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Deep Learning for Instance Retrieval: A Survey
Wei Chen , Yu Liu , Weiping Wang , Erwin M. Bakker , Theodoros Georgiou , Paul Fieguth ,

Li Liu , and Michael S. Lew

Abstract—In recent years a vast amount of visual content has been generated and shared from many fields, such as social media

platforms, medical imaging, and robotics. This abundance of content creation and sharing has introduced new challenges, particularly

that of searching databases for similar content — Content Based Image Retrieval (CBIR) — a long-established research area in which

improved efficiency and accuracy are needed for real-time retrieval. Artificial intelligence has made progress in CBIR and has

significantly facilitated the process of instance search. In this survey we review recent instance retrieval works that are developed

based on deep learning algorithms and techniques, with the survey organized by deep feature extraction, feature embedding and

aggregation methods, and network fine-tuning strategies. Our survey considers a wide variety of recent methods, whereby we identify

milestone work, reveal connections among various methods and present the commonly used benchmarks, evaluation results, common

challenges, and propose promising future directions.

Index Terms—Content based image retrieval, instance retrieval, deep learning, convolutional neural networks, literature survey

Ç

1 INTRODUCTION

CONTENT Based Image Retrieval (CBIR) is the problem of
searching for relevant images in an image gallery by

analyzing the visual content (colors, textures, shapes,
objects etc.), given a query image [1], [2]. CBIR has been a
longstanding research topic in the fields of computer vision
and multimedia [1], [2]. With the exponential growth of
image data, the development of appropriate information
systems that efficiently manage such large image collections
is of utmost importance, with image searching being one of
the most indispensable techniques. Thus there is a nearly
endless potential for applications of CBIR, such as person/

vehicle reidentification [3], [4], landmark retrieval [5],
remote sensing [6], online product searching [7].

Generally, CBIR methods can be grouped into two differ-
ent tasks [8], [9]: Category level Image Retrieval (CIR) and
Instance level Image Retrieval (IIR). The goal of CIR is to
find an arbitrary image representative of the same category
as the query (e.g., dogs, cars) [10], [11]. By contrast, in the
IIR task, a query image of a particular instance (e.g., the Eif-
fel Tower, my neighbor’s dog) is given and the goal is to
find images containing the same instance that may be cap-
tured under different conditions like different imaging dis-
tances, viewing angles, backgrounds, illuminations, and
weather conditions (reidentifying exemplars of the same
instance) [12], [13]. The focus of this survey is the IIR task.1

In many real world applications, IIR is usually to find a
desired image requiring a search among thousands, mil-
lions, or even billions of images. Hence, searching efficiently
is as critical as searching accurately, to which continued
efforts have been devoted [12], [14], [15]. To enable accurate
and efficient retrieval over a large-scale image collection,
developing compact yet discriminative feature representations is
at the core of IIR.

During the past two decades, startling progress has been
witnessed in image representation which mainly consists of
two important periods, i.e., feature engineering and deep
learning. In the feature engineering era, the field was domi-
nated by various milestone handcrafted image representa-
tions like SIFT [23] and Bag of visual Words (BoW) [24]. The
deep learning era was reignited in 2012 when a Deep Con-
volutional Neural Network (DCNN) referred as “AlexNet”
[25] won the first place in the ImageNet classification con-
test with a breakthrough reduction in classification error
rate. Since then, the dominating role of SIFT like local
descriptors has been replaced by data driven Deep Neural
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Networks (DNNs) which can learn powerful feature repre-
sentations with multiple levels of abstraction directly from
data. During the past decade, DNNs have set the state of
the art in various classical computer vision tasks, including
image classification [25], [26], object detection [27], semantic
segmentation [28], and image retrieval [17].

Given this period of rapid evolution, the goal of this
paper is to provide a comprehensive survey of the recent
achievements in IIR. In comparison with existing excellent
surveys on traditional image retrieval [13], [18], [19], [20], as
contrasted in Table 1, our focus in this paper is reviewing
deep learning based methods for IIR, particularly on issues
of retrieval accuracy and efficiency.

1.1 Summary of Progress Since 2012

After the highly successful image classification implementa-
tion of AlexNet [25], significant exploration of DCNNs for
instance retrieval tasks was undertaken and representative
methods are shown in Fig. 1. Building on these methods,
more recent progress for IIR can be achieved from the per-
spectives of off-the-shelf models and fine-tuned models,
which form the basis for this survey.

Off-the-shelf models, based on DCNNs with fixed
parameters [29], [30], [31], extract features at image scales or
patch scales, which correspond to single-pass and multiple-
pass schemes, respectively. These methods focus on

effective feature use, for which researchers have proposed
embedding and aggregation methods, such as R-MAC [32],
CroW [15], and SPoC [12] to promote the discriminativity of
the extracted features. Fine-tuned models, based on DCNNs
in which parameters are updated [29], are more popular
since deep networks themselves have been investigated
extensively. To learn better retrieval features, researchers
have proposed to improve the network architectures and/
or update the pre-stored parameters [31].

This survey will explore recent progress in detail in the
context of the three following themes:

(1) Deep Feature Extraction (Section 3.1)
One key step in IIR is to make the descriptors as seman-

tic-aware [26], [49] as possible. For this, some recent work
focus on the input data of DCNNs, thereby instance features
can be extracted from the whole image, e.g., CroW [15],
VLAD-CNN [50] or from image patches, e.g., MOP-CNN
[30], FAemb [38]. For instance, evaluated on the Holidays
dataset [51], patch-level input scheme can improve mAP by
8.29% compared to the results (70.53%) achieved using
image-level input [30]. Others focus on exploring different
feature extractors, e.g., one layer of a given DCNN, to get
the output activations. Initially, fully-connected layers are
usually chosen to extract features [52], [53], and then convo-
lutional layers are popularly used [12], [32]. Afterwards,
some work leverage the complementarity of different
extractors to explore layer-level fusion, such as MoF [36],

TABLE 1
A Summary and Comparison of the Primary Surveys in the Field of Image Retrieval

Title Year Published in Main Content

Content-Based Image Retrieval at the End of
the Early Years [1]

2000 TPAMI This paper discusses the steps for image retrieval
systems, including image processing, feature
extraction, user interaction, and similarity
evaluation.

Image Search from Thousands to Billions in
20 Years [16]

2013 TOMM This paper gives a good presentation of image search
achievements from 1970 to 2013, but the methods are
not deep learning-based.

Deep Learning for Content-Based Image
Retrieval: A Comprehensive Study [17]

2014 ACMMM This paper introduces supervised metric learning
methods for fine-tuning AlexNet. Details of instance-
based image retrieval are limited.

Semantic Content-based Image Retrieval: A
Comprehensive Study [18]

2015 JVCI This paper presents a comprehensive study about
CBIR using traditional methods; deep learning is
introduced as a section with limited details.

Socializing the Semantic Gap: A Compa-
rative Survey on Image Tag Assignment,
Refinement, and Retrieval [19]

2016 CSUR A taxonomy is introduced to structure the growing
literature of image retrieval. Deep learning methods
for feature learning is introduced as future work.

Recent Advance in Content based Image
Retrieval: A Literature Survey [20]

2017 arXiv This survey presents image retrieval from 2003 to
2016. Neural networks are introduced in a section
and mainly discussed as a future direction.

Information Fusion in Content-based Image
Retrieval: A Comprehensive Overview [21]

2017 Information Fusion This paper presents information fusion strategies in
CBIR. Deep convolutional networks for feature
learning are introduced briefly but not covered
thoroughly.

A Survey on Learning to Hash [22] 2018 TPAMI This paper focuses on hash learning algorithms and
introduces the similarity-preserving methods and
discusses their relationships.

SIFT Meets CNN: A Decade Survey of
Instance Retrieval [13]

2018 TPAMI This paper presents a comprehensive review of
instance retrieval based on SIFT and CNNmethods.

Deep Learning for Instance Retrieval: A
Survey

2021 Ours Our survey focuses on deep learning methods. We
expand the review with indepth details on IIR,
including methods of feature extraction, feature
embedding and aggregation, and network fine-
tuning.
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and model-level fusion, such as DeepIndex [52] to promote
the retrieval performance.

(2) Feature Embedding and Aggregation (Section 3.2)
Recent work revisit the classical embedding and aggrega-

tion methods and apply on deep features. Most work have a
preference towards mapping individual vector from convo-
lutional layer [24], [54], [55] and then aggregating into a
global feature. The mapping process can be realized by
using a pre-trained codebook (i.e., built separately), such as
VLAD-CNN [50], DeepIndex [52] or learned as parameters
during training (built simultaneously), such as NetVLAD
[43], GeM-DSM [56]. Some work aggregate local features
into a global one by direct pooling [21] or sophisticated
pooling-based methods [12] without the aggregation opera-
tion, such as R-MAC [32].

(3) Network Fine-tuning for Learning Representations
(Section 4)

DCNNs pretrained on source datasets for image classifi-
cation are influenced by domain shifts when performing
retrieval tasks on new datasets. Thus, it is necessary to fine-
tune deep networks to the specific domain [39], by using
supervised or unsupervised fine-tuning methods. As
depicted in Fig. 1, recent supervised fine-tuning methods
focus on designing objective functions (e.g., Listwise loss
[57]) and sample sampling strategies, such as NetVLAD
[43], Triplet Network [42]. Unsupervised methods focus on
mining the relevance among training samples by using clus-
tering, such as SfM-GeM [46] or manifold learning, such as
AILIR [58]. Recently, convolution-free models that only rely
on transformer layers have shown competitive performance
and been used as a powerful alternative to DCNNs, such as
IRT [59], reranking Transformers [60].

1.2 Key Challenges

The goal of each of the preceding three themes is to address
the competing objectives of accuracy and efficiency, with both
objectives continuing to present challenges:

A) Accuracy related challenges depend on the input data,
the feature extractor, and the way in which the extracted
features are processed:

� Invariance challenge: The instance in an image may
be rotated, translated, or scaled differently, so the
final features are affected by these transformations
and retrieval accuracy may be degraded [30]. It is
necessary to incorporate invariance into the IIR pipe-
line [61], [62].

� Distraction challenge: IIR systems may need to focus
on only a certain object, or even only a small portion.
DCNNs may be affected by image clutter or back-
ground, so multiple-pass schemes have been exam-
ined where region proposals are studied before
feature extraction.

� Discriminativity challenge: Deep features for IIR
are needed to be as discriminative as possible to
distinguish instances with small differences, lead-
ing to many explorations in feature processing.
These include feature embedding and aggregation
methods, to promote feature discriminativity; and
attention mechanisms, to highlight the most rele-
vant regions within the extracted features or to
enable deep networks to focus on regions of
interest.

� Fine-tune challenge: DCNNs can be fine-tuned as
powerful extractors to capture fine semantic distinc-
tions among instances. These explorations have
offered improved accuracy, however the area
remains a major challenge.

B) Efficiency related challenges are important, especially for
large-scale datasets [63]. Retrieval systems should respond
quickly when given a query image. Deep features are high-
dimensional and contain semantic-aware information to
support higher accuracy, yet is often at the expense of
efficiency.

On the one hand, the efficiency is related to the format of
features, i.e., real valued or binary. Hash codes have

Fig. 1. Representative methods in IIR. Off-the-shelf models have model parameters which are not further updated or tuned when extracting retrieval
features. For single-pass schemes, the key step is the feature embedding and aggregation to promote the discriminativity of the extracted image-level
activations [15], [33], [34], [35], whereas for multiple-pass schemes the goal is to extract instance features at region scales and eliminate image clut-
ter as much as possible [30], [36], [37], [38]. In contrast, for fine-tuned models, the model parameters are tuned towards the retrieval task and
address the issue of domain shifts. For supervised fine-tuning, the key step lies in the design of objective functions and sample sampling strategies
[39], [40], [41], [42], [43], while the success of unsupervised fine-tuning is to mine the relevance among training samples [44], [45], [46], [47], [48].
See Sections 3 and 4 for details.
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advantages in storage and searching [22], [39], however for
hashing methods one needs to carefully consider the loss
function design [64], [65], to obtain optimal codes for high
retrieval accuracy.

On the other hand, efficiency is also related to the mecha-
nism of feature matching. For example, instead of time-con-
suming cross-matching between local features, one can
choose to use global features to perform an initial ranking
and then a post-step re-ranking via the features of top-
ranked images.

2 GENERAL FRAMEWORK OF IIR

Fig. 2 offers an overview of the general framework for deep-
learning-based IIR, involving three main stages.

1) Deep feature extraction: (Section 3.1)
Feature extraction is the first step of IIR and can be real-

ized in a single-pass or multiple-pass way. Single-pass
methods take as input the whole image, whereas multiple-
pass methods depend on region extraction, as depicted in
Fig. 4.

The activations from fully-connected layers of a given
DCNN can be used as retrieval features whether based on a
whole image or on patches. The tensors from convolutional
layers can be used when further processed by sophisticated
pooling, as shown in Fig. 2. Different layers of the same
deep network can be combined as a more powerful extrac-
tor [36], [66]. Furthermore, it is possible to fuse the activa-
tions from layers of different models [67], [68]. Feature
extraction is the step to produce vanilla network activations
(i.e., 3D tensors or a single vector), these activations, in most
cases, are needed to be further processed.

2) Embedding and aggregation: (Section 3.2)
Feature embedding and aggregation are two essential

steps to produce global or local features. Feature embedding
maps individual local features into higher-dimensional
space whereas feature aggregation summarizes the multiple
mapped vectors or all individual features into a global vec-
tor. Global features may come from pooling convolutional
feature maps directly [69], [70] or using some sophisticated
weighting methods [12], [15] (i.e., both without feature
embedding). Feature embedding method using a pre-gener-
ated codebook can be performed to encode individual

convolutional vectors and then aggregated [24], [54], [55].
For local features, the well-embedded representations for
all regions of interest are stored individually and used for
cross-matching in the reranking stage without aggregation.

3) Feature matching:
Feature matching is a process to measure the feature sim-

ilarity between images and then return a ranked list. Global
matches can be computed efficiently via such as euclidean
distance. For local features [5], [71], the image similarity is
usually evaluated by summarizing the similarities across
local features, using classical RANSAC [72] or more recent
variations [73], [74]. Storing local features separately and
then estimating their similarity individually lead to addi-
tional memory and search costs [71], [74], therefore in most
cases local features are used to re-rank the initial ranking
image matched by global features [32], [64], [71], [75].

The three preceding stages for IIR rely on DCNNs as
backbone architectures. In almost all cases, pre-stored
parameters in these backbones can be fine-tuned (Section 4)
to be better suited for instance retrieval and to contribute to
better performance.

The detailed categorization of the material of the follow-
ing sections is shown in Fig. 3.

3 RETRIEVAL WITH OFF-THE-SHELF

DCNN MODELS

Because of their size, DCNNs need to be trained, initially for
classification tasks, on exceptionally large-scale datasets and
be able to recognize images from different classes. One pos-
sible scheme, then, is that DCNNs effectively trained for
classification directly serve as off-the-shelf feature detectors
for the image retrieval task, the topic of this survey. That is,
one can propose to undertake image retrieval on the basis of
DCNNs, trained for classification and with their pre-trained
parameters frozen.

There are limitations to this approach, most fundamen-
tally that there is a model-transfer or domain-shift challenge
between tasks [13], [31], [83], meaning that models trained
for classification do not necessarily extract features well
suited to image retrieval. In particular, a classification deci-
sion can be successful as long as features remain within
classification boundaries, however features from such

Fig. 2. General framework of IIR, which includes feature extraction on image or image patches, followed by feature embedding and aggregation
methods to improve feature discriminativity. Feature matching can be performed by using global features (initial filtering) or use local features to
rerank the top-ranked images matched by global features.
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models may show insufficient capacity for retrieval where
feature matching itself is more important than classification.
This section will survey the strategies which have been
developed to improve the quality of feature representations,
particularly based on feature extraction / fusion (Section 3.1)
and feature embedding / aggregation (Section 3.2).

3.1 Deep Feature Extraction

Feature extraction is about the mechanism by which
retrieval features can be extracted from off-the-shelf
DCNNs. For an input image x and a network fð�; uuuuuuuÞ, we
denote its features from a convolutional layer as AAAAAAA :¼
fconvðxÞ 2 RH�W�C with height H, width W , and channels C
while that from a fully-connected layer as BBBBBBB :¼ ffcðxÞ 2
RD�1 with the dimensionalD.

3.1.1 Network Feedforward Scheme

Network feedforward schemes focus on how images are fed
into a DCNN, which includes single-pass and multiple-
pass.

a. Single Feedforward Pass Methods.
Single feedforward pass methods take the whole image

and feed it into an off-the-shelf model to extract features.
The approach is relatively efficient since the input image is
fed only once. For these methods, both the fully-connected
layer and last convolutional layer can be used as feature
extractors [84].

Early network-based IIR work focused on leveraging
DCNNs as a fixed extractor to obtain global features,

especially based on the fully-connected layers [29], [39],
requiring close to zero engineering effort. However, extract-
ing features in this way affects retrieval accuracy since the
extracted features may include background information or
activations for irrelevant objects.

The key to single-pass schemes is to embed and aggre-
gate features to improve their discriminativity, such that
features of two related images (i.e., including the same
object) are more similar than these of two unrelated images
[12]. For this purpose, it is possible to first map the features
BBBBBBB into a high-dimensional space and then to aggregate
them into a final global feature [30]. Another direction is to
treat regions in convolutional features AAAAAAA as different sub-
vectors, such that a combination of sub-vectors of all feature
maps are used to represent the input image [15], [32].

b. Multiple Feedforward Pass Methods.
Compared to single-pass schemes, multiple-pass meth-

ods are more time-consuming [13] because several patches
are generated and then fed into the network, multiple-pass
schemes are more helpful for addressing the “invariance
challenges and “distraction challenges” in Section 1.2. Local
patches at multiple scales become more robust for image
translation, scaling and rotation [30], [61]. Also, these
patches are helpful to filter several irrelevant background
information.

The representations are usually produced from two
stages: patch detection and patch description. Multi-scale
image patches are obtained using sliding windows [37], [38]
or spatial pyramid model (SPM) [52], [85], [86], as shown in
Fig. 4. For example, Zheng et al. [86] partition an image by
using SPM and extract features at increasing scales, thus
enabling the integration of global, regional, local contextual
information.

Patch detection methods lack retrieval efficiency since
irrelevant patches are also detected [32]. For example, Cao
et al. [87] propose to merge image patches into larger
regions with different hyper-parameters, where the hyper-
parameter selection is viewed as an optimization problem
to maximize the similarity between query and candidate
features.

Instead of generating multi-scale image patches ran-
domly or densely, region proposal methods introduce a
degree of purpose. Region proposals can be generated using
object detectors, such as selective search [61], edge boxes
[88], [89], and BING [90]. For example, Yu et al. [89] propose
fuzzy object matching (FOM) for instance search in which
the fuzzy objects are generated from 300 object proposals
and then clustered to filter out overlapping proposals.
Region proposals can also be learned using such as region
proposal networks (RPNs) [27], [42] and convolutional ker-
nel networks (CKNs) [91], and then to apply these networks

Fig. 3. This survey is organized around three key themes in instance-
level image retrieval, shown in bold.

Fig. 4. Image patch generation schemes: (a) Sliding windows [37], [38];
(b) Spatial pyramid modeling [85]; (c) Dense sampling [30], [36];
(d) Region proposals from region proposal networks [27], [42].
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into end-to-end fine-tuning for learning similarity [92]. This
usually requires the datasets provide well-localized bound-
ing boxes as supervision, e.g., the datasets INSTRE [93],
Oxford-5k [94], Paris-6k [95], GLD-v2 variant [74]. Also, in
the off-the-shelf scenarios, the way that using the bounding
boxes to crop the query images and use as input the DCNNs
has been shown to provide better retrieval performance
since only the information relevant to the instance is
extracted [32], [92].

3.1.2 Deep Feature Selection

Feature selection decides the receptive field of the extracted
features, i.e., global-level from fully-connected layers and
regional-level from convolutional layers.

a. Extracted From Fully-Connected Layers
It is straightforward to select a fully-connected layer

as a global feature extractor [29], [30], [39]. With PCA
dimensionality reduction and normalization [29] image
similarity can be measured. Extracting features BBBBBBB from
fully-connected layer leads to two obvious limitations for
IIR: including irrelevant information, and a lack of local
geometric invariance [30].

With regards to the first limitation, image-level global
descriptors may include irrelevant patterns or background
clutter, especially when a target instance is only a small por-
tion of an image. It may then be more reasonable to extract
region-level features at finer scales, i.e., using multiple
passes [30], [61], [64]. For the second limitation, an alterna-
tive is to extract multi-scale features on a convolutional
layer [62], [69]. Further, it makes the global features incom-
patible with techniques such as spatial verification and re-
ranking. Several methods then choose to leverage interme-
diate convolutional layers [12], [30], [50], [69].

b. Extracted From Convolutional Layers
The neurons in a convolutional layer are connected only

to a local region of the input image, and this smaller recep-
tive field ensures that the produced features AAAAAAA, usually
from the last layer, preserve more local structural informa-
tion [96], [97] and are more robust to image transformations
[12] thereby address the “invariance challenge”. For instance,
Razavian et al. [69] extract multi-scale features on the last
convolutional layer and Mor�ere et al. [62] incorporate a
series of nested pooling layers into CNN. Both of them pro-
vide higher feature invariance. Thus, many image retrieval
methods use convolutional layers as feature extractors [33],
[50], [69], [98].

Sum/average and max pooling are two simple aggrega-
tion methods to produce global features [69]. For a pooled
layer, the last convolutional layer usually yields superior
accuracy over other shallower or later fully-connected
layers [97]. There is no other operation on the feature maps
before pooling, so we illustrate these methods as “direct
pooling” in Fig. 2.

Instead of direct pooling, many sophisticated aggrega-
tion methods have been explored, such as channel-wise or
spatial-wise feature weighting on the convolutional feature
maps [62], [99], [100]. These aggregation methods aim to
highlight feature importance [15] or reduce the undesirable
influence of bursty descriptors of some regions [34], [101].
For clarity, we illustrate the representative strategies in

Fig. 5. Note that these feature aggregation methods are usu-
ally performed before channel-wise sum/max pooling and
does not embed features into a higher dimensional space.

One rationale behind using convolutional features is that
each such vector can act as a “dense SIFT” feature [12] since
each vector corresponds to a region in the input image.
Inspired by this perception, many works leverage embed-
ding methods (e.g., BoW) used for SIFT features [23] on the
regional feature vectors and then aggregate them (e.g., by
sum pooling) into a global descriptor. Feature embedding
methods address the discriminativity challenge via map-
ping individual features into a high-dimensional space and
make them distinguishable [34]. Feature embedding is fol-
lowed by PCA to reduce feature dimensionality and whit-
ening to down-weight co-occurrence between features.

3.1.3 Feature Fusion Strategies

Fusion studies the complementarity of different features
which includes layer-level and model-level fusion
explorations.

a. Layer-Level Fusion
With layer-level fusion it is possible to fuse multiple

fully-connected layers in a deep network [52], [66]. For
instance, Liu et al. [52] introduce DeepIndex to incorporate
multiple global features from different fully connected
layers. The activation from the first fully-connected layer is
taken as column indexing, and that from the second layer

Fig. 5. Representative methods in single-pass methods, focusing on
convolutional feature tensor AAAAAAA. We denote the entry in AAAAAAA corresponding
to channel c, at spatial location (i; j) as Aijc: MAC [69], R-MAC [32],
SPoC with the per-channel Gaussian weighting a0

ijAij where a0
ij ¼

expf�ði�H
2 Þ2þðj�W

2 Þ2
2s2

g [12], CroW with a00 computed by summing all C fea-
ture maps at location (i; j) and b computed by summing the
H �W -array at each feature map c [15], GeM with channel-wise powers
operation [46], and CAM+CroW by performing M

ðlÞ
ij ¼PC

c¼1 vlcAijc

where vlc are weights activated by l-th class [33].
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serves as row indexing. Similarly, it is also possible to fuse
the activations from multiple convolutional layers. For
instance, Li et al. [99] apply the R-MAC encoding scheme
on five convolutional layers of VGG-16 and then concate-
nate them into a multi-scale feature vector.

Features from fully-connected layers retain global high-
level semantics, whereas features from convolutional layers
can present local low- and intermediate-level cues. Global
and local features therefore complement each other when
measuring semantic similarity and can, to some extent,
guarantee retrieval performance [102], [103]. Such features
can be concatenated directly [71], [102], with convolutional
features normally filtered by sliding windows or region pro-
posal nets. Direct concatenation can also be replaced by
other advanced methods, such as orthogonal operations
[103] or pooling-based methods, such as Multi-layer Order-
less Fusion (MOF) of Li et al. [36], which is inspired by
Multi-layer Orderless Pooling (MOP) [30]. However local
features cannot play a decisive role in distinguishing subtle
feature differences if global and local features are treated
identically. Yu et al. [102] use a mapping function to assert
local features in refining the return ranking lists, via an
exponential mapping function for tapping the complemen-
tary strengths of convolutional and fully-connected layers.
Similarly, Liu et al. [4] design two sub-networks on top of
convolutional layers to obtain global and local features and
then learn to fuse these features, thereby adaptively adjust-
ing the fusion weights. Instead of directly fusing the layer
activations, Zhang et al. [104] fuse the index matrices which
are generated based on the two feature types extracted from
the same CNN, a feature fusion which has low computa-
tional complexity.

It is worth considering which layer combinations are bet-
ter for fusion given their differences and complementarity.
Yu et al. [102] compare the performance of different combi-
nations between fully-connected and convolutional layers
on the Oxford 5k, Holiday, and UKBench datasets. The
results show that the combinations including the first fully-
connected layer always perform better. Li et al. [36] demon-
strate that fusing convolutional and fully-connected layers
outperforms the fusion of only convolutional layers. Fusing
two convolutional layers with one fully-connected layer
achieves the best performance on the Holiday and UKBench
datasets.

b. Model-Level Fusion
It is possible to combine features from different models;

such a fusion focuses more on model complementarity,
with methods categorized into intra-model and inter-model.

Intra-model fusion suggests multiple deep models hav-
ing similar or highly compatible structures, while inter-
model fusion involves models with differing structures. For
example, Simonyan et al. [49] introduce a ConvNet intra-
model fusion strategy to improve the feature learning
capacity of VGG where VGG-16 and VGG-19 are fused. To
attend to different parts of an image object, Wang et al.
[105] realize the multi-feature fusion by selecting all convo-
lutional layers of VGG-16 to extract image representations,
which is demonstrated to be more robust than using only
single-layer features.

Inter-model fusion is a way to bridge different features
given the fact that different deep networks have different

receptive fields [52], [68], [79], [97]. For instance, a two-
stream attention network [79] is introduced to implement
image retrieval where the main network for semantic pre-
diction is VGG-16 while an auxiliary network is used for
predicting attention maps. Similarly, considering the impor-
tance and necessity of inter-model fusion to bridge the gap
between mid-level and high-level features, Liu et al. [52]
and Zheng et al. [97] combine VGG-19 and AlexNet to learn
combined features, while Ozaki et al. [68] concatenate
descriptors from six different models.

Inter-model and intra-model fusion are relevant to model
selection. There are some strategies to determine how to
combine the features from two models. It is straightforward
to fuse all features from the candidate models and then
learn a metric based on the concatenated features [52], [79],
which is a kind of “early fusion” strategy. Alternatively, it is
also possible to learn optimal metrics separately for the fea-
tures from each model, and then to combine these metrics
for final retrieval ranking [36], [106], which is a kind of “late
fusion” strategy.

Discussion. Layer-level fusion and model-level fusion are
conditioned on the fact that the associated layers or net-
works have different feature description capacities. For
these fusion strategies, the key question is what features are
the best to be combined? Some explorations have been made
on the basis of off-the-shelf models, such as Xuan et al.
[107], who illustrates the effect of combining different num-
bers of features and different sizes within the ensemble.
Chen et al. [108] analyze the performance of embedded fea-
tures from off-the-shelf image classification and object
detection models with respect to image retrieval.

3.2 Feature Embedding and Aggregation

The primary aim of feature embedding and aggregation is
to further promote feature discriminativity, targeting for the
“ discriminativity challenge ”, and obtain final global and/or
local features for retrieving specific instances.

3.2.1 Matching With Global Features

Global features can be extracted from fully-connected
layers, followed by dimensionality reduction and normali-
zation [29], [39]. They are easy to implement and there is no
further aggregation process. Gong et al. [30] extract fully-
connected activations for local image patches at three scale
levels and embed patch-level activations individually using
VLAD. Thus, the final concatenated features significantly
tackle the invariance challenge caused by image rotations.

Convolutional features can also be aggregated into com-
pact a global feature. Simple aggregation methods are sum/
average or max pooling [69], [70]. Sum/average pooling is
less discriminative, because it takes into account all acti-
vated convolutional outputs, thereby weakening the effect
of highly activated features [34]. As a result, max pooling is
particularly well suited for sparse features having a low
probability of being active, however max pooling may be
inferior to sum/average pooling when image features are
whitened [12].

Fig. 5 illustrates sophisticated feature aggregation meth-
ods using channel-wise or spatial-wise weighting [12], [62].
For example, Babenko et al. [12] propose sum-pooling
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convolutional features (SPoC) to obtain compact descriptors
weighted by a0 with a Gaussian center prior. Similarly, it is
possible to treat regions in feature maps as different sub-
vectors [32], [69], [97], thus combinations of R sub-vectors
are used to represent the input image, such as R-MAC [32].
Since convolutional features may include repetitive patterns
and each vector may correspond to identical regions, the
resulting descriptors may be bursty, which makes the final
aggregated global feature less distinguishable. As a solu-
tion, Pang et al. [101] leverage heat diffusion to weigh con-
volutional features at the aggregation stage, and reduce the
undesirable influence of burstiness.

Convolutional features have an interpretation as descrip-
tors of local regions, thus many works leverage embedding
methods, including BoW, VLAD, and FV, to encode
regional feature vectors and then aggregate them into a
global descriptor. Note that BoW and VLAD can be
extended by using other metrics, such as a Hamming dis-
tance [109]. Here we briefly describe the principle of euclid-
ean embeddings.

BoW [24] is a widely used feature embedding which
leads to a sparse vector of occurrence. Let aaaaaaa ¼ fa1; a2; . . . ;
aRg be a set of R local features, each of dimensionality d.
BoW requires a pre-defined codebook ccccccc ¼ fc1; c2; . . . ; cKg
with K centroids, usually learned offline, to cluster these
local descriptors, and maps each descriptor at to the nearest
centroid ck. For each centroid, one can count and normalize
the number of occurrences as

gðckÞ ¼ 1

R

XR
r¼1

fðar; ckÞ (1)

fðar; ckÞ ¼
1 if ck is the closest codeword for ar

0 otherwise

�
(2)

Thus BoW considers the number of descriptors belonging to
each ck (i.e., 0-order feature statistics), so the BoW represen-
tation is the concatenation of all mapped vectors:

G
BoW

ðaaaaaaaÞ ¼ gðc1Þ; . . . ; gðckÞ; . . . ; gðcKÞ½ �> (3)

BoW is simple to implement the encoding of local descrip-
tors, such as convolutional feature maps [36], [84] or fully-
connected activations [86], [104], or to encode regional
descriptors [110], [111]. Mukherjee et al. [111] extract image
patches based on information entropy and feed into a pre-
trained VGG-16, then use BoW to embed and aggregate the
patch-level descriptors from a fully-connected layer.
Embedded BoW vectors are typically high-dimensional and
sparse, so not well suited to large-scale datasets in terms of
the mentioned efficiency challenge.

VLAD [54] stores the sumof residuals for each visualword.
Similar to BoW, it generates K visual word centroids, then
each feature ar is assigned to its nearest visual centroid ck:

gðckÞ ¼ 1

R

XR
r¼1

fðar; ckÞðar � ckÞ (4)

The VLAD representation is stacked by the residuals for all
centroids, with dimension (d�K), i.e.,

G
VLAD

ðaaaaaaaÞ¼ . . . ; gðckÞ>; . . .½ �>: (5)

VLAD captures first-order feature statistics, i.e., (ar � ck).
Similar to BoW, the performance of VLAD is affected by the
number of clusters: more centroids produce larger vectors
that are harder to index. For instance-level image retrieval,
Gong et al. [30] concatenate the activations of a fully-con-
nected layer with VLAD applied to image-level and patch-
level inputs [112]. Ng et al. [50] replace BoW [24] with
VLAD [54], and are the first to encode local features into
VLAD representations. This idea inspired another milestone
work [43] where, for the first time, VLAD is plugged into
the last convolutional layer, which allows end-to-end train-
ing via back-propagation.

FV [55] extends BoW by encoding the first and second
order statistics. FV clusters the set of local descriptors by a
Gaussian Mixture Model (GMM) with K components to
generate a dictionary ccccccc ¼ fmk;Sk;wkgKk¼1 made up of mean
/ covariance / weight triples [113], where the covariance
may be simplified by keeping only its diagonal elements.
For each local feature ar, a GMM is given by

gkðarÞ ¼ wk � pkðarÞ=
XK
k¼1

wkpkðarÞ
 !

s:t:
XK
k¼1

wk ¼ 1 (6)

where pkðarÞ ¼ N ðar;mk; s
2
kÞ. All local features are assigned

into each component k in the dictionary, which is computed
as

gwk
¼ 1

R
ffiffiffiffiffiffi
wk

p
XR
r¼1

gkðarÞ � wkð Þ

guk ¼
gkðarÞ
R

ffiffiffiffiffiffi
wk

p
XR
r¼1

ar � mk

sk

� �
;

gs2
k
¼ gkðarÞ

R
ffiffiffiffiffiffiffiffi
2wk

p
XR
r¼1

ar � mk

sk

� �2

� 1

" #
(7)

The FV representation is produced by concatenating vectors
from theK components:

G
FV
ðaaaaaaaÞ ¼ gw1

; . . . ; gwK
; gu1 ; . . . ; guK ; gs21

; . . . ; gs2
K

h i
> (8)

The FV representation defines a kernel from a generative
process and captures more statistics than BoW and VLAD.
FV vectors do not increase the computational cost signifi-
cantly but require more memory. Applying FV without
memory controls may lead to suboptimal performance [114].

Discussion. Traditionally, pooling-based aggregation
methods (e.g., in Fig. 5) are directly plugged into deep net-
works and then the whole model is used end-to-end. The
three embedding methods (BoW, VLAD, FV) are initially
trained with large pre-defined vocabularies [52], [115]. One
needs to pay attention on their properties before choosing an
embedding: BoW and VLAD are computed in the rigid
euclidean space where performance is closely related to the
number of centroids, whereas FV can capture higher-order
statistics and improves the effectiveness of feature embed-
ding at the expense of a higher memory cost. Further,
although vocabularies are usually built separately and pre-
trained before encoding deep features, it is necessary to
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integrate the training of networks and the learning of vocab-
ulary parameters into a unified framework so as to guarantee
training and testing efficiency. For example, VLAD is inte-
grated into deep networkswhere each spatial column feature
is used to construct clusters via k-means [50]. This idea led to
NetVLAD [43], where deep networks are fine-tuned with the
VLAD vectors. The FV method is also combined with deep
networks for retrieval tasks [34], [41].

3.2.2 Matching With Local Features

Although matching with global features has high efficiency
for both feature extraction and similarity computation, global
features are not compatible with spatial verification and cor-
respondence estimation, which are important procedures for
instance-level retrieval tasks, motivating work on matching
with local features. In terms of the matching process, global
features are matched only once while local feature matching
is evaluated by summarizing the similarity across all individ-
ual local features (i.e., many-to-manymatching).

One important aspect of local features is to detect the
keypoints for an instance within an image, and then to
describe the detected keypoints as a set of local descriptors.
Inspired by [116], the common strategies of this whole pro-
cedure for IIR can be categorized as detect-then-describe and
describe-then-detect.

In terms of detect-then-describe, we regard the descriptors
around keypoints as local features, similar to [29], [42].
Coarse regions can be detected, for example, by using the
methods depicted in Fig. 4, and regions of interest in an
image can be detected by using region proposal networks
(RPNs) [27], [74]. The extracted coarse regions around the
keypoints are fed into a DCNN, followed by feature
description. Traditional detectors can also be used to detect
fine regions around a keypoint. For instance, Zheng et al.
[86] employ the popular Hessian-Affine detector [117] to get
an affine-invariant local region. Paulin et al. [112] and Mis-
hchuk et al. [110] detect regions using the Hessian-Affine
detector and feed into patch-convolutional kernel networks
(Patch-CKNs) [91]. Note that it becomes more convenient
for the case where bounding boxes annotations have been
provided by datasets (see Section 5.1), and then the image
regions can be cropped directly for further reranking [92].

Rather than performing keypoint detection early on, it is
possible to postpone the detection stage on the convolutional
feature maps, i.e., describe-then-detect. One can select regions
on the convolutional feature maps to obtain a set of local fea-
tures [32], [37], [84]; the local maxima of the feature maps are
then detected as keypoints [56]. A similar strategy is also used
in network fine-tuning [5], [60], [71], [74], [118], where the
keypoints on the convolutional feature maps can be selected
based on attention scores predicted by an attention network
[5], [71], or based on single-head and multi-head attention
modules in transformers [59], [60]. This approach to keypoint
selection is better for achieving computational efficiency.

After keypoint detection and description, a large number
of local features are used in the matching stage to perform
instance-level retrieval, and the image similarity is evalu-
ated by matching across all local features. Local matching
techniques include spatial verification and selective match
kernels (SMK) [73]. Spatial verification assumes object

instances are rigid so that local matches between images
can be estimated as an affine transformation using RAN-
dom SAmple Consensus (RANSAC) [72]. One limitation of
RANSAC is its high computational complexity of estimat-
ing the transformation model when all local descriptors are
considered; instead, it is possible to apply RANSAC to a
small number of top-ranked local descriptors, such as those
selected by approximate nearest neighbor [5]. SMK weighs
the contributions of individual matches with a non-linear
selective function, but is still memory intensive. Its exten-
sion, the Aggregated Selective Match Kernel (ASMK),
focuses more on aggregating similarities between local fea-
tures without explicitly modeling the geometric alignment,
which can produce a more compact representation [73],
[118]. Recently, Teichmann et al. [74] introduced Regional
Aggregated Selective Match Kernel (R-ASMK) to combine
information from detected regions, boosting image retrieval
accuracy compared to the ASMK.

Discussion. Using local descriptors to perform instance
retrieval tasks has two limitations. First, the local descrip-
tors for an image are stored individually and indepen-
dently, which is memory-intensive, and not well-suited for
large-scale scenarios. Second, estimating the similarity
between the query and database images depends on cross-
matching all local descriptor pairs, which incurs additional
searching cost and then a low retrieval efficiency. Therefore,
most instance retrieval systems using local features follow a
two-stage paradigm: initial filtering and re-ranking [64],
[71], [75], [92], [119], as in Fig. 2. The initial filtering stage is
to employ a global descriptor to select a set of candidate
matching images, thereby reducing the solution space; the
re-ranking stage is to use local descriptors to re-rank the
top-ranked images from the global descriptor.

3.2.3 Attention Mechanism

Attention mechanism can be regarded as a kind of feature
aggregation, whose aim is to highlight the most relevant fea-
ture parts. It can effectively address the “distraction challenge”
and also promote feature discriminativity [98], realized by
computing an attentionmap. Approaches to obtaining atten-
tion maps can be categorized into non-parametric and
parametric groups, as shown in Fig. 6, where themain differ-
ence is whether the importance weights in the attention map
are learnable.

Non-parametric weighting is a straightforward method
to highlight feature importance, and the corresponding
attention maps can be obtained by channel-wise or spatial-
wise pooling, as in Figs. 6a and 6b. For spatial-wise pooling,
Kalantidis et al. [15] propose an effective CroW method to
weight and pool feature maps, which concentrate on
weighting activations at different spatial locations, without
considering the relations between these activations. In con-
trast, Ng et al. [96] explore the correlations among activa-
tions at different spatial locations on the convolutional
feature maps.

Channel-wise weighting methods are also popular non-
parametric attention mechanisms [35], [100]. Xu et al. [35]
rank the weighted feature maps to build “probabilistic
proposals” to select regional features. Jimenez et al. [33]
combine CroW and R-MAC to propose Classes Activation
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Maps (CAM) to weigh the feature map per class. Xiang et al.
[100] employ a Gram matrix to analyze the correlations
between different channels and then obtain channel sensi-
tivity information to tune the importance of each feature
map. Channel-wise and spatial-wise weighting methods are
usually integrated into a deep model to highlight feature
importance [15], [105].

Parametric attention maps, shown in Figs. 6c and 6d, can
be learned via deep networks, where the input can be either
image patches or feature maps [77], [100], [103], approaches
which are commonly used in supervised metric learning
[98]. Kim et al. [77] make the first attempt to propose a shal-
low network (CRN) to take as input the feature maps of con-
volutional layers and outputs a weighted mask indicating
the importance of spatial regions in the feature maps. The
resulting mask modulates feature aggregation to create a
global representation of the input image. Noh et al. [5]
design a 2-layer CNN with a softplus output layer to com-
pute scores which indicate the importance of different
image regions. Inspired by R-MAC, Kim et al. [120] employ
a pre-trained ResNet101 to train a context-aware attention
network using multi-scale feature maps.

Apart from using feature maps as inputs, a whole image
can be used to learn feature importance, for which specific
networks are needed [78], [79], [121]. Mohedano [78]
explores different saliency models, including DeepFixNet
and Saliency Attentive Model. Yang et al. [79] and Wei et al.
[121] introduce a two-stream network for image retrieval in
which the auxiliary stream, DeepFixNet, is used specifically
for predicting attention maps, which are then fused with the
feature maps produced by the main network. For image
retrieval, attentionmechanisms can be combinedwith super-
visedmetric learning [96].

3.2.4 Hashing Embedding

Real-valued features extracted by deep networks are typi-
cally high-dimensional, and therefore are not well-suited to
retrieval efficiency. As a result, there is significant

motivation to transform deep features into more compact
codes. Since their computational and storage efficiency are
beneficial for the “efficiency challenge”, hashing algorithms
have been widely used for global [62], [80] and local
descriptors [64], [85], [86].

Hash functions can be plugged as a layer into deep net-
works, so that hash codes and deep networks can be simul-
taneously trained and optimized, either supervised [80] or
unsupervised [65]. During hash function training, the hash
codes of originally similar images are embedded as closely
as possible, and the hash codes of dissimilar images are as
separated as possible. d-dim hash codes from a hash func-
tion hð�Þ for an image x can be formulated as bx ¼ hðxÞ ¼
hðfðx; uuuuuuuÞÞ 2 fþ1;�1gd. Because hash codes are non-differ-
entiable their optimization is difficult, so hð�Þ can be relaxed
to be differentiable by using tanh or sigmoid functions [22].

When binarizing real-valued features, it is crucial to pre-
serve image similarity and to improve hash code quality
[22]. These two aspects are at the heart of hashing algo-
rithms to maximize retrieval accuracy.

a. Hash Functions to Preserve Image Similarity
Preserving similarity seeks to minimize the inconsisten-

cies between real-valued features and corresponding hash
codes, for which a variety of strategies have been adopted.

Loss functions can significantly influence similarity preser-
vation, which includes both supervised and unsupervised
methods. With class labels available, many loss functions are
designed to learn hash codes in a Hamming space. As a
straightforward method, one can optimize either the differ-
ence between matrices computed from the binary codes and
their supervision labels [62], [81] or the difference between
the hash codes and real-valued deep features [64], [65]. Song
et al. [64] propose to learn hash codes for regional features in
which each local feature is converted to a set of binary codes
bymultiplying a hash function and the raw RoI features, then
the differences between RoI features and hash codes are char-
acterized by an L2 loss. Do et al. [122] regularize hash codes
with a reconstruction loss, which ensure that codes can be
reconstructed to their inputs so that similar/dissimilar inputs
are mapped to similar/dissimilar hash codes. Lin et al. [65]
learn hash codes and address the “invariance challenge” by
introducing an objective function which characterize the dif-
ference between the binary codes which are computed from
the original image and the geometric transformed one.

b. Improving Hash Function Quality
A good hash function seeks to have binary codes uni-

formly distributed; that is, maximally filling and using the
hash code space, normally on the basis of bit uncorrelation
and bit balance [22], [65]. Bit uncorrelation implies that dif-
ferent bits are as independent as possible, so that a given set
of bits can aggregate more information within a given code
length [65]. Bit balance means that each bit should have a
50% chance of being +1 or -1, thereby maximizing code vari-
ance and information [22]. Mor�ere et al. [62] use the uniform
distribution U(0,1) to build a regularization term to make
hash codes distribute evenly where the codes are learned by
a Restricted Boltzmann Machine layer. Likewise, Lin et al.
[65] optimize the mean of learned hash codes to be close to
0.5 to prevent any bit bias towards zero or one.

Fig. 6. Illustration of attention mechanisms. (a)-(b) Non-parametric
schemes: The attention is based on convolutional feature AAAAAAA. Channel-
wise attention in (a) produces a C-dimensional importance vector b1
[15], [35]; Spatial-wise attention in (b) computes a 2-dimensional atten-
tion map a [15], [33], [96]. (c)-(d) Parametric schemes: The attention
weights are learned by a trainable network. In (c), b2 are provided by a
sub-network with parameters ug [71], [77], [98], [120]. In (d), the attention
maps, as a tensor, are predicted by some auxiliary saliency extraction
models from the input image directly [78], [79], [121].
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4 RETRIEVAL VIA LEARNING DCNN
REPRESENTATIONS

The off-the-shelf DCNNs pre-trained on source datasets for
classification are quite robust to inter-class variability. How-
ever, in most cases, deep features extracted based on off-the-
shelf models may not be sufficient for accurate retrieval,
even with the strategies discussed in Section 3. In order for
models to be more effective for retrieval, a common practice
is network fine-tuning, i.e., updating the pre-stored parame-
ters [31]. Fine-tuningmethods have been studied extensively
to learn better features, whose primary aim is to address the
“fine-tune challenge”. A standard dataset with clear and well-
defined ground-truth labels is indispensable for the super-
vised fine-tuning and subsequently pair-wise supervisory
information is incorporated into ranking loss to update net-
works by regularizing on retrieval representations, other-
wise it is necessary to develop unsupervised fine-tuned
methods. After network fine-tuning, features can be orga-
nized as global or local to perform retrieval.

For the most feature strategies we presented in Section 3,
including feature extraction, feature embedding and feature
aggregation. Note that fine-tuning does not contradict or
render irrelevant these feature processing methods; indeed,

these strategies are complementary and can be equivalently
incorporated as part of network fine-tuning. To this end,
this section will survey the strategies which have been
developed, based on the patch-level, image-level, or class-
level supervision, to fine-tune deep networks for better
instance retrieval.

4.1 Supervised Fine-Tuning

The way to realize supervised fine-tuning can be determined
by the given class labels or pairwise supervisory information.

4.1.1 Fine-Tuning via Classification Loss

When class labels of a new dataset are available (e.g.,
INSTRE [93], GLDv2 [5], [63]), it is preferable to begin with
a previously-trained DCNN, trained on a separate dataset,
with the backbone DCNN typically chosen from one of
AlexNet, VGG, GoogLeNet, or ResNet. The DCNN can then
be fine-tuned, as shown in Fig. 7a, by optimizing its parame-
ters on the basis of a cross entropy loss

LCEðp̂i; yiÞ ¼ �
Xc
i

yi�logðp̂iÞð Þ (9)

Fig. 7. Schemes of supervised fine-tuning. Anchor, positive, and negative images are indicated by xa, xp, xn, respectively. (a) classification loss [39];
(b) similarity learning by using a transformation matrix [40]; (c) Siamese loss [41], [46], [123], [124]; (d) triplet loss [42]; (e) an attention block into
DCNNs to highlight regions [64]; (f) combining classification loss and pairwise ranking loss [100], [125]; (g) region proposal networks (RPNs) to locate
the RoI and highlight specific regions or instances [92]; (h) inserting the RPNs of (g) into DCNNs, such that the RPNs extract regions or instances at
the convolutional layer [42], [82].
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Here yi and p̂i are the ground-truth labels and the predicted
logits, respectively, and c is the total number of categories.
The milestone work in such fine-tuning is [39], in which
AlexNet is re-trained on the Landmarks dataset.

According to the class labels, the image-level features are
required to compute the logits. Thus, the descriptors extracted
from local regions on convolutional feature maps [5], [71] or
image patch inputs [74] are further needed to be aggregated.

A classification-based fine-tuning method enables to
enforce higher similarity for intra-class samples and diver-
sity for inter-class samples. Cao et al. [71] employ the Arc-
Face loss [126], which uses the margin-adjusted cosine
similarity in the form of softmax loss, to induce smaller intra-
class variance and show excellent results for instance
retrieval. Recently, Boudiaf et al. [127] claim that cross
entropy loss can minimize intra-class distances while maxi-
mizing inter-class distances. Cross entropy loss is, in essence,
maximizing a common mutual information between the
retrieval features and the ground-truth labels. Therefore, it
can be regarded as an upper bound on a new pairwise loss,
which has a structure similar to various pairwise ranking
losses, of which representatives are introduced below.

4.1.2 Fine-Tuning via Pairwise Ranking Loss

With affinity information (e.g., samples from the same
group) indicating similar and dissimilar pairs, fine-tuning
methods based on pairwise ranking loss learn an optimal
metric which minimizes or maximizes the distance of pairs
to maintain their similarity. Network fine-tuning via rank-
ing loss involves two types of information [17]:

1) A pair-wise constraint, corresponding to a Siamese
network as in Fig. 7c, in which input images are
paired with either a positive or negative sample;

2) A triplet constraint, associated with triplet networks
as in Fig. 7e, in which anchor images are paired with
both similar and dissimilar samples [17].

These pairwise ranking loss basedmethods are categorized
into globally supervised approaches (Figs. 7c and 7d) and
locally supervised approaches (Figs. 7g and 7h), where the for-
mer ones learn ametric on global features by satisfying all con-
straints, whereas the latter ones focus on local areas by only
satisfying the given local constraints (e.g., region proposals).

To be specific, consider a triplet set X¼fðxa; xp; xnÞg in a
mini-batch, where ðxa; xpÞ indicates a similar pair and
ðxa; xnÞ a dissimilar pair. Features fðx; uuuuuuuÞ of one image are
extracted by a network fð�Þwith parameters uuuuuuu, for which we
can represent the affinity information for each similar or dis-
similar pair as

Dij ¼ Dðxi; xjÞ ¼ jjfðxi; uuuuuuuÞ � fðxj; uuuuuuuÞjj22 (10)

a. Refining With Transformation Matrix.
Learning the similarity among input samples can be

implemented by optimizing the weights of a linear transfor-
mation matrix [40]. It transforms the concatenated feature
pairs into a common latent space using a transformation
matrixWWWWWWW2R2d�1, where d is the final feature dimension. The
similarity score of these pairs are predicted via a sub-net-
work SW ðxi; xjÞ ¼ fW ðfðxi; uuuuuuuÞ [ fðxj; uuuuuuuÞ;WWWWWWWÞ [40]. In other
words, the sub-network fW predicts how similar the feature

pairs are. Given the affinity information of feature pairs
Sij ¼ Sðxi; xjÞ2f0; 1g, the binary labels 0 and 1 indicate the
similar (positive) or dissimilar (negative) pairs, respectively.
The training of function fW can be achieved by using a
regression loss:

LW ðxi; xjÞ ¼jSW ðxi; xjÞ � Sij simðxi; xjÞ þm
� �

� ð1� SijÞ simðxi; xjÞ �m
� �j (11)

where simðxi; xjÞ can be the cosine function for guiding the
training of WWWWWWW and m is a margin. By optimizing the regres-
sion loss and updating WWWWWWW , deep networks maximize the
similarity of similar pairs and minimize that of dissimilar
pairs. It is worth noting that the pre-stored parameters in
the deep models are frozen when optimizing WWWWWWW . The pipe-
line of this approach is depicted in Fig. 7b.

b. Fine-Tuning With Siamese Networks.
Siamese networks represent important options in imple-

menting metric learning for fine-tuning, as in Figs. 7c and
8a. It is a structure composed of two branches that share the
same weights across layers. Siamese networks are trained
on paired data, consisting of an image pair ðxi; xjÞ such that
Sðxi; xjÞ2f0; 1g. A Siamese loss is formulated as

LSiamðxi; xjÞ ¼ 1

2
Sðxi; xjÞDðxi; xjÞ

þ 1

2
1� Sðxi; xjÞ
� �

max 0; m�Dðxi; xjÞ
� �

(12)

Siamese loss has recently been reaffirmed as a very effective
metric in category-level image retrieval, outperforming
many more sophisticated losses if implemented carefully
[123]. Enabled by the standard Siamese network, this objec-
tive function is used to learn the similarity between semanti-
cally relevant samples under different scenarios [46], [124].
For example, Radenovi�c et al. [46] employ a Siamese net-
work on matching and non-matching global feature pairs
which are aggregated by GeM-based pooling. The deep net-
work fine-tuned by the Siamese loss generalizes better and
converges at higher retrieval performance. Ong et al. [41]
leverage the Siamese network to learn image features which
are then fed into the Fisher Vector model for further encod-
ing. Siamese networks can also be applied to hashing learn-
ing in which the euclidean distance Dð�Þ in Eq. (12) is
computed for binary codes [128].

An implicit drawback of the Siamese loss is that it may
penalize similar image pairs even if the margin between
these pairs is small or zero [128], if the constraint is too
strong and unbalanced. At the same time, it is hard to map
the features of similar pairs to the same point when images
contain complex contents or scenes. To tackle this limitation,
Cao et al. [129] adopt a double-margin Siamese loss [128] to
relax the penalty for similar pairs by setting a margin m1

instead of zero, in which case the original single-margin Sia-
mese loss is re-formulated as

LD Siamðxi; xjÞ ¼ 1

2
Sðxi; xjÞmax 0;Dðxi; xjÞ �m1

� �
þ 1

2
1� Sðxi; xjÞ
� �

max 0;m2 �Dðxi; xjÞ
� �

(13)
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where m1>0 and m2>0 are the margins affecting the simi-
lar and dissimilar pairs, respectively, as in Fig. 8b, meaning
that the double margin Siamese loss only applies a contras-
tive force when the distance of a similar pair is larger than
m1. The mAP metric of retrieval is improved when using
the double margin Siamese loss [128].

More recently, transformers have been trained under the
regularization of cross entropy [60] and Siamese loss [59]
for instance-level retrieval and achieved competitive perfor-
mance, positioning it as an alternative to convolutional
architectures. As observed by [59], the transformer-based
architecture is less impacted than convolutional networks
by feature collapse since each input feature is projected to
different sub-spaces before the multi-headed attention.
Moreover, the transformer backbone operates as a learned
aggregation operator, thereby avoiding the design of
sophisticated feature aggregation methods.

c. Fine-Tuning With Triplet Networks.
Triplet networks optimize similar and dissimilar pairs

simultaneously. As shown in Figs. 7d and 8c, the plain trip-
let networks adopt a ranking loss for training:

LTripletðxa; xp; xnÞ ¼ max 0;mþDðxa; xpÞ � Dðxa; xnÞ
� �

(14)

which indicates that the distance of an anchor-negative pair
Dðxa; xnÞ should be larger than that of an anchor-positive
pair Dðxa; xpÞ by a certain marginm.

Given the datasets that provide bounding box annota-
tions, such as INSTRE, Oxford-5k, Paris-6k, and their var-
iants, the bounding box annotations are used as patch-level
supervision to train a region detector which enables the final
DCNNs to locate specific regions or objects. As an example,
region proposal networks (RPNs) [27] is fine-tuned and sub-
sequently plugged into DCNNs and trained end-to-end [92],
as shown in Fig. 7g. RPNs yield the regressed bounding box
coordinates of objects and are trained by the multi-class clas-
sification loss. Once fine-tuned, RPNs can produce regional
features for each detected region by RoI pooling and perform
better instance search.

Further, local supervised metric learning has been
explored based on the fact that RPNs [27] enable deepmodels
to learn regional features for particular instance objects [42],
[64], [82], [125]. RPNs used in the triplet formulation are
shown in Fig. 7h. First, regression loss (RPNs loss) is used to
minimize the regressed bounding box relative to ground-
truth. Then, the regional features for all detected RoIs are
aggregated into a global one and L2-normalized for the triplet
loss. Note that, in some cases, jointly training an RPN loss and

triplet loss leads to unstable results, a problem addressed in
[42] by first training a CNN to produce R-MAC using a rigid
grid, after which the parameters in convolutional layers are
fixed and RPNs are trained to replace the rigid grid.

Attention mechanisms can also be combined with metric
learning for fine-tuning [64], as in Fig. 7e, where the atten-
tion module is typically end-to-end trainable and takes as
input the convolutional feature maps. Song et al. [64] intro-
duce a convolutional attention layer to explore spatial-
semantic information, highlighting regions in images to sig-
nificantly improve the discrimination for image retrieval.

Recent studies [100], [125] have jointly optimized the trip-
let loss and classification loss to further improve network
capacity, as shown in Fig. 7f. The overall joint function is

LJoint ¼ �1 �LTripletðxi;a; xi;p; xi;nÞþ�2 �LCEðp̂i; yiÞ (15)

where the cross entropy loss (CE loss) LCE is defined in
Eq. (9) and the triplet loss LTriplet in Eq. (14). �1 and �2 are
hyper-parameters tuning the tradeoff between the two loss
functions.

4.1.3 Discussion

In some cases, pairwise ranking loss cannot effectively learn
the variations between samples and still suffers from a
weaker generalization capability if the training set is not
ordered correctly. Therefore, pairwise ranking loss requires
careful sample mining and weighting strategies to obtain the
most informative pairs, especially when considering mini-
batches. The hard negative mining strategy is commonly
used [43], [46], [118], however further sophisticated mining
strategies have recently been developed. Mishchuk et al.
[110] calculate a pair-wise distance matrix on all mini-batch
samples to select two closest negative and one anchor-posi-
tive pair to form a triplet. Instead of traversing all possible
two-tuple or three-tuple combinations, it is possible to con-
sider all positive samples in one cluster and negative sam-
ples together. Liu et al. [4] introduce a group-group loss to
decrease the intra-group distance and increase the inter-
group distance. Considering all samples may be beneficial
for stabilizing optimization and promoting generalization
due to a larger data diversity, however the extra computa-
tional cost remains an issue to be addressed.

Substantial research has been devoted to pair-wise rank-
ing loss, while cross entropy loss, mainly used for classifica-
tion, has been largely overlooked. Recently, Boudiaf et al.
[127] claim that cross entropy loss can match and even sur-
pass the pair-wise ranking loss when carefully tuned on

Fig. 8. Illustrations of different losses for network fine-tuning. The same shape with different colors denotes images that include the same instance.
(a)-(c) have been introduced in the text [42], [46], [128]. (d) Listwise AP loss considers a mini-batch of N features simultaneously and directly opti-
mizes the Average-Precision computed from these features [57], [130].
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fine-grained category-level retrieval tasks. In fact, the great-
est improvements have come from enhanced training
schemes (e.g., data augmentation, learning rate polices,
batch normalization freeze) rather than intrinsic properties
of pairwise ranking loss. Further, although several sophisti-
cated ranking losses have been explored and validated for
category-level retrieval, Musgrave et al. [123] revisited these
losses and found that most of them perform on par to
vanilla Siamese loss and triplet loss, so there is merit to con-
sider these losses also for instance-level image retrieval
tasks.

Both cross entropy loss and pair-wise ranking loss regu-
larize on the embedded features and the corresponding
labels so as to maximize their mutual information [127].
Their effectiveness is not guaranteed to give retrieval results
that also optimize mAP [57]. To tackle this limitation one
can directly optimize the average precision (AP) metric
using the listwise AP loss,

LmAP ¼ 1� 1

N

XN
i¼1

APðx>
i XN; YiÞ (16)

which optimizes the global ranking of thousands of images
simultaneously, instead of only a few images at a time. Here
Yi is the binary label to evaluate the relevance between
batch images. XN ¼ fx1; x2; . . .xj; . . . ; xNg denotes the fea-
tures of all images, where each xi is used as a potential
query to rank the remaining batch images. Each similarity
score x>

i xj can be measured by a cosine function.
It is demonstrated that training with AP-based loss

improves retrieval performance [57], [130]. However average
precision, as a metric, is normally non-differentiable. To
directly optimize the AP loss during back-propagation, the
key is that the indicator function for AP computing needs to
be relaxed using methods such as triangular kernel-based soft
assignment [57] or sigmoid function [130], as shown in Fig. 8d.

4.2 Unsupervised Fine-Tuning

Supervised network fine-tuning becomes infeasible when
there is insufficient supervisory information, normally
because of cost or unavailability. Therefore unsupervised
fine-tuning methods for image retrieval are quite necessary,
but less studied [131]. For unsupervised fine-tuning, two
directions are to mine relevance among features via manifold
learning, and via clustering techniques, each discussed below.

4.2.1 Mining Samples With Manifold Learning

Manifold learning focuses on capturing intrinsic correlations
on amanifold structure tomine or deduce relevance, as illus-
trated in Fig. 9. Initial similarities between the extracted
global features [132] or local features [14], [133] are used to
construct an affinity matrix, which is then re-evaluated and
updated using manifold learning [134]. According to the
manifold similarity in the updated affinity matrix, positive
and hard negative samples are selected for metric learning
using pairwise ranking loss based functions such as pair loss
[42], [133] or triplet loss [131], [135]. Note that this is different
from the aforementioned methods for pairwise ranking loss
based fine-tuning methods, where the hard positive and

negative samples are explicitly selected from an ordered
dataset according to the given affinity information.

It is important to capture the geometry of the manifold of
deep features, generally involving two steps [134], known
as diffusion. First, the affinity matrix (Fig. 9) is interpreted
as a weighted kNN graph, where each vector is represented
by a node, and edges are defined by the pairwise affinities
of two connected nodes. Then, the pairwise affinities are re-
evaluated in the context of all other elements by diffusing
the similarity values through the graph [48], [131], [133],
[135], with recent strategies proposed such as regularized
diffusion (RDP) [58] and regional diffusion [133]. For more
details on diffusion methods refer to survey [134].

Most algorithms follow the two steps of [134]; the differ-
ences among methods lie primarily in three aspects:

1) Similarity initialization, which affects the subsequent
kNN graph construction in an affinity matrix. Usu-
ally, an inner product [48] or euclidean distance [45]
is directly computed for the affinities. A Gaussian
kernel function can be used [134], [135], or consider
regional similarity from image patches [133].

2) Transition matrix definition, a row-stochastic matrix
[134], determines the probabilities of transiting from
one node to another in the graph. These probabilities
are proportional to the affinities between nodes,
which can be measured by Geodesic distance (e.g.,
the summation of weights of relevant edges).

3) Iteration scheme, to re-valuate and update the values
in the affinity matrix by the manifold similarity until
some convergence is achieved. Most algorithms are
iteration-based [131], [134], as illustrated in Fig. 9.

Diffusion process algorithms are indispensable for unsu-
pervised fine-tuning. Better image similarity is guaranteed
when it is improved based on initialization (e.g., regional
similarity [133] or higher order information [45]). Diffusion
is normally iterative and is computationally demanding
[135], a limitation which cannot meet the efficiency require-
ments of image retrieval. To reduce the computational com-
plexity, Bai et al. [58] propose a regularized diffusion
process, facilitated by an efficient iteration-based solver.
Zhao et al. [135] regard the diffusion process as a non-linear
kernel mapping function, which is then modelled by a deep
neural network. Other studies replace the diffusion process
on a kNN graph with a diffusion network [47], which is
derived from graph convolution networks [136], an end-to-
end trainable framework which allows efficient computa-
tion during training and testing.

Fig. 9. Paradigm of manifold learning for unsupervised metric learning,
based on triplet loss [131], [135].
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Once the manifold space is learned, samples are mined
by computing geodesic distances based on the Floyd-War-
shall algorithm or by comparing the set difference [131].
The selected samples are fed into deep networks to perform
fine-tuning.

4.2.2 Mining Samples by Clustering

Clustering is used to explore proximity information that has
been studied in instance-level retrieval [44], [137], [138],
[139], [140]. The rationale behind these methods is that sam-
ples in a cluster are likely to satisfy a degree of similarity.

One class of methods for clustering deep features is via k-
means. Given k cluster centroids, during each training
epoch a deep network alternates between two steps: first, a
soft assignment between the feature representations and the
cluster centroids; second, the cluster centroids are refined
and, at the same time, the deep network is updated by
learning from current high confidence assignments using a
certain regularization. These two steps are repeated until a
convergence criterion is met, at which point the cluster
assignments are used as pseudo-labels [138], [139]. Alterna-
tively, the pseudo-labels can be calculated from the samples
in a cluster, e.g., the mean values. For example, Tzelepi
et al. [137] compute k nearest feature representations with
respect to a query feature and then compute their mean vec-
tors, which is used as a target for the query feature. In this
case, fine-tuning is performed by minimizing the squared
distance between each query feature and the mean of its k
nearest features. Liu et al. [81] propose a self-taught hashing
algorithm using a kNN graph construction to generate
pseudo labels that are used to analyze and guide network
training. Shen et al. [141] and Radenovi�c et al. [44], [46] use
Structure-from-Motion (SfM) for each image cluster to
explore sample reconstructions to select images for triplet
loss. Clustering methods depend on the euclidean distance,
making it difficult to reveal the intrinsic relationship
between objects.

There are further techniques for instance retrieval, such
as by using AutoEncoder [122], [142], generative adversarial
networks (GANs) [143], convolutional kernel networks
[112], [144], and graph convolutional networks [47]. For
these methods, they focus on devising novel unsupervised
frameworks to realize unsupervised learning, instead of
iterative similarity diffusion or cluster refinement on feature
space. For example, instead of performing iterative traversal
on a set of nearest neighbors defined by kNN graph, Liu
et al. [47] employ graph convolutional networks [136] to
directly encode the neighbor information into image
descriptors and then train the deep models to learn a new
feature space. This method is demonstrated to significantly
improve retrieval accuracy while maintaining efficiency.
GANs are also explored, for the first time, for instance-level
retrieval in an unsupervised fashion [143]. The generator
retrieves images that contain similar instances as a given
image, while the discriminator judges whether the retrieved
images have the specified instance which appeared in the
query image. During training, the discriminator and the
generator play a min-max game via an adversarial reward
which is computed based on the cosine distance between
the query image and the images retrieved by the generator.

5 STATE OF THE ART PERFORMANCE

5.1 Datasets

To demonstrate the effectiveness of methods, we choose
the following commonly-used datasets for performance
comparison:

UKBench (UKB) [145] consists of 10,200 images of objects.
This dataset has 2,550 groups of images, each group having
four images of the same object from different viewpoints or
illumination conditions, which can be regarded as a kind of
class-level supervision information. All images can be used
as a query.

Holidays [51] consists of 1,491 images collected from per-
sonal holiday albums. Most images are scene-related. The
dataset comprises 500 groups of similar images with a sin-
gle query image for each group. The dataset also provides
position information of the interest regions for each image.

Oxford-5k [94] consists of 5,062 images for 11 Oxford
buildings. Each building is associated with five hand-drawn
bounding box queries. According to the relevance level,
each image of the same building is assigned a label Good
(i.e., positive), OK (i.e., positive), Junk, or Bad (i.e., negative).
Junk images can be discarded or regarded as negative exam-
ples [54], [146]. To build a tuple for each given query, one
can select a positive example whose label corresponds to
Good or OK in the same category, and select one negative
example from each of the remaining building categories.
Furthermore, an additional disjoint set of 100,000 distractor
images is added to obtain Oxford-105k.

Paris-6k [95] includes 6,412 images and is categorized into
12 groups by architecture. The supervision information can
be used like that of Oxford-5k. Likewise, an additional dis-
joint set of 100,000 distractor images is added to obtain
Paris-106k.

INSTRE [93] consists of 28,543 images from 250 different
object classes, including three disjoint subsets2: INSTRE-S1,
INSTRE-S2, INSTRE-M. INSTRE dataset has bounding box
annotations, providing single-labelled and double-labelled
class information for single- and multiple-object retrieval,
respectively. One can use the class information to build a
tuple, with two positive examples from the same class and
one negative from one of the remaining classes. The perfor-
mance evaluation on INSTRE in our experiments follows
the protocol in [133].

Google Landmarks Dataset (GLD) [5], [63] consists of GLD-
v1 and GLD-v2. GLD-v2 is mainly recommended to use
and it has the advantage of stability where all images have
permissive licenses [71]. GLD-v2 is divided into three sub-
sets: (i) 118k query images with ground-truth annotations,
(ii) 4.1M training images of 203k landmarks with labels, and
(iii) 762k index images of 101k landmarks. Due to its large
scale, GLD-v2 provides class-level ground-truth which can
be used to build training tuples. Due to its image diversity,
it may produce clutter images for each landmark so it is nec-
essary to introduce pre-processing methods to select the
more relevant images [147]. Finally, the training set is
cleaned by removing these clutters, consisting of a subset
“GLD-v2-clean” containing 1.6M images of 81k landmarks.
Since Google landmarks dataset stills lack bounding box for

2. https://github.com/imatge-upc/salbow
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objects of interest, Teichmann et al. [74] provide a new data-
set of landmark bounding boxes, based on GLD. This patch-
level supervision information can help locate the most rele-
vant regions.

Note that, additional queries and distractor images have
been added into Oxford-5k and Paris-6k, producing the
Revisited Oxford (ROxford) and Revisited Paris (RParis)
datasets where each image of the same building is assigned
a label Easy , Hard , Unclear , orNegative [146]. Different label
combinations are used as positive according to the difficulty
level of different setups. During testing, if there are no posi-
tive images for a query, then that query is excluded from
the evaluation. For details, we refer the reader to [146]. We
undertake partial comparisons under the hard evaluation
protocol on these revisited datasets.

5.2 Evaluation Metrics

Average precision (AP) refers to the coverage area under the
precision-recall (PR) curve. A larger AP implies a higher PR
curve and better retrieval accuracy. AP can be calculated as
AP ¼ 1

R

PN
k¼1 P ðkÞ � relðkÞ, where R denotes the number of

relevant results for the query image from the total number
N of images. P ðkÞ is the precision of the top k retrieved
images, and relðkÞ is an indicator function equal to 1 if the
item within rank k is a relevant image and 0 otherwise.
Mean average precision (mAP) is adopted for the evaluation
over all query images, i.e.,mAP ¼ 1

Q

PQ
q¼1AP ðqÞ, where Q is

the number of query images.
The N-S score is a metric used for UKBench [145]; the N-S

score is the average for the top-4 precision over the dataset.

5.3 Performance Comparison and Analysis

Overview. Fig. 10 summarizes the performance over 6 data-
sets from 2014 to 2020. Early on, the powerful feature extrac-
tion of DCNNs led to rapid improvements. Subsequent key
ideas have been to extract instance features at the region
level to reduce image clutter [30], and to improve feature
discriminativity by using methods including feature fusion
[86], [148], [151], feature aggregation [32], [69], and feature
embedding [86]. Fine-tuning is an important strategy to
improve performance by tuning deep networks specific for
learning instance features [58], [150]. For instance, the accu-
racy increases steadily from 78.34% [17] to 96.2% [152] on
the Oxford-5k dataset when manifold learning is used to
fine-tune deep networks. The mAP on RParis-6k and
ROxford-5k is smaller than Paris-6k and Oxford-5k, leaving
room for improvement.

We report results using off-the-shelf models (Table 2)
and fine-tuning networks (Table 3). In Table 2, single-pass
and multiple-pass are analyzed, while supervised and
unsupervised fine-tuning are compared in Table 3. Since
there are many aspects that vary across the different meth-
ods, making them not directly comparable, we mainly draw
some general claims or trends based on the collected results.

Evaluation for Single Feedforward Pass. In general, we
observe that fully-connected layers used as feature extractors
may give a lower accuracy (e.g., 74.7% on Holidays in [39]),
compared to using convolutional layers in Table 2. For the
case where the same VGG net is used, the way to embed or
aggregate features is critical. The methods shown in Fig. 5

improve the discrimination of convolutional feature maps
and perform differently in Table 2, 66.9% of R-MAC [95] and
58.9% of SPoC [12] on Oxford-5k, differences which we see
as critical factors for further analysis. If embedded by a BoW
model, the results are competitive on Oxford-5k and Paris-
6k (73.9% and 82.0%, respectively), while its codebook size is
25k, which may affect retrieval efficiency. Moreover, layer-
level feature fusion improves retrieval accuracy. Yu et al.
[102] combine three layers (mAP of 91.4% on Holidays), out-
performing the performance of non-fusion method [12]
(mAP of 80.2%).

Evaluation for Multiple Feedforward Pass. Results for the
methods of Fig. 4 are reported in Table 2. Among them,
extracting image patches densely using VGG [49] has the
highest performance on the 4 datasets [29], and rigid grid
with BoW encoding [115] is competitive (mAP of 87.2% on
Paris-6k). These two methods consider more patches, even
background information, when used for feature extraction.
Instead of generating patches densely, region proposals and
spatial pyramid modeling introduce a degree of purpose
and efficiency in processing image objects. Spatial informa-
tion is better maintained using multiple-pass schemes than
with single-pass. For example, a shallower network (Alex-
Net) and region proposal networks in [61] have a UKBench
N-Score of 3.81, higher than using deeper networks [12], [39],
[102]. Besides feeding image patches into the same network,
model-level fusion also exploits complementary spatial
information to improve accuracy. For instance, as reported
in [52], which combines AlexNet and VGG, the results on
Holidays (81.7% of mAP) and UKBench (3.32 of N-Score) are
better than these in [36] (76.75% and 3.00, respectively).

Evaluation for Supervised Fine-Tuning. Compared to off-
the-shelf models, fine-tuning deep networks usually
improves accuracy, see Table 3. For instance, the result on
Oxford-5k [32] by using a pre-trained VGG is improved
from 66.9% to 81.5% in [41] when a single-margin Siamese
loss is used. Similar trends can be also observed on the
Paris-6k dataset. For classification-based fine-tuning, its
performance may be improved by using powerful DCNNs
and feature enhancement methods such as the attention
mechanism in [5], with an mAP increased from 55.7% in
[39] to 83.8% in [5] on Oxford-5k. As for pairwise ranking
loss fine-tuning, in some cases the loss used for fine-tuning
is essential for performance improvement. For example,
RPN is re-trained using regression loss on Oxford-5k and
Paris-6k (75.1% and 80.7%, respectively) [92]. Its results are
lower than the results from [40] (88.2% and 88.2%, respec-
tively) where a transformation matrix is used to learn
visual similarity. However, when RPN is trained by using

Fig. 10. Performance improved from 2014 to 2020.
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triplet loss such as [82], the effectiveness of retrieval is
improved significantly where the results are 86.1% (on
Oxford-5k) and 94.5% (on Paris-6k). Feature embedding
methods are important for retrieval accuracy; Ong et al.
[41] embedded Conv5 feature maps by Fisher Vector and
achieved an mAP of 81.5% on Oxford-5k, while embedding
feature maps by using VLAD achieves an mAP of 62.5% on
this dataset [43], [44].

Evaluation for Unsupervised Fine-Tuning. Compared to
supervised fine-tuning, unsupervised fine-tuning methods
are relatively less explored. The difficulty for unsupervised
fine-tuning is to mine sample relevance without ground-
truth labels. In general, unsupervised fine-tuning methods

should be expected to have lower performance than super-
vised. For instance, supervised fine-tuning using Siamese
loss [124] achieves an mAP 88.4% on Holidays, while unsu-
pervised fine-tuning using the same loss function in [44],
[46], [131] achieves 82.5%, 83.1%, and 87.5%, respectively.
However, unsupervised fine-tuning methods can achieve a
similar accuracy, even outperform the supervised fine-tun-
ing, if a suitable feature embedding method is used. For
instance, Zhao et al. [135] explore global feature structure
modeling the manifold learning, producing an mAP of
85.4% (on Oxford-5k) and 96.3% (on Paris-6k), which is sim-
ilar to supervised results [82] of 86.1% (on Oxford-5k) and
94.5% (on Paris-6k). As another example, the precision of

TABLE 2
Performance Evaluation of Off-the-Shelf DCNN Models

TABLE 3
Performance Evaluation of Methods in Which DCNN Models are Fine-Tuned, in a Supervised or an Unsupervised Manner
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ResNet-101 fine-tuned by cross entropy loss achieves 83.8%
on Oxford-5k [5], while the precision is further improved to
92.0% when an IME layer is used to embed features and
fine-tuned in an unsupervised way [45]. Note that fine-tun-
ing strategies are related to the type of the target retrieval
datasets. As demonstrated in Table 4 and [71], fine-tuning
on different datasets may produce a different final retrieval
performance.

Network Depth. We compare the efficacy of DCNNs by
depth, following the fine-tuning protocols3 in [46]. For fair
comparisons, all convolutional features from these back-
bone DCNNs are aggregated by MAC [69], and fine-tuned
by using the same loss function with the same learning rate,
thus the adopted methods are the same except for the
DCNN depth. We use the default feature dimension (i.e.,
AlexNet (256), VGG (512), GoogLeNet (1024), ResNet-50/
101 (2048)). The results are reported in Fig. 11a. We observe
that the deeper networks consistently lead to better accu-
racy due to extracting more discriminative features.

Feature Aggregation Methods. The methods of embedding
convolutional feature maps were illustrated in Fig. 5. We
use the off-the-shelf VGG (without updating parameters)
on the Oxford and Paris datasets. The results are reported
in Fig. 11b. We observe that the different ways to aggregate
the same off-the-shelf DCNN leads to differences in
retrieval performance. These reported results provide a ref-
erence for feature aggregation when one uses convolutional
layers for performing retrieval tasks.

Global Feature Dimension. We add fully-connected layers
on the top of pooled convolutional features of ResNet-50 to
obtain global descriptors with their dimensions varying
from 32 to 8192. The results of 5 datasets are shown in
Fig. 11c. It is expected that higher-dimension features usu-
ally capture more semantics and are helpful for retrieval.
The performance tends to be stable when the dimension is
very large.

Number of Image Regions. We compare the retrieval per-
formance when different number of regions are fed and
other components are kept the same, as depicted in
Fig. 11d. Convolutional features of each region are pooled
as 2048-dim regional features by MAC and then aggregated
into a global one. Note that the final memory requirement is
identical for the case that a holistic image is used as input
(i.e., regarded as the case where only one region is used).
Regional inputs on an image are extracted with a 40% over-
lap of neighboring regions and the number varying from 1
to 41. For Oxford-5k, the best result is given by the case
where 9 image regions are used. For the rest datasets, 3
image regions give the best results. Finally, more regions
extracted from one image decline the retrieval mAP. A rea-
son is that features of background or irrelevant regions
have also been aggregated, and negatively affect the
performance.

Fine-Tuning Datasets and Retrieval Reranking. We compare
performance on ROxford-5k, RParis-6k, and GLD-v2, aim-
ing at comparing the role of different fine-tuning training
sets and the effectiveness of retrieval reranking. Table 4 lists
8 experimental scenarios using two network backbones, as
in [71].

TABLE 4
Evaluations of Training Sets and Retrieval Reranking

Conditions Global Local reranking Training set ROxf RPar GLD-v2 testing
GLD-v1 GLD-v2 -clean

ResNet -50

Case 1 ✓ ✗ ✓ ✗ 45.1 63.4 20.4
Case 2 ✓ ✗ ✗ ✓ 51.0 71.5 24.1
Case 3 ✓ ✓ ✓ ✗ 54.2 64.9 22.3
Case 4 ✓ ✓ ✗ ✓ 57.9 71.0 24.3

ResNet -101

Case 5 ✓ ✗ ✓ ✗ 51.2 64.7 21.7
Case 6 ✓ ✗ ✗ ✓ 55.6 72.4 26.0
Case 7 ✓ ✓ ✓ ✗ 59.3 65.5 24.3
Case 8 ✓ ✓ ✗ ✓ 64.0 72.8 26.8

Numerical results are cited from [71].

Fig. 11. (a) The effectiveness of different DCNNs; (b) Comparison of the feature aggregation methods in Fig. 5; (c) The impact of global feature
dimension by using ResNet-50; (d) Performance comparison when aggregating different numbers of image regions.

3. https://github.com/filipradenovic/cnnimageretrieval-pytorch
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Since GLD-v2 provides class-level ground-truth, its
including images show large context diversity and may
pose challenges to the network fine-tuning. Thus, the pre-
processing steps, as proposed in [63], [147], are necessary to
select the more coherent images, referring to the GLD-v2-
clean subset. As a result, when using the global features
only, this cleaned version of the training set improves the
performance, as observed in Cases 1/5 and Cases 2/6 for
ResNet-50/ResNet-101, respectively. As an important post-
processing strategy, reranking further boosts the accuracy
after the initial filtering step by using global features.

6 CONCLUSIONS AND OUTLOOKS

As a comprehensive yet timely survey on instance retrieval
using deep learning, this paper has discussed the main chal-
lenges, presented a taxonomy of recent developments
according to their roles in implementing instance retrieval,
highlighted the recent representative methods and analyzed
their merits and demerits, discussed the datasets, evaluation
protocols, and SOTA performance. Nowadays the exponen-
tially increasing amount of image and video data due to sur-
veillance, e-commerce, medical images, handheld devices,
robotics, etc. , offers an endless potential for applications of
instance retrieval. Although significant progress has been
made, as discussed in Section 1.2, the main challenges in
instance retrieval have not been fully addressed. Below we
identify a number of promising directions for future
research.

(1) Accurate and robust feature representations. One of the
main challenges in instance retrieval is the large intra-class
variations due to changes in viewpoint, scale, illumination,
weather condition and background clutter etc. , as we dis-
cussed in Section 1.2. However, DCNN representations
have very little invariance, even though trained with lots of
augmented data [146]. Fortunately, before deep learning,
with instance retrieval there are lots of important ideas in
handling such intra-class variations like local interest point
detectors and local invariant descriptors. Therefore, it is
worth enabling DCNN to learn more accurate and robust
representations via leveraging such traditional wisdom to
design better DCNNs. In addition, unlike most objects in
existing benchmarks which are rigid, planar and textured,
textureless objects, 3D objects, transparent objects, reflective
surfaces, etc . are still very hard to find.

In addition, pursuing accuracy alone is not sufficient, as
instance retrieval systems should be able to resist potential
adversarial attacks. Recently, deep networks have been
proven to be fooled rather easily by adversarial examples
[157], i.e., images added with intentionally designed yet
nearly imperceptible perturbations, which raises serious
safety and robustness concerns. However, adversarial
robustness in instance retrieval [157], [158] has received
very little attention, and should merit further effort.

(2) Compact and efficient deep representations. In instance
retrieval, searching efficiently is as critical as searching
accurately, especially for the pervasive mobile or wearable
devices with very limited computing resources. However,
existing methods adopt large scale, energy hungry DCNNs
that are very difficult to be deployed in mobile devices.
Hence, there has been pressing needs to develop compact,

efficient, yet reusable deep representations tailored to the
resource limited devices, like using binary neural networks
[64], [85], [86].

(3) Learning with fewer labels.Deep learning require a large
amount of high-quality labeled dataset to achieve high accu-
racy. The presence of labels errors or the limited amount of
labeled data can greatly degrade DCNN’s accuracy. How-
ever, collecting massive amounts of accurately labeled data
is costly. In practical scenarios, datasets like GLDv2 [5], [63]
have long-tailed distributions, and noisy labels. Thus, to
address such limitations, few shot learning [159], self-super-
vised learning [160], imbalanced learning [63], noisy label
aware learning [161] etc . should be paid more attention in
instance retrieval in the future.

(4) Continual learning for instance retrieval. In specific, the
current IIR methods make restrictive assumptions, such as
the training data being enough and stationary, retraining
from scratch being possible when new data becomes avail-
able, which is problematic in realistic conditions. Our living
world is continuously varying, and in general data distribu-
tions are often non-stationary, new data may be added, and
previously unseen classes may be encountered. Thus, con-
tinual learning plays a vital role in continuously updating
the IIR systems. The key issues are how to retain and utilize
the previously learned knowledge, how to update the
retrieval system as new images becomes available, and how
to learn and improve over time.

(5) Privacy-aware instance retrieval. Most IIR systems con-
centrate on improving the accuracy or efficiency perfor-
mance, and the higher performance might come at the cost
of users’ privacy. Therefore, in some cases, such as person-
alized search systems, the privacy protection problem is
also an important issue to be considered. Deep models
should be privacy-aware and protect users’ personalized
searching experience to avoid their worries about using
such IIR systems.

(6) Video instance retrieval. Searching a specific instance in
an image cannot always meet the requirements in some sce-
narios such as the video surveillance system in the field of
searching criminals. Currently, with the rapid growth of
video data, retrieving a certain object, place, or action in vid-
eos has become more and more important and highly neces-
sary in the future. For video instance retrieval, 3D-CNNs
models need to be built to learn video’s spatio-temporal
representations to compute the semantic similarity of
instances.
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