz, 1H), 4.97 (d, J = 3.7 Hz, 1H), 4.96 – 4.85 (m, 7H), 4.82 (d, J = 12.3 Hz, 2H), 4.71 – 4.59 (m, 7H), 4.55 – 4.47 (m, 5H), 4.44 – 4.24 (m, 12H), 4.24 – 4.12 (m, 6H), 4.10 – 4.06 (m, 1H), 4.02 – 3.96 (m, 2H), 3.96 – 3.88 (m, 8H), 3.86 – 3.70 (m, 9H), 3.71 – 3.57 (m, 4H), 3.53 (dd, J = 10.8, 3.5 Hz, 1H), 3.46 – 3.31 (m, 1H), 3.22 (dt, J = 26.2, 7.8 Hz, 2H), 2.85 – 2.51 (m, 15H), 2.48 – 2.27 (m, 5H), 2.16 (s, 14H), 1.54 (t, J = 14.9 Hz, 5H), 1.28 (d, J = 11.5 Hz, 4H), 0.85 (d, J = 6.4 Hz, 4H), 0.83 (d, J = 6.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 206.60, 206.40, 172.39, 172.26, 171.69, 171.67, 159.45, 138.43, 138.39, 138.02, 137.46, 137.44, 137.36, 137.22, 129.86, 129.55, 128.62, 128.57, 128.52, 128.48, 128.33, 128.31, 128.29, 128.01, 127.96, 127.90, 127.83, 127.80, 127.72, 76.19, 75.43, 75.25, 75.13, 75.00, 74.91, 72.60, 72.27, 72.00, 71.82, 71.75, 71.70, 69.02, 68.81, 68.65, 68.36, 68.23, 67.53, 67.42, 67.22, 62.23, 61.68, 61.28, 61.21, 60.44, 60.30, 60.17, 60.11, 59.96, 59.51, 55.37, 50.55, 50.26, 47.18, 46.21, 38.09, 38.04, 29.85, 29.81, 27.95, 27.91, 27.76, 27.73, 16.68, 16.57. HRMS: [M+Na]⁺ calculated for C₁₂₆H₁₄₇N₁₉O₃₄Na: 2494.02555; found 2494.02810

Hexasaccharide - NHAc (57)

The azide reduction was carried out followed the general azide reduction procedure B using **56** (335 mg, 0.135 mmol, 1 equiv.) and zinc powder (1.33 g, 20.32 mmol, 150 equiv.). Purification by column chromatography (DCM/MeOH 98:2 \rightarrow 95:5) gave **57** in 100% yield (349 mg, 0.135 mmol). ¹H NMR (400 MHz, CD₂Cl₂) δ 7.48 – 7.19 (m, 52H), 7.01 – 6.90 (m, 2H), 5.81 (s, 2H), 5.70 (s, 1H), 5.21 (s, 1H), 5.19 – 5.06 (m, 4H), 4.96 – 4.81 (m, 9H), 4.81 – 4.75 (m, 3H), 4.62 – 4.50 (m, 12H), 4.50 – 4.44 (m, 4H), 4.28 – 3.97 (m, 13H), 3.88 – 3.80 (m, 8H),

3.71 – 3.62 (m, 1H), 3.31 – 3.17 (m, 3H), 2.80 – 2.65 (m, 10H), 2.63 – 2.41 (m, 14H), 2.25 – 2.16 (m, 13H), 2.16 – 2.05 (m, 8H), 2.04 – 1.88 (m, 22H), 1.85 (s, 3H), 1.67 – 1.57 (m, 5H), 1.57 – 1.54 (m, 2H), 1.32 (d, J = 13.1 Hz, 3H), 1.03 – 0.88 (m, 6H). ¹³C NMR (101 MHz, CD₂Cl₂) δ 207.52, 206.92, 173.58, 172.75, 172.39, 172.08, 170.82, 170.56, 169.40, 159.43, 138.95, 138.47, 138.23, 138.06, 129.64, 128.63, 128.57, 128.45, 128.27, 128.22, 128.19, 127.93, 127.86, 127.69, 127.51, 127.32, 113.88, 98.76, 97.64, 77.08, 76.46, 74.83, 74.59, 71.64, 71.45, 70.82, 69.18, 67.29, 67.03, 60.88, 55.34, 50.23, 48.93, 48.44, 47.57, 47.09, 37.84, 29.63,

27.77, 23.21, 22.40, 20.70, 16.73. **HRMS**: $[M+Na]^+$ calculated for $C_{138}H_{171}N_7O_{40}Na$: 2589.14595; found 1294.60479

Hexasaccharide - C-6-OH (58)

57 (349 mg, 0.135 mmol, 1 equiv.) was dissolved in toluene/EtOH (1:2, 0.1 M, 1.5 mL) and added hydrazine acetate (250 mg, 2.717 mmol, 20 equiv.) and stirred at rt for 1 h until TLC analysis (DCM/MeOH 95:5) showed full conversion. The solution was diluted in DCM and Na-HCO₃ (aq., sat.) and the organic layer was dried with Na₂SO₄, filtered and concentrated *in vacuo*. Column chromatography (DCM/MeOH 96:4 \rightarrow 90:10) gave **58** in 96% yield (284 mg, 0.109 mmol). ¹H NMR (400 MHz, CD₂Cl₂) δ 7.47 – 7.14 (m, 57H), 6.91 (dd, *J* = 8.8, 2.3 Hz,

2H), 5.69 (dd, J = 9.9, 5.0 Hz, 1H), 5.23 – 5.03 (m, 5H), 4.99 – 4.59 (m, 16H), 4.62 – 4.33 (m, 21H), 4.34 – 3.91 (m, 14H), 3.87 – 3.70 (m, 11H), 3.69 – 3.44 (m, 12H), 3.44 – 3.30 (m, 6H), 3.24 (d, J = 8.4 Hz, 4H), 2.05 – 1.76 (m, 23H), 1.57 – 1.38 (m, 7H), 1.35 – 1.14 (m, 11H), 0.96 – 0.81 (m, 6H). ¹³C NMR (101 MHz, CD₂Cl₂) δ 171.87, 171.06, 170.62, 170.55, 170.47, 169.92, 159.66, 139.29, 138.63, 138.16, 130.91, 130.00, 128.90, 128.80, 128.50, 128.33, 128.20, 128.12, 127.96, 127.78, 127.68, 127.54, 114.15, 98.91, 98.26, 77.73, 77.18, 76.69, 75.08, 71.73, 71.31, 67.53, 67.19, 60.66, 60.04, 55.61, 50.69, 50.14, 49.20, 48.39, 47.69, 30.06, 26.42, 26.24, 23.66, 23.47, 23.22, 23.16, 22.92, 22.69, 17.07. HRMS: [M+Na]⁺ calculated for C₁₁₈H₁₄₇N₇O₃₂Na: 2196.99884; found 1099.50702

Hexasaccharide - Deprotected (5)

The reaction was carried out according to General oxidation procedure C using **58** (45 mg, 0.0207 mmol, 1 equiv.) in EtOAc/*t*-BuOH/H₂O (1:1:1, 0.9 mL) and TEMPO (10 mg, 0.0662 mmol, 3.2 equiv.), NaHCO₃ (35 mg, 0.414 mmol, 20 equiv.) and BAIB (107 mg, 0.331 mmol, 18 equiv.). The reaction was stirred for 12 days at 4 °C and purified by size exclusion chromatography to give **59** in 65% yield without the PMB (31 mg, 0.0135 mmol). **59** was subjection the hydrogenation and the reaction was carried out according to General hydrogenation procedure D using **59** (30 mg, 0.0132 mmol, 1

equiv.) to yield **5** in 26% yield (7.6 mg, 0.00545 mmol) over two steps. ¹H NMR (600 MHz, D_2O) δ 5.13 (d, J = 3.8 Hz, 1H), 5.11 – 5.05 (m, 2H), 4.98 (d, J = 3.6 Hz, 2H), 4.93 – 4.85 (m, 4H), 4.48 – 4.43 (m, 2H), 4.43 – 4.34 (m, 6H), 4.29 – 4.05 (m, 13H), 4.00 (ddd, J = 19.9, 11.3, 3.1 Hz, 2H), 3.91 (d, J = 3.2 Hz, 1H), 3.85 – 3.81 (m, 1H), 3.73 – 3.65 (m, 2H), 3.55 (dt, J = 10.1, 6.1 Hz, 1H), 2.99 (t, J = 7.8 Hz, 2H), 2.09 – 2.02 (m, 18H), 1.72 – 1.58 (m, 6H), 1.44 (q, J = 8.0 Hz, 3H), 1.19 – 1.13 (m, 6H). ¹³C NMR (151 MHz, D₂O) δ 175.81, 175.69, 175.51, 175.45, 174.30, 174.21, 174.08, 173.78, 99.87, 99.68, 99.59, 99.42, 97.86, 96.46, 79.44, 79.20, 78.75, 75.92, 72.13, 72.06, 71.92, 71.19, 69.41, 69.11, 68.54, 68.37, 67.87, 67.61, 67.57, 67.52, 67.33, 50.64, 50.44, 50.30, 48.56, 40.28, 28.95, 27.29, 23.24, 23.20, 23.12, 22.88, 22.79, 16.37, 16.29. HRMS: [M+H]⁺ calculated for C₅₃H₈₃N₇O₃₃H: 1346.51100; found 1346.51311

References

- Visansirikul, S.; Kolodziej, S. A.; Demchenko, A. V. Staphylococcus Aureus Capsular Polysaccharides: A Structural and Synthetic Perspective. Org. Biomol. Chem. 2020, 18 (5), 783–798. https://doi.org/10.1039/c9ob02546d.
- (2) Scott, A. C. A Capsulate Staphylococcus Aureus. J. Med. Microbiol. **1969**, *2*, 253–260. https://doi.org/10.1099/00222615-2-3-253.
- (3) Liau, D. F.; Melly, M. A.; Hash, J. H. Surface Polysaccharide from Staphylococcus Aureus M That Contains Taurine, D-Aminogalacturonic Acid, and D-Fucosamine. J. Bacteriol. 1974, 119 (3), 913–922. https://doi.org/10.1128/jb.119.3.913-922.1974.
- (4) Liau, D. F.; Hash, J. H. Structural Analysis of the Surface Polysaccharide of Staphylococcus Aureus M. J. Bacteriol. 1977, 131 (1), 194–200. https://doi.org/10.1128/jb.131.1.194-200.1977.
- (5) Murthy, S. V. K. N.; Ann Melly, M.; Harris, T. M.; Hellerqvist, C. G.; Hash, J. H. The Repeating Sequence of the Capsular Polysaccharide of Staphylococcus Aureus M. *Carbohydr. Res.* **1983**, *117*, 113–123. https://doi.org/10.1016/0008-6215(83)88080-X.
- (6) Karakawa, W. W.; Young, D. A.; Kane, J. A. Structural Analysis of the Cellular Constituents of a Fresh Clinical Isolate of Staphylococcus Aureus, and Their Role in the Interaction between the Organisms and Polymorphonuclear Leukocytes in the Presence of Serum Factors. *Infect. Immun.* **1978**, *21* (2), 496–505. https://doi.org/10.1128/iai.21.2.496-505.1978.
- (7) Karakawa, W. W.; Kane, J. A. Seminars in Infectious Disease. Vol IV. Bacterial Vaccines; Wienstein, L., Field, B. N., Eds.; Thieme-Stratton Inc.: Stuttgard, Germany, 1982.
- (8) Melly, M. A.; Duke, L. J.; Liau, D. F.; Hash, J. H. Biological Properties of the Encapsulated Staphylococcus Aureus M. *Infect. Immun.* 1974, 10 (2), 389–397. https://doi.org/10.1128/iai.10.2.389-397.1974.
- (9) Anish, C.; Schumann, B.; Pereira, C. L.; Seeberger, P. H. Chemical Biology Approaches to Designing Defined Carbohydrate Vaccines. *Chem. Biol.* 2014, 21 (1), 38–50. https://doi.org/10.1016/j.chembiol.2014.01.002.
- (10) Hagen, B.; Van Dijk, J. H. M.; Zhang, Q.; Overkleeft, H. S.; van der Marel, G. A.; Codée, J. D. C. Synthesis of the Staphylococcus Aureus Strain M Capsular Polysaccharide Repeating Unit. Org. Lett. 2017, 19 (10), 2514–2517. https://doi.org/10.1021/acs.orglett.7b00747.
- (11) Shirsat, A. A.; Rai, D.; Ghotekar, B. K.; Kulkarni, S. S. Total Synthesis of Trisaccharide Repeating Unit of Staphylococcus Aureus Strain M. Org. Lett. 2023, 25 (16), 2913–2917. https://doi.org/10.1021/acs.orglett.3c00997.
- (12) Lu, S. R.; Lai, Y. H.; Chen, J. H.; Liu, C. Y.; Mong, K. K. T. Dimethylformamide: An Unusual Glycosylation Modulator. *Angew. Chemie Int. Ed.* 2011, 50 (32), 7315–7320. https://doi.org/10.1002/anie.201100076.
- (13) Zhang, Q.; Gimeno, A.; Santana, D.; Wang, Z.; Valdes-Balbin, Y.; Rodríguez-Noda, L. M.; Hansen, T.; Kong, L.; Shen, M.; Overkleeft, H. S.; Verez-Bencomo, V.; van der Marel, G. A.; Jimenez-Barbero, Jesus Chiodo, F.; Codée, J. D. C. Synthetic, Zwitterionic Sp1 Oligosaccharides Adopt a Helical Structure Crucial for Antibody Interaction. *ACS Cent. Sci.* **2019**, *5* (8), 1407–1416. https://doi.org/10.1021/acscentsci.9b00454.
- (14) Imamura, A.; Ando, H.; Korogi, S.; Tanabe, G.; Muraoka, O.; Ishida, H.; Kiso, M. Di-Tert-Butylsilylene (DTBS) Group-Directed α-Selective Galactosylation Unaffected by C-2 Participating Functionalities. *Tetrahedron Lett.* **2003**, *44* (35), 6725–6728. https://doi.org/10.1016/S0040-4039(03)01647-2.
- (15) Akihiro Imamura, Hiromune Ando, Hideharu Ishida, and M. K. Di-Tert-Butylsilylene-Directed α-Selective Synthesis of 4-Methylumbelliferyl T-Antigen. Org. Lett. 2005, 7

(20), 4415-4418. https://doi.org/10.1021/ol051592z.

- (16) Zhang, Y.; Gómez-Redondo, M.; Jiménez-Osés, G.; Ardá, A.; Overkleeft, H. S.; van der Marel, G. A.; Jiménez-Barbero, J.; Codée, J. D. C. Synthesis and Structural Analysis of Aspergillus Fumigatus Galactosaminogalactans Featuring α-Galactose, α-Galactosamine and α-N-Acetyl Galactosamine Linkages. *Angew. Chemie Int. Ed.* **2020**, *59* (31), 12746–12750. https://doi.org/10.1002/anie.202003951.
- (17) David, S.; Hanessian, S. Regioselective Manipulation of Hydroxyl Groups via Organotin Derivatives. *Tetrahedron* 1985, 41 (4), 643–663. https://doi.org/10.1016/S0040-4020(01)96443-9.
- (18) Yu, B.; Tao, H. Glycosyl Trifluoroacetimidates. Part 1: Preparation and Application as New Glycosyl Donors. *Tetrahedron Lett.* 2001, 42 (12), 2405–2407. https://doi.org/10.1016/S0040-4039(01)00157-5.
- (19) van den Bos, L. J.; Codée, J. D. C.; Toorn, J. C. Van Der; Boltje, T. J.; Boom, J. H. Van; Overkleeft, H. S.; van der Marel, G. A. Thioglycuronides: Synthesis and Oligosaccharides in the Assembly of Acidic Oligosaccharides. *Org. Lett.* 2004, 6 (13), 2165–2168. https://doi.org/10.1021/ol049380+.
- (20) De Mico, A.; Margarita, R.; Parlanti, L.; Vescovi, A.; Piancatelli, G. A Versatile and Highly Selective Hypervalent Iodine (III)/ 2,2,6,6-Tetraniethyl-1-Piperidinyloxyl-Mediated Oxidation of Alcohols to Carbonyl Compounds. J. Org. Chem. 1997, 62 (20), 6974–6977. https://doi.org/10.1021/jo971046m.
- (21) Zhang, H.; Wang, X.; Meng, Y.; Yang, X.; Zhao, Q.; Gao, J. Total Synthesis of the Tetrasaccharide Haptens of Vibrio Vulnificus MO6-24 and BO62316 and Immunological Evaluation of Their Protein Conjugates. *JACS Au* 2022, 2 (1), 97–108. https://doi.org/10.1021/jacsau.1c00190.