

Phenolic constituents of Gnaphalium uliginosum L

Shikov, A.N.; Kundracikova, M.; Palama, T.L.; Pozharitskaya, O.N.; Kosman, V.M.; Makarov, V.G.; ...; Verpoorte, R.

Citation

Shikov, A. N., Kundracikova, M., Palama, T. L., Pozharitskaya, O. N., Kosman, V. M., Makarov, V. G., ... Verpoorte, R. (2010). Phenolic constituents of Gnaphalium uliginosum L. *Phytochemistry Letters*, *3*(1), 45-47. doi:10.1016/j.phytol.2009.11.002

Version: Publisher's Version

License: Licensed under Article 25fa Copyright Act/Law (Amendment Taverne)

Downloaded from: https://hdl.handle.net/1887/4247828

Note: To cite this publication please use the final published version (if applicable).

ELSEVIER

Contents lists available at ScienceDirect

Phytochemistry Letters

journal homepage: www.elsevier.com/locate/phytol

Phenolic constituents of Gnaphalium uliginosum L.

Alexander N. Shikov ^{a,b,*}, Maria Kundracikova ^c, Tony L. Palama ^d, Olga N. Pozharitskaya ^{a,b}, Vera M. Kosman ^b, Valery G. Makarov ^{a,b}, Bertalan Galambosi ^e, Hye Jin Kim ^g, Young Pyo Jang ^g, Young Hae Choi ^c, Robert Verpoorte ^c

- ^a Saint-Petersburg Institute of Pharmacy, 47/33 Piskarevskiy pr., 195067 St.-Petersburg, Russia
- ^b Interregional Center "Adaptogen", 47/5 Piskarevskiy pr., 195067 St.-Petersburg, Russia
- ^c Division of Pharmacognosy, Section Metabolomics, Institute of Biology, Leiden University, P.O. Box 9502, 2333 CC Leiden, The Netherlands
- ^d UMR C53 Peuplements Végétaux et Bioagresseurs en Milieu Tropical, Faculté des Sciences et Technologies, Université de La Réunion, 15 avenue René Cassin, B.P. 7151, 97715 Saint Denis Messag. Cedex 9, La Réunion, France
- e MTT Agrifood Research Finland, Plant Production Research, Karilantie 2 A, Fl-50600 Mikkeli, Finland
- g College of Pharmacy, Kyung Hee University, Seoul 130-701, Republic of Korea

ARTICLE INFO

Article history: Received 21 September 2009 Received in revised form 17 November 2009 Accepted 17 November 2009 Available online 26 November 2009

Keywords: Gnaphalium uliginosum Flavonoids Phenylpropanoids Structure elucidation

ABSTRACT

The herb *Gnaphalium uliginosum* L. is an annual plant widely used in Russian and Bulgarian phytotherapy in the treatment of hypertension, thrombophlebitis, phlebothrombosis and ulcers. Decoction and infusion of *G. uliginosum* are known to possess anti-inflammatory, astringent, and antiseptic properties. Oil extracts are used in the treatment of laryngitis, upper respiratory catarrh and tonsillitis. However, there is still lack of information about the active compounds.

Ten phenolic compounds have been identified from the aerial parts of *G. uliginosum* including seven flavonoid glucosides and three phenylpropanoids. Their chemical structures were elucidated on the basis of 1D and 2D NMR and HRESIMS. Among the identified compounds the first full assignments of the 1H and ^{13}C NMR spectra of, 5,7,4'-trihydroxy-6,3'-dimethoxyflavone-7-0- β -D-(6"-0-caffeoyl)-glucopyranoside are firstly reported in this paper.

© 2009 Phytochemical Society of Europe. Published by Elsevier B.V. All rights reserved.

1. Introduction

The herb of *Gnaphalium uliginosum* L. syn *Filaginella uliginosa* L. or Marsh Cudweed is an annual plant which is widely used in Russian phytotherapy (Yakovlev and Blinova, 1999). Decoction and infusion of *G. uliginosum* are known to possess anti-inflammatory, astringent, and antiseptic properties (Sokolov, 2000). Oil extracts are used both internally and externally in the treatment of laryngitis, upper respiratory catarrh and tonsillitis (Gammerman et al., 1984). In Russian and Bulgarian phytotherapy it is used in the treatment of hypertension and ulcer (Shchepotin et al., 1984; Ivancheva and Stantcheva, 2000). There is some information about the usage of the herb *G. uliginosum* for the treatment of the thrombophlebitis and phlebothrombosis (Turova and Sapozhnikova, 1989). Some of these activities are attributed to phenolics compounds present in the plant (Barnaulov et al., 1984; Yakovlev and Blinova, 1999).

E-mail address: alexs79@mail.ru (A.N. Shikov).

The phenolics that have been reported to occur in *G. uliginosum* include the flavonoids: gnaphaloside A [5,7,4'-trihydroxy-6,3'dimethoxyflavone-7-O-β-D-(6"-O-caffeoyl)-glucopyranoside], 6methoxyluteolin, 6-hydroxyluteolin 7-O-β-D-glucopyranoside, and scutellarein 7-0- β -D-glucopyranoside (Konopleva et al., 1979, 1980) together with coumarins, and tannins (Gammerman et al., 1984). In the lipid complex of the herb of G. uliginosum α -, β -, and y-carotenes and lycopene were identified (Bogdanova et al., 1983). However, there is still lack of detailed chemical data such as NMR assignments for the compounds. The present paper reports the structure elucidation of the phenolic constituents of G. uliginosum using 1D and 2D NMR, and HRESIMS spectra. The data presented should make a further contribution to the current knowledge regarding the chemistry of G. uliginosum and help to better understand the functional properties of this interesting, yet little investigated, herb.

2. Results and discussion

Compound **1** (Fig. 1) was isolated from the EtOH extract of the aerial parts of G. uliginosum. The positive HRESIMS of **1** displayed a molecular ion peak $[M+Na]^+$ at m/z 677.1506, suggesting the molecular formula $C_{32}H_{30}O_{15}Na$. The 1H NMR spectrum suggested

^{*} Corresponding author at: Interregional Center "Adaptogen", 47/5 Piskarevskiy prospect, St.-Petersburg 195067, Russia. Tel.: +7 812 322 5605; fax: +7 812 322 5605.

Fig. 1. Chemical structures of **1–7**. **1**: R_1 = H, R_2 = OCH₃, R_3 = β -D-(6"-O-caffeoyl)-glucose, R_4 = OCH₃. **2**: R_1 = H, R_2 = OCH₃, R_3 = β -D-glucose, R_4 = OH. **3**: R_1 = O- β -D-glucose, R_2 = H, R_3 = H, R_4 = OH. **4**: R_1 = O- β -D-glucose, R_2 = H, R_3 = H, R_4 = OH. **5**: R_1 = O- β -D-glucose, R_2 = H, R_3 = H, R_4 = OCH₃. **6**: R_1 = H, R_2 = OCH₃, R_3 = O- β -D-glucose, R_4 = OCH₃. **7**: R_1 = H, R_2 = H, R_3 = O- β -D-glucose, R_4 = H.

1 to be a 5,6,7,3',4'-pentasubstituted flavone derivative, showing the signals due to two aromatic singlets (1H each, s at δ 6.51, H-3 and δ 6.85, H-8) and B-ring protons at δ 7.31 (H-2', 1H, d, J = 2.0), δ 6.84 (H-5', 1H, d, J = 8.3), and δ 7.38 (H-6', 1H, dd, J = 8.3, 2.0). Two methoxy groups at δ 3.90 (3H, s) and δ 3.94 (3H, s), and an anomeric proton of β -D-glucose at d 5.15 (1H, d, J = 7.8) were detected in ¹H NMR spectrum of the compound **1**. In addition, a caffeoyl moiety was confirmed by the detection of the resonances at δ 6.58 (H-2"', 1H, d, J = 1.4), δ 6.46 (H-5"', 1H, d, J = 8.2), δ 6.44 (H-6"', 1H, dd, J = 8.2, 1.4), δ 7.35 (H-7"', 1H, d, J = 15.8), and δ 6.08 (H-8"', 1H, d, J = 15.8).

The glucose signals of H-1", H-2", H-3", H-4", H-5", and H-6" in the 1 H NMR spectrum of **1** were assigned by analysis 1 H- 1 H COSY spectrum (Table 1). The large downfield shift of H-6" compared with that of free glucose (1.0–1.7 ppm) and separation of two protons at δ 4.20 (1H, dd, J = 11.8, 8.4) and δ 4.74 (dd, J = 11.8, 2.1) show the attachment of caffeic acid at C-6" position. The conjugation of glucose and caffeic acid was confirmed by HMBC correlation between H-6" and C=O of caffeic acid. The glucose attachment at C-7, and methoxyl groups at C-6 and C-3' to flavone moiety were also confirmed by the HMBC correlation (H-1" and C-7, OCH₃ and C-6, and OCH₃ and C-3'). The remaining signals were assigned by comparison of 1 H NMR, 13 C NMR, 1 H- 1 H-J-resolved, COSY, HSQC, and HMBC spectra (Table 1).

On the basis of these NMR data the chemical structure of **1** was elucidated to be 5,7,4'-trihydroxy-6,3'-dimethoxyflavone-7-O-O-O-O-O-O-O-O-caffeoyl)-glucopyranoside (gnaphaloside A). This compound has been reported as a constituent of *G. uliginosum* before (Konopleva et al., 1979, 1980) but the NMR assignments were ambiguous. In this paper, the full assignments of the 1 H and 13 C NMR spectra are reported for the first time.

In addition to compound **1**, other flavonoid glucosides were identified as mixtures from HPLC fractions. The positive HRESIMS of the 3rd HPLC fraction show a molecular ion peak [M+Na]⁺ at m/z 501.1008, 517.0955 and 487.0849 suggesting the molecular formula $C_{22}H_{22}O_{12}Na$ (**2**), $C_{22}H_{22}O_{13}Na$ (**3**) and $C_{21}H_{20}O_{12}Na$ (**4**), respectively. The ¹H NMR spectrum of **2** is similar as of **1** but the resonance of the caffeoyl and a methoxy ¹H NMR are absent. The attached positions of glucose and methoxy group were confirmed by HMBC spectrum in which H-1" at δ 5.12 (d, J = 7.8 Hz) and 6-methoxy at δ 3.89 (s) correlated with C-7 at δ 157.6 and C-6 at δ 132.9, respectively. In the case of compound **3**, glucose was found to be attached at C-3 as the HMBC spectrum of compound **3** shows a correlation between H-1" at δ 5.25 (d, J = 7.9 Hz) and C-3 at δ 135.2. Compared with the singlet of H-8 at δ 6.50 of compound **3**, compound **4** shows clear doublets of H-6 at δ 6.20 (d, J = 2.1 Hz) and

Table 1

1 H NMR and 13C NMR data of 1 in CH₃OH-d₄ a.

Position	¹H	¹³ C
2	-	165.7
3	6.51 (s)	103.6
4	=	182.9
5	=	156.2
6	=	132.9
7	=	156.4
8	6.85 (s)	95.5
9	=	153.5
10	-	105.7
6-OCH₃	3.90 (s)	61.7
1′	-	120.7
2′	7.31 (d, J=2.0)	110.2
3′	-	147.7
4'	-	150.8
5′	6.84(d, J=8.3)	116.4
6′	7.38 (dd, J=8.3, 2.0)	121.7
1"	5.15(d, J=7.8)	101.7
2"	3.61 (<i>dd</i> , <i>J</i> = 9.1, 7.8)	74.5
3"	3.54(t, J=9.1)	77.5
4"	3.40(t, J=9.3)	72.6
5"	3.88 (m)	75.0
6"	4.74 (dd, J = 11.8, 2.1), 4.20 (dd, J = 11.8, 8.4)	64.4
3'-OCH ₃	3.94 (s)	56.0
1‴	-	125.8
2‴	6.58 (d, J = 1.4)	114.9
3‴	_	145.4
4‴	_	147.7
5‴	6.46 (d, J=8.2)	115.9
6‴	6.44 (dd, J=8.2, 1.4)	122.6
7‴	7.35 (d, J = 15.8)	147.5
8‴	6.08 (d, J = 15.8)	114.6
C00-	-	166.9

^a Chemical shift in ppm and coupling constant in Hz. 1 H- and 13 C-chemical shift were calibrated to δ 3.30 for 1 H and δ 49.0 for 13 C of the residual CH $_{3}$ OH- d_{4} .

H-8 at δ 6.39 (d, J = 2.1 Hz) which are correlated in the COSY spectrum. Based on the NMR and HRESIMS data, compounds **2**, **3** and **4** were thus elucidated as 5,7,3′,4′-tetrahydroxy-6-methoxy-flavone-7-O- β -D-glucoside, 3,5,7,3′,4′-pentahydroxy-6-methoxy-flavone-3-O- β -D-glucoside and 3,5,7,3′,4′-pentahydroxy-flavone-3-O- β -D-glucoside, respectively (Fig. 1). ¹H NMR assignments of the phenolic moieties and the anomeric protons (H-1″) of compounds **2**, **3** and **4** are listed in Table 2.

Three additional flavonoids were identified from the 4th HPLC fraction. The positive HRESIMS of the 3rd HPLC fraction showed a molecular ion peak $[M+Na]^+$ at m/z 501.1013, 515.1158 and 471.0910 suggesting the molecular formula C₂₂H₂₂O₁₂Na (5), $C_{23}H_{24}O_{12}Na$ (6) and $C_{21}H_{24}O_{12}Na$ (7), respectively. ¹H NMR spectrum of compound 5 is similar to that of compound 4, except for a downfield shift of H-2' from δ 7.60 (d, J = 2.2 Hz) to δ 7.92 (d, I = 2.1 Hz). The shift is caused by the attachment of a methoxy group at C-3' which was confirmed by the correlation between 3methoxy at δ 3.94 (s) and C-3' at δ 147.7 in HMBC spectrum. The position of β -D-glucose was also confirmed by the correlation between H-1 at δ 5.40 (d, J = 7.7) and C-3 at δ 135.2. The compound **6** has a similar pattern of the ¹H NMR spectrum as compound **1**, but 7-O-β-D-glusoside is without caffeoyl moiety. The presence of two methoxy groups at C-6 and C-3', and an O- β -D-glucosyl moiety at C-7 were confirmed by the HMBC spectrum. Using the 1D and 2D NMR spectra and HRESIMS the structures of compounds 5 and 6 were elucidated as 3,5,7,4'-tetrahydroxy-3'-methoxyflavone-3-0- β -D-glucoside and 5,7,4'-trihydroxy-3'-methoxyflavone-7-0- β -Dglucoside, respectively (Fig. 1). The compound 7 was elucidated as 5,7,4′-trihydroxyflavone-7-O-β-D-glucoside (Fig. 1) by comparison with authentic compound. ¹H NMR assignments of the phenolic moieties and the anomeric protons (H-1") of compounds 5, 6 and 7 are listed in Table 2.

Table 2 1 H NMR data of **1–6** in CH₃OH- d_4 a .

Position	2	3	4	5	6	7
3	6.51 (s)	-	_	_	6.70 (s)	6.69 (s)
6	_	_	6.20 (d, 2.1)	6.20 (d, 2.1)	_	6.50 (d, 2.1)
8	6.95 (s)	6.50 (s)	6.39 (d, 2.1)	6.40 (d, 2.1)	7.01 (s)	6.85 (d, 2.1)
2′	7.41 (d, 2.3)	7.59 (d, 2.2)	7.60 (d, 2.2)	7.92 (d, 2.1)	7.52 (d, 2.1)	7.90 (d, 8.8)
3′	_	-	_		-	6.92 (d, 8.8)
5′	6.90 (d, 8.3)	6.86 (d, 8.4)	6.86 (d, 8.4)	6.90 (d, 8.4)	6.93 (d, 8.6)	7.90 (d, 8.8)
6′	7.43 (dd, 8.3, 2.3)	7.58 (dd, 8.4, 2.2)	7.58 (dd, 8.4, 2.2)	7.58 (dd, 8.4, 2.1)	7.56 (dd, 8.6, 2.1)	6.92 (d, 8.8)
6-OCH ₃	3.89 (s)	3.87 (s)	_		3.89 (s)	_
3'-OCH ₃	_	_	_	3.94 (s)	3.96 (s)	_
1"	5.12 (d, 7.8)	5.25 (d, 7.9)	5.25 (d, 7.9)	5.40 (d, 7.7)	5.12 (d, 7.7)	5.07 (d, 7.5)

^a Chemical shift in ppm and coupling constant in Hz. 1 H-chemical shift were calibrated to δ 3.30 for 1 H of the residual CH₃OH- d_4 .

In addition to these flavonoids the three phenylpropanoids, *trans*-caffeic acid (**8**), chlorogenic acid (**9**) and cynarin (**10**) were isolated and identified by comparison with authentic samples.

3. Experimental

3.1. General experimental procedures

 1 H NMR, 13 C NMR, 1 H $^{-1}$ H $^{-1}$ H $^{-1}$ Fresolved, COSY, HSQC, and HMBC (600 MHz for 1 H and 150 MHz for 13 C) were recorded at 25 $^{\circ}$ C on a Bruker AV-600 spectrometer equipped with cryoprobe (Bruker, Karlsruhe, Germany). 1 H $^{-1}$ and 13 C $^{-1}$ Fresonances were calibrated to the residual solvent signal of CH $^{-1}$ OH $^{-1}$ A $^{-1}$ A at $^{-1}$ 3.30 for $^{-1}$ H and $^{-1}$ 49.0 for $^{-1}$ C.

Mass spectra were measured by an ESITOFMS. The operating conditions of the ESI ion source (Jeol, Tokyo, Japan) coupled to a JMS-T100TD (AccuTOF-TLC) in the positive ion modes were a discharge needle voltage of 2000 V, nebulizing nitrogen gas flow at 1 L/min. The first orifice lens was set to 100 V and Ring lens voltage was set to 13 V. The TOFMS was set with a peak voltage of 2500 V, a bias voltage of 29 V, a pusher bias voltage of -0.76 V, and a detector voltage of 2300 V.

High performance liquid chromatography (HPLC) was performed on an Agilent 1100 (Waldbronn, Germany) using a reversed phase column (Phenomenex Luna C18, 250 mm \times 10 mm, 5 μ m, Phenomenex, Torrence, CA, USA). Separation of the compounds was performed with a gradient of water–MeOH–formic acid (70:30:0.1) to water–MeOH–formic acid (20:80:0.1) in 26 min at a flow rate of 2.0 mL/min.

Thin layer chromatography (TLC) was performed on silica gel $60F_{254}$ plate (Merck, Darmstadt, Germany) using EtOAC–formic acid–acetic acid–water (100:11:11:27). The fractions obtained from Sephadex LH–20 column chromatography were pooled by the UV profiling (254 nm).

3.2. Plant material

Aerial parts of *G. uliginosum* L. were collected by Mr. Bertalan Galambosi from plantation of MTT Agrifood Research Finland, Mikkeli (61°44′N, 27°18′E) in August 2007. Voucher specimens have been deposited in the herbarium of the St-Petersburg Institute of Pharmacy (St. Petersburg, Russia). The plant samples were dried at 40 °C in an air-forced dryer, ground to a powder in an excelsior mill and stored in closed vessels.

3.3. Extraction and isolation of compounds

Five grams of dry plant material was extracted using a Soxhlet apparatus for 5 h (20–25 cycles) with EtOH and obtained extract was evaporated *in vacuo*. Residue was dissolved in 10.0 mL of 10% NaCl water solution on boiling water bath, filtered and loaded onto column (10 mm \times 150 mm) with polyamide sorbent (ICN Biome-

dicals GmbH, Eschwege, Germany). The column was washed by deionized water (30 mL), and eluted by EtOH. The solvent was removed under vacuum.

The dried ethanol extract (250 mg) was redissolved in MeOH and subjected to column chromatography over Sephadex LH-20 (60 g, Pharmacia, Amsterdam, The Netherlands) using MeOH as eluents. A total of 64 fractions (10 mL each) were collected. Fractions showing similar TLC profiles were pooled to afford seven combined fractions. Chlorogenic acid (5-caffeoyl quinic acid, 1.5 mg, **9**) and cynarin (1,5-dicaffeoyl quinic acid, 2.0 mg, **10**) were isolated from the 3rd and the 7th fraction, respectively. Those chemical structures were confirmed by the comparison with ¹H NMR spectra of authentic compounds. The 6th fraction obtained from Sephadex LH-20 was further separated by high performance liquid chromatography. Fractions showing similar HPLC-UV profiles at 254 nm were pooled to afford six combined fractions. The 2nd fraction yielded 3.5 mg of caffeic acid (8) and was confirmed by the comparison with the ¹H NMR spectrum of the reference compound. A caffeoyl flavone glycoside, 5,3',4'-trihydroxy-6,3'-dimethoxyflavone-7-O-β-D-(6"-O-caffeoyl)-glucopyranoside (4.5 mg, 1) was isolated from the 5th fraction. The chemical structure was elucidated using ¹H NMR, ¹H–¹H-J-resolved, COSY, HSQC, and HMBC spectra together with HRESITOFMS spectrum. The 3rd and 4th fractions of HPLC separation showed the mixture of flavonoid glucosides. Using 1D and 2D NMR spectra as well as HRESIMS spectrum the 3rd fraction was confirmed to contain 5,7,3',4'-tetrahydroxy-6-methoxyflavone-7-O- β -D-glucoside (2), 3,5,7,3',4'-pentahydroxy-6-methoxyflavone-3-*O*-β-D-glucoside (3) and 3,5,7,3',4'-pentahydroxy-flavone-3-O- β -D-glucoside (4). In the 4th fraction 3,5,7,4'-tetrahydroxy-3'-methoxyflavone-3-0-β-D-glucoside (**5**), 5,7,4'-trihydroxy-3'-methoxyflavone-7-*O*-β-Dglucoside (**6**) and 5,7,4'-trihydroxyflavone-7-O-β-D-glucoside (**7**).

References

Barnaulov, O.D., Manicheva, O.A., Shelyuto, V.L., Konopleva, M.M., Glyzin, V.I., 1984.
Effect of flavonoids on development of experimental gastric dystrophies in mice. Pharm. Chem. J. 18, 544–549.

Bogdanova, L.S., Strukova, M.P., Fedorova, G.A., 1983. Carotenoids of the lipid complex of *Gnaphalium uliginosum*. Chem. Nat. Comp. 19, 232.

Gammerman, A.F., Kadaev, G.N., Yacenko-Khmelevsky, A.A., 1984. Medicinal plants (Herbs-healers). High School, Moscow.

Ivancheva, S., Stantcheva, B., 2000. Ethnobotanical inventory of medicinal plants in Bulgaria. J. Ethnopharmacol. 69, 165–172.

Konopleva, M.M., Smirnova, L.P., Glyzin, V.T., 1980. Flavonoids of *Gnaphalium uliginosum*. Chem. Nat. Comp. 15, 420-423.

Konopleva, M.M., Smirnova, L.P., Glyzin, V.T., Shelyuto, V.L., 1979. New acylated flavone glycoside from *Gnaphalium uliginosum*. Chem. Nat. Comp. 15, 269–272.
 Shchepotin, B.M., Shchulipenko, I.M., Prisiazhniuk, M.S., 1984. Use of infusions of medicinal plants in patients with hypertensive disease. Vrachebnoe Delo 6, 18–22.

Sokolov, S.Ya., 2000. Phytotherapy and Phytopharmacology. MIA, Moscow. Turova, A.D., Sapozhnikova, E.N., 1989. Medicinal Plants of USSR and their Applications. Medizina. Moscow.

Yakovlev, G.P., Blinova, K.F., 1999. Encyclopedic Dictionary of Medicinal Plants and Animal Products. Speclit, St-Petersburg.