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Key points

� Artificial intelligence (AI) is the field of computer

science where algorithms are learned to perform

cognitive tasks similar to humans.

� Risk prediction and image or video processing are

the predominant high-potential usages of AI in

perioperative care.

� When evaluating the use of an AI solution, first

assess the discriminative performance, calibra-

tion properties and decision-curve analysis.

� Next, evaluate whether impact studies have

been performed on clinical and economic

outcomes.

� Barriers to the safe implementation of AI

include variations in study quality resulting in

potential biases and reduced generalisability;

technological, regulatory and data-related
Learning objectives
By reading this article, you should be able to:

� Explain the basic concepts of artificial intelligence

and machine learning and their applications in

perioperative care.

� Assess the validity and clinical applicability of

artificial intelligence and machine learning ap-

plications and the available literature.

� Discuss the current challenges and limitations of

developing and using artificial intelligence and

machine learning in clinical practice.

With the increase of digitalised working in healthcare,

increased computing power and an increase in data availabil-

ity over the last few years, there has been a growing interest in

the application of artificial intelligence (AI) in medicine.
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Artificial intelligence is a field within computer science that

aims to allow computers and algorithms to perform cognitive

tasks similar to humans by learning and recognising patterns

in data. In medicine, where there are increasing amounts of

healthcare data, the potential of AI is to aid repetitive tasks,

diagnosis, prediction, drug discovery, personalised diagnosis

and treatment, and decision support. As perioperative medi-

cine accounts for a large part of hospital care and costs, and

generatesa largeamountofdata,AIhasahighpotential tobeof

value in this field.1 The aim of this article is to provide an

introduction to AI, an overview of its potential applications in

perioperative care, an introduction to the assessment of the

validity and clinical applicability of AI systems and to provide

an overview of current challenges and pitfalls.
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Artificial intelligence and perioperative care
What is AI?

The term ‘Artificial Intelligence’ was first introduced by John

McCarthy in 1955, but its application in medicine has taken

hold in the last two decades since the rapid advancements in

computing technology and cloud storage.2 The definition of

AI is ‘a field of science and engineering concerned with the

computational understanding of what is commonly called

intelligent behaviour, and with the creation of artefacts that

exhibit such behaviour’.3 Today, AI is used as the umbrella

term for all algorithms and systems that can perform cogni-

tive tasks such as prediction, clustering, classification, speech

recognition and decision-making. Artificial intelligence is part

of the field of data science which encompasses not only these

advanced algorithms, but also disciplines such as statistics

and data mining.4

Artificial intelligence also incorporates machine learning

(ML), which includes deep learning (DL), where computers are

trained to apply obtained knowledge from input data to newly

presented data without being explicitly programmed to do so

(Fig. 1). Most AI applications in healthcare are ‘supervised’ ML

or DL algorithms, where the algorithm learns to predict or

diagnose an outcome based on available data of patients for

which the outcome is known using retrospective data. The

algorithm learns to recognise (non-linear) patterns between

the input data, for example, a chest X-ray image, and an

outcome, for example, COVID-19. Supervised algorithms
Image
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guided regional

anaesthesia
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postoperative
infection risk

r
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prediction

Time-series
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Fig 1 Artificial intelligence and its most often subforms used in medicine. For each
require a development dataset for which the outcome is

known, to be able to learn relations between input and output

variables. ‘Unsupervised’ learning is the field of AI where the

outcome is unknown, and the algorithm is trained to cluster,

for example, patient groups based on characteristics in order

to discover new patterns in groups of patients or to reduce

dimensionality. In the remainder of this article, we use the

term AI to describe all types of self-learning algorithms

(i.e. supervised and unsupervised).

Supervised ML, also known as prediction or classification

algorithms, is one of the most often studied and implemented

subforms of AI in medicine. Classification algorithms may

perform numerous tasks on different types of data, such as

tabular patient data stored in the electronic health record,

image data from MRI or CT images to diagnose diseases or

perform image segmentation, time-series data from EEG s-

ignals to predict delirium, or textual data on which natural

language processing (NLP) is applied to automatically sum-

marise or perform diagnosis. Besides informing physicians or

patients on diagnosis and prognosis, AI is also used to guide

treatment decisions in clinical decision support systems, for

example, to prescribe medication. However, the use of clinical

decision support systems is not exclusive to AI as many rule-

based systems exist.5

It is debatable where the field of classical statistics ends

and AI begins. A possible distinction between AI and statistics

is that ML models can directly and automatically learn from
Predicting
isk of surgery
cancellation

Diagnosis
prediction based
on clinical notes

lligence

Natural language
processing

application, a perioperative example is provided in the white cloud.
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Artificial intelligence and perioperative care
data, whereas regression models are more subject to human

intervention and knowledge in model specification. With a

more complex algorithmic structure, AI models are better at

discovering non-linear relationships in data than classical

statistics, but they require large amounts of data to be superior

to classical statistics and to avoid overfitting. Overfitting is

the phenomenon where models are not generalisable when

applied to different datasets of comparable populations. In

general, using AI in predictionmodels has not shown superior

performance over logistic regression where they have been

compared.6 However, itmust be noted that these findings of AI

not outperforming logistic regression were on relatively small

datasetswith a limited number of predictors,whereasAI could

outperform logistic regressionwhenapplied to larger datasets,

in terms of, for example, establishing non-linear patterns. For

more complex data structures such as images or textual data,

this does not apply as traditional statistical models cannot be

used. With increasing data availability, improved data quality

and the potential use of other data sources such as imaging

and textual data, AI may exceed statistical models in the near

future. Comparedwith classical statistics, AImodels are better

suited for non-tabular data such as free-text clinical notes

using NLP or image recognition using DL.
AI in perioperative care

The first attempts to use algorithms to aid the practice of

anaesthesia date back to the 1950s when maintenance of

anaesthesia was controlled using an EEG-guided closed-loop

setting. For several decades, research into applied AI in the

perioperative setting has been scarce, until recently. We

distinguish the following perioperative domains in which AI

applications may be of value: anaesthesia; surgery; prediction

of the risk of surgical complications; operating room (OR)

organisation; and nursing practice.
Anaesthesia

Several AI applications have been developed and become

widely available recently in anaesthesia. An assistive AI de-

vice has proved to improve ultrasound image acquisition and

interpretation for ultrasound-guided regional anaesthesia,

which could result in the technology becoming more widely

available as it may be applied by non-experts.7 A more widely

studied subject is the prediction of intraoperative hypoten-

sion, also known as the Hypotension Prediction Index (HPI)

and Hemodynamic Stability Index (HSI).8,9 A systematic

review identified that HPI has the potential to improve hae-

modynamicmanagement in terms of reduction in occurrence,

duration, and severity of intraoperative hypotension

compared with standard care, but more high-quality evidence

is needed to prove this finding.8

The automation of the management of anaesthesia may

benefit from airway evaluation and closed-loop anaesthesia

assisted by AI devices.10 Classical closed-loop systems for

haemodynamic and pharmacological monitoring do not

require AI systems, but using AI may result in fewer fluctua-

tions, as future states may be predicted more accurately and

more timely, and more input variables and closed-loop sys-

tems may be combined.11 In the field of pharmacokinetics/

pharmacodynamics (PK/PD) modelling, AI is more frequently

used as it may combine different sources of input variables,

but is compared with traditional PK/PD modelling more prone

to overfitting and less interpretable.12
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Surgery

With the increasing availability of sensor technology, robots

and intraoperative imaging in the OR, more high-quality data

are available for use by AI algorithms. AI may potentially

benefit robot-assisted surgery by performing motion analysis

to assess surgical skills, and in the recognition and classifi-

cation of sutures and other surgical tasks. However, because

of methodological caveats (limited data size and no external

validation) in published studies, there is no proof that AI is

already of benefit for robot-assisted surgery.13 Other AI

systems have been developed to perform video analysis or

spectral light analysis to allow detection of cancer, tool

detection, surgical phase recognition, workflow recognition

and endoscopic guidance.14
Prediction of the risks of anaesthesia and
postoperative surgical complications

Most AI applications for perioperative care have been devel-

oped in the field of predicting the risk of intraoperative com-

plications, postoperative surgical and anaesthesia-related

outcomes. The prediction of a certain outcome requires the

ability to identify which patients had the outcome to train the

prediction model on. This process is called ‘labelling’ and re-

quires the outcome to be either identifiable based on electronic

healthcare record (EHR) data or performed bymanual review of

EHR systems. Few outcomes are storedwith high accuracy and

completeness in EHR systems, limiting the application of pre-

diction models based on large datasets. One often predicted

outcome is the risk ofmortality,which is accurately recorded in

most EHR systems but has less clinical relevance in terms of

being amenable to action by clinicians. Outcomes such as

respiratory complications, cardiovascular complications, renal

complications, sepsis, venous thromboembolism, hypotension

after induction of anaesthesia, hypoxia after intubation, post-

operative nausea and vomiting, and postoperative delirium

can be predicted with high accuracy (often area under the

receiver operating characteristic curve [AUROC] >0.90) based
on clinical variables stored in HER systems.1 Accurately pre-

dicting these outcomes will allow personalised treatments,

monitoring and useful deployment of equipment. However, to

be of assistance to physicians, AI systems should go beyond

predicting clinical outcomes by providing recommendations

for management that are tailored to an individual patient. The

authors are currently working on an AI system that aims to

tailor the management of postoperative infections.15
Organisation of the operating theatre

Apart from assisting physicians in clinical care, AI has the

potential to improve hospital logistics. Predicting surgery

duration and surgeries with a high risk of cancellation has

been shown to be of benefit in operating theatre scheduling

and usage.1,14 Improving efficiency and scheduling will result

in cost savings and decreased waiting times. Beyond the

operating theatre, predicting postoperative hospital length of

stay, risk of admission or readmission to critical care and

readmission to hospital after discharge may benefit hospital

logistics and costs.1
Nursing practice

Most AI applications in perioperative care are aimed at phy-

sicians, but AI is potentially equally of benefit for nursing
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practice. As there is a high documentation load for nurses, AI

could play a role in making these tasks more efficient. For

perioperative nurses specifically, management of capno-

graphic and false alarm management, clinical decision

support systems for nursing diagnoses, faster detection of a

patient’s physiological changes and automated assessment of

postoperative pain are examples of applications where AI

plays a role.16
How to assess the validity and clinical
applicability of an AI system

From the aforementioned examples of AI applications in

perioperative medicine, it is clear that there are many

potential applications for this technology. Only limited ap-

plications have been implemented in clinical practice, and it is

important for a clinician to assess the validity and applica-

bility before using AI in clinical practice.
Development and validation of AI systems

The development and validation of an AI algorithm are

performed in different subsequent steps. The development

dataset often consists of data from one hospital or one

department. First, these data on which the algorithm is

trained (i.e. the process to recognise patterns in the data to

be able to make a prediction or classification on a new pa-

tient or dataset) need to be prepared. This data ‘pre-

processing’ is often the most time-consuming step, as the

data must be collected, cleaned for outliers, imputed for

missing values and labelled for the predicted outcome. After

preprocessing, the development dataset is split into a

training dataset, for example 80% of all patients, and a test

dataset, for example 20% of all patients. The model is trained

and optimised over the training dataset, using for example

cross-validation, and final performance is evaluated on the

unseen patients in the test dataset. This process is called

internal validation. The next step is to perform external

validation on unseen data that may be prospectively

collected from the same site (temporal validation), but

ideally, the model is applied to another hospital’s dataset

(geographical validation). Performance often decreases in

other settings, requiring retraining or recalibrating on data

from the new site, or both. During validation, the model

should ideally be compared with a ‘baseline’ or benchmark,

for instance, a clinical risk score, or comparing predictions

from physicians to those of the model.

After evaluating how the model performs on different

datasets, the clinical and economic impact should be evalu-

ated, but there are currently few impact studies compared

with the number of model development studies, indicating a

gap between the development and implementation of these

systems.17
Performance evaluation

Classically, the evaluation of statistical and AI prediction

models is based on their discriminative performance and

calibration properties.18 Discriminative performance is the

ability of the model to distinguish between subjects with

and without the outcome. Classification models give a bi-

nary outcome that is dependent on a probability threshold

above which the prediction is deemed to be positive or
negative. Using a lower threshold will increase sensitivity,

at the cost of the positive predictive value. Conversely, using

a higher threshold will increase specificity, at the cost of the

negative predictive value. The overall measure of discrimi-

native performance, which is independent of the chosen

threshold as it plots the sensitivity against the false positive

rate for all thresholds between 0 and 1, is the area under the

receiving operating characteristic curve (concordance

statistic or AUROC). An AUROC of 1.0 is a perfect classifier

and an AUC of 0.5 not better than chance. As a rule of

thumb, AUROC >0.7 is seen as acceptable and >0.8 is seen as

a good classifier, but there are no clear cut-offs for AUROC to

determine the clinical utility of the model.19 It is important

to note that other, traditional measures such as accuracy

are not useful when the predicted outcome is ‘imbalanced’.

For example, if only 2% of patients develop hypotension and

a hypotension prediction algorithm predicts with a 98%

accuracy, it may be that the model predicts ‘no hypotension’

for all patients.

Often, AI systems evaluate and display the predicted

probability between 0% and 100%, and perform a classifica-

tion of potential outcomes. Calibration is the agreement

between the predicted probability of the outcome and the

actual proportion of patients that had the outcome with a

certain prediction. An example of good calibration is that in

100 patients with a 10% predicted probability of mortality, 10

patients will actually die. Calibration is evaluated in cali-

bration plots, where a slope of 1.0 and an intercept of 0 is

optimal.

A measure beyond discrimination and calibration, as a

measure of potential clinical utility of AI models, is the

decision-curve analysis, where the net benefit of the model is

calculated taking into account the number of false positives

clinicians are willing to accept to find one true positive.20

Calculating the net benefit of a model allows us to compare

AI systems to standard practice and to traditional risk scores

in a more clinically relevant setting.
Guidelines

There are no strict guidelines stating when an AI system is

‘good enough’ for use in clinical practice, as it may depend on

the use case what sufficient performance is. However, it is

important to assess whether the methodology of coming to

certain outcomemetrics is scientifically sound. The EQUATOR

Network provides several guidelines for reporting and

assessing the quality of AI-based diagnostic and prognostic

prediction modelling studies, including TRIPOD-AI for devel-

opment and validation studies (currently in the making),

PROBAST-AI for risk of bias assessment, DECIDE-AI for early-

stage clinical trials with AI systems and SPIRIT-AI and

CONSORT-AI for clinical trial reporting on AI systems.21 The

number of guidelines for AI reporting and assessment is

rapidly increasing, and different guidelines are available for

different phases of AI prediction model development and

implementation.22

It is not possible to cover all aspects of evaluating AI

systems in this review, but we want to highlight some

important aspects. First, determine whether the AI system

was externally validated in a temporal or geographic setting to

determine the robustness and generalisability to new settings

and over time, or both. It must be noted that retraining or
BJA Education - Volume 23, Number 8, 2023 291
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recalibrating AI models may be necessary when entering new

hospitals.23 This implies that retrospective clinical data

should be made available to the AI system manufacturer to

validate, and if needed, retrain or recalibrate the model. Sec-

ond, determine whether the AI model in question has been

shown to be of additional value against a benchmark, state-of-

the-art risk prediction models or healthcare professionals.

Third, determine whether subgroup analyses have been

performed to account for biases in (minority) patient pop-

ulations. Fourth, evaluate published studies on the AI system

in question according to the EQUATOR-guidelines.
Challenges and pitfalls of AI

Despite the increasing interest in AI in research and periop-

erative clinical practice, there are still several challenges and

pitfalls in this emerging field. Considering the large number of

publications regarding the development of AI systems, the

number of clinical and economic impact studies on AI appli-

cations is still surprisingly low.24 One of the most widely

implemented clinical AI prediction systems, the Epic Sepsis

Model, showed poor external performance and poor label

quality, emphasising the need to incorporate domain knowl-

edge and perform external validation and retraining of AI

models.25 The quality of research on clinical AI needs to be

improved, as there is currently a high risk of bias as a result of

small sample sizes, lack of comparison groups, lack of model,

input and output variables, transparency and incomplete

performance reporting.24

Aside from the shortcomings in study methodology, other

challenges for AI are the ‘black box’ nature of the algorithms,

which limits the explainability of the algorithms concerning

the underlying factors of certain predictions. The field of

explainable AI aims to improve explainability, but as a result

of the complex structure and numerous input variables, full

transparency is often not feasible. As the explainability of AI

may have legal, medical and ethical consequences, one

should be aware of the limitations of both ‘post hoc’ explain-

ability of AI systems that aim to uncover which input factors

were of impact to the predictions and inherent explain-

ability.26 Post hoc explanations should not be used to assess

whether a model predicted the outcome correctly, but may be

used to identify biases.

The field of AI fairness studies how biases in AI research

may be identified and how to best mitigate them.22 Biases in

clinical AI predictions may occur when the development

dataset does not reflect all patient groups for which the sys-

tem will be used. This may result in suboptimal model

performance in minority and vulnerable patient groups such

as ethnic minorities. Therefore, model performance should be

evaluated on large datasets with sufficient sample size in

different patient groups and one should be aware of the

population on which the model was trained. This emphasises

the need for transparent model reporting.

ChatGPT is one of the most groundbreaking and now well-

known applications of AI; it is a large languagemodel based on

NLP, that will inevitably be used in the healthcare domain, for

example, to automatically summarise EHRs and reduce

administrative burdens. However, clinicians should be aware

of the potential limitations and biases that may occur with

this technology: answers produced by ChatGPT may be

incorrect and should be interpreted with caution.27
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As AI systems are built on data from hospitals and pa-

tients, one must be aware of the technological and regulatory

challenges involved in developing, implementing and scaling

AI systems. Lack of data standardisation and differences in

coding of patient-related variables across hospitals and

countries limit the scalability and generalisability to new

settings. Additive technologies such as AI are dependent on

the quality of the input data, as for example visual recognition

may be limited by the image quality. Furthermore, data

format and coding may change over time, requiring (post-

market) monitoring of the system. Hospitals and manufac-

turers of AI systems often lack the resources that are needed

to uniform EHR datasets and to enable the information tech-

nology (IT) infrastructure needed to deploy AI systems in a

real-world setting. Along with these technological challenges

for deployment, governance is needed to oversee safe

deployment of AI in healthcare, including fairness, trans-

parency, trustworthiness and accountability.28 The high costs

involved and lack of expertise in technical integration and

governance are two burdens for the implementation of AI

systems in clinical care.

The certification of AI systems under the Medical Device

Regulation (MDR) in Europe and the Food and Drug Admin-

istration (FDA) in the USA is focused on the effective and

safe deployment of AI systems in clinical practice.29 For the

UK market, AI systems must be registered with the Medi-

cines and Healthcare products Regulatory Agency (MHRA).

Next to the certification of AI systems as a medical device,

the General Data Protection Regulation (GDPR) protects

patients from their data usage without consent (with certain

exceptions) and prohibits AI systems from performing

stand-alone decision-making. Clinicians involved in devel-

oping AI systems should be aware of the regulatory re-

quirements involved.

The focus of clinically applicable AI has long been on

technological challenges, model performance, reporting,

explainability and biases, but many other factors are of

importance beyond the model itself.30 Besides data and

technology-related challenges, human factors play an

important role in the successful integration of AI systems.

Therefore, a multidisciplinary team should develop AI tools

with technological, medical and methodological expertise.22

As stated in the Topol review, successful implementation of

AI in healthcare requires investment in people and technol-

ogy, and co-development should take place with clinicians,

patients and technologists from initial design to final imple-

mentation.30 Good interaction between AI systems and their

end-users is essential for safe and effective use and should be

evaluated in early-stage clinical trials or usability studies.31

Understanding the human factors involved in utilising AI

systems and focusing on organisational change management

is seen as one of the steps to close the gap towards the

implementation of AI systems.
Summary

Different types of AI systems are increasingly being developed

and studied in perioperative medicine, but implementation

remains scarce. Artificial intelligence applications for periop-

erative medicine may be divided into clinical risk prediction

models and decision support tools, image recognition, robot-

assisted surgery, advanced closed-loop monitoring and

predicting OR and hospital logistical outcomes such as
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readmission and surgery cancellation. Before utilising an AI

system in clinical practice, the performance of the model

should be evaluated in external validation studies in terms of

discriminative performance, calibration properties and clin-

ical usefulness to properly assess safety and risk of bias, the

need for recalibration and clinical utility. The risk of bias as a

result of insufficient sample size, inappropriate choice of

input variables and insufficient representation of minority

groups in the training dataset asks for a critical appraisal of

study results and subgroup analyses with data from multiple

sites. Regulatory requirements from the GDPR, MDR, FDA or

MHRA, or a combination, must be met for the safe and effec-

tive implementation of AI systems in clinical practice. Scaling

AI systems to other hospital settings requires data stand-

ardisation and investment in technological infrastructure and

governance. Beyond these regulatory and technological chal-

lenges, there is a need to study the clinical benefit of AI sys-

tems in decision-making and with respect to clinical and

economic outcomes, but also to investigate what is needed for

end-users to effectively use these new technologies. There-

fore, human factors research, usability studies and clinical

trials will need to be performed to bridge the gap towards

implementation.
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