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ABSTRACT: Polymers applied in pharmaceutical applications Cation exchange s HighM, &
need to meet stringent quality standards to ensure reproducibility chromatography | narrow B
i i e

of product properties, suc}.1 as eﬂflcacy and safety of therapellltlcs. i | Al LL__ Quantitative end-
End-group fidelity is a crucial quality feature that ensures functional / W e group fidelity
integrity, reproducible synthesis, and robust therapeutic perform- o S ( G
ance. The contemporary production of poly(ethylene glycol) ngu. {,U\/J‘ _]H 7 (&%)

. . . . . . N 0 |sse , Solvent & catalyst
(PEG) exemplifies this requirement, which has consolidated its H R / ovaluation
position as a gold standard in pharmaceutical applications. Crude pSar )
However, modest to severe immune responses toward PEG in @(%g

patients generate the need for alternative polymers in the & Mechanistic insights

development of pharmaceuticals or cosmetics. Among such

alternatives, polysarcosine (pSar) displays PEG-like stealth proper- é Scalable purification
ties in vivo while displaying improved immunogenicity and toxicity '
profiles, generating the need for heterotelechelic pSar polymers of
the highest end-group integrity. Here, we compared current synthetic methods for the controlled synthesis of pSar over a broad
molecular weight range and assessed the end-group fidelity by ion exchange chromatography. Subsequent isolation allowed the
identification of impurities via mass spectrometry, thus yielding mechanistic insights into the N-substituted N-carboxyanhydride
ring-opening polymerization (ROP). Our results reveal a nuanced role of organocatalysts in the ROP, highlighting opportunities for
better catalysts. Finally, this work showcases a scalable purification method to obtain high molecular weight pSar with quantitative

end-group fidelity.

he conjugation of a water-soluble biocompatible polymer NCA), which belongs to the class of N-substituted NCAs

has presented itself as a simple solution to modulate the (NNCA). NNCA ROPs generally exhibit a higher living
pharmacokinetic profiles of therapeutics such as small character than NCA/N-thiocarboxyanhydride (NTA) ROPs,
molecules, proteins, and nucleic acids, as well as potent drug as the NNCA monomers lack a subtractable amide proton.
delivery systems such as lipid-based nanoparticles or polymeric Hence, propagation cannot proceed through an activated
micelles." ™ To date, poly(ethylene glycol) (PEG) remains the monomer mechanism (AMM), thus occurring exclusively by
most pharmaceutically relevant polymer applied in this the normal amine mechanism (NAM). Similar to NCAs,
strategy, prompting the popularization of the term PEGylation. NNCA polymerizations are sensitive to nucleophilic impurities
Its success can be attributed to its high water solubility, good and moisture, necessitating meticulous purification of mono-
biocompatibility, and commercial availability from the mers, solvents, and initiators to provide optimal control over

laboratory to GMP grade. Additionally, the precise control
over molecular weight, narrow molecular weight distribution,
and high end-group fidelity guaranteed by the living anionic
ring-opening polymerization® and established production
processes””® have fostered its overall success. Nevertheless,
rising concerns about PEG-related immune responses and the
rising prevalence of PEG-antibodies (accelerated blood
clearance (ABC) phenomenon) in the general population’ "'
have prompted research into PEG alternatives.'”'* Poly-
sarcosine (pSar) is an emerging PEG alternative, featuring Revised:  April 6, 2025
nearly identical solubility and chain rigidity in aqueous Accepted:  April 8, 2025
solutions,* yet displaying attenuated immune responses.'*~* Published: April 15, 2025
pSar is commonly synthesized through the ring-opening
polymerization (ROP) of sarcosine N-carboxyanhydride (Sar-

the polymerization process. Consequently, research groups
employ well-established solvent purification procedures and
have explored different monomer synthesis and purification
strategies. Despite advancements in purification,'”*’ diminish-
ing control over the molecular weight distribution is observed
with increasing molecular weight (M,),”° suggesting that
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Scheme 1. Schematic Overview of the Screening of pSar Polymerization Conditions and the Application of Cation Exchange
Chromatography to (1) Isolate, Quantify, and Identify Impurities and (2) Obtain pSar with Quantitative End-Group Fidelity
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group fidelity was examined as the polymerization of Sar-NCA w . " .
has been reported in a wide range of solvents. Dimethylforma- < g, . ’
mide (DMF) and dichloromethane (DCM) were selected as < oty ACK = 1
suitable solvents due to the compatibility of DMF with various o . “ s
polypept(o)ide structures,”> whereas DCM is reported to . . i , i ,
enhance propagation rates in NCA ROP. Finally, acetonitrile ’ e “ oo o
(ACN) was included due to its successful use in other ROPs, ) o
its dielectric constant value between DCM and DMF, and its Figure 1. (A_C,) DMF'SEC chromatograms of pSar Vf’lth different
£ purification.>> With th ified solvents and Sar-NCA [M]/[1] synthesized in DMF, ACN, and DCM, respectively. (D—F)
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of pSar with [M]/[I] ratios of 50—400 and examined their M,, different solvents as assessed by CEC. (H) M, as a function of DP for
distributions via size exclusion chromatography (SEC) in DMF ROPs in DMF, ACN, and DCM, respectively.
(Figure 1A—C) and the end-group fidelity via cation exchange
chromatography (CEC) (Figure 1D—F). The latter technique When examining the SEC plots across the different solvents,
separates mainly on electrostatic interactions of analytes with monomodal M,, distributions are obtained of relatively low
anionic ligands on the stationary phase. dispersity (P < 1.2) up to DP200, whereas DP400 features D >
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Figure 2. (A) CEC of pSar polymerized in DCM with AcOH as a catalyst, [M]/[I]/[A] = 50:1:5. (B—D) Full and zoomed MALDI-TOF-MS
spectra of the respective fractions isolated by preparative cation exchange of acid-catalyzed pSar50. Experimental spectra are denoted in black and
simulated in color, respectively. (E) Suggested species identified from MALDI-TOF-MS and their monoisotopic mass.

1.2, indicating a less-controlled ROP. pSar polymerized in
DMF generally features lower M, and higher D values (Figure
1A) compared to those polymerized in ACN or DCM. This
can be attributed to DMF decomposition, generating species
that interfere with the polymerization process.”* ACN and
DCM demonstrate similar propagation rates and performance,
yielding well-defined polymers for [M]/[I] ratios up to 400 in
DCM and 200 in ACN (Figure 1B,C). ACN’s utility for [M]/
[I] ratios over 200 is limited due to polymer insolubility at
those DPs, thus compromising a controlled polymerization
process.

Although monomodal M,, distributions are observed in SEC,
CEC reveals three distinct signals, two of which have a
constant retention time as a function of DP, indicating
negligible interactions with the anionic resin. The third species
shows a decreasing retention time as a function of DP,
indicating the presence of a charged species that is increasingly
shielded as a function of DP. (Figure 1D—F). An advantage of
CEC is that its resolution can be adjusted by modulating the
ionic strength and pH of the mobile phase (Figure S3). When
the relative cationic content from the area under the curves
(AUCQ), a gradual decline with an increase of M,, can be seen
for all solvents (Figure 1G). Generally, products polymerized
in DMF show the lowest cationic content, while DCM leads to
improved end-group fidelity. The cationic content also
correlates inversely with D obtained from SEC (Figure S4),
proving that the sharp decline of the propagating amine end
group compromises the living character of the ROP, inevitably
resulting in a deviation of linearity of M, as a function of DP
(Figure 1H).

Organocatalysis: Although appropriate solvent selection can
enhance the overall end-group fidelity, producing high-quality

534

M,, polymers with high end-group fidelity remains challenging.
To overcome these limitations, we investigated different
organocatalysts (viz. 18-crown ether (CE), TMG, sTU, and
acetic acid; Table S1) to energetically favor propagation over
termination and chain transfer reactions, which was assessed
for a [M]/[1] of 400.

Motivated by the application of CE to catalyze benzyl -
glutamate (BLG) NCA ROPs,””*" we screened its application
in Sar-NCA ROP. Unfortunately, CE provided no improve-
ment over the noncatalyzed ROP, yielding a product with
lower M,, comparable D, and reduced content of cationic end
groups (Figure SS). Presumably, CE is not suited for NNCA
ROP due to the lack of acidic protons in the NNCAs.

Next, we screened TMG catalysis, based on reports detailing
its application in amine-initiated BLG-NCA ROPs.** Unfortu-
nately, the TMG-catalyzed product featured a considerably
lower M, compared to the noncatalyzed ROP, suggesting
competitive initiation by both amine and TMG (Figure S6).
Similar observations were made by Zhang et al. for TMG-
mediated Sar-NTA polymerizations.”

Although sTU has been solely applied in NCA ROP in
combination with various hydroxyl initiators, its catalytic
activity was attributed to monomer activation and reversible
protection of amine chain ends, besides increasing the
nucleophilicity of the initiator,”” therefore presenting ample
rationale for its exploration in the NNCA ROP of pSar. While
sTU catalysis did increase the cationic content relative to the
noncatalyzed ROP, both SEC and CEC revealed multimodal
distributions, indicating the presence of additional low M,
species (Figure S7).

Lastly, we explored acetic acid-catalyzed ROP of NCAs,
initially introduced by Bamford.*® It was successfully applied to

https://doi.org/10.1021/acsmacrolett.5c00165
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Sar-NCA polymerization by Lu™® promoting propagation rates
and improving control over the polymerization as a function of
molecular weight. Encouraged by their work, we assessed the
effect of AcOH as a catalyst on end-group fidelity of pSar
across a DP range of S0 to 800. Our findings confirm the
efficiency of acid catalysis, promoting fast and controlled
polymerization of Sar-NCA and, more importantly, achieving
higher cationic content compared to the noncatalyzed
conditions. While this confirms a higher livingness of the
ROP, a new peak was present in the CEC-trace, indicating the
presence of side reactions, warranting further investigation
(vide infra).

Although the investigated catalysts had a beneficial impact
on chain propagation rates compared to noncatalyzed systems,
CEC revealed that only AcOH improved the end-group fidelity
of pSar and, consequently, the livingness of the ROP.

Mechanistic analysis: Due to the high purity of pSar of DP <
100, impurities in MALDI-TOF-MS spectra of crude products
are easily overlooked, necessitating separation of the species.
Encouraged by CEC results, we performed preparative
purification of noncatalyzed and AcOH-catalyzed pSar
polymers (Table S1). All isolated fractions for pSarSO and
pSarl00 were subsequently analyzed by MALDI-TOE-MS.
The ROP in DCM contained a single nonionic fraction,
containing a carbamic acid species in H- and Na- forms, which
indicates that the rate-limiting decarboxylation of the carbamic
acid species is slow’*™* relative to propagation, resulting in
nonuniform chain growth and broadening of the M,
distribution. Additionally, a product of w-end termination by
an unidentified hydroxy-chloroalkyl chain with a bruto formula
of C¢H},0OCl (Figure S8). This species likely originates from
the amylene stabilizer in DCM, whereby radical DCM
decomposition generates electrophilic amylene derivatives,
which subsequently terminate the ROP (Figure S9).

For AcOH-catalyzed polymerizations, two separate non-
charged fractions were collected (Figure 2). The first fraction
contains the same chloroalkyl-terminated fragment as well as
w-acetyl pSar and zwitterionic a-COOH pSar. However, no
fragments corresponding to carbamic acid could be identified,
indicating that the addition of AcOH enhances the
decarboxylation rate of carbamic acid relative to propagation.
The second fraction contains a single fragment of a
zwitterionic @-COOH terminal pSar. These findings confirm
AcOH-mediated-initiation, presumably through the intermedi-
ate ammonium salt, which were recently reported as efficient
initiators by Liu.”> The acetyl-terminal pSar confirms the
presence of the anhydride initiating species, corroborating the
observations of Ling for NNTA acid-catalyzed ROP.*
Notably, the zwitterionic fraction has a lower M, distribution,
indicating slow initiation by the carboxylate anion, while w-
acetyl and w-chloroalkyl terminal species match with the
intended M, of pSar, suggesting that chain termination
reactions are competing with propagation (Scheme 2). The
cationic pSar fraction, however, is free of detectable side
products and exclusively of heterotelechelic nature (Figure 3),
making them ideal candidates for the synthesis of drug,
protein, or lipid conjugates or block copolymers for the
synthesis of polymer micelles (PM) or polyion complex
micelles (PICM:s).

In conclusion, we demonstrate the value of ion exchange
chromatography on both analytical and preparative scales to
monitor the end-group fidelity of pSar and separate species
with different end groups, consequently granting mechanistic
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Scheme 2. Suggested Pathway of Polymerization and
Formation of Impurities During Non-catalyzed and Acid-
Catalyzed Sar-NNCA ROP in DCM
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Figure 3. (A, B) DMF-SEC chromatograms of crude and purified by
cation exchange pSar with different [M]/[I] synthesized in DCM
with AcOH catalysis ([I]/[A] = 1:5). (C, D) CEC traces of crude and
purified products.

insights into the NNCA ring-opening polymerization and the
full identification of byproducts. Our detailed analysis
demonstrates that appropriate solvent selection can enhance
the rate of the carbamic acid decarboxylation, yet contrary to
recent literature,*® solvents alone cannot overcome this critical
bottleneck. To overcome this limitation, we explored a variety
of organocatalysts that have been showcased in contemporary
research to accelerate the NCA ROP. However, our results
reveal that their effects on polypeptoid end-group fidelity, and
consequently product quality, are more nuanced. Of the
investigated catalysts, only organic acids significantly improve
w-end-group fidelity by (1) enhancing the relative rate of
decarboxylation to propagation and (2) establishing a rapid
exchange of dormant ammonium carboxylates and propagating
free amines. Yet, the introduction of AcOH also generates
additional side products. Further purification of acid-catalyzed
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products via preparative ion exchange presents a scalable
method toward well-defined heterotelechelic pSar across a
wide range of DPs, which we demonstrated for DP 50—800
(Figure S10). This approach can be extended to other NNCAs
and facilitate the development of polypept(o)ides as
therapeutics, addressing manufacturing challenges to comply
with the stringent regulatory standards in pharmaceutical
applications.
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