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A Memorizing and Generalizing Framework for
Lifelong Person Re-Identification

Nan Pu , Zhun Zhong , Nicu Sebe , Senior Member, IEEE, and Michael S. Lew , Member, IEEE

Abstract—In this paper, we introduce a challenging yet practical
setting for person re-identification (ReID) task, named lifelong
person re-identification (LReID), which aims to continuously train
a ReID model across multiple domains and the trained model is
required to generalize well on both seen and unseen domains.
It is therefore critical to learn a ReID model that can learn a
generalized representation without forgetting knowledge of seen
domains. In this paper, we propose a new MEmorizing and GEner-
alizing framework (MEGE) for LReID, which can jointly prevent
the model from forgetting and improve its generalization abil-
ity. Specifically, our MEGE is composed of two novel modules,
i.e., Adaptive Knowledge Accumulation (AKA) and differentiable
Ranking Consistency Distillation (RCD). Taking inspiration from
the cognitive processes in the human brain, we endow AKA with
two special capacities, knowledge representation and knowledge
operation by graph convolution networks. AKA can effectively
mitigate catastrophic forgetting on seen domains while improving
the generalization ability to unseen domains. By considering the
ranking factor that is specifically important in ReID, RCD is de-
signed to distill the ranking knowledge in a differentiable manner,
which can further prevent the catastrophic forgetting. To support-
ing the study of LReID, we build a new and large-scale benchmark
with two practical evaluation protocols that consider the metrics
of non-forgetting and generalization. Experiments demonstrate
that 1) our MEGE framework can effectively improve the perfor-
mance on seen and unseen domains under the domain-incremental
learning constraint, and that 2) the proposed MEGE outperforms
state-of-the-art competitors by large margins.

Index Terms—Person re-identification, lifelong learning, know-
ledge accumulation, ranking distillation.
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I. INTRODUCTION

P ERSON re-identification (ReID), which aims at retrieving
instances of the persons across disjoint camera views, has

received increasing attention in the computer vision commu-
nity [1], [2]. Although the advanced deep learning methods [3],
[4], [5], [6], [7], [8] have shown a powerful feature generalization
ability in ReID [9], [10], their training process heavily limited
by the fixed and stationary datasets [11], [12], [13], which means
that the all data need to be always accessible during the training
process. However, this strict condition is hardly satisfied in many
practical scenarios where the data are continuously increasing
from different domains. For instance, in the smart surveillance
systems that are deployed over a mass of crossroads, millions
of new images are captured every day. To handle the newly
incoming data, the systems are required to possess the ability of
incremental or lifelong learning.

To meet the real-world requirements, we propose a chal-
lenging yet practical ReID setting, called lifelong person re-
identification (LReID). In LReID, the model is required to
incrementally learn and accumulate the informative knowledge
from a stream of seen domains, and then the trained model needs
to be evaluated on the test data of both seen and unseen domains
(see Fig. 1). Thus, memorizing the informative knowledge of
seen domains and obtaining generalized representation are both
important during the training process. Compared with conven-
tional lifelong learning tasks and existing ReID settings, our
LReID has four differences that make it more challenging and
practical. 1) Unlike the existing lifelong classification tasks [14],
[15] that mainly focus on reducing the forgetting rate on the
seen classes, LReID additionally concentrates on improving the
discrimination of the model on unseen classes that never appear
during the training stage. This is because, as a retrieval task,
ReID typically assumes that the training and testing sets are from
non-overlapped identities/classes. 2) Existing lifelong learning
tasks commonly assume that all the data belong to the same
domain. In contrast, in LReID, there are large domain shifts
between training data of different steps, and the testing data
are composed of both seen and unseen domains. The existence
of domain gap largely rises the difficulty of the LReID. 3)
LReID is a more challenging since the intra-class appearance
variations in ReID are significantly subtler than those in tradi-
tional classification tasks (e.g., CIFAR [16] and ImageNet [17]).
This particularly increases the challenges of lifelong learning,
as the model has to learn a discriminative representation that
is robust to unseen classes/identities across multiple learning
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Fig. 1. Pipeline of lifelong person re-identification (LReID). The model is trained in multiple steps, each of which includes images of new identities from a new
domain. The data of previous domains are not available in the following steps. During testing, the model is required to be evaluated on testing images of both seen
and unseen domains.

TABLE I
THE COMPARISON OF DIFFERENT SETTINGS

steps. 4) Compared with the existing ReID settings summarized
in Table I, LReID allows the model to incrementally accumulate
the knowledge of already-trained (seen) domains and improve
the model’s generalization ability on unseen domains in the
ever-changing real-world environment. A recent work [18] in-
troduces a continual representation learning (CRL) setting for
bio-metric identification, which shares a similar motivation with
our LReID. However, CRL overlooks the practical aspect of
domain-incremental data collection, which is commonly en-
countered in real-world ReID systems. This renders the CRL
setting impractical and reduces the associated challenges, as
the models under CRL are less susceptible to the issue of
catastrophic forgetting.

To this end, we propose a novel Memorizing and Generalizing
framework (MEGE) to solve the challenges in LReID. Our
MEGE consists of two novel components, Adaptive Knowledge
Accumulation (AKA) and differentiable Ranking Consistency
Distillation (RCD). They cooperatively help the model to learn
the generalized representation without forgetting knowledge
from seen data. Concretely, AKA is designed to adaptively
extract the underlying and transferable knowledge from old
domains and leverage this knowledge to facilitate learning
representations with a robust generalization performance on
unseen domains. The mechanism of AKA is inspired by the
cognitive processes in the human brain. As discovered by [19],
[20], when a visual cognitive process starts, the human brain
retrieves relevant representational content (knowledge) from
high-dimensional memories based on similarity or familiarity.
Then, the human brain summarizes the captured information,

and updates relevant knowledge or allocates new memory. Such
cognitive processes can be decomposed into “representations”
and “operations” sub-processes [19]. Motivated by this, we
attempt to mimic the cognitive processes during LReID and
endow AKA with lifelong learning capabilities by separately
accomplishing knowledge representation and knowledge oper-
ation. Specifically, we first represent the learned knowledge by
an accumulated knowledge graph (AKG). Then, given mini-
batch samples, we temporally construct an instance similarity
graph (ISG) based on their relationships. Next, AKA establishes
cross-graph links between the AKG and the ISG, and executes a
graph convolution for information query and propagation. Such
operations enable the AKG to transfer the previous knowledge
to each current instance. Meanwhile, AKG is updated through
summarizing the relationships among current instances. Further-
more, we integrate plasticity loss and stability loss into the AKA,
which encourages AKG to learn the generalized representation
without forgetting in a balanced manner.

In our previous work [21], we directly employ a classical
Logit-based Knowledge Distillation (LKD) technique [22] to
improve the anti-forgetting ability. However, this approach ig-
nores the underlying adjacent relations between samples that are
vital in ReID tasks. In other words, as a retrieval task, ReID aims
to learn discriminative representations based on inter-sample
ranking relations rather than classification probability of each
sample. In light of this, as a notable extension of our previous
work [21], we propose a differentiable Ranking Consistency
Distillation (RCD) approach to enforce the model to explicitly
consider the knowledge of relations between samples during
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the distillation process, thereby promoting the lifelong learning
capability of the ReID model. RCD is built upon the classical
Spearman’s footrule distance (SFD) [23], enabling us to measure
the discrepancies of affinity relationship of samples between
the teacher and the student models. However, since the ranking
function is discontinuous, SFD cannot be used to optimize
the model with back-propagation. To address this issue, we
propose to approximate SFD by a hyperbolic tangent function,
allowing our RCD to be differentiable for model optimization. In
addition, considering the importance of each ranking position,
we propose to dynamically learn the position-wise weights
during the distillation process, which encourages the model to
automatically focus on informative ranking knowledge and thus
further improves the anti-forgetting ability.

In summary, our contributions are featured as follows:
� We propose the LReID setting, which places ReID problem

under a lifelong learning scenario. The LReID is chal-
lenging but practical, raising a new perspective toward the
real-world ReID application.

� We build a large-scale benchmark along with two evalua-
tion protocols for supporting the study of LReID.

� We introduce a human-like approach, Adaptive Knowl-
edge Accumulation (AKA) approach, for LReID, which
can adaptively update previous knowledge and learn the
generalized knowledge by a learnable knowledge graph.

� We present a Ranking Consistency Distillation (RCD),
which explicitly distills the ranking knowledge in a dif-
ferentiable and weight-dynamic manner.

� We design the Memorizing and Generalizing framework
(MEGE) that derives the mutual benefits of the proposed
AKA and RCD. Extensive experiments demonstrate the
effectiveness of our MEGE in learning a generalized rep-
resentation without forgetting previous knowledge. Our
MEGE outperforms state-of-the-art methods by a large
margin under our built LReID benchmark.

II. RELATED WORK

A. Person Re-Identification

Person ReID has been widely studied in the last decade. As
summarized in Table I, the existing works are mainly conducted
on four settings. 1) In the Fully-Supervised setting, the train-
ing data are fully labeled, and the test data share the same
distribution with the training data. Existing fully-supervised
methods mainly focus on investigating and exploiting different
network structures (e.g., omni-scale network [24], part-based
network [25], pyramid network [26]) and loss functions (e.g.,
softmax-based losses [27], triplet-based losses [28], and other
kinds of losses [29], [30]).

2) In the Unsupervised Domain Adaptation setting [3], [31],
we are given a labeled source domain and an unlabeled target
domain. The goal is to mitigate the domain gaps between source
and target domains and thus to learn a model that is robust to
target testing data. 3) The objective of the Pure Unsupervised
ReID [32] is to learn a discriminative ReID model with only
unlabeled training data. In general, the model is trained by a
clustering strategy and the test data are assumed to be sampled

from the same distribution as training data. 4) Under the Domain
generalization setting [9], [33], we are provided with labeled
data captured from one domain or multiple domains and the
trained model is evaluated on unseen target domains.

Although these explorations have narrowed the gaps between
ReID algorithms and real applications, they ignore the impor-
tant lifelong learning scenario that is commonly encountered
in practice. Recently, the one-pass person ReID setting [34]
and the continual bio-metric representation learning (CRL) set-
ting [18] were introduced. However, CRL neglects the domain-
incremental data collection manner that pervasively exists in
practical ReID applications so that they wrongly think that
lifelong ReID models hardly encounters catastrophic forgetting
problems. On the other hand, due to the distinct distribution
discrepancies between the training datasets, the model in our
LReID setting is harder to continuously accumulate knowledge,
compared with that in the CRL setting. We show experimen-
tal evidences in Table VI. Hence, this paper proposes a more
practical and challenging LReID setting for real-world person
ReID. Note that in this paper, our main focus is on the conven-
tional ReID task, where individuals maintain consistent clothing
appearances. However, we acknowledge that this assumption
does not always hold in real-world scenarios, where persons
wear different clothes, as introduced in cloth-changing ReID
studies [35], [36], [37], [38], [39]. Therefore, including cloth-
changing ReID scenarios in our LReID setting would provide a
more challenging yet practical study for the community.

B. Lifelong Learning

Lifelong learning [40] is also named continual learning [14],
[15], incremental learning [41] or sequential learning [42]. The
study of it can be dated back to several decades. Thanks to
the impressive progresses in deep neural networks, lifelong
learning has regained the spotlight and is widely employed in
various vision and learning tasks, such as object recognition [15],
[43], object detection [44], image generation [45], reinforcement
learning [46], [47], unsupervised learning [48] and zero-shot
learning [49]. In lifelong learning, the model is required to
have the ability to learn from a sequence of tasks and to trans-
fer knowledge obtained from earlier tasks to a later one. The
key challenge for lifelong learning is catastrophic forgetting,
in which the model will encounter a significant performance
degradation on previous tasks after training on new tasks. Ex-
isting methods can be divided into three categories, including
knowledge distillation by the teacher-student structure [22],
regularizing the parameter updates [50] when training with new
tasks, and learning with stored or generated image samples of
previous tasks [15].

Despite the effectiveness of the above mentioned methods,
most of them are not well suitable for LReID due to the
following four reasons. 1) The number of classes in ReID is
much larger than that in conventional lifelong learning tasks.
Specifically, the popular benchmarks for conventional lifelong
learning tasks include MNIST [51], CORe50 [52], CIFAR-
100 [16], CUB [53] and ImageNet [17]. Except for ImageNet,
other benchmarks are small-scale in terms of classes numbers.
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In contrast, the commonly used ReID datasets include more
than 1,000 classes/identities for each, e.g., Market-1501 [11],
MSMT17 [13], and CUHK03 [54]. 2) ReID datasets are more
imbalanced because the number of samples per class ranges
from 2 to 100 [55]. Since model degradation typically happens
when learning from tail classes, LReID also raises a few-shot
learning challenge. 3) Similar with the fine-grained retrieval
task [56], the inter-class appearance variations in ReID are
significantly subtler than in generic classification tasks, which
further increases the difficulty of lifelong learning. 4) Existing
lifelong learning works assume that the training and testing data
have the same classes, while the testing data are always from
unseen classes in ReID. The above four factors make LReID
very different from traditional lifelong learning tasks and thus
bring unique challenges for LReID.

C. Graph Convolutional Networks

Recently, graph-based deep learning methods have received
more and more attention from researchers. Inspired by con-
volutional neural networks (CNNs) in computer vision, many
graph-based neural networks (GNN) have been designed, such
as Graph Convolutional Network (GCN) [57] and graph atten-
tion networks (GATs) [58]. The techniques of GNN are applied
to various tasks, such as semi-supervised classification [57],
visual question answering [59], image captioning [60], shape
completion [61] and point cloud segmentation [62]. Moreover,
due to the advantage of GNN in reasoning and aggregating
graph data, some works apply GNN to solve various ReID
applications, e.g., positive pair prediction [31] for unsupervised
domain adaptation and spatial-temporal GCN [63] for video-
based ReID. Different from them, in this paper, we explore
GNN in lifelong ReID setting, in which two different graph
structures are proposed to learn informative knowledge through
a cross-graph communication manner instead of an intra-graph
propagation way.

D. Knowledge Distillation

Knowledge distillation (KD) is a technique to enable the
student model to learn richer information from the teacher,
which has become a popular and effective way to retain
the learned knowledge devoid of forgetting in incremental
tasks [64]. The most two popular methods are logit-based
knowledge distillation (LKD) [22] and feature-based knowledge
distillation (FKD) [44], which constrain the discrepancies of
teacher and student models on the logit-level and feature-level
respectively. Many metrics can be used to measure the teacher-
student discrepancy, such as cross-entropy [65], l1-distance [66],
l2-distance [67], Gramian matrix [68], Kullback-Leibler (KL)
divergence [69], and Maximum Mean Discrepancy (MMD) [70].
Some recent methods [71], [72], [73] also consider additional
inter-instance relationships during distillation, such Similarity-
Preserving knowledge Distillation (SPD) [72] and Correlation
Distillation (CD) [73]. Different from these methods, we pro-
pose a Ranking Consistency Distillation (RCD) method that is
tailor-made for the ReID task. Our RCD considers the ranking

information during the distillation process and optimizes the
network in a differentiable manner.

III. LIFELONG PERSON RE-IDENTIFICATION

A. Problem Definition

In this section, we introduce the setting definition and the
experimental setup of lifelong person re-identification (LReID).
LReID aims at learning one unified model from T domains in
an incremental fashion. Suppose we have a stream of datasets
S = {St}Tt=1. The dataset of the t-th domain is represented as
St = {Str

t ,Ste
t }, where Str

t and Ste
t indicate the training set

and testing set respectively. Str
t = {(xi,yi)}|S

tr
t |

i=1 contains the
training image set X tr

t and the corresponding label set Ytr
t ,

where |Str
t | indicates the number of training samples. Simi-

larly, Ste
t = {X te

t ,Yte
t }, which is only used for evaluation. The

identities/classes of training and testing sets are disjoint, so that
Ytr
t ∩ Yte

t = ∅. In addition, the identities of different domains
are totally different, we thus have Yt ∩ Y�= t = ∅. At the t-th
training step, only Str

t is available while the training data from
previous domains are NOT available any more. For evaluation,
we estimate the retrieval performance on the testing sets of
all encountered (seen) domains, i.e., Ste

1 , . . .,Ste
t , respectively.

Moreover, to verify the generalization ability, the trained model
is also evaluated on a new testing set T te, which is composed
of the testing sets of several unseen target domains. Commonly,
there are significant domain shifts between different (both seen
and unseen) domains, increasing the difficulties of training and
testing stages. Since we mainly elaborate the training stages in
the following, we will omit the superscript{tr, te} for simplicity.

B. Baseline for LReID

A straightforward approach for LReID is continually finetun-
ing a pre-trained model on the new domains. However, such
simple finetuning strategy will cause two severe problems. 1)
The trained model will forget the knowledge previously learned
on old domains. That is, the performance on old domains will
deteriorate drastically due to the well-known catastrophic forget-
ting [74]. 2) The trained model will be biased towards the training
domain at hand. In this situation, the model cannot effectively
refer to historical knowledge from old domains, hampering the
generalization ability on both seen and unseen domains.

To deal with the above two challenges, we introduce a baseline
solution based on knowledge distillation to address LReID. The
training model of the baseline consists of a feature extractor
h(·; θ) with parameters θ and an identification classifier g(·;φ)
with parameters φ. The whole network f(·; θ, φ) is the mapping
from the input space to confidence scores, which is defined
as: f(·; θ, φ) = g(h(·; θ);φ). At the beginning of the stage t,
we initialize f(·; θ, φ) by the model obtained by the previous
stage t− 1, which is represented by f̂(·; θ̂, φ̂). Here, we omit
the step indicator t for simplicity. In addition, the dimension
of the classifier φ is extended to

∑t
i=1 |Yi|, where |Yi| is the

number of classes in domain i.1 During training, the network

1At the first stage, θ is initialized by ImageNet [16] pretrained model and φ
is randomly initialized with the dimension of |Y1|.
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Fig. 2. Overview of the proposed MEGE framework. Our MEGE includes an adaptive knowledge accumulation (AKA) module and a ranking consistency
distillation (RCD) module. The former encourages the model to obtain anti-forgetting and generalization abilities by learnable knowledge graphs. The latter enforces
the model to maintain more informative knowledge from the previous domains by distilling ranking results. In addition, RCD is optimized in a differentiable and
dynamically-weighting manner.

f(·; θ, φ) is optimized by the traditional cross-entropy loss,

Lc = −
∑

(x,y)∈S
y log (σ (f (x; θ, φ))) , (1)

where σ is softmax function. x and y are the training sample
and its identity label of the current domain at t-th training step,
respectively. Note that, the softmax function is only applied on
the outputs of the current domain.

In addition, we adopt the logit-based knowledge distillation
(LKD) [22] technique for mitigating forgetting on previous t− 1
domains. By introducing a teacher-student structure, the LKD
technique considers the discrepancies between the outputs of
the student and teacher models (i.e., the current model and the
frozen model copied from the initial states of the current model
before training on the current domain) in a probabilistic space
for each instance. The loss function is defined as:

Ld = −
∑
x∈S

n∑
j=1

σ
(
f(x; θ̂, φ̂)

)
j
log

(
σ (f(x; θ, φ))j

)
, (2)

where n =
∑t−1

i=1 |Yi| is the number of the classes of previous
t− 1 domains. Note that, the softmax function is only applied
on the outputs of the previous t− 1 domains.

The total objective of the baseline method is formulated as:

Lbase = Lc + γLd, (3)

where γ is the weight of the knowledge distillation loss. We
set γ to 1 in our experiments, which achieves consistent well
performance in all settings. Note that, onlyf(·; θ, φ) is optimized
while f̂(·; θ̂, φ̂) is fixed during training.

IV. MEMORIZING AND GENERALIZING FRAMEWORK

Although the proposed baseline approach is able to mitigate
catastrophic forgetting in the LReID setting, the abilities of gen-
eralizing on unseen domains and flexibly learning informative
knowledge of the current domain are still limited, resulting in a
large margin to the up-bound performance of the model trained
by all domains jointly. In this paper, we carefully consider the
characteristics of LReID (discussed in Section I) and further pro-
pose a novel Memorizing and Generalizing (MEGE) framework
upon the baseline for facilitating lifelong learning. As shown in
Fig. 2, our MEGE consists of an Adaptive Knowledge Accumu-
lation (AKA) module and a differentiable Ranking Consistency
Distillation (RCD) module, which collaboratively improve the
abilities of generalizing and anti-forgetting. We will introduce
AKA and RCD in the following sections.

A. Adaptive Knowledge Accumulation

In this section, we introduce the details of the proposed
Adaptive Knowledge Accumulation (AKA). The goal of AKA
is to improve the abilities of generalizing and anti-forgetting by
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learning transferable and informative knowledge. Referring to
biological prior knowledge, AKA mimics the cognitive process
of the human brain [19] to construct two relatively independent
sub-processes: knowledge representation and knowledge opera-
tion. The former aims at establishing an informative knowledge
bank by explicitly learning and storing knowledge representa-
tions. The latter enables the model to leverage the knowledge
banks learned from previous domains to improve the general-
ization ability as well as to update the knowledge bank with less
forgetting. The illustration of AKA is shown in the low-right
part of Fig. 2. We next elaborate the knowledge representation
and knowledge operation.

1) Knowledge Representation: AKA implements knowl-
edge representation (KR) by constructing two different graph
structures: instance similarity graph (ISG) and accumulated
knowledge graph (AKG). Specifically, ISG is used for repre-
senting the potential knowledge in a mini-batch. On the other
hand, AKG focuses on accumulating the transferable knowledge
that is learned from already-trained domains.

Instance Similarity Graph: To mine and represent the struc-
tural knowledge contained in a mini-batch samples, we construct
a fully-connected graph based on similarities of these samples,
called Instance Similarity Graph (ISG). Specifically, given a
mini-batch with N b samples from the current domain, the ISG
is defined as GS = (AS ,VS), whereAS ∈ R

Nb×Nb
is the edge

set and VS ∈ R
Nb×d is the vertex set. The vertex set VS are

the features for the mini-batch samples, which are obtained
by g(x;φ). The edge weight AS

ij is measured by a learnable
L1-based distance between the corresponding vertices VS

i and
VS

j :

AS
ij = ρ

(
WS

∣∣VS
i −VS

j

∣∣+ bS
)
, (4)

where WS and bS represent learnable parameters, and ρ is
Sigmoid function. That is, the edge weights are parameterized
and learned from training processes. During each mini-batch
training, our AKA temporarily constructs an ISG to mine prox-
imity relationships between instances as well as provides a
path to allow inter-instance information to flow mutually. This
mechanism enables the model to learn generalized knowledge
instead of overfitting on independent instances.

Accumulated Knowledge Graph: Unlike the ISG that is tem-
porarily built for each mini-batch training, we construct a fixed-
size Accumulated Knowledge Graph (AKG) and maintain the
AKG during the whole lifelong training process, which stores
and updates the accumulated knowledge learned across previous
domains. Specifically, the AKG is denoted asGK = (AK ,VK).
The VK ∈ R

Nk×d is the vertex set, where d is the feature
dimension and Nk is the number of the vertices of AKG.
Correspondingly, the AK ∈ R

Nk×Nk
is the adjacent matrix of

AKG. Analogous to the definition of ISG in (4), the edge weight
between VK

i and VK
j is defined as:

AK
ij = ρ

(
WK(

∣∣VK
i −VK

j

∣∣) + bK
)
, (5)

where WK and bK are learnable parameters. The design
of AKG is based on the following considerations: 1) During
domain-incremental training, domains arrive one after another

in a sequence and the vertices of AKG are expected to be
dynamically updated in a timely manner. Therefore, the vertex
representations are parameterized and learned at the training
time. 2) To encourage the diversity of knowledge encoded in
the AKG, the vertex representations are randomly initialized.
3) The edge weights in the ISG and the AKG are calculated by
independent learnable parameters, as the manners of knowledge
organizations in two graphs have distinct differences. The former
focuses on the relationship among current samples. The latter
is required to consider both its own structure and efficient
knowledge transformation that is elaborated in next section. This
design is different from the graph matching network [75] where
the two graphs share the same weights.

In this way, the vertices of AKG are encouraged to represent
different types of knowledge (e.g., the representative person
appearance and structure) and the corresponding edges are
automatically constructed to reflect the relationship between
such knowledge. As a result, AKG tends to learn common
meta-knowledge for generalizing on unseen domains well.

2) Knowledge Operation: Based on the recent discoveries in
cognitive science [19], [20], our brains can continually learn new
knowledge with less forgetting, which largely attribute to the
relative independence between the “knowledge operation” and
the “knowledge representation” in a complex cognitive process.
Motivated by this, different from the proposed KR that employs
parameterized edge weights to organize knowledge, we apply
non-parameterized weights for implementing the knowledge
operation (KO) with less domain dependence. Furthermore, we
decompose the KO into knowledge transfer and knowledge ac-
cumulation stages: the former aims at extracting the knowledge
of AKG accumulated from the previous learning processes and
then transfers such knowledge to benefit the model’s ability to
generalize on unseen domains; the latter enables the AKG to
self-update so as to adaptively accumulate the learned knowl-
edge.

Knowledge Transfer: To selectively transfer knowledge from
the AKG to the ISG, we propose a novel cross-graph communi-
cation (CGC) mechanism based on graph convolution networks
(GCNs) [57]. Specifically, the proposed CGC can be divided
into the following four steps.

The first step involves establishing inter-graph links based on
vertex similarity. For any two vertices from different graphs VS

i

and VK
j , the weight of the cross-graph edge AC

ij is calculated
by:

AC
ij =

exp(− 1
2

∥∥VS
i −VK

j

∥∥2
2
)∑Nk

k=1 exp(− 1
2

∥∥VS
i −VK

k

∥∥2
2
)
. (6)

Note that, unlike designing parameterized weights for knowl-
edge representation, we use non-parameterized weights for
knowledge operation. The reason will be explained in
Section IV-B.

In the second step, a new fully-connected joint graph is
constructed by considering both inter-graph and intra-graph
structures to associate the AKG with the ISG. The joint graph
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GJ = (AJ ,VJ ) is defined by:

AJ =

[
AS AC

(AC)T AK

]
,VJ =

[
VS

VK

]
, (7)

where AJ ∈ R
(Nb+Nk)×(Nb+Nk) and VJ ∈ R

(Nb+Nk)×d are
the adjacent matrix and vertex matrix of the joint graph, respec-
tively.

After constructing the joint graph, the third step involves
propagating the most related knowledge from the AKG to the
ISG via a graph convolution, which is formulated as:

VG = δ
(
AJ (VJWJ)

)
, (8)

where VG ∈ R(Nb+Nk)×d is the vertex embedding after one-
layer “message-passing” [76] andWJ is a learnable weight ma-
trix of the GCN layer followed by a non-linear function δ, e.g.,
ReLU [77]. Moreover, from the results in Table IX, we experi-
mentally found that stacking more GCN layers cannot acquire
significant improvements, even worse on the anti-forgetting
evaluation. Thus, we employ one-layer GCN to accomplish
information propagation for simplicity.

Finally, we obtain the information-propagated feature repre-
sentation of ISG by passing features through the GCN, which is
formulated as:

V̄S = {VG
i |i ∈ [1, N b]}. (9)

In short, the main purposes of CGC are: 1) to query the
relevant knowledge from the previous training experience in the
AKG for promoting the training of a new domain; 2) to enable
the intra- and inter-graph information to propagate mutually,
thereby guiding models towards a better optimization.

Knowledge Accumulation: Maintaining a knowledge graph
within limited storage resource during lifelong learning is in-
evitably expected to compact memorized knowledge and se-
lectively update the knowledge graph. To achieve this goal
during the optimization of AKG, we first consider the CGC
mechanism as a knowledge retrieval process to extract the
related knowledge contained in the AKG and leverage these
feedback knowledge to complement the original features. Then,
we propose a new stability-plasticity objective to force the AKG
to learn transferable and generalized knowledge while reducing
the manipulation of the previously-learned representations in
the AKG. The whole process is elaborated in the following
paragraphs.

To begin with, we utilize the vertices VS of the ISG as
query representations to retrieve pertinent knowledge from the
AKG. Consequently, corresponding feedback representations
V̄S are generated. As query representations primarily contain
domain-specific information and feedback representations are
extracted from multiple previous domains, these two types of
representation are deemed complementary for composing gener-
alized representations. To jointly optimize these representations,
we aggregate VS and V̄S by computing their sum, which is
formulated as:

F =
1

2

(
VS + V̄S

)
. (10)

In order to enhance the generalization capability of the fused
representations, we introduce a plasticity objective:

Lp =
1

N b

∑
(a,p,n)

ln (1 + exp (Δ(Fa,Fp)−Δ(Fa,Fn))) ,

(11)
where Δ denotes a distance function, e.g., L2 distance or cosine
distance. a, p and n donate the anchor, positive and negative
instances in a mini-batch respectively, which are selected by
online hard-mining sampling strategy [28].

However, optimizing the AKG solely based on the plasticity
objective Lp results in overfitting on the current domain and
significant changes in the AKG’s vertices. This exacerbates
the issue of catastrophic forgetting. To solve this problem, we
propose a stability objective to punish the large movements of
AKG’s vertices during the update process from the ending state
V̂K of last training step to current state VK . The stability loss
function is formulated as:

Ls =
1

Nk

Nk∑
i=1

ln
(
1 + exp

(
Δ(VK

i , V̂K
i

))
. (12)

Both (11) and (12) are used to optimize the parameters of AKG.
However, their gradient flowing into the feature extractor h(·; θ)
is detached. We will discuss this design in Section IV-B. Through
enforcing such stability-plasticity dilemma, the AKG accumu-
lates more refine and general knowledge from comparison with
previous knowledge and thus generates better representation for
generalizable ReID.

During the training on the t-th domain, we use the data of St

to train the feature extractor, classifier, ISG, and AKG, without
accessing any data from previous domains. The loss function of
the AKA framework is formulated as:

Laka = λpLp + λsLs, (13)

where λs and λp are plasticity-stability weights. When λp is
relatively larger than λs, the AKG focuses on learning new
knowledge while paying few attentions on preserving previous
knowledge. On the contrary, the AKG maintains approximately
fixed knowledge representations and the model is benefited from
the knowledge learned from only the first training domain in-
stead of continuously accumulating knowledge across different
domains. The optimal balance between these two terms not only
ensures the stability of knowledge graph, but also endows AKG
with a plasticity that allows new knowledge to be incorporated
and accumulated.

B. Discussion

Q1: Why use parameterized edge weights for the knowl-
edge representation but non-parameterized edge weights for
the knowledge operation? In the sight of [78], the partial pa-
rameters of top layers favor becoming domain-specific during
incremental training on different domains, which leads to se-
vere performance degradation on previous domains. In addition,
according to the biological inspiration [19], the representation
and operation should be independent. To this end, when per-
forming the knowledge transfer, a non-parameterized metric
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allows the model to treat different domains with less bias so
that the knowledge transferred from the AKG can generalize
on unseen domains well. In contrast, the knowledge represen-
tation that focuses on summarizing and updating knowledge
requires the power of parameterization. Thus, we design the
non-parameterized metrics for the knowledge representation.
Furthermore, we conduct the experiments in Table VIII to verify
our analyses. Our careful design achieves the best performance
compared with other variants.

Q2: Why detach the gradient of GCN? Without detaching
gradient, AKA will tend to learn relatively similar knowl-
edge/representation as the feature extractor, which is caused
by the degradation of GCN [79]. This largely limits the power
of graph-guided structure and hampers AKA to learn more
generalizable knowledge. Instead, detaching the gradient en-
courages AKA to independently learn diverse and generalizable
knowledge across different domains, making AKA learn new
knowledge that is different but complementary to the feature
extractor. In Fig. 7, we experimentally demonstrate the above
explanation by comparing the difference between the ISG rep-
resentations before and after propagation (VS and V̄S) through
training.

C. Ranking Consistency Distillation

ReID is a retrieval task, where modeling the inter-instance
ranking relations during training is of importance in improving
testing accuracy. However, in our AKA framework, we do not
explicitly consider the inter-instance ranking relations during the
lifelong learning process, which will lead the model to largely
ignore such important knowledge and thus to have sub-optimal
anti-forgetting ability. To solve this problem, we propose a novel
Ranking Consistency Distillation (RCD) loss, which enables
us to constrain the consistency of the ranking lists generated
from the student and the teacher models and thus efficiently
preserves the knowledge of previous domains. RCD is designed
based on the classical Spearman’s footrule distance (SFD) [23].
However, since SFD is a non-continuous ranking function, it
cannot be directly used for optimization. To solve this challenge,
we propose to use a differentiable surrogate function to make
our RCD compatible with general optimizers (e.g., SGD [80]
and Adam [81]). Moreover, considering the varying importance
of each position in a ranking list, we inject learnable position
weights into RCD to further facilitate the training process. Next,
we will first revisit SFD and then introduce our RCD in detail.

1) Revisit SFD in FKD: In general, SFD measures the l1
distance between a pair of ranking lists or permutations. To
formulate the SFD under the context of LReID, we first calculate
the elements in ranking lists, and then derive the formula of SFD.

Given two feature sets generated from the student and the
teacher models, VS and V̂S ∈ R

Nb×d, the cosine similarity
matrices of them are defined as:

S = (VS/
∥∥VS

∥∥)·(VS/
∥∥VS

∥∥)T ∈ R
Nb×Nb

,

Ŝ = (V̂S/
∥∥∥V̂S

∥∥∥)·(V̂S/
∥∥∥V̂S

∥∥∥)T ∈ R
Nb×Nb

,
(14)

where · denotes matrix multiplication and ‖ · ‖ is l2 normaliza-
tion. Inspired by Bubble Sort, we formulate the ranking list for
each instance i by:

Lij = 1 +
Nb∑

k=1,k �=j

1(Sij < Sik), (15)

where j indicates the jth element in the mini-batch. The indicator
function 1(·) is defined as:

1(condition) =

{
1, if condition is true,
0, otherwise.

(16)

In this way, (15) indicates the ranking positions of each element
corresponding to a query i in V. Similarly, we can derive L̂ ∈
R

Nb×Nb
for V̂. Given a mini-batch with N b samples, the SFD-

based knowledge distillation loss is:

Lsfd =
1

N b

Nb∑
i=1

Nb∑
j=1

∣∣∣Lij − L̂ij

∣∣∣ , (17)

where | · | denotes the absolute value function.
Limitation: Although SFD can well establish the distances

between rankings, it depends on a discrete sort operation. In
addition, it fails to take into account the importance of different
positions in a ranked list. These two aspects induce two problems
during the knowledge distillation of LReID. 1) Calculating the
SFD is associated with a discontinuous optimization problem,
which is unfavorable for gradient-based back-propagation opti-
mization schemes. 2) Without considering the importance of
each position in the ranking list, the model will treat each
position equally. Although we can previously assign different
fixed weights to enforce the importance of each position during
distillation, it is uncertain which weights are suitable at different
training stages. This hampers us distill informative ranking
knowledge effectively and flexibly.

To address the above two limitations, we first derive a sur-
rogate function as the differentiable approximation that enables
the SFD-based loss function to be compatible with general deep
neural networks. In addition, we extend SFD to an adaptive
position-aware weighting variant that allows the model to learn
how to transfer ranking knowledge in a dynamic way. The details
are elaborated in the following sections.

2) Differentiable Argsorted Function: To make the SFD-
based loss function differentiable, we straightforwardly derive
a variant of the popular hyperbolic tangent function as the
surrogate function to approximate the indicator function in (16).
The surrogate function S is defined as:

1(Sij ,Sik) ≈ Si =
1

2
(tanh(Sij − Sik) + 1). (18)

Correspondingly, the derivative is derived as following:

∂Si
∂Sij

= 1− 1

2
(tanh(Sij − Sik))

2 . (19)
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By replacing (16) by (18), the ranking list in (15) can be
approximated by:

Lij = 1 +
Nb∑

k=1,k �=j

1

2
(tanh(Sij − Sik) + 1). (20)

Given the approximated ranking list sets L and L̂ generated by
the student-teacher models, we apply a sort function to align
them following descending order. This results in new sorted
ranking lists. To simplify the notation, we still use L and L̂ to
denote the new sorted ranking lists henceforth.

In this paper, we call the above-mentioned calculations as
Argsorted function, which ensures the differentiability of SFD-
based loss functions. Moreover, due to the negligible computa-
tional cost of (18) that mainly includes several mini-batch matrix
multiplications, the proposed differentiable Argsorted function
can be optimized efficiently.

3) Adaptive Position-Aware Weighting: To explicitly con-
sider the varying importance of positions in the ranking list
during the distillation process, we propose to dynamically learn
the corresponding weights by regarding them as trainable pa-
rameters. This enables us not only soften the consistent ranking
constraint but also dynamically modify these weights instead
of depending on prior knowledge (e.g., the closer and the more
important in general).

Specifically, we initialize a set of parameters p ∈ R
Nb

with
identical values and employ the Softmax function σ to generate
probabilistic weights. The position-weighted ranking consis-
tency distillation loss is formulated as:

Lrcd =
1

N b

Nb∑
i=1

Nb∑
j=1

σ(p)j

∣∣∣Lij − L̂ij

∣∣∣ , (21)

where p is dynamically learned to control the importance of
each position.

D. Optimization

Overall, our MEGE framework consists of the baseline,
the AKA and the RCD modules, which are optimized jointly.
The baseline module adapts conventional lifelong learning ap-
proaches into the proposed LReID setting, which basically re-
alizes learning without forgetting. On this basis, the proposed
RCD module encourages the feature extractor to preventing
catastrophic forgetting. This enables us to provide robust feature
representations, facilitating the AKA module in organizing and
accumulating knowledge. In turn, the AKA transfers generaliz-
able knowledge to the feature extractor, which further improves
the feature discrimination. During the optimization process,
this mutual promotion mechanism guides the whole MEGE
framework towards effective lifelong learning. The overall loss
function is formulated as:

Ltotal = Lbase + Laka + λrcdLrcd, (22)

where λrcd controls the weigh of the RCD module.

V. BENCHMARK AND EVALUATION PROTOCOL

A. A New Lifelong Person ReID Benchmark

To support the study of LReID, we propose a large-scale
benchmark based on existing ReID datasets, which is com-
posed of LReID-Seen and LReID-Unseen subsets. We call it
as Alpha-LReID benchmark. The LReID-Seen subset is used
to incrementally train LReID models and evaluate their anti-
forgetting ability. The LReID-Unseen subset serves as unseen
testing domains to verify generalization ability of the models.
The training datasets are completely non-overlapping with the
testing datasets.

LReID-Seen Subset: We select five relatively large-scale per-
son ReID datasets: Market-1501 (MA) [11], CUHK-SYSU
(SY) [82], DukeMTMC-ReID (DU) [12], MSMT17 (MS) [13],
and CUHK03 (CU) [54], and use their original training sets to
compose the lifelong ReID subset, called “LReID-Seen”. Note
that for the SY [82] dataset, we modify the original dataset by
using the ground-truth person bounding box annotation, rather
than using the original images which are originally used for
person search evaluation. This process generates 942 training
identities. For testing, we fix both query and gallery sets in-
stead of using variable gallery sets. We select 2,900 query
persons, where each query contains at least one image in the
gallery. We call this variant as CUHK-SYSU ReID. As shown in
Table II, the LReID-Seen subset includes 82,159 images of the
8,793 identities in total. Their original testing sets are used to
evaluate the performance of previous domains (anti-forgetting)
and the performance on the current domain.

LReID-Unseen Subset: We merge the testing sets of 7 popular
person ReID datasets: VIPeR [83], PRID [84], GRID [85],
i-LIDS [86], CUHK01 [87], CUHK02 [88], and SenseReID [89]
to form the unseen testing subset, named as “LReID-Unseen”.
Specifically, as reported in Table II, LReID-Unseen includes
3,594 different identities with total 9,854 images, which is
adopted to evaluate the generalization ability of the learned
model.

Remarks: The proposed Alpha-LReID is different from ex-
isting lifelong learning benchmarks in three main aspects: 1)
Alpha-LReID is specially designed for person re-identification
that is the fine-grained retrieval task, while existing lifelong
learning benchmarks mainly focus on general image classifica-
tion; 2) The total number of classes in Alpha-LReID (|Y | ≈14 K)
is much larger than existing benchmarks (≤ 1 K); 3) In Alpha-
LReID, we evaluate the model on novel identities captured from
seen and unseen domains, while existing benchmarks commonly
test the model on samples of known classes of seen domains.

B. Evaluation Protocols and Metrics

To comprehensively evaluate the model performance, we
propose two evaluation protocols for Alpha-LReID: balanced
evaluation protocol and imbalanced evaluation protocol.

Balanced Evaluation Protocol: We follow the configurations
of lifelong classification benchmarks [16], [17], [51] to build
the balanced evaluation protocol, where each training domain
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TABLE II
THE STATISTICS OF REID DATASETS INVOLVED IN THE ALPHA-LREID BENCHMARK

contains the uniform amount of classes/identities.2 As shown in
Table II, we uniformly sample 500 identities from each training
domain in the LReID-Seen subset for 5-step domain-incremental
training. As a consequence, in total, 40,459 training images
of the 2,500 identities are employed in balanced evaluation
protocol.

Imbalanced Evaluation Protocol: Since the scale of each
dataset varies largely in the wild, we further present an imbal-
anced evaluation protocol, which is more practical for LReID.
Different from randomly choosing unified amount of identities
in each domain [21], the model is trained on the whole training
set of each domain, where the number of identities is different
in each domain. As a result, the imbalanced evaluation protocol
involves 82,159 images of the 8,793 identities.

Training Order: In practice, the order of input domains is
agnostic. Thus, we evaluate models with two different train-
ing orders, Order-1: MA→SY→DU→MS→CU and Order-2:
DU→MS→MA→SY→CU.

Evaluation Metrics: We use s̄ (average performance on seen
domains) to measure the capacity of retrieving incremental seen
domains and ū (average performance on unseen domains) to
measure the generalization capacity on unseen domains. Note
that the performance gap of s̄ between joint training (upper bond)
and a certain method indicates the method’s ability to prevent
forgetting. ū and s̄ are measured with mean average precision
(mAP) and rank-1 (R-1) accuracy. These metrics are calculated
after the last training step. Furthermore, inspired by the metrics
used in lifelong zero-shot learning [49], we also introduce a
harmonic mean of ū and s̄:

H =
2× ū× s̄

ū+ s̄
, (23)

to measure model’s comprehensive ability to balance anti-
forgetting and generalization ability. In this paper, we call it
H-metric.

VI. EXPERIMENTS

A. Implementation Details

Implementation of MEGE: We use the ResNet-50 [90] as the
backbone, where we remove the last classification layer and use
the retained layers as the feature extractor. Hence, the feature
dimension is 2,048. All images are resized to 256 × 128. The

2Note that for the SY [82] dataset, we only select the identities that include
at least 4 samples for training.

AKA network consists of one GCN layer. During training, the
batch size is set to 64. Following the popular person ReID
training strategy, in each training batch, we randomly select 16
identities and sample 4 images for each identity. The Adam
optimizer [81] with learning rate 1.75× 10−4 is used. To deter-
minate the number of training epochs, we follow a validation
procedure. At each step, we create a validation set by randomly
selecting 20% identities from the current training dataset. Within
the validation set, we randomly sample one example from each
identity as the query considered the remaining examples as the
gallery. We then evaluate the training loss and performance on
validation set during the training process. We find that the model
achieves stable and nearly optimal performance around the 50th
epoch across all datasets. Therefore, we train the model for 50
epochs using all training data for all experiments. The learning
rate is decreased by × 0.1 at the 25th epoch and 35th epoch.
In this paper, we only use the Order-1 with imbalanced setting
to tune the hyperparameters. The selected hyperparameters are
then directly applied in all experiments. We set γ, λp, λs, λrcd

andNK to 1, 1, 5× 10−4, 1.3 and 64 respectively, which achieve
well performance in all settings.

During testing, we extract the summed representations in (10)
of test samples following a random order and use the euclidean
distance to estimate the similarities between samples.

Compared Methods: We compare our MEGE with 5 methods.
1) Sequential fine-tuning (SFT): this is the simple baseline which
fine-tunes the model with new datasets without distilling old
knowledge. 2) Learning without forgetting (LwF): the base-
line method [22] introduced in Section III-B. 3) Similarity-
preserving distillation (SPD): a competitor with advanced
feature distillation [72]. 4) Continual representation learning
(CRL) [18]: a state-of-the-art method for continual ReID.
5) Adaptive Knowledge Accumulation (AKA): the reduction
of our MEGE method. For fair comparison, we apply these six
methods to our Alpha-LReID benchmark using the same training
settings as our MEGE.

Upper Bound Method: We train the model jointly with the
training data of all domains without the constraint of lifelong
learning, which is regarded as the upper-bound method.

B. Seen-Domain Non-Forgetting Evaluation

We first evaluate the performance of our MEGE on seen
domains, which reflects the ability of anti-forgetting. The com-
parisons between different methods are shown in Tables III
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TABLE III
SEEN-DOMAIN NON-FORGETTING EVALUATION ON ORDER-1

TABLE IV
SEEN-DOMAIN NON-FORGETTING EVALUATION ON ORDER-2

Fig. 3. Performance tendency of seen domains with increase of the training stages following Order-1.

and IV for two orders respectively. Clearly, our MEGE out-
performs the compared methods regardless of the training order
and evaluation protocol, demonstrating its large effectiveness
for addressing the problem of LReID.

Balanced Evaluation: For both orders, our MEGE achieves
the best mAP and rank-1 accuracy on the first four training
domains. Although SFT achieves high performance on the last
domain, it produces poor performance on old domains. For the
performance averaged on all seen domains, our MEGE signif-
icantly outperforms the compared methods, demonstrating that
MEGE can effectively mitigate catastrophic forgetting. Specif-
ically, MEGE is higher than CRL by 4.1% and 4.0% in average
R-1 on the Order-1 and Order-2 respectively. On the other hand,
we can find that there is still a large margin between our MEGE

and the upper-bound method (Joint Training), especially on the
early trained domains.

Imbalanced Evaluation: Compared with the balanced evalu-
ation protocol, the imbalance evaluation protocol includes more
training data. This leads all the methods achieve commonly
higher performance on the seen domains. Nevertheless, our
MEGE obtains a similar advantage as in the balanced evalua-
tion protocol and achieves the best anti-forgetting performance.
Concretely, our MEGE outperforms CRL by 4.7% and 4.8% in
R-1 on the Order-1 and Order-2 respectively.

Forgetting Tendency: In Figs. 3 and 4, we track the perfor-
mance of the first training domain with the incremental training
stages. We can make the following observations. First, the re-
sults of all methods decrease with the training stages. Second,
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Fig. 4. Performance tendency of seen domains with increase of the training stages following Order-2.

TABLE V
GENERALIZING EVALUATION ON UNSEEN-DOMAINS

Fig. 5. Performance tendency of unseen domains with increase of the training stages following Order-1.

our MEGE consistently obtains higher performance than other
methods through the training stages. Third, for the joint training
method, the performance on the first domain could be improved
by training with more datasets. These observations again verify
the consistent anti-forgetting advantage of our MEGE and show
the gap to the upper-bound method.

C. Unseen-Domain Generalising Evaluation

To evaluate the generalization ability, we evaluate the results
on unseen domains of our Alpha-LReID and the CRL-ReID
setting [18].

Evaluation on Alpha-LReID: As shown in Table V, our
method consistently outperforms the state-of-the-art-methods
regardless of training orders and evaluation protocols, which
verifies the superiority of our method in improving generaliza-
tion ability. Specifically, our MEGE outperforms the methods
by a large margin, except for AKA. Although MEGE is the ex-
tension of AKA for improving the anti-forgetting performance,

MEGE also achieves slightly better results than AKA on unseen
domains.

Similar to the results on seen domains, a model trained under
the imbalanced evaluation protocol obtains higher results than
the balanced one. On the other hand, the gap between our MEGE
and the upper-bound method is small on unseen domains, which
is different from that of the seen domains.

Generalizing Tendency: In Figs. 5 and 6, we illustrate the trend
of the performance on unseen domains with the incremental
training stages. We can find the following observations. First, in
most cases, the results of all methods are increased by training
with more datasets. However, in both orders, LwF, SFT and SPD
will encounter a performance degradation when training on a
certain domain. For example, when training under the Order-2,
the results of LwF, SFT and SPD decrease at the training stage
of SY domain. Second, both our MEGE and AKA consistently
improve the performance with the training stages. The above two
phenomena further demonstrate the effectiveness of our MEGE
and AKA in learning generalized representation in LReID.
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Fig. 6. Performance tendency of unseen domains with increase of the training stages following Order-2.

TABLE VI
GENERALIZATION EVALUATION UNDER THE CRL SETTING IN [18]

TABLE VII
EVALUATION OF THE LOSS FUNCTIONS OF MEGE IN ORDER-1 UNDER THE IMBALANCED EVALUATION PROTOCOL

Evaluation on CRL-ReID: We also evaluate our method under
the CRL setting [18]. Results in Table VI show that our MEGE
outperforms all the compared methods by a large margin. In
addition, by comparing between the unseen results produced
in our setting and CRL setting that both undergone 5 learning
steps, our MEGE achieves significantly higher results in the
CRL-ReID (5-step). For example, the best mAP achieved in
Table V is 55.1% in our Alpha-LReID setting, which is largely
lower than the one (64.5% in Table VI) obtained in CRL-ReID
setting (5-step). This verifies the difficulty of our Alpha-LReID
setting.

D. Effectiveness Evaluation

In this section, we conduct extensive experiments to inves-
tigate the effectiveness of each component of MEGE. All the
experiments are evaluated in Order-1 under the imbalanced
evaluation protocol. The baseline method is LwF [22], which
uses logit-based knowledge distillation to prevent catastrophic
forgetting.

Effectiveness of AKA: In Table VII, we report the results of
adding different components of MEGE into the baseline. We

first evaluate the effectiveness of AKA in the first four rows
of Table VII. We consider building a straightforward KG-based
baseline by adding a AKA module without any additional loss
on the top of LwF method, namely “Baseline + GCN” in
Table VII. Specifically, we directly feed the fused feature in
(10) to the identification classifier g(·;φ) and jointly optimize
the backbone network and the graph convolution network. The
table shows that without the proposed stability-plasticity loss,
the AKA module cannot effectively improve the model’s gen-
eralization ability, due to the lack of the constraint to learn
knowledge selectively. Moreover, we can find that the plasticity
loss (Lp) is mainly beneficial for unseen domains. This indi-
cates that AKG is encouraged to learn how to transfer positive
knowledge to improve generalization. Adding the stability loss
further improves the performance on both seen and unseen
domains. This indicates that enforcing the stability of knowledge
during training can largely preserve the knowledge of previous
domains and thus remits the influence of catastrophic forgetting.
Meanwhile, the improvement on unseen domains demonstrates
that the stability loss can also improve the generalization ability
of the model, due to effectively accumulating generalizable
knowledge.
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TABLE VIII
EVALUATION OF THE DIFFERENT DESIGNS OF EDGE WEIGHT FOR ISG, AKG AND KO IN AKA

TABLE IX
EFFECTS OF THE NUMBER OF GCN LAYERS IN AKA

Effectiveness of RCD: In the row#4-row#5 of Table VII, we
show the impact of two variants of RCD. We can find four
observations. First, the two variants of RCD can consistently
improve the performance on seen domains. This verifies the
effectiveness of distilling ranking information for solving the
catastrophic forgetting problem in LReID. Second, the fixed
weighting version of RCD (Lsfd) hampers the performs on
unseen domains. Third, the dynamic weighting version (Lrcd)
can well address the above problem and further increases the
performance on unseen domains over the baseline. This indicates
that learning dynamic weights during ranking distillation can
encourage the model learn more generalized representation in-
stead of overfitting on seen domains. Fourth, the proposed AKA
and RCD are complementary to each other. Combining them
achieves the best results in seen domains and unseen domains.

Evaluation of Design of Edge Weight for AKA: In our AKA,
we use different designs (parameterized or non-parameterized)
of edge weight for ISG, AKG and KO. In Table VIII, we conduct
experiments to investigate the impact of using different designs.
We can observe that: 1) using parameterized design for ISG
and AKG leads to clearly higher results 2) while applying
non-parameterized design for KO produces better performance
especially for the H-metric that reflects the balance between
anti-forgetting and generalizing abilities. These results verify the
effectiveness and motivation of using different designs of edge
weights for knowledge representation and knowledge operation
as discussed in Section IV-B.

Effects of the Number of GCN Layers in AKA: In Table IX, we
analyze the impact of the number of GCN layers in AKA. We can
observe that stacking more GCN layers does not achieve clear
improvements and even reduces the anti-forgetting performance.
Thus, we employ one-layer GCN in our AKA for simplicity and
superiority.

Effects of Different Weighting Manners for RCD: In our RCD,
we adaptive learn position weights during training. To verify
the effectiveness of this adaptive manner, we compare it with
several variants that uses fixed position weights, including equal

TABLE X
EFFECTS OF USING DIFFERENT WEIGHTING MANNERS FOR RCD

weights (EW), linear decrease weight (LDW), exponential de-
crease weight (EDW), linear increase weight (LIW), exponential
increase weight (EIW), and learned prior weight (LPW). For
EW, we use the same weight for all positions. For LDW, EDW,
LIW, and EIW, the weights are linearly/exponentially changed
with the increase/decrease order of positions. For LPW, we first
learn the position weights of each training domain and obtained
the prior weights by averaging them based on domains. Then, we
use the fixed prior weights to train the model in a new training
process. Results in Table X show that 1) using a proper fixed
weighting strategy can improves the performance on unseen
domains and that 2) the proposed learnable weighting strategy
achieves better results than all fixed weighting strategies. These
results demonstrate the advantage of our learnable weighting
strategy. In addition, the proposed learnable weighting strategy
is more flexible since it is automatically learned. On the other
hand, we also show that re-initializing the weights instead of
inheriting the weights obtained by the last domain leads to better
performance. The main reason is that the importance of each
position will be different at each training epoch and thus the
weights should be re-initialized and re-learned at the beginning
of each stage.

E. Hyper-Parameter Analysis

In this section, we discuss the impact of the hyper-parameters
in our MEGE, including loss weights (λp and λs, λrcd) and
the number of knowledge nodes (NK). We adopt a harmonic
mean of the average accuracy of seen and unseen domains as
the performance metric, which reflects both anti-forgetting and
generalization abilities.

Impact of Weights: For evaluation of loss weights, we first
select the optimalλp to achieve best ū, then we search the optimal
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TABLE XI
EVALUATION OF RUNNING TIME AND MEMORY FOR VARYING SIZES OF MINI-BATCH

TABLE XII
EVALUATION OF RUNNING TIME AND MEMORY FOR STATE-OF-THE-ART METHODS WHEN Nb = 64

Fig. 7. Impact of hyper-parameters. H-metric is reported.

λs based on the selected λp. We find that λs should be assigned
with a small value and it is stable within a range of 5× 10−5

to 7× 10−4. Finally, we choose the best λrcd with the selected
λp and λs. The impact of different values of them are shown in
Fig. 7(a), (b), and (c). In this manner, our final model is obtained
by using λp = 1, λs = 5× 10−4 and λrcd = 1.3.

Impact of Number of Knowledge Nodes: In a similar way, we
study the influence of the number of knowledge nodes (NK)
on the hold-off validation data. We vary the value of NK in
the range of {32, 64, 128, 256, 512}. Results in Fig. 7(d) show
that the performance increases from NK = 32 to NK = 64 and
the performance is stable between 64 and 256. Considering the
balance between memory consumption and performance, we
thus set NK = 64 in all experiments.

Impact of the Size of Mini-Batch: We evaluate the impact of
mini-batch size in Table XI. The results can be summarized as
follows. 1) Our method is robust to the batch size and using
a larger batch size commonly leads to slightly higher results.
2) With the increase of N b, the training time of our method
grows up fast, because its complexity is a quadratic function of
batch size. Considering the balance between the comprehensive

performance and training cost, we set N b to 64 in all our
experiments.

F. Evaluation of Training Cost

In this section, we conduct experiments to estimate and dis-
cuss the complexity of the different methods in terms of training
time and GPU memory cost.

Comparison of the Proposed Modules and Other State-of-the-
Art Methods: Based on the experimental results in Table XII, we
find that 1) the proposed AKA and MEGE enjoy a neglectable
memory overhead compared to other methods while obtain-
ing considerable improvement, especially on unseen domains;
2) although our MEGE costs relatively longer training time than
CRL by 0.07 s per iteration, MEGE significantly outperforms
CRL on both seen and unseen domains.

Comparison of Different Differentiable Ranking Approaches:
Since the proposed RCD is agnostic to the differentiable ranking
function, we provide the comparison of using the Argsorted
Function or FDSR [91] to implement RCD. Table XIII shows
that these two methods achieve similar results with similar com-
putational costs, indicating that the proposed ranking consis-
tency distillation loss is compatible with different differentiable
function.

G. Further Investigation

In this section, we conduct four experiments to help us further
understand the proposed AKA and RCD.

Investigation on Gradient Detaching in AKA: In our AKA,
we detach the gradients from the graph networks. To verify the
effectiveness of this strategy, we compare the results of using de-
taching and without using detaching in Table XIV. It is clear that,
detaching the gradient of AKA achieves higher performance on
all metrics. To help us further understand the effectiveness of the
detaching strategy, we compute the difference between the ISG
representations before and after propagation through training.
Fig. 8 shows that using detaching strategy encourages the AKA
to learn different representations from the feature extractor at
each training stages, which echos the discussion in Section IV-B.
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TABLE XIII
EVALUATION OF DIFFERENT DIFFERENTIABLE RANKING APPROACHES

TABLE XIV
EVALUATION OF DETACHING GRADIENT IN AKA

Fig. 8. Difference of ISG representations before and after propagation.

Fig. 9. Evaluation of the generalizability of the models by fixing AKG after a
certain domain.

Investigation on the Knowledge Extension of the AKG: Intu-
itively, we think that the more knowledge the AKG accumulates,
the better the generalization ability the model acquires. To
experimentally demonstrate that the knowledge contained in
the AKG is extended with the increase of training domains,
we conduct two groups of experiments to explore the effects
of the knowledge transferred from the AKGs trained on differ-
ent domains. Experiments are conducted on Order-1 with the
imbalanced protocol.

1) We fix all the AKG’s parameters after learning on one
certain domain (e.g., 1st, 2nd, 3rd and 4th domain), and then
continue to train the model with the frozen AKG for the sub-
sequent lifelong learning steps. During this process, we test the
model’s performance on unseen domains. Results are illustrated
in Fig. 9. It is obvious that after fixing the AKG, the model’s
performance drops to different extents, indicating that the AKG
is extended with more knowledge that is favorable for improving
generalization ability.

TABLE XV
EVALUATION OF THE GENERALIZABILITY OF THE MODELS WITH VARYING

AKGS THAT IS TRAINED AND SAVED ON DIFFERENT DOMAINS

Fig. 10. Tendency of weights obtained by the proposed adaptive position
weighting. Left: weight changes of each position during the incremental training
process. Right: The average weights of different positions overall the whole
training process.

2) We store AKGs at the end of each domain-incremental
training. Then, we combine the different AKGs with the trained
backbone network, which is evaluated on unseen domains. The
results in Table XV demonstrate that the AKG that experiences
more domains can provide more beneficial knowledge for gen-
eralization evaluation.

Investigation on Adaptive Weight in RCD: To better under-
stand the proposed adaptive weighting method, we track the
variations of weights of each position during the whole training
epochs. We observe an interesting phenomenon from Fig. 10.
The learned weights follow a similar tendency through the train-
ing epochs at each domain. Specifically, the top and the bottom
positions are gradually assigned with relatively small weights,
while the middle positions are consistently assigned with large
weights. This phenomenon is reasonable, since in person ReID,
the model can well learn the pattern of easy position and negative
samples that rank at top/bottom positions in the beginning of
training. As the increase of training epochs, the model should
pay more attention on hard position and negative samples that
are ranked at the middle positions and are more important in
learning informative patterns. As a result, our RCD learns an
adaptive weighting manner that always assigning higher weights
to hard samples during training. Importantly, as reported in
Table X, our RCD is more flexible and superior than manually
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TABLE XVI
EVALUATION OF ANTI-FORGETTING AND GENERALIZATION ABILITY ON 5 DIFFERENT DOMAIN ORDERS

fixed weighting strategies. This is because that the importance of
each position is changed at each training epoch and each domain.
For example, in the beginning of training epochs, the top and
bottom positions should be assigned with high weights since
the model have not learn too much from them. While with the
increase of training epochs, these easy samples cannot contribute
too much for training and should be assigned with lower weights.
Our RCD can dynamically adapt the above tendency. However,
a manual strategy commonly assigns fixed weighting for each
position and thus fails to follow the above tendency.

Investigation on Different Training Orders: To verify the
robustness of the proposed methods on varying training orders,
we conduct more experiments with different domain orders.
The experimental results in Table XVI are summarized as:
1) Our MEGE and AKA significantly outperform CRL [18]
for different orders on both balanced and imbalanced protocols;
2) Our MEGE achieves consistent improvement over AKA on all
cases, especially for the anti-forgetting performance evaluated
on seen domains.

VII. CONCLUSION

In this paper, we introduce the challenging yet practical ReID
setting, lifelong person re-identification (LReID). To solve this
problem, we propose a new MEmorizing and GEneralizing
framework (MEGE) by injecting an Adaptive Knowledge Accu-
mulation (AKA) module and a Ranking Consistency Distillation
(RCD) module into the LReID system. The AKA maintains a
transferable knowledge graph to adaptively keep the previous
knowledge as well as learn generalizable representation. The
RCD encourages the model to inherit more informative knowl-
edge of previous domains by distilling ranking results in a dif-
ferentiable and dynamic manner. Extensive experiments demon-
strate that our MEGE can significantly improve the model’s anti-
forgetting and generalization abilities and can outperform other
competitors by large margins on our Alpha-LReID benchmark.
Nevertheless, there is still a large margin to the performance of
the upper-bound on seen domains, remaining a large room in
improving the model’s anti-forgetting ability in future study.
In our future work, we aim to extend our LReID setting to
include cloth-changing scenarios, which pose more challenges
but are also more relevant to real-world ReID applications.
In addition, we also plan to further investigate and develop a

more appropriate strategy for tuning hyperparameters within the
LReID setting.
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