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Chapter 1

Introduction

Everywhere we look, we find traces of the past. Footprints in the sand, photographs
of long ago, and kind letters we read to reminisce, all allow us to infer information
from the past. Just as we are able to dig to uncover archeological remains of long
gone civilizations, Nature itself keeps a record; tree rings track the years (Fig. 1.1a)
and allow us to discern historical weather, and the deposited COs content in layers
of arctic ice (Fig. 1.1b) allow us to track the legacy of global warming[1].

But not all traces remain and or are readily recognised. Exactly what information
is retained, and what is not, is difficult to define. Here we will focus on a type of
trace that allows us to infer back exactly what information is stored. An everyday
example of this is a clicky pen. As it came out of the packaging in one specific state,
depending on whether the tip is out or in, we can figure out whether it has been
depressed an even or odd number of times. Another example is a mechanical lap
counter (Fig. 1.1c). A simple device with two levers, one of which is used to 'add’ a
lap, and the other to reset the device to zero. Both devices store a memory of the past.
More akin to the layers in trees and ice, is the process of forming layers in atomic and
molecular layer deposition '. These techniques allow for the deposition of an exact
number of layers on a substrate by repeatedly applying two different processes, akin
to the two processes of pressing and depressing the plunger on a clicky pen or lap
counter. However for some cases where we might not necessarily expect to find such

n typical layer deposition two reactants A and B are sequentially deposited on to a substrate.
First molecules of type A are deposited on to the substrate, terminating in a surface. Then, a
concentration of a compound we will refer to as B is deposited. This compound crucially only
attaches to A molecules, forming a closed surface of B molecules, of a single molecule thickness.
Next, in a second process, all B molecules are replaced by A molecules, which allows for a repetition
of the cycle.
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Figure 1.1: A number of objects showing memories of the past. (a) Tree rings which
can be used to determine the age of a tree and to infer the growing conditions of the
tree; a scientific field known as Dendrochronology (photograph taken by aurorabreakup
on panoramio.com) (b) Layers of ice inside an ice core sample taken in Greenland as
part of the GISP2 project. The visibility of the layers is caused by differently sized
air bubbles formed through the deposit of differently sized snow during the winter
and summer months. (¢) A mechanical lap counter. (d) Photograph of the Venus
Flytrap, showing the feeler hairs (photograph taken by Noah Elhardt and shared
under a Creative Commons Attribution-Share Alike 2.5 Generic license)
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an easily quantifiable memory. Famously, a cylindrical rod inserted in a container of
granular matter is able to memorize in what direction the rod was previously rotated
[2], and the plant known as the venus flytrap (Fig. 1.1d), despite not having a brain,

is able to count[3].

1.1 Memory in Materials

Memories are naturally formed in a wide range of materials in response to variety of
external driving protocols. Whether through mechanical deformation or externally
applied magnetic fields, traces of the past remain and show up in a multitude of
ways[4].

A classic example of memory in materials is found in systems of magnetic spins as
modeled by the so-called Preisach model. In this model, the response of a material
is modeled by ”independent elementary hysteresis domains” [5, 6]. Each hysteresis
domain has its two fields at which it flips, thus each state provides a single bit of
information — which state it was flipped to last. When combined, these domains
provide a more complex form of memory called ”return-point memory” (RPM), char-
acterised by the ”tendency of a material to return to the same microstate upon cyclic
driving”[7].

Contrary to its (unfortunate) name, RPM is not merely the ability for a material to
recreate some feature when returning to some remembered driving(point). A linear
(Hookean) spring does not have a form of memory, but would equally fit that descrip-
tion. In a purely linear system, there is no procedure to make a trace which can be
recovered at a later time. In contrast, RPM is the memory of previous turning points
in driving. When driven towards and past a turning point (a previous local extremum
in driving), the measured output of the material will match the previous output at
the turning point, after which the rate of change in the output jumps to a different
value [8] (see figure 1.2). Once crossed, a turning point is removed. Turning points
can thus only be added within the bounds of previous turning point, which puts a
strict hierarchy on the remembered values encoded with the turning points?.

Notably, RPM is observed in a vast number of systems, not only in idealised spin
systems but in many complex systems as well after a break-in-period of an initial
number of training cycles. In crumpled sheets for example, a system that features
internal rearrangements and plasticity, the response of the foil develops as it is pushed
and pulled between set bounds until it reaches a final response curve [9]. When driving

2Perhaps ”hierarchical memory”, or ” pyramidal memory” (due to the requirement that new memories
have to be within the bounds of the previous notches) would be a better fitting term.
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Figure 1.2: An illustration of the phenomenology of return point memory. Differently
colored curves indicate continuous sections of monotonic driving. (a) In response
to fixed-amplitude cyclic driving between £, and €4, the resulting force F' forms a
hysteresis curve as a function of . (b) When the driving direction changes, the
response curve follows a trajectory that intersects the second to last turning point.
(c) Information can be stored in the system by inputting turning points; by nesting
hysteresis loops through changing driving direction at specific strains. (d) Information
is extracted by moving past a turning point. As this point is crossed, the slope of the
curve undergoes a measurable jump due to the trajectory shifting toward the next
turning point. Driving past a turning point removes it.
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the crumple, it continues to snap and pop, even when displaying RPM, demonstrating
the non-linear nature of these mechanisms.

Some materials which display RPM, display a second form of memory during the
training period[4, 9]. First discussed in the context of charge-density waves[10], these
”multiple transient memories” encode an arbitrary number of values that correspond
to input in arbitrary order, given a significant system size [11, 4]. In contrast to RPM
however, this form of memory is fleeting, or transient, unless noise is introduced [11].
Specifically, after many driving cycles the memories of intermediate driving extrema
fades, and only RPM, the memory of extremal driving, remains [11].

Such transient memories can be described by the park-bench model of memory intro-
duced by S. Nagel[12]. This toy model model effectively captures the main features
of transient memories, including its fleeting nature, by the results of a simple game.
It works as follows: Imagine a number of benches in a line, between which a peculiar
type of grass has grown which gets trimmed by a fixed amount every time a person
walks over it. If this person walks to the first bench and back, only the first patch of
grass is trimmed. If this person walks to the N’th bench and back, the grass of the
first N benches is trimmed. Upon inspection of the grass, the length of each section
can be used to infer how often each bench has been passed. Note that this does not
allow us to infer in which order the person visited the benches. The park bench model
allows us to store memories, as long as there is still grass left to be trimmed. As soon
as the grass is completely removed, further trips do not leave a complete trace of
memory.

Although of academic interest, this form of memory as it occurs in materials is diffi-
cult to make practical use of. The practical read-out protocols of such memories do
not extract all stored information exactly and the writing and subsequent read out of
signals seems to be limited to about three distinct memories [13]. Note that this is
after multiple training cycles, and the protocol yields only the resulting information
that specific memories occurred, not how often they occurred. This seems to indicate
that these read-out cycles do not yield all information stored according to the (ideal-
ized) park-bench model. From the framework of the park-bench model, neither the
original length of the grass, nor the finite trimming length of the grass can be inferred
from these measurements. In practice, materials that allow for a direct measurement
possibility of the entire trace as proposed by the park bench model are beneficial. In
chapter 2, we will discuss a system with memory that can be made equivalent to the
park-bench model, and beyond, by additionally recording the order of applied inputs.
In this system, the internal memory can be directly read out by a visual inspection.
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1.2 Stability of memory

One crucial feature of traces is that they remain stable over time. This time could
be relatively short, as in charge density waves[10] and the Venus flytrap[3], or in very
long, as in disordered systems[11] such as spin systems [6], granular matter[2, 13], and
crumpled foils[9]. In all these cases, the configuration of these systems encodes the
stored information.

In many mechanical systems, the emergent stable states stem from local buckling
events. Consider holding a playing card between your index finger and thumb; when
pressed gently the card remains flat, but with enough force,the card buckles and bends
either left or right. Past the critical buckling point, bending allows the card to reach
a lower potential energy compared to staying straight, thus any small perturbation
will cause the card to deflect to the left or the right instead of remaining straight.
Note that, in perfectly symmetric systems, the direction in which the card initially
buckles — left or right — is essentially random. However, in practice, this direction
is completely determined by the broken symmetries present in the boundaries and
the card itself. In comparison, pulling on the card does not have this effect, it will
merely stretch a possibly imperceptible amount before possibly tearing. The material
of the card, whether it is made of paper, plastic or even metal, does in general not
influence this behaviour but merely the force required to buckle the card: buckling is
a geometric feature. Once buckled, the effective stiffness of the card in response to
compression drops dramatically. In structures like columns and walls, similar buckling
events are to be avoided as they correspond to catastrophic failures, but in the context
of mechanical memory, buckling provides functionality — after buckling, the playing
card is bistable. This can by demonstrated by using a second hand. By pushing on
the arch that is formed by the card, we can snap the card back and forth between
two stable configurations without changing our hold with the first hand.

In the case of crumpled sheets for example, Shohat et al. [9] demonstrated through
3d-scanning that the mechanical stability of the sheet could be decomposed into
many localized bistable elements. These bistable elements emerge from the process of
crumpling and subsequently flattening of the sheet which subsequently allows for the
encoding of memories. Every crease and fold that occurs when crumpling influences
the formation of new creases and folds, thus forming a complex structure of bistable
elements with equally complex emergent coupling. Such complexity is not necessary
however. As shown by Bense et al. [14], a pre-curved rubber corrugated sheet features
similar bistable elements that emerge when compressed. When cyclically compresed,
this system shares some of the phenomenology of disordered systems and is able
to "count to two” [14]. Here the curvature of the sheet localizes the formation of
the bistable elements. Due to small defects and depending on how the system is

10
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driven, different functionalities emerge which indicates that despite the comparative
simplicity of this system, the coupling and behaviour of this system in a response to
driving is anything but. Thus localised multi-stability appears as a key feature for
memory in mechanical systems.

1.3 Mechanical Metamaterials - Designing Material
properties

Mechanical metamaterials are artificial materials that obtain their unique and excep-
tional mechanical properties due to their structure. Here 'meta’ means 'beyond’, and
indicates that the properties go beyond that of ordinary materials, similar to how
‘metaphysics’ goes beyond the study of the real world. 3. Mechanical metamaterials
are a class of materials inspired by the previously studied optical metamaterials that
have unusual properties such as a negative index of refraction[16]. Mechanical meta-
materials instead focus on novel properties when deformed or stressed[17, 18]. Some
of the earliest mechanical metamaterials have negative poisson ratio’s making them
so-called auzetics, which widen when pulled and narrow when compressed[19, 20],
contrary to most ordinary materials. When pulling on a rubber band for example,
it becomes thinner in the middle. For small deformations, it has been shown that
materials with arbitrary linear responses (that obey thermodynamics) can be formed
with just elastic materials and specific structures[21]. These elastic structures often
feature slender elements, which can exhibit large reversible deformations, allowing for
the creation of complicated mechanisms. Within the context of this thesis, elastic
slender structures are ideal for designed memory effects as well. Elastic materials
such as rubber are a ”clean slate” when it comes to memory: when released these
materials deform back to their initial unconstrained configuration. Furthermore, slen-
der structures are exactly the types of structures that buckle when compressed along
their length. Thus the creation of a mechanical metamaterial with designed memory
functionality is a natural continuation of the earlier buckling-driven developments of
mechanical metamaterials.

Consequently, memory has recently garnered interest in the field of mechanical meta-
materials through the inclusion of elements that are themselves multistable[22, 23].
While such multistability of elements is likely necessary for the emergence of mem-
ory, it is in and of itself not the defining feature that allows for memory properties.
Crucially, how the elements are coupled together is paramount. Elements that are

3This is different from the popular meaning of 'meta’ in words as metadata (data about data) or
metahumor (humor about humor). This second meaning of meta was popularised by Douglas
Hofstadter in the book Gddel, Escher, Bach [15].

11
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'weakly coupled’ allow for the the existence of many independent local multistabil-
ities, whereas a ’strong’ coupling causes avalanches, transition waves and otherwise
global emergent stable states[24, 25]. Only when the stable states of a metamaterial
remain local, does the capacity for memory in a mechanical metamaterial grow with
the number of multistable elements inside of the material.

Furthermore, the coupling between the multistabilities inside a material needs to
effectively encode the driving enacted on the material. Achieving this through a
rational design such coupling appears to be a non-trivial task, yet (as discussed before)
readily occurs in many disordered systems and 'natural’ materials. Separate from the
ability to recall a single previous event, is the ability for a material to distinguish the
numeracy of repeated inputs. This requires a notion of response that not only depends
on a previous driving input, but on the previous inputs as well. In other words, it
depends on the outside influence and on the current state of the material. In this
thesis we will discuss a recurring pattern specific to such counting like pathways.
Furthermore, by designing metamaterials that feature specific pathways, we make
these features practical. As discussed in the context of ”transient memories” and the
park bench model (Sec. 1.1), only a known structure with a known response can be
used to effectively count and record driving cycles. An emergent counting response
in a natural material can merely be categorised by supervised measurements.

1.4 Materials as Computers

Multistable materials bear a striking resemblance to computers. As discussed, the
specific microstate of a multistable material can be used to infer information from
the past. Whereas in the framework of computing, the internal state of a system is
equivalent to all possible histories that led to that state, as described by M. Min-
sky [26]. To bridge these two concepts of state, we need a notion of how the material
can be manipulated, and how each stable state would transition in response to the al-
lowed manipulations; a state transition graph. This leads us to study such multistable
materials as though they are computers. Specifically, in the language of computation,
as though they are finite state machines (FSMs).

In recent research, mechanical metamaterials have been explored as ’computational’
systems, designed to perform mathematical operations. The focus of many of these
computational metamaterials is on implementing basic Boolean logic operations to
achieve universal combinatorial logic [27, 28, 29]. While such materials are inherently
valuable for certain tasks, the types of computations this class of metamaterials can
perform, is limited by their lack of a preserved state. Furthermore, to perform ar-
bitrary computation such as which can be performed by a Turing machine, a FSM,

12
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would further need to be coupled to an infinite reservoir of states (tape)*.

We note in passing that RPM - which readily occurs in many materials - could be
used as a source of such basins of stable states. In collaboration with P. Baconnier, we
demonstrated the memory storage capability of RPM. We managed to store and read
out six recognizable states in a NiTinol alloy wire (similar to the work of Perkovié
et al.[8], and the readout technique found in Keim [4]). The limit to the amount of
states such basins can store are mostly determined by the measurement equipment,
as the model used to describe the memory therein [5, 31], suggests a near-limitless
reservoir of memory in this system.

In this thesis we will focus primarily on the development of mechanical metamaterials
that mimic a specific type of FSMs — cellular automata (CA), a variant of FSMs that
best mimic the spatial cellular nature of many solids. We propose to build mechanical
materials made out of ’cells’, each a small simple FSM with a single state, that remains
mechanically local, and which interacts with its neighbours in a clocked fashion.

4In fact, as demonstrated by M. Minsky [26], a machine consisting of a relatively small FSM and
infinite basin with which the FMS interacts with through a read and write tape, is shown to be
Turing complete. Moreover, as a result of Shannon [30], the finite state machine needs only a single
bit of information (two states), connected to an infinite tape, to compute anything. In the words
of Minsky: ”the demonstration by Shannon (1956) that, allowed enough symbols, one can replace
any Turing machine by a two-state machine, shows that the structure of the state diagram can
be hidden in the details of operation and not clearly represented in the topology of the interstate
connections.” [26].

13
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1.5 This Thesis

Chapter 2 explores the beam counter mechanical metamaterial. This is a me-
chanical metamaterial consisting of slender beams that buckle and bump to interact,
yielding a cellular automata that is able to count compressive driving cycles. Fur-
ther, we combine multiple of these counters together to realize a metamaterial with
memory properties akin to "multiple transient memories”. We further develop this
metamaterarial to realize an order dependent response and demonstrate a ’lock-and-
key’ metamaterial.

Chapter 3 delves into the bumping buckled beams. The cornerstone of the inter-
action occurring in the beam counter metamaterial. In this chapter we uncover the
mechanism behind the apparent linear scaling of the critical distance in the bumping
buckled beams.

Chapter 4 discusses the slitted beams. These are a crucial ingredient of the beam
counter metamaterial. This chapter further explores the mechanics of slitted beams
and reveals the origins of their hysteretic behaviour and the observed triple stability
in response to compression.

Chapter 5 discusses the twistbuckler mechanical metamaterial. This is a suc-
cessor to the beam counter metamaterial that offers novel functionality such as cyclic
responses to driving cycles. Instead of utilizing beams, these mechanical metamate-
rials feature elements that twist as they buckle and interact through rigid contact.
This interaction simplifies the interaction between elements as compared to the inter-
action between bumping buckled beams and offers to opportunity to elegantly couple
bistable elements in two dimensions instead of one.

14



Chapter 2
Counting Beams

Materials with an irreversible response to cyclic driving exhibit an evolving
internal state which, in principle, encodes information on the driving history.
Here we realize irreversible metamaterials that count mechanical driving cycles
and store the result into easily interpretable internal states. We extend these
designs to aperiodic metamaterials which are sensitive to the order of different
driving magnitudes, and realize ’lock and key’ metamaterials that only reach a
specific state for a given target driving sequence. Our strategy is robust, scalable
and extendable, and opens new routes towards smart sensing, soft robotics and
mechanical information processing.

This chapter is based on previously published work [32]

15



Chapter 2. Counting Beams

Counting a series of signals is an elementary process that can be materialized in simple
electronic or neural networks [33]. Even the Venus flytrap can count, as it only snaps
shut when touched twice, despite not having a brain [3]. While the ability to count is
not commonly associated with materials, certain complex materials, from crumpled
sheets to amorphous media, can exhibit memory effects where the state depends on
the driving history [34, 4]. Under cyclic driving, their response then may feature
subharmonic behavior [35, 36, 37, 38, 39, 40, 41, 42] or, as was recently shown, a
transient where the system only settles in a periodic response after 7 > 0 driving
cycles [43, 14, 9]. The latter response thus counts the number of driving cycles in
principle, but in practice, the link between this number and the internal state is
highly convoluted. Materials that would feature controlled counting could simplify
the design of soft robotics and intelligent sensors, and more widely, open a route
towards sequential information processing. However, we have no rational strategies
to control the link between state and count or to realize in-material counting.

Here we introduce a general platform for metamaterials [44] that count mechani-
cal compression cycles. Our metamaterials consist of unit cells that each feature a
memory-beam (m-beam) that is either buckled left or right, which we represent with
a binary value s; = 0 or 1 [45] (Fig. 2.1a). The unit cells are designed to interact with
their neighbors such that under cyclic compression any unit cell in the "1’ state copies
this state to its right neighbor (Fig. 2.1b-c). This leads to a mechanically clocked wave
where the '1’ state advances rightward, one unit cell per compression cycle. Hence,
the collective state, S := {s1, $2,... }, evolves like in a cellular automaton [46], with
repeated cyclical compression yielding simple predictable pathways.

We combine such beam counters to realize metamaterials which exhibit more com-
plex forms of sequential information processing than counting, including the detection
of compression cycles of multiple amplitudes, as well as their sequential order. To-
gether, these establish a general platform for realizing targeted multi-step pathways in
metamaterials and open a route towards sequential information processing in materia

47, 27, 48].

2.1 Unit cell and cyclic driving

We aim to realize metamaterials where state ’1’ spreads to the right when the com-
pressive strain ¢ is cycled between e, and 5, (Fig. 2.1). We note that in contrast to
recent metamaterials which exhibit sequential shape changes under monotonic driving
[49, 50, 51, 52, 53], we require a sequential response under cyclic driving. This necessi-
tates unit cells that memorize their previous state, interact with their neighbors, and
break left-right symmetry. We satisfy these requirements with unit cells ¢ containing

16
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(c) Em EM
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Figure 2.1: (a) Schematic representation of the evolution of a ’beam counter’ meta-
material with n = 4 unit cells under two compression cycles. Each unit cell contains
a buckled m-beam (memory beam) which encodes a single bit. When the strain
e := A/L is cycled between &,, and js, the m-beams interact (grey symbols), so
that the ’1’ state is copied to the right (triangle), leading to the step wise advancing
of the 1’ state to the right. (b) Geometry of a unit cell 7 (highlighted), containing
a slender m-beam and a thicker, asymmetric s-beam (slitted beam) — lengths are
non-dimensionalized by setting the beams rest-lengths to 1. (¢) Evolution of beam
pairs under increased compression from &,, (left) to eps (right): when the spacing d;
is smaller than a critical distance D*, the buckled state of the slender beam is copied
to the thick beam (top); when D; > D*, the buckled state of the thick beam is copied
to the slender beam (bottom).

17
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two beams (Fig. 2.1b). The slender m-beams encode states s; = 0 or 1 in their left or
right buckled configurations. We choose ¢, larger than their buckling strain so they
retain their state. The thicker and non-trivially shaped s-beams facilitate interactions
between the m-beams, and buckle at a strain larger than &, but smaller than e,;.

The detailed design involves a careful choice of the symmetry breaking beam shapes
and their spacings. First, weakly symmetry breaking rounded corners at the ends of
the m-beams controls their buckling into a desired initial configuration S = {100...}
— this does not appreciably modify the evolution of the sample during compression
cycles, yet allows resetting the beam counter by momentarily cycling the strain to-
wards zero. Second, the s-beams feature similarly rounded corners that makes them
buckle left, and a slit which extends their reach when they snap to the right and
the slit opens up (see chapter 4). As we show below, these symmetry breaking en-
hancements are crucial for their role in right-copying the ’1’-state of the m-beams.
Third, we use the beam spacings d and D to control the interactions between s- and
m-beams. We found that when two buckled beams of unequal thickness are brought
in contact, upon further compression they either both snap left or snap right — the
direction depends on whether their distance is smaller or larger than a critical dis-
tance D*. We choose d; < D* and D; > Dx so that contact interactions between
neighboring m- and s-beams favor rightward snapping of the beams (Fig. 2.1c).

2.2 Counting and controllable transients

We combine our unit cells to construct a 'beam counter’ with n = 11 unit cells, using
standard 3D printing and molding techniques. We cycle the compression in a custom
built setup that allows accurate parallel compression of wide samples, and track the
center locations of the middle of the m-beams (Fig. 2.2b). Ramping up the strain from
zero to €, the system reaches the initial state {10000000000} (Fig. 2.2b). Repeated
compression cycles show the step-by-step copying of the ’1’state of the m-beams to
the right, which involves rightward snapping of the appropriate m-beam just after ¢
has peaked (Fig. 2.2b). Hence, the state evolves as {100...0} — {110...0} — --- —
{111...1} (Fig. 2.2b). We characterize such ’"domain wall’ states consisting of a string
of 1’s followed by 0’s by the number of 0’s, 0. The evolution of our beam counter
under cyclic compression can thus be seen as as counting down from o = 10 to o = 0.
Our design is robust, can be scaled down, and can be operated in a hand-held device.

The evolution from the natural initial state {100...} only features a limited set of
states, which do not contain substrings like 010 or 001. To demonstrate that our
metamaterial correctly copies 1-bits to the right, we use manual manipulation to
program the metamaterial in the initial state {01000111010} — this state contains

18
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Figure 2.2: (a) Beam counting metamaterial with 11 units, with center region high-
lighted (¢; = 0.040, T; = 0.10, d; = 0.13 and D; = 0.15). Arrows indicate weak
symmetry breaking of the m-beams that makes the system reach state {10000000000}
when ¢ is increased from zero. (b) Space-time plot, tracing the center positions of each
m-beam as a function of time under cyclic compression €, / epr \( €m (Em = 0.026,
ey = 0.099). Beams in state 0 (1) are highlighted in yellow (blue). (¢) Evolution of
the beam counter prepared in the initial state {01000111010} (central parts shown
only; beam state colored as above).
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Figure 2.3: Comparison of the evolution of two unit cells during a compression cycle.
(a) Original design. (b) Design without slits, which does not copy the 1’ state.
Frames (aIV) and (bIV) are not at the same strain, but compare the states where the
second m-beam just loses contact with one of its neighboring s-beams; note that the
m-beam is then, respectively, to the right (a) and left (b) of the neutral line (dashed).

all possible three-bit substrings. Its evolution shows that our metamaterial faithfully
executes our target evolution (Fig. 2.2¢). Moreover, we note that this initial state
evolves to the absorbing state {11...} after only 7 = 3 cycles, as the largest numbers
of 0’s to the right of a 1 is equal to three. Here, the transient 7 is not a material
property but a simple function of the state [43, 14].

A detailed inspection of the evolution of adjacent unit cells during their evolution
illustrates that bit-evolution takes place in a two phases (Fig. 2.3). First, when ¢ is
increased beyond a unit-cell dependent critical strain ef, the ’1’ state of m; is copied
to s; (Fig. 2.3al-alll). During this first phase, the left s-beam snaps open to the
right, and the m-beam becomes sandwiched between two s-beams (Fig. 2.3alll). In
the second phase, ¢ is lowered to &,,, and the sandwiched m-beam snaps right, after
which all beams relax to their new configuration (Fig. 2.3alll-aV). To illustrate how
the slits facilitate the copying of the right-buckled state, we compare the sandwiched
states for s-beams with and without slits (Fig. 2.3). Without slits, the sandwiched
m-beam is pushed left and first loses contact with the right beam; with slits, the
m-beam is pushed right, first loses contact with the left beam, and eventually moves
right (Fig. 2.3a-b). We stress that although the slits are essential in the current
design, we also realized beam counting in an alternative design that does not feature
slitted beams.
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Section 2.3. Sequential Processing

2.3 Sequential Processing

To demonstrate process information beyond simple counting, we combine multiple
beam counters into aggregate metamaterials (Fig. 2.4). Our first goal is to realize
metamaterials which discriminate and count driving cycles of different peak compres-
sions €. Specifically, we combine three n = 4 beam counters labeled aaa, bbb, and ccc
which have respective critical thresholds (62,62,62) ~ (0.073(4),0.085(3),0.092(2)),
which are all controlled by the same global strain ¢ (Fig. 2.4a-b). We label the result-
ing metamaterial as aaa|bbb|cce, and characterize its state by the number of 0’ beams
in each counter, {o;}. We define driving cycles of different magnitude, A, B,C, as
compression sweeps €, 5}\4/[’3’0 N Em, With (5%,5%,5%) ~ (0.078,0.089, 0.099),
such that ef < e < 52; < &b < &l < £f,. Starting out in the initial state
{o:} = {3,3,3}, a single driving cycle (A, B or C) then advances one, two or all
three counters, yielding three distinct states {2,3,3}, {2,2,3}, or {2,2,2} respec-
tively. Hence, from the state we can uniquely infer the applied driving cycle.

Crucially, longer driving sequences are also encoded in the internal state We
denote sequential driving cycles as, e.g., BAC, for which {o;} evolves as
{3,3,3} 2 12,2,3} & {1,2,3} 5 {0,1,2} (Fig. 2.4b). These states all encode spe-
cific information, e.g., state {1, 2,3} encodes one A and one B pulse, whereas {0, 1,2}
encodes a memory of one B, one C' and an arbitrary number of A pulses. We note
that while the capacity of our metamaterial is limited by one or more counters reach-
ing zero, it can be enlarged by increasing the length n of the counters. Furthermore,
we note that our metamaterial precisely materializes the Park Bench model that has
been introduced as a toy model to understand Multiple Transient Memories [54, 12].
Regardless, our strategy combining multiple beam counters allows to distinguish and
count different signals.

So far, our metamaterials are insensitive to the order of input signals, which limits
their functionality to counting. However, combining unit cells with different thresh-
olds in a single ’strip’ realizes heterogeneous metamaterials whose response is sequence
dependent and, e.g., discriminates driving cycles ABC from BAC. We realize the het-
erogeneous metamaterial bac. (Fig. 2.4c-e). Starting from state ¢ = 3, we can use
the same logic as before to infer its evolution and we subsequently collect all possible
pathways in a transition graph (Fig. 2.4c). In particular we find that input BAC
yields 0 = 0 while all other three-character permutations of A, B and C yield 0 = 1
(Fig. 2.4d-e). This illustrates that the response of heterogenous counters is sequence
dependent.

Finally, by combining heterogeneous and homogeneous counters we realize an aggre-
gate metamaterial that unambiguously detect a specific input ‘key’ string and thus
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Figure 2.4: Response of aggregate metamaterials containing multiple homogeneous
and heterogeneous beam counters. (a) Experimental realization of the aaa|bbb|cce
aggregate metamaterial, and snapshots of its pathway in response to input driving
BAC (triangles highlight the right copying of a 1-bit). Note that t;, d; and D; subtly
vary along the counters while 7; remains constant (see appendix Sec A.1). (b) Exper-
imental realization and evolution of bac counter during input string BAC' (panel (b)
and (d) are snapshots of the same experiment). (c¢) Complex driving cycles can be
encoded as an input string (here BAC) and produce different sequential response in
counters aaa, bbb and ccc (boxes represent individual counters and numbers represent
the sequence of states 0;). (d) The output of the bac counter to all input sequences
which are permutations of ABC (rounded boxes). (e) Transition graph of the hetero-
geneous counter bac. (f) The four counters aaa, bbb, ccc and bac operated in parallel
reach the unique state {0120} only for input sequence BAC. The homogeneous coun-
ters store the count of each signal, while the heterogeneous counter is sensitive to the
specific permutation.
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Section 2.4. Outlook

act as a sequential ‘lock’. We note that state o = 0 for counter bac is not unique
to input BAC, but can also be reached with input sequences such as BBC' and
CCC (Fig. 2.4c). Hence, to uniquely recognize a string BAC', we combine the count-
ing metamaterial aaa|bbb|ccc with the heterogeneous counter bac (Fig. 2.4b,d). Out
of all three-character strings, BAC is the only one that yields the collective state
{c} ={0,1,2,0} (Fig. 2.4f). The experimental demonstration of the response of he
aaa|bbb|ccc|bac machine to input BAC' is shown in Fig. 2.4b,d, which correspond to
a single experimental run where all four counters were actuated in parallel. We note
that our strategy can trivially be extended to longer sequences or larger alphabets.

While the design above cannot distinguish input BAC' from longer sequences such as
ABAC, we can detect such longer strings by extending the counter for the weakest
signal: out of all possible input sequences, the metamaterial aaaa|bbb|ccc|bac only
reaches state {0,1,2,0} for input BAC, thus allowing to uniquely filter and detect
such a string. Finally we note that designs featuring one heterogenous with multi-
ple homogeneous counters are not optimal. Unique detection of, e.g., three symbol
sequences with less than four counters can be achieved; in addition, many machines
recognize multiple distinct input sequences (see appendix Sec A.4).

2.4 Outlook

Our platform allows to realize metamaterials with predictable counting-like pathways
and easily readable internal states under cyclical driving. These metamaterials act
as a sequential thresholding devices, and can be generalized to detect more driving
magnitudes and longer sequences. Moreover, similar sequential behavior can be real-
ized in other designs, e.g., without slits. In contrast to recent mechanical platforms
that store mechanical bits [45] and perform Boolean logic [27, 48], our metamaterials
perform sequential computations, which are much more powerful than combinational
logic. Extending our update rules to more complex cases, including those where the
new state depends on multiple neighbors, including in higher dimensions, opens routes
to create systems that are Turing-complete, such as 'rule 110’ or Conway’s game of
life [46, 55]. Such ’cellular automata materials’ would allow massively parallel com-
putations in materia.
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Chapter 3
Bumping Buckled Beams

When a pair of parallel buckling beams of unequal width make lateral contact
under increasing compression, eventually either the thin or the thick beam will
snap, leading to collective motion of the beam pair. Using experiments and
FEM simulations, we find that the distance D between the beams selects which
beam snaps first, and that the critical distance D* scales linear with the com-
bined width of the two beams. To understand this behavior, we show that the
collective motion of the beams is governed by a pitchfork bifurcation that oc-
curs at strains just below snapping. Specifically, we use a model of two coupled
Bellini trusses to find a closed form expression for the location of this pitchfork
bifurcation that captures the linear scaling of D* with beam width. Our work
uncovers a novel elastic instability that combines buckling, snapping and con-
tact nonlinearities. This instability underlies the packing of parallel confined
beams, and can be leveraged in advanced metamaterials.

This chapter is based on previously published work [56]
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3.1 Introduction

Elastic instabilities govern many of the exotic properties of mechanical metamaterials
[24, 44, 57, 58, 59]. Typically, these metamaterials consist of slender elements that go
through collective buckling or snapping instabilities, causing the material to switch
between two states [59]. However, more advanced functionalities require a sequence
of reconfigurations of the material, controlled by carefully designed instabilities and
nonlinearities [60, 61, 59, 62]. The development of such materials thus requires an
investigation into the complex instabilities mediated by interactions between multi-
stable elements.

While constrained elastica have been thoroughly studied, comparatively less is known
for systems of compressible beams in contact. First, constrained elastica have proven
to be a rich platform of multi-stability with strong interactions between elements.
Both elastica in a potential field [63], and elastica in contact with walls [64, 65, 66,
67] have been known to display multiple branches of stable solutions. Moreover,
in systems with two elastica, the constraint between elements mediated by mutual
contacts can be used as a source of interaction [68, 69]. Second, for compressible
beams, additional complications arise as such beams buckle at finite strains [70].
In addition, for thick beams, the buckling transition changes from supercritical to
subcritical [71, 57].

We recently introduced a beam counter metamaterial which evolves sequentially, and
for which contacts between compressible beams of various widths are crucial (see
chapter 2). Because contacts in such systems are highly nonlinear, their analysis is
divided into subcases based on the quantity and types of contact between elements.
As the number of elements in contact at any time remains small, such an approach
allows for the analysis of larger systems of many elements.

Here, we investigate the symmetry-breaking of two unlike beams that buckle, make
contact, and eventually snap. Crucially, we consider two beams with different thick-
nesses leading to an asymmetry in the system; the beams buckle at different strains,
and have different rigidities. As the beam pairs are compressed, they traverse a se-
quence of reconfigurations. After buckling, the beams come into contact and interact
through a reciprocal constraint. The resulting system is initially stable, but at some
critical compression loses stability, causing one of the beams to snap through. De-
pending on whether the distance D between the beams is smaller or larger than a
characteristic distance D*, either beam can be selected to snap. To study the emer-
gence of this characteristic distance, we perform both experiments and numerical
simulations for a range of beam thicknesses and distances. Moreover, we derive an
analytical framework that yields a closed-form solution for the scaling of D* that
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occurs in the experimental and numerical results. Our work captures the behavior of
a pair of bumping buckled beams, and can be extended to a wide variety of scenarios
where two unlike bistable elements are strongly coupled.

3.2 Phenomenology

We start by discussing the qualitative nature of the evolution of two buckling beams
that come in contact under increased compression (Fig. 3.1a,b). The beams have
rectangular cross sections and equal lengths L; we non-dimensionalize all length scales
with the beam length and thus set L = 1. They are compressed by a distance A,
leading to a strain ¢ = A/L. Their out-of-plane non-dimensional thicknesses d are
assumed to be large and equal, so that the buckling strains are governed by the in-
plane dimensionless thicknesses t and T', where t < T'; for definiteness, we assume
that the thin beam is to the left of the thick beam (Fig. 3.1c).

In Fig. 3.1a,b we show the beam’s evolution under quasistatic increase of the strain e.
The thin beam buckles at ¢; after which the thicker beam buckles at e7. We assume
that the beams buckle towards each other (Fig. 3.1all,bII). The distance between
the centrelines of the beams, D, plays a crucial role, and we assume that D is small
enough so that the two beams eventually get into contact at some strain e, > ¢, —
for now we will assume that €. > er also. When the strain is increased further, the
contact forces between the beams increase, possibly leading to complex higher order
mode. This configuration becomes unstable for a critical strain .. Two distinct
scenario’s are then observed: either the thick beam snaps to the right (Fig. 3.1alV)
or the thin beam snaps to the left (Fig. 3.1bIV). As we will show below, the distance
D selects which of these two scenario’s occurs, and there is a critical distance D* that
separates these — for D < D*, the thick beam snaps, whereas for D > D*, the thin
beam snaps. Hence, post-snapping there are two distinct states where both beams
are buckled, either to the right (Fig. 3.1aIV) or to the left (Fig. 3.1bIV).

We note that in this example, the thick beam snapping for D < D* remains top-down
symmetric (Fig.3.1a), while the thin beam snapping for D > D* develops an asym-
metric shape (Fig. 3.1b). This is consistent with the condition for the development of
asymmetric beam shapes for transversely loaded buckled beams: for a beam of thick-
ness 7, such that asymmetric shapes develop when ¢ > 6.7372[72]. Hence, symmetric
and asymmetric snapping is determined by comparing €, to 6.73t2 and 6.73T2 respec-
tively (Fig. 3.2). Consistent with this, here we typically observe symmetric snapping
when D < D* and asymmetric snapping when D > D*, although deviations of this
can occur for T' ~ t. We note that the beam shape does not influence the left or right
snapping of the beams, i.e., the value of D*.
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Figure 3.1: Phenomenology of two competing buckled beams. (a, b) Snapshots of
beams separated by a distance of D < D* (a) and D > D* (b) as the compressive
strain ¢ is increased: (I) beams at zero strain with D and L indicated, (II) initial
contact at &, (III) beam configuration just before the beams lose contact at *, (IV)
beam configuration just after the beams have lost contact through the snapping of the
thick (a) or thin (b) beam. (c) Diagram of the setup showing: (i) stepper motor, (i)
linear actuator, (7i7) inductive position sensor, (iv) samples, (v) micrometer stabes
(d) Setup used to perform experiments. Top: Overview of the setup. Bottom: Zoom
in showing the beam fixture attached to the linear stage.
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Figure 3.2: Experimental results. (a) Snapping strains of a two-beam pair with
t = 0.026 + 0.0006 and T' = 0.072 £ 0.0006 (filled circles). Shown are results for
multiple experiments where ¢ is increased at fixed D. Insets show pictures of different
stable configurations of the system. Note that at large D there is an intermediary
range where the thin beam becomes asymmetric before snapping. The region where
the beams are stable in the asymmetric mode is indicated in gray. The horizontal lines
correspond to £ = 6.73t2 and £ = 6.73T2 which are the thresholds for asymmetric
snapping of the thin (blue) and thick (orange) beam respectively[72]. (b) Scatter plot
of D* for 19 combinations of ¢t and T'. (c) D* plotted as a function of ¢t + T shows a
simple proportional relation with a slope A**P = 1.484 + 0.006.
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Intuitively, the emergence of the two distinct scenario’s can be understood by con-
sidering the lateral stiffnesses of the two beams as € increases. We define the lateral
stiffness as the resistance of a beam to a vanishingly small point load applied at the
middle of a beam perpendicular to the axis of compression. This lateral stiffness varies
non-monotonically as the beam buckles: First the stiffness decreases down to zero at
the buckling point, after which it increases again in the buckled configuration. By
taking a small enough D, e, approaches 7, so that upon contact the thick beam is
barely buckled and its lateral stiffness is near zero, whereas the thin beam is deeper in
the post-buckling regime and significantly stiffer. Upon further compression, the thin
beam induces a snapping of the thick beam. For even smaller D, ¢, becomes smaller
than ep. Then, as the thick beam is not yet buckled when the beams make contact,
the left-right symmetry of the thicker beam is broken, determining its buckling direc-
tion rightward. In contrast, for large enough D, when the beams come into contact
when both beams are significantly curved, the thicknesses of the beams dominate
their lateral stiffness, and the thick beam induces snapping of the thin beam. While
intuitive, this picture does not produce a quantitative insight into what controls D*,
which is the focus of the remainder of this paper.

Experimental observations

To systematically explore the evolution of two post-buckled beams in contact, we de-
signed and built a custom compression device which is stiff in all rotational and shear
directions and ensures high parallelity between top and bottom plates (Fig. 3.1¢,d).
The compressive strain ¢ is applied through a linear stage, controlled by a stepper
motor and monitored with an inductive probe, yielding repeatable positioning with
an accuracy of 0.05 mm under typical loads. The distance D between adjacent beams
is controlled by four Thorlabs XRN25 manual micrometer stages housing the fixtures
which hold the beams in place with an accuracy of 0.01 mm. We track the deforma-
tion of the beams indicated by white protrusions on the front of the beams with a
grayscale CMOS camera at a resolution of 3088x2064, reaching a pixel density at the
objective plane higher than 10 pixels/mm.

We studied the evolution of pairs of beams of length L = 79.8 mm + 0.05 mm and
various thicknesses ¢t and 7. The samples studied are made out of VPS (Zhermack
Elite Double 32, Young’s modulus F =~ 1 MPa, poisson ratio v ~ 0.5) using molds
made with FDM 3d printing on commercial UltiMaker S3 and S5 printers. After
curing, the samples were allowed to rest for at least one week to allow the material
properties to settle, after which the samples are demolded. Following this, the di-
mensions of the final samples were measured using an Instron universal measurement
device equipped with 10N load cell and a touch probe to measure the thickness of
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the relatively soft beams at various locations. The standard deviation in T" along the
surface of the samples is 0.1mm. Experiments were only conducted with beams from
the same batch of rubber.

To measure D*, we performed multiple measurements for each beam pair at various
D. At the start of each measurement, each beam is manually manipulated such that
its buckled state is towards the adjacent beam. We then slowly increase ¢ at a rate
of 4.2 x 1074 s7! until the beams snap. For a typical beam pair with ¢ = 0.026 +
0.0006 and T = 0.072 & 0.0006 (the same pair as in Fig. 3.1a), as we incrementally
increase D between measurements, we observe that the strain at which the beams
snap, €g, varies smoothly up until D = 0.153, as can be seen in (Fig. 3.2a). Here
€5 sharply decreases as the system both transitions from displaying the below-D* to
above-D* phenomenology, as well as shifting from a symmetric snap-through mode
to an asymmetric snap-through mode. We note that the transition between left
and right snapping, and the transition between symmetric and asymmetric beam
shapes, are independent. The transition from symmetric to asymmetric beam shapes
is determined solely by the values of £/t? and /T2 — for the example here, 6.73t> <
£s < 6.73T72 [72], so that the thick beam remains symmetric while the thin beam
takes on an asymmetric shape (Fig. 3.2a). Finally, we observe that as D is increased
above D*, a small strain range opens up where the asymmetric beam shape is stable,
before snapping at a larger strain (Fig. 3.2a).

Monotonously increasing D such as in Fig. 3.2 a, unintentionally trains the samples,
such that the apparent value for D* differs for increasing and decreasing sweeps of
D. To minimize this hysteresis and accurately measure D*, we performed iterative
measurements with a specific protocol that reduces the number of subsequent mea-
surements above and below D*. We chose initial large steps of D; 11 — D; = 1 mm to
find bounds on D*, and then refined the bounds with decreasing stepsizes: 0.5 mm,
0.25 mm, 0.1 mm and finally 0.05 mm. We then repeated every measurement set
with exchanged left and right beams to correct for small asymmetries in the setup.
We finally estimate D* and calculate an error through the average and RMS of the
four measured bounds.

Our experiments yield D* for nineteen pairs of beams (Fig. 3.2b). We note that D*
grows with both ¢ and T, and surprisingly, the data for D* can be collapsed on a
single axis by plotting it as a linear function: D* = A**P(¢t + T) (Fig. 3.2c), with a
least squares fit slope of A\**P = 1.484 £+ 0.006. We note that this data collapse does
not significantly improve by adding an empirical fit parameter ¢, i.e. plotting D* as
a function of t 4+ ¢T. We discuss the validity and underlying physics that leads to this
collapse in section 3.3.
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Figure 3.3: Finite element data for D* as a function of ¢ and 7. (a) Raw data,
showing the range of parameters of our two sets of simulations. (b) The data for D*
collapses as a function of ¢ + 7. The line corresponds to a linear fit of the data for
0<t+T < %, where A¢™ = 1.478 + 0.002. Note that the density of points is not
uniform along the ¢ + T axis.

Finite Element Simulations

To eliminate the role of plasticity and to test the validity of our observations for a wide
variety of beam parameters, we performed FEM simulations of the co-buckling beams
using ABAQUS with explicit time-stepping, CPS4 elements, Neo-Hookean material
properties with a Poisson ratio of 0.49, uniform element sizes and sufficient damping
to prevent oscillations. To ensure the beams buckle towards each other, a small
temporary load is applied before the beams buckle and removed before the beams
make contact. We performed two sets of simulations. In the first set we varied both
t and T between 0.01 and 0.1, while in the second we varied the length of the beams
at constant ratio 7'/t &~ 2.95. For every parameter ¢t and T, we performed multiple
simulations using a bisective approach to determine D*, until the error in D* was less
than 10~%. The results of these simulations are shown in (Fig. 3.3).

Similar to our experiments, we found both symmetric and asymmetric snapping.
Consistent with our experimental observations, we find that D* is essentially propor-
tional to ¢t + T for t + 7T < 0.15. The fit of the numerical data yielded the slope:
Afem — 1,478 + 0.002, which is consistent with the results of the experimental data
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where AP = 1.484 4+ 0.006. We conclude that the critical distance D* is linear in
t+T.

3.3 Simplified models and theory

The phenomenology of the joint snapping of buckled beam pairs hints at the existence
of a pitchfork bifurcation that occurs when the beams are in contact, i.e., before the
beams snap through. Here we ask what the minimal ingredients are to observe such
a pitchfork scenario. First, we investigate joint snapping for a slender beam model
consisting of spherical beads connected with N bars that are modeled as linear and
torsional springs, as proposed by Guerra et. al. [73]. We find that for large N, this
simplified model captures the full phenomenology, including the existence of D* and
both symmetric and asymmetric snapping. For decreasing values of N, the model
becomes more crude, but the existence and linear relation of D* with ¢ + T remains
valid down to N = 2. Such N = 2 beams, which we call Bellini trusses [74], clearly
cannot have asymmetric shapes, again indicating that asymmetry is not essential for
the understanding of the scaling of D*. Second, inspired by these empirical observa-
tions, we study the joint buckling and snapping of pairs of Bellini trusses in section
3.3. We show that their left or rightward snapping does not require the beams to lose
contact, allowing us to focus on pairs of connected Bellini trusses. Finally, we show
that the joint buckling and snapping is an example of a general scenario involving
pairs of interacting elements that undergo pitchfork bifurcations at different values of
the control parameter €. We expand the Bellini truss system to analytically solve for
D* and find that it is linear in ¢t + 7" (in lowest order). Together, this shows that joint
snapping and the emergence of D* is a robust and universal phenomena.

Elastic Bead-Chains in Contact

We model the contact dynamics of post-buckled beams with a simplified model of
hard beads connected by Hookean and torsional springs. For a large number of links
N, this model has been shown to accurately and computationally effectively model
the dynamics of collections of buckled beams in contact [75, 73]. In addition, in the
limit of small N (N = 2), the model converges to an initially straight Bellini truss [74].
In the beam-chain model we space our nodes equidistantly along the beam length and
choose the spring constants to match the stretching and bending energy of realistic
beams [75]. We implement the contact dynamics between the beams with a stiff
Hertzian contact model. The ends of the beams are controlled through the top and
bottom particles, which control € and D and which enforce the ”fixed-fixed” boundary
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Figure 3.4: The critical distance D* obtained in the elastic bead-chain model. (a)
Scatter plot of the calculated D* for N = 62. (b-d) D* collapses when plotted as a
function of ¢t + T'. Data for the bead-chains and FEM simulations in blue and black
respectively ((b) N =62; (¢) N =4 and (d) N =2.).
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Figure 3.5: Pitchfork bifurcation for a pair of Bellini trusses. (a) The geometry for
the N = 2 system indicating the transverse displacements z; and z5 for at a strain
€. (b) The horizontal positions z1,zs (red and blue respectively) of the middle nodes
of the two trusses for N = 2 as function of strain £, for two values of D just below
(dotted) and just above (full) D* (t ~ 0.0031, T' =~ 0.0071, |D — D*| =~ 1076). (c)
The mean horizontal position (z) := (z1 + z2)/2 near the pitchfork bifurcation point
of these two cases track each other closely until they branch of at € &~ 0.0095.

conditions of the beams (for details, see appendix B). We implemented the model
beams using damped explicit time-stepping with the Large-scale Atomic/Molecular
Massively Parallel Simulator (LAMMPS) [76, 73].

We performed simulations of pairs of beams for: N = 62, N = 4 and N = 2,
using the same bisective protocol to determine D* (Fig. 3.4). For large N, where
the model accurately captures continuous beam dynamics, the characteristic linear
scaling D* = AR, (t +T') emerges with A ¢, = 1.47240.002, consistent with both
the experimental and finite element simulation data (Fig. 3.4b). We note that these
simulations also capture the symmetric and asymmetric beam shapes. Strikingly,
for N = 4 and N = 2 (where the shape is purely symmetric) a comparable linear
scaling of D* o t + T occurs (AR, = 1.182 + 0.002 and A<, = 1.1542 =+ 0.0007)
(Fig. 3.4(c-d)).

For all three cases, we note that the beams first collectively move left or right, and
then snap at a higher value of . This is illustrated in Fig. 3.5 for the simplified
N = 2 case, where we compare the evolution of the lateral motion of the center nodes
as function of the strain for two values of D just above and below D*. Our data
strongly suggest that the D = D* case correspond to a pitchfork bifurcation, with
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Chapter 3. Bumping Buckled Beams

the evolution for D # D* given by unfolding of this pitchfork bifurcation. At larger
strain, the discontinuous snapping transition occurs, but to determine D*, it suffices
to determine the location of the pitchfork bifurcation.

Instabilities in a pair of Bellini trusses

To understand the mechanisms that govern the critical distance and its scaling with
t+T, we analytically determine the critical values (D*, e*) of the pitchfork bifurcation
in the model based on a pair of initially straight Bellini trusses. First, we connect
their center nodes to model the persistent contact near the bifurcation, and separate
the end nodes to capture D and ¢ (See Fig. 3.5a). Specifically, we place the end points
of the thin and thick beams at x = o and x = 3, and require that

t T
D=p—-a+;+

- +5, (3.1)

where we account for the thickness of the beams.

Second, we expand the elastic energy of both Bellini trusses up to quartic order in x
and linear order in ¢, and and find at leading order (see appendix B):

Up = (€17 — e)ta® + ta?, (3.2)

where £t2 is the buckling strain with ¢ = %. Hence, the buckling strain scales as
the ratio of the constants B and K which parametrizes the compressive stiffness Kt
and bending stiffness Bt? in the truss. Here, £ can be considered the inhibition to
buckling due to the applied boundary conditions and degrees of freedom of the beam
model (see appendix B).

Satisfying Eq. 3.1, we obtain the total potential energy:

U=t[’ —e)(e—a) +(z—a)'| + T[(ET* —e)(x — B)° + (z— H)*].  (3.3)
We now obtain a closed form expression for (D*,*) by locating the pitchfork bifur-
cation in this quartic energy expansion. We first, without loss of generality, choose

at+ T =0 — a= —ﬁ% to eliminate the cubic terms in the expansion. Hence,
D=p1+2Z)+L+7Z and we then write the potential in the form:

U= Uy + ax + bx? + ca?. (3.4)

The stable and unstable equilibria of the system are found at the roots of F' = a%U ,
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where:
F =a+ 2bx + 4ex® (3:5)
=c-(qg+pz+2°), (36)
with: 9T3B% — 2TF32 — T3Bet? + TRt
q=q(B) = 9Tt + 23 7 0
p==p@;6)=(HQ62+6Tﬂ%é&zi%;gﬁ§t_E¥_¥€#. (3-8)

Crucially, we do not need to solve for the roots of F' explicitly; to find the bifurcation
point, we only need to detect a change in the number of roots. The multiplicity of the
roots of F can be determined from the discriminant A{F/c} = 4p® + 27¢%>. We note
that this strategy is generally applicable for polynomials of arbitrary degree, whereas
finding the solutions to such polynomials is generally not possible. As e increases,
the system changes from monostability to bistability. For D = D*, this happens
through a pitchfork bifurcation at € = &*. For D # D* this happens through a saddle
node bifurcation. This change of stability corresponds to A{F/c} crossing 0, where
the pitchfork bifurcation occurs for ¢ = 0 and the saddle node bifurcation occurs
otherwise; in the latter case, the location of the saddle node determines whether the
beams move left or right. As p depends only on 8 and not ¢ (Eq. 3.8), we can solve

for g*:
* §

which can be substituted into Eq. 3.1 to obtain D*:

D*:(t—I—T)( §+;> (3.10)

In addition, we obtain the critical strain by solving ¢ = 0 at § = 8* and obtain

e =€t +T)>% (3.11)

We thus find that D* scales linearly with ¢ 4+ T', consistent with our experimental
and numerical results. In addition, we find a testable relation between the slope A

and the strain at which the beams buckle, as both depend on &: A = % + %, while
e = &t2. Thus we predict that the boundary conditions of the beams influence D*,
e.g. pinned-pinned beams will have a smaller D* than fixed-fixed beams. Comparing
the Bellini truss model to the N = 2 simulations with £ = % (see appendix B), we

find a predicted A = % + % = 1.0625, which is comparable to the value obtained from
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simulations: A2, = 1.1542 + 0.0007.

3.4 Conclusion and discussion

We studied the collective snapping of two buckled beams in contact by means of
experiment, numerics and theory. Using experiments and FEM simulations, we found
a linear relation between the critical distance and the combined width of the two
beams: D* = A(t+T). We studied a simplified model consisting of N compressive rods
connected by torsional springs [73]. We find that at large NN, this model accurately
captured the collective snapping and critical distance, while at small N = 2, the
model allows to identify the essential mechanism that controls the eventual direction
of snapping: a pitchfork bifurcation that occurs at critical strain £* and distance D*.
Furthermore, this model allows to obtain a closed form solution for e* and D* which
captures the linear relation between D* and ¢t + T

Our approach can be extended to a wide variety of scenarios where two bistable el-
ements are strongly coupled, e.g., where the collective state can be described by a
single coordinate. These include Bellini trusses that are precurved, and more gen-
erally, any buckling elements. The essential physics is that when two systems that
undergo symmetric or asymmetric pitchfork bifurcations are coupled, the collective
behavior is governed by a new pitchfork bifurcation.
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Chapter 4
Hysteresis in Slitted Beams

Buckling and snapping instabilities form the backbone of many mechanical
metamaterials. Here we show that slitted beams show both buckling and hys-
teretic snapping under axial load, resulting in a post-buckling regime with triple
stability. We envestigate the hystersis loop under compression as a function of
geometric parameters using both experiments and simulations, and introduce
a minimal model based on the Bellini truss that captures the multistable be-
haviour of the slit beam.

The results in this chapter are the product of the collaborative work of the author of this thesis
and fellow PhD candidate Bernat Dura Fauli. The initial concept was developed and used by
the author in the framework of the counting beams (Chap 2). After some initial experiments
showing promising results, Dura Fauli took over the main experimental and numerical work.
The setup was built by the author, and the mounting was enhanced by- and the indenter was
implemented by Dura Fauli. The Slitted Bellini Truss model shared in Sec. 4.5 was developed

in collaboration, and is the product of many fruitful discussions.
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Figure 4.1: The slitted beam. (a) Geometry of a beam with a slit, characterized by
its length L = 80 mm, width W = 10 mm, slit size S = 6 mm a.nd hole diameter
H =1 mm. Beams have depth D = 25 mm to prevent out of plane buckling. (b)
Slitted beam configurations at various levels of compression. (c) The bifurcation
diagram of a typical slitted beam (t := W/L = 0.125, s := S/W = 0.6, H = 1 mm)
as it is compressed. Shown is the mid beam displacement z,, as a function of the
applied strain . The insets show the corresponding beam configurations. The beam
is tristable in the range of strains €. < € < g, and can be either in the closed or open
state. Note that, due to small visco-plastic effects, both branches display additional
minor differences between the response under increasing and decreasing e, which is
most apparent near the buckling point.

o

4.1 Introduction

Elastic instabilities and geometrical non-linearities can often be harvested to produce
exotic mechanical responses that lead to functionality. Such examples can be found
in Nature, in the rapid closing of the Venus flytrap snap-trap [77, 78] and the jumping
mechanism of various animals such as locust and grasshoppers [79, 80]. In all these
examples, a slow build-up of elastic potential energy is followed by a rapid release and
motion in the form of snapping. Recently, such instabilities have inspired soft robotics,
where they allow for rapid actuation exceeding many-fold the speed of driving [81, 49],
and mechanical metamaterials [59, 58, 61, 82, 24, 83| in which instabilities are used
to harvest energy, change shape and process information.

One such metamaterial covered in chapter 2, features beams endowed with a slit.
These beams are used in the framework of the "beam counter metamaterial” because
of the observed large asymmetry of their configurations at large compression. While
these structures exhibit useful mechanical behavior in the context of this metamate-
rial, the precise nature of the snapping instabilities and the origin of the hysteretic
region warrant further investigations. In this chapter, we will demonstrate that these
structures feature not only a tunable hysteretic response to axial compression but also
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a region of triple stability — a rare phenomenon for such simple compressed structures.

4.2 Phenomenology

We start by discussing the qualitative features of the buckling and snapping of a slitted
beam. We consider vertical rectangular beams (height L, width T, and depth D),
enhanced with a single horizontal slit (length S) that is terminated with a small hole
with a diameter of H = 1 mm to prevent tearing (Fig. 4.1a). We fix the hole size at a
diameter of 1 mm, which is large enough to prevent tearing, is readily manufacturable
and is small enough to not influence the data significantly (as verified by numerics).
For convenience, we will assume the slit is made on the right side of the beam, and
we will further non-dimensionalize the dimensions of the beam by defining t = W/L
and s = S/W. The beam is fixed at both ends under clamped-clamped boundary
conditions and compressed uniaxially to a strain e. The beam is made from a VPS
rubber (discussed in Sec. 4.3), which in simulations is described as hyperelastic.

As we cycle the strain €, we measure the mid-beam deflection x,,, via tracking of
fiducial markers on the beams with a camera. The graph in Fig. 4.1c shows the
evolution of the system as a function of strain. We distinguish four qualitatively
different beam configurations: unbuckled, left-buckled, right-buckled and the opened
slit configuration. Starting from the initial unbuckled configuration at € = 0, as ¢
is increased the beam buckles, yielding either a left-buckled or right-buckled state.
Note that these branches are mirror-symmetric in z,, (Fig. 4.1c), indicating that the
slit has a negligible effect on the initial post-buckling mechanics, and that in both
conditions the slit remains closed. Further compression results in an initial smooth
evolution of the absolute mid-beam deflection |z,,|, until at a critical strain € = ¢, we
observe a snap of the right-buckled configuration. This snap corresponds to a sharp
increases in the mid-beam deflection and the opening of the slit. Note, that in the
resulting open configuration, the mid-beam deflection is much greater than that of
the left-buckled state at the same strain e, which is precisely the functionality used
in chapter 2. From this open state, as we subsequently lower the strain, we observe
a snapping transition where the slit closes at ¢. (Fig. 4.1) 1. As &, < &,, the slitted
beam features a hysteretic response to driving. Moreover, in this hysteretic regime,
we observe three stable states, both the left and right buckled states, as well as the
open state. Thus here the slitted beam is tri-stable.

We do not observe transitions from the open to left-buckled state when the slit closes, although
these might occur in cases with strong inertia.
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Chapter 4. Hysteresis in Slitted Beams

Figure 4.2: The experimental setup. (a) A diagram indicating all individual com-
ponents. A beam (A) is clamped between two parallel plates (B) using 3D printed
clamps (C). Rectangular brass bar (D) fit with a triangular dent on the beam’s sup-
port and the metallic base to align both ends in the z-direction. A stepper motor
(not featured) drives the position of the central bearing block (E), which controls the
vertical position of the vertical top plate. A height gauge dial (F) is used to check
for drift in the neutral position during and in between experiments. A 3D printed
indenter (G) is mounted on a micrometer stage (H). (b) A photograph taken of the
setup.

4.3 Methods

Here we discuss the experimental and numerical methods used to study slitted beam
dynamics as a function of the geometry.

Experimental setup

To track the opening and closing of the beams as a function of £, we perform ex-
periments in a custom compression set-up consisting of two parallel horizontal plates
with controllable relative vertical distance. The bottom plate is fixed, while the top
plate is moved using a stepper motor with an accuracy of +0.01 mm to control £ with
an accuracy of +1.3-10~%. The plates are mounted on rails that ensure they remain
parallel within 0.6 mm/m. Such a degree of parallelism is required not to prevent
left-right symmetry breaking, and is significantly higher than the parallelism offered
by commercial uniaxial test-setups®. We calibrate the vertical distance between the

2Many commercial uniaxial testers are primarily intended to be measure an applied load in tension,
by slowly extending samples until they fracture. These machines are built to not break or jam
at fracture, but instead for the connections between the clamps and the load frames to loosen. In
tension, this is usually favorable as well, as the loosening of these connections lead to universal joints
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plates using a brass beam of a known calibrated length of 140 4+ 0.03 mm. Further-
more, a dial indicator with an accuracy of £0.01 mm is used to check for drift in the
position of the top plate between measurements.

The beam samples are cast in 3D printed molds using Smooth-On Mold Star™30 VPS
rubber. A roughly incompressible rubber with a shore hardness of 30A and a Youngs
Modulus of ~ 0.7 MPa[84]. The beams feature small 2 mm protruding dots along
their center line that are painted white to facilitate tracking. The deformation of the
beam is recorded with a single channel CMOS camera at a resolution of 3088 x 2064,
reaching a pixel density at the objective plane at 5 pixels/mm, and a framerate of
3Hz. This set-up yields a tracking accuracy of £0.02 mm using a custom script based
on OpenCV [85]. The beams are mounted with fixed-fixed boundary conditions to
the plates with accurately aligned clamps (Fig. 4.2).

To repeatably enforce the buckling direction of the beams, we use an indenter. The
indenter pushes the beam laterally at height L/2 by a manually adjusted amount
mid-beam deflection x;,. To verify that the indenter has a negligible effect once the
sample is buckled, we performed multiple experiments where we tracked the mid-beam
displacement x, as a function of the indenter position x;,. As shown in figure Fig. 4.3,
the indenter does not significantly influence the trajectory of the slit beam when not
in contact. In practice we use x;;, of 1 mm to determine the buckling direction.

Finally, we apply talc powder between the top and bottom parts of the slit of the beam,
as well as between the indenter and the beam. This reduces the effect of stickiness
which impedes the opening and closing of slit, and improves the reproducibility of the
mounting of the sample.

Abaqus simulations

The experiments are influenced by material related viscous and plastic effects and
and are sensitive to misalagnment of slender beams. To overcome these, we perform
finite element (FEM) simulations on 2D slitted beams using the software package
Abaqus/Explicit [86] in which we eliminate alignment problems, viscous and plastic
effects, and speed up the exploration of the beam parameters. Abaqus/Explicit per-

and the elimination of applied bending due to misalignment in the setup. In tension, such loose
connections are detrimental as they result in enhancing the misalignment, requiring the operator
to continuously check the rigidity and alignment of the setup. Furthermore, the load cells used to
measure the induced load are not conducive to a high degree of parallelism either. Often load cells
are constructed as cantilever element that bending as they deflect, which skews parallelism. As
a side effect, such load cells and are not insensitive to off-center loading either, i.e. an off-center
sample or a sample that enacts a torsion on the load cell yields a skewed force reading. Thus,
a measured load of a buckling beam would shift when the sample is moved off-center and would
depend on the buckling direction of the beam with respect to the orientation of the load cell.
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Figure 4.3: Effect of the indenter. Experimental response of a slitted beam (¢ = 0.150,
s = 0.8) to consecutive driving cycles where the indenter position is increased by 0.5
mm after each cycle. The effect of the indenter on the relevant parts of the curves is
negligible.

forms dynamic simulations to accurately handle non-linear behavior such as: buckling,
snapping, and contact.

We model the 2D geometry of a slitted beam in the range of parameters s = [0.2,0.8],
t = [0.05,0.175] using plain stress and fixed-fixed boundary conditions. We use CPS4
elements [86], a Neo-Hookean material with a Poisson ratio v = 0.49, a Young’s
modulus E = 0.78 (MPa) and sufficient damping to avoid oscillations. Furthermore,
similar to the experiments, we use an indenter to control the buckling direction.
However, instead of using a fixed indenter as in the experiments, in the simulations it
slowly moves horizontally towards the beam while vertically moving down to remain
at the virtual centre of the deformed beam as it is compressed. This eliminates
tractional forces between the indenter and the beam structure, and does not require
an initial relaxation period which would be required if the indenter were to intersect
the structure at the start of a simulation. Post simulation, we find ¢, and ¢, by
determining the strain at which the kinetic energy of the system is at a local maximum.

4.4 Experimental and Numerical Results

Here we discuss and compare the experimental and numerical results. To explore
the dependence of the hysteresis on the geometry of the beams, we use beams of a
constant length L = 80 mm at various ¢t and s.
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Figure 4.4: (a) The deformation as a function of £ for beams with ¢ =
[0.050,0.075,0.100,0.125,0.150,0.175] and s = 0.6. As expected, beams with a larger
thickness buckle at a later strain and have a larger hysteretic region. (b) Rescaled
opening strain ,/t? (red) and closing strain 2 (blue) as a function of beam width
for s = 0.6, H = 1 mm. Dots are experiments and lines are numerical data obtained
by FEM simulations using Abaqus. The rescaled opening and closing strains show a
nearly flat behavior. At small ¢, the opening and closing of the slit become difficult
to experimentally discern from the initial buckling of the beam. This results in the
increased errorbars.

t dependence

We measured and simulated the deformation of the beams at both increasing and
decreasing £ for beams of various thicknesses and with a constant slit of s = 0.6
(Fig. 4.4a). We find that, in good approximation, the opening and closing strains
of slit beams scale as t? (note that the buckling strain of ordinary beams scales
as t2) (Fig. 4.4b). We note that in experiments, as ¢ — 0, the buckling transition
becomes hard to distinguish from the snapping transition. This is likely related to the
experimental errors accumulating for small beams, as well as that the hole terminating
the slit remains of a constant size.

s dependence

To study the effect of the slit size on the opening and closing strains of the slitted
beam, we performed simulations at various thicknesses ¢ = [0.100,0.125,0.150], and
with slits of sizes [0.60,0.80,0.90] (Fig. 4.5). We find that for all ¢ the size of the
hysteresis loop increases monotonically with s. Strikingly, the opening strain £, does
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Figure 4.5: Effect of the slit size s on the observed hysteresis in simula-
tions. Simulations for beams with with various thicknesses (left to right) ¢ =
(0.050,0.075, 0.100, 0.125,0.150), and slit sizes (at a constant hole size of H = 1 mm).
(a) The measured deflection x as a function . (b) The measured hysteretic span
€, — € for various ¢t and s. Note that at larger slit sizes, the initial slope in x is not
flat. This is due to the terminating hole making up a large part of the remaining
midsection of the beam.
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not vary strongly with slit size s, while the closing strain €. decreases as s is increased
(Fig. 4.5b). Hence, the size of the slit widens the hysteresis loop by increasing the
stability of the open state. For small slits (e.g., at s = 0.3 ), the opening and closing
of the slit becomes nearly Indiscernible. For large slits (e.g., s = 0.8), the slit closes at
a strain before buckling, leading to a direct snapping transition from the open state
to a straight beam.

Discussion

Our simulations align well with our experimental results (Fig. 4.4). In particular,
the simulations reproduce the mid-beam deflection magnitude as function of strain.
Notable, the scaling of the snapping strains €, and ¢, with ¢ are in close agreement
between experiments and simulations, reinforcing the accuracy and validity of the
simulations. We find that ¢ increases both the buckling strain €, as well as ¢, and e,
in proportion to t2. In contrast, the slit size s affects only the mid-point deflection in
the open state and the corresponding closing strain e..

4.5 Slitted Bellini Truss

Despite the accuracy of the Abaqus simulations in evaluating the effect of geometry
on the opening and closing strains, they do not provide insight into the origins of
these transitions. We thus introduce a simple spring-based model that captures the
behavior of both the closed and open configurations separately. We show how these
give rise to a perfect and an imperfect pitchfork bifurcation respectively, and show how
the right combination of these two behaviors reveals the mechanisms of the opening
and closing transitions.

The spring based model we will introduce here is based on two observations. First,
when the slit is closed, a slitted beam behaves similar to an ordinary beam under
fixed-fixed boundary conditions. Such a beam can be modeled by a Bellini-Truss [74]3
loaded along its ends. The Bellini truss is one of the simplest models of a structure
that buckles at a finite strain. Second, once the slit is open, the top and bottom part
of the beam each are still beams, yet under different boundary conditions.

Based on these observations, we introduce the slitted Bellini Truss model. We start
from an ordinary Bellini truss of length 1, with spring constant k, internal angles
a, and torsional spring constant k. (See Bellini Truss in appendix Sec B). We then

3the classical ”von Mises truss” [70] stiffened by a torsional spring
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Figure 4.6: The slitted Bellini Truss model. (a) The Bellini truss modified with a
hinge representing the slit (left). Due to symmetry, we can equivalently study the
top half of the system with appropriate boundary conditions. (b) The two separate
systems S, and Sy allow us to find the stable points of the slitted Truss system Sp,
by solving the local extrema of E for free # (blue), and for fixed # (orange), as a
function of . (c) The potential energy of the system as a function of § and z for
four values of € = [0.039, 0.045,0.051, 0.057] (gridlines in b). The white dots represent
local minima, and the crosses represent saddle points. The lower half § < 0 is shaded
darker to represent regions of self-contact. The white contour lines correspond to
lines of equipotential. (d) The potential energy of the system as a function of z at
constant § = 0, and at aforementioned . The orange dots represent local minima,
and the crosses represent maxima.
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replace the center node of the Bellini truss with an off-center hinge which represents
the slit. This hinge is composed of two rigid trusses of length R at an opening angle
6 > 0, joined with a torsional spring with stiffness sy (Fig. 4.6a).

The truss is loaded in compression by moving the end-nodes such that their distance
is at 1 — e. Due to top-down symmetry, we can (to simplify the computations) split
the system in two equivalent sub systems, and consider a ’half beam’ where the middle
node is attached to a constraint that is free to move along the x-axis (Fig. 4.6a).

The potential energy of this system equals the sum of the potential energies of the
springs. We choose the resting angles and lengths of all springs to form a desired
initial ”straight” configuration, and write the potential energy of the system as:

E = ku® + koo? + kgh? (4.1)
where 1
u:§—\/:102—|—y27 (4.2)
1-— 0
y= 2€—Rsin§, (4.3)
and 9
a=oqy— g = %ﬂ + atan2(y, =) . (4.4)

Thus, the energy of the system at each £ can be expressed as a function of z and
6 (through substitution), with the geometric parameter R and energetic param-
eters k, Ko, kg. We can further reduce the number of free parameters by non-
dimensionalizing the potential energy:

E =0 + hoo? + kb2, (4.5)

where £ = E /k, ko = Kkg/k and R = ko /k. This leaves the following three parame-
ters of interest: R, kg and Rq.

Determining the Slitted Bellini Pathway

The pathway of this system in response to driving can by found by tracing the local
extrema of the potential as a function of €. This requires to take into account the
linear constraint imposed by the slit: 8 > 0. We solve the stability of the complete
system: Sy, by considering two related systems, the unconstrained system S, where
in which 6 is free and thus the slit can open and even self-intersect, and the system Sy
where # = 0 remains fixed on the boundary, and the slit remains closed. The stable
states of the slitted beam are then determined by the stable nodes of S, where 6 > 0,
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and Sy where 6 = 0.

To solve the stable and unstable states of S,,, we calculate the potential energy F
on a sufficiently dense grid in x and 6, and find the local minima and saddle points
by intersecting the numerical contour curves 4 at dE/0x and OE /0 at each . For
system Sy, we find the roots of the numerically determined OF/0x at each €. After
linking together the solutions the critical points for a judicious choice of parameters
(ko =~ 0.0114, R ~ 0.0023 and R =~ 0.063), we observe two separate bifurcation
diagrams for S, and S (Fig.4.6b). For system S, we observe a clearly asymmetric
bifurcation diagram characterized by a saddle node bifurcation, whereas system Sy
features a symmetric pitchfork bifurcation (Fig. 4.6b).

To find the trajectory of Sy, we combine the stable branches of S, where 8 > 0, with
the stable branches of Sy where OE/00 > 0. Let us consider the same system (at
parameters (%, =~ 0.0114, &y =~ 0.0023 and R = 0.063)), at four illustrative strains
e = [0.039,0.045,0.051,0.057], as it is driven in €. At each strain, we can visually infer
the sign of 9F /00 by the contour lines and critical points F in Fig. 4.6¢c. Starting a
low € = 0.039, the stable state of the system is governed by Sy, as the stable state
of S, does not satisfy 6 > 0 (I). As e is increased, a stable point and a saddle point
of S, emerge (IT). While this results in an extra stability of the system it does not
influence the sign of 0E/06. As ¢ is increased further, Sy symmetrically bifurcates
to (z,0) = (£6,0), corresponding to the buckling transition of the truss (III). If
the system selects the x < 0 branch, the system remains stable for larger strains.
However, when the system selects the x > 0 branch, the system eventually snaps
when OF /00 crosses 0. As can be seen in figures Fig. 4.6¢III-IV, this corresponds to
the strain where the saddle point of S, crosses 6 = 0, at which point the system snaps
to the "open” state given by Sy (IV). For further increases in ¢, the system continues
along the same stable branch. At decreasing e, we follow a different trajectory. We
find that the state of the system follows a smooth trajectory until the system reaches
the saddle node bifurcation of S,. At this point, the system flips the only remaining
stable state (I). In summary, the opening and closing of this system are governed by
the crossing of the saddle point of S, past § = 0, and the saddle node bifurcation of
S, respectively. Note that here we have chosen an example configuration in which
Ee < Ep-

Model Parameters

The proposed slit Bellini Truss matches the qualitative behavior of the slitted beam.
However, it features three individual parameters; one more than the physical system

4The numerical contours are obtained with ContourPy; the Python library used to calculate contour
curves in Matplotlib.
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Figure 4.7: Stable configurations of S, at kg = 0 and F = 0. (a) The symmetric
configuration at ¢ = 1 — 2,/ R? + i. (b) A configuration in the self-intersecting left
branch. (¢) A configuration in the open right branch.

we intend to describe. We will demonstrate that R and %, can be chosen to match
the geometry of the uncut beam given by ¢, and that <y models the slit length s.
Specifically, we choose R = t/2, which matches the intuitive picture of a beam that
hinges at its edge.

We determine appropriate values of the remaining two parameters k, and &g by
considering the limits of &y. In the limit where kK9 — co, opening the slit is unfeasible,
thus we are left with S, a system insensitive to R, which can be readily mapped to
the buckling problem of a regular beam (appendix Sec B) where &, determines the
buckling strain e;. In the limit where &g = 0, the structure has a mechanism® when
|155| < \/R%?+1/4, i.e. as long as the truss is not pulled into tension. Here, the
springs remain of length 1/2; and at right angles to the trusses. Within this regime,
the stable configurations can be solved by geometric construction (Fig. 4.7). At e =

e*=1-24/R2+ %, there is a single stable state, and for e > 1—2,/R2 + i the system
has two stable configurations, thus this system has a pitchfork bifurcation at ¢*. This
bifurcation however, is not symmetric along ¢ = 0, but instead at 6 = 2 arctan (2R)

and zf = ﬁ. At increasing ¢, the stable branches follow the equations:
% 1—¢
0% (¢) = 2arctan (2R) =+ 2 arccos ———— , (4.6)
2,/R? + %
* 1 : *
zh(e) = 5 sin 0% (e) . (4.7)

The unstable branch can not be solved geometrically as it requires a notion of energy,
but z§ and 6* yield an estimate for Zunstaple(€) and Ounstabie(€) as this branch should

5A deformation pathway in which E = 0, and the stiffness matrix V.,0 E becomes singular.
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Chapter 4. Hysteresis in Slitted Beams

cross through xf, 0*.

Thus, a slitted beam can be modeled with such a split Bellini truss, by using a
constant R and varying only 4~y and &, to mimic the buckling strain €, and stiffness
of the slit-induced hinge. At &g = 0, we find a system analogous to a fully slitted
beam where s 1 1, and in the limit where &y — 0o, we find a system analogous to an
uncut beam where s = 0. Note that we find symmetric pitchfork bifurcations in both
systems but along different axes of symmetry. This disparity could be used to find a
better candidate parameter of R, as it shows up uniquely in the bifurcation point of
the Ag — 0 limit.

4.6 Conclusion and Outlook

In this work, we presented both experimental and numerical investigations of the
slitted beam under compression. Our study reveals a region of triple stability and ob-
served hysteresis in the response to compressive driving. By adjusting the geometric
parameters s and ¢, we demonstrated the ability to modulate the range of hystere-
sis, providing a mechanism for tuning the system response. Specifically, controlling
the parameter ¢ enables scaling of both switching fields with a quadratic dependence
(x t?), while fine-tuning s allows precise control over the snap-back closing tran-
sition. Thus, with control of both parameters, both switching fields can be tuned
independently.

Moreover, we introduced the Slitted Bellini Truss, which effectively models the mul-
tistable behavior of the slitted beam. This model is a natural extension of the Bellini
Truss [74], and allows to model the slit as due to an offset hinge and an internal rigid
self-contact.

Looking ahead, this work lays the groundwork for exploring more complex geometries
and materials, with the goal of enhancing control over multistable systems through
self-contacts. These findings open up potential applications in fields such as energy
absorption, soft robotics, and mechanical metamaterials, where tunable snap-through
transitions offer a platform for novel functionality.
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Chapter 5

Twistbucklers

A universal platform to construct (meta) materials with arbitrary memory is
lacking. Here we realize a framework that allows to construct memory mate-
rials that have a multiperiodic response to driving cycles. Our metamaterial
is scalable and extendable and gives insight into pathways in complex media.
This work is foundational in the eventual goal creation of a Turing complete
mechanical metamaterial.

5.1 Introduction

Many materials store information about the past through plasticity [4, 9, 43, 2, 87]. A
bucket of sand in with an inserted cylindrical rod for example can store information
of the rods motion. As the rod is rotated, the grains of sand rearrange. Initially,
rotating the rod is easier but the force required quickly goes up until it reaches an
equilibrium[2]. If we stop rotating the rod, the internal rearrangements stop as well.
But what is now the information stored in this material? If we were to rotate the
rod again, but now in the opposite direction, the force required starts off low again,
after which it rapidly increases, but if we were to have rotated the rod in the original
direction, the force required would immediately start high. Essentially, the bucket
of sand has remembered the previous rotation direction, which we can measure by
rotating the rod. [2, 87]. As long as we do not shake the system or otherwise disturb
the arrangement of sand particles, this information persists. Although this effect
offers a simple method of storing information, only a single bit of information can be
recovered, even though the material has a much larger number of stable states.
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But often, an easily distinguishable original structure allows us to extract a lot more
information from a system. A wooden stick can be engraved to keep track of a tally, a
paper movie ticket torn to indicate entry, and the plastic bumper of a car dented due
driving in to an unobserved bollard. Because the initial structure of these materials
is known, we can infer more complex information from its current state. Clearly, the
amount of information stored in a material, and the amount of information that can
be deduced from a material are not the same. We argue for the following distinction
between information and memory in a material; memory corresponds to information
that allows inference of the past.

Thus, an ideal memory material would have easily distinguishable states, that allow us
to measure desired features of the past. An ideal platform for constructing memory
materials would allow for the construction of many branching bifurcations of the
internal state of the system at any desirable driving field (Fig. 5.1a). Additionally, the
symmetry of each bifurcation would need to be controlled to allow for the determinism
in the system required for reliable behavior (Fig. 5.1b) [50]. For the memory material
to remember past events due to a single driving field, the bifurcations would also need
to occur both at increasing and decreasing driving field (Fig. 5.1cd).

There is no straightforward method to achieve such a material. Instead, we draw
inspiration from the elementary cellular automata[88], simple systems consisting of
bistable cells whose next internal state as a response is defined by a rule; an instruction
that determines each cells next state by their own and their nearest neighbors states.
Although simple in nature, some of these rules demonstrate complex behaviour and
specific examples have been shown to be Turing complete.

What we will show here is a continuation of the beam counter metamaterial that is
based on elements that twist as they buckle. This twisting motion allows for contact
interactions to occur in any rotation direction of each element. First, we will discuss
our bistable twistbuckling elements elements. Second, we will elaborate the design of
the contact interaction. Finally, we will demonstrate two different systems built upon
the framework of interacting twistbucklers. One system with a multiperiodic orbit of
length 2, and one with a cellular design and a multiperiodic orbit of length 6, which
can be scaled up to achieve arbitrary lengths.

5.2 Twistbucklers

Our metamaterial consists of "twistbuckler’ elements that buckle and then twist under
compression, and which interact with other elements through rigid contacts. Each
element consists of a thin rubber corrugated shell, a thick base, and a rigid plastic
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Section 5.2. Twistbucklers

Figure 5.1: State-drive diagrams of various hypothetical systems. S represents the
state of the system, while ¢ indicates the external drive applied to the system. Filled
dots are accessible from an initial state at € = 0 (green). The system follows a path
along the solid blue lines, and is unstable along the dashed lines. We are concerned
with the accessible through cyclic driving in . (a) A system with multiple subsequent
symmetric buckling transitions. Due to the symmetry of the pitchfork bifurcations,
the exact path taken at increasing € is determined by imperfections or outside influ-
ences. (b) When introducing asymmetry at the bifurcations in the system of a, the
path is controlled and it becomes deterministic. This introduces irreversible transi-
tions that occur at decreasing ¢ indicated by the arrows (this system is similar to
the sequential buckling system introduced by Coulais et al. [50] where the biased
hinges and self-contact are used to bias muli-step folding). When starting in the ini-
tial configuration, some stable states are unreachable when just driven in €. (c) A
system with an irreversible transition that occurs under increasing e (this system is
similar to a slit beam that is biased to buckle right (see chapter 4)). (d) A system
that features a transient path that ends in teal, and a cyclic path that loops back
in red. The transient path is similar to the counting beams system from chapter 2,
the cyclic path is similar to the clicker in a retractable pen. All these diagrams show
loop-irreversible behavior for some states when starting at € = 1 and driving to e =0
and back. Only the diagram of figure d shows loop-irreversible when driven from e
from 0 — 1 — 0 as the final state at ¢ = 0 is different from the starting state. This
blue path has transient behavior, after reaching the orange configuration at € = 0,
there are no accessible loop-irreversible paths.
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Chapter 5. Twistbucklers

Figure 5.2: The twistbuckler. (a) The complete shape of the twistbuckler shell with
highlighted hoops. (b) The curved geometry of the intersections of the ruled surfaces.
(c) A full twistbuckler with cap, compressed by hand such that it buckles and twists.
Note that the ruled surface defines the outside of the twistbuckler geometry. The final
shape is determined by extruding this surface inward by the thickness t.

cap which houses a freely rotating (using a ball-bearing) plunger (Fig. 5.2a-c). These
caps are interchangeable and are press-fit into the shells. When applying a sufficiently
large compression A, the shell buckles and the entire assembly twists left or right,
reaching an angle 6 (Fig. 5.2¢).

The rubber shell geometry governs the buckling behavior of the twistbucklers. Quali-
tatively, the design is based on the formation of folds and subsequent twisting observed
for thin-walled ring-stiffened cylinders under external pressure [89, 90, 91, 92, 93], and
on the dimples that occur under axial compression [94, 95, 96]. To model the surface,
we took inspiration from origami bellows [97, 53]. The surface consists of a stack of
three minimal area ruled surfaces that connect four circular and lobbed hoops that are
modeled as rounded versions of the Miura-ori and Kresling fold patterns (Fig. 5.2b).

The samples are parametrized by the following parameters (Fig. 5.2b):

e H, the height the sample,

e h/H, the length of the folding section,

e R/H, the width of the sample,

e 7/R, the radius of the folds,

e z;/R, the distance by which the folds curve in,

e z,/R, the distance by which the folds curve out,
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Section 5.2. Twistbucklers

e t/R, the effective wall thickness.

The Cauchy rigidity condition in essence states that instabilities require local concave
regions [98]. This motivates taking x; sufficiently large. We also explored the effect
of the number of folds or lobes, which influences the higher order buckling modes,
self-contact and stiffness. We focus on a single design that was easy to manufacture
and which experimentally was found to function well, and applied this design in all
our (meta)materials. We hence introduce heterogeneity via the design of the caps, as
these offer a simple mechanism for controlled interactions and asymmetry.

Sample Homogeneity and Buckling

To probe the homogeneity of our samples and measure the range of observed angles,
we tracked the buckling branches of a set of 13 isolated twistbucklers with parameters:
H =25mm, h =1240 mm, R =10 mm, r = 1.47 mm, x; = 5 mm ,z, = 1 mm,
and t = 1 mm. To measure this rotational response, we built a setup that compresses
the twistbucklers against a transparent acrylic plate. The caps of the twistbucklers
are marked with a fiducial as shown in Fig. 5.3a, and tracked with a camera that is
mounted normal to the acrylic plate. We used the same cap to eliminate the variation
in manufactured cap dimensions and used a fixed location on the acrylic plate. Before
starting our measurements, we fix the zero compression with an assembled sample by
eye. This offset stays fixed for all samples and introduces a consistent systematic
error of around £0.1 mm.

For every sample, we slowly compress at a rate of approximately 0.2 mm/s to A =
6.25 mm, resulting in a maximal compressive strain ¢ = A/H = 0.25. During com-
pression, the cylinder exhibits twistbuckling. We manually adjust the rotation direc-
tion during this compression, after which we decompress at the same rate and track
the rotation angle of the cap. We compress each sample twice, capturing both rota-
tion branches. This results in 26 tracks of the rotation angle 6 as a function of the
applied strain (Fig. 5.3). The angle 6 is measured relative to the final snapshot taken
at € = 0 at the end of the experiment.

To better interpret the homogeneity and symmetry of the samples near buckling, we
compare the strains at a fixed rotation of |#| = 0.5 (Fig. 5.3c). We observe a minor
left-right imbalance; most samples preferentially rotate left at a lower strain than
right. Furhtermore, the buckling strains between samples varies as well. To better
judge the effect of this heterogeneity, we compare the tracked rotations, juxtaposing
the various traces in 6 for each combination of twistbuckler (Fig. 5.3d). We observe an
initial dilation of the traces up to around |6;| = 0.25 after which the traces converge.
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Figure 5.3: Tracked rotation trajectories of individual, free twistbucklers. (a) The
cap with tracking markers taken through the transparent acrylic compression plate.
(b) The tracked rotated angle 6 as compared to the initial frame taken, as a func-
tion of the compressive strain € for 13 near identical samples in both stable states
measured during decompression. Every sample is represented by its own color. The
major variations between the responses occurs near the buckling bifurcation. (c) The
strain € at || = 0.5 rad for the left and right branch of each sample. This indicates
the variation in buckling strain for each sample, both between samples and within a
sample between the left and right branches. The left-shaded disc corresponds to the
left buckling branch and the right-shaded disc to the right buckling branch. (d) All
possible trajectories for pairs of twistbucklers as a function of €. Each trace corre-
sponds to a combination of two branches highlighting the effect of small deviations in
buckling strain. Ideal traces would lie along the diagonals 65 = 6.
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Section 5.2. Twistbucklers

Our measurements evidence a high level of homogeneity between samples, as well as
good symmetry of the individual samples. The largest spread between curves occurs
near the bifurcation itself, as the actual bifurcation direction is highly sensitive to im-
perfections. Controlling the motion of interacting twistbucklers requires overcoming
this unwanted heterogeneity, which we will accomplish by appropriate design of the
caps.

Moment Strain and Twist

While the measurements of 6 as a function of e demonstrate the behavior of freely
rotating twistbucklers, to characterize interactions between twistbucklers we also need
to measure the moment T' as a function of both ¢ and 6. To do so, we constructed
a setup that allows us to constrain the rotation # and e in tandem. Our setup
consists of an adjustable clamp, a bowdrill and an Instron universal testing machine
as shown in Fig. 5.4a. The bowdrill consists of a tensioned bow and a string that
is wrapped around a pulley by 1.5 turns. As the bow is moved, the pulley rotates
without slipping®. The Instron is used to move the bow, twisting the twistbucklers,
and measure the corresponding force. The pulley is attached to the twistbuckler, and
both the pulley and a nylon string are of a known diameter allowing us to calculate
the twist § and moment T from the Instron force displacement data. The clamp
attaches to the pulley on the static side, and to a flat moveable stage side that allows
the twistbuckler to slip. The moveable side is controlled with a micrometer stage.

As shown in Fig. 5.4, we observe a drastically changing response as a function of
€. We initially observe a linear relation between 6 and 7', but as ¢ increases the
stiffness of the twistbuckler rapidly declines until around ¢ = 0.12, where locally at
0 = 0 the stiffness becomes negative indicating a buckling bifurcation of the free
structure. As we continue, at around € = 0.34 a second bifurcation occurs, now of
a previously unstable state, which results in a third stable angle around 6 = 0; the
system becomes tristable. This same mode can easily be observed by hand as well, by
fixing the # and compressing the structure well past the initial buckling point. When
this configuration is decompressed (increasing €), a snap to one of the two regular
stable configurations is observed (Fig. 5.2c).

We find that the twistbucklers buckle symmetrically as intended and perform like a
nearly ideal bistable element up to € = 0.26 at which it has stable twisting angles
of # = £1.2 rad (Fig. 5.4c). We note that we observe some hysteresis in the T'(6)
curves, leading to a spread in the stable 8 configurations. This hysteresis is likely due

LAs a result from Euler and Eytelwein, the effective friction due to wrapping a flexible inextensible
rope around a pulley is greatly increased [99, 100]. The effective friction coefficient is pess =
1 — e H? where the rotion angle of ¢ in is radians.
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Figure 5.4: The force twist curves measured for a twistbuckler for a range of various
e. (a) INlustrated bowdrill system. (b) 3D Plot showing the measured moment T
(torque) for a part of the data illustrating the transition from the linear behaviour
to the bistable regime. The color corresponds to the applied strain . (c¢) Individual
plots of T' as a function of  for various «.
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(b)

Figure 5.5: Illustration demonstrating the two types of flank-flank contact. Contact
between the curves occurs along the contact spaces indicated with dashes lines. (a)
Regular gear contact between two right-handed curves. (b) Mercier contact between
curves of opposite handedness. Note that Mercier contact does not occur at a point
on the line that connects the centers of rotation of the two curves.

to a combination of residual friction in the bearing and the material properties of the
twistbuckler shell. The resulting spread in the equilibrium configurations is of the
order of +0.2 rad, and has to be taken into account in order to obtain robust designs
of interacting twistbucklers.

5.3 Interacting Twistbucklers

The configuration of a pair of twistbucklers is characterized by & and their respective
rotation angles f; and 3. The interaction between the twistbucklers occurs through
rigid contact between spur-gear-like teeth, and takes the form of excluded volumes,
or blockades, in the angular configuration space.

When the surfaces of the caps of two twistbucklers remain in contact, this leads to a
geometric relation between the rotation of the twistbucklers: when twistbuckler one
rotates by an angle A#, twistbuckler two rotates by an angle

Ao = KAG, | (5.1)

where k is determined by the shape of the surfaces in contact. We will consider
contact surfaces that follow curves which are the involutes of circles (Fig. 5.5). An
involute curve is constructed by tracing the end of a taut string as it is unwrapped
from a shape (See appendix C). When such surfaces are in contact, & is constant,
and its absolute value depends on the radii of the circles from which the curves are
developed. The sign depends entirely on the handedness of the curves. Equally
handed curves form ‘ordinary’ gear contact (k < 0), and oppositely handed curves

61




Chapter 5. Twistbucklers

(b)

Figure 5.6: Tip contact for finite sized teeth with a tip radius I. (a) The geometry
of a single tooth, with a base radius of I' and a splitting angle of a. The green
circle indicates the base radius I' and the light gray circle indicates maximal radius
I". The axis of rotation is at the center of these two circles. (b) Tip flank contact at
the circular arcs of the lenticular patch determined by the overlap of the I'; and I's
base circles. The dashed lines correspond to the possible contact spaces of flank-flank
contact such as in Fig. 5.5. (¢) Tip-tip contact at one corner of the lenticular patch.
Note that the Mercier-contact lines are outside of the lenticular patch.

form ‘Mercier’ contact(k > 0). Mercier gears, otherwise known as paradoxical gears
rotate in the same direction as their neighbours.[101] For two flanks with base radii
P1 and I‘g,

Ilil = ]._‘1/]._‘2 . (52)

The ratio k can be thought of as the gear-ratio of the two contact-surfaces; note that

this ratio does not require multiple teeth, but is well-defined for a pair of flanks as
well. We can visualize this coupling as due to a taut string wrapped around pulleys
with radii I'; and I's (Fig. 5.5). Notice that the point of contact between the flanks
lies on the lines corresponding to the strings. Due to the technique of constructing
involute curves, all points of contact between such curves occurs along these lines.
Depending on whether the strings cross, we obtain normal gears or Mercier gears
[101, 102], where for ordinary gear contacts k < 0, and for Mercier gear contacts
k > 0 (Fig. 5.5). The type of contact can be distinguish by the handedness of the
flanks in contact (Fig. 5.5)2. Equal handed curves are in regular contact, whereas
oppositely handed curves are in Mercier contact.

We design our teeth by combining a left-handed flank based on a circle with radius
I'l and a right-handed flank with base radius I'®, where the roots of both curves
are separated by an angle o (Fig. 5.6a). The left and right flanks intersect in a tip,
resulting in the maximal radius I'. For symmetric teeth where I' = TR = T'L| we can

2That & is constant for circle involute curves is one of the reasons why involute curves are used in
ordinary spur gears [103, 104, 105].
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Figure 5.7: The measured interactions between caps due to teeth with a finite size. (a)
Eight different contact conditions of homogeneous caps. (b) The manually explored
phase space, and the modeled blockade, of two homogeneous symmetric twistbuckler
caps. The marked dots in blue orange and green correspond to the frames in subfig-
ure b respectively. The measured data is superimposed on the analytically derived
blockade shape.

easily derive an analytical expression for a as a function of I' and I

a(l,I) = v —1 — arctan % (5.3)

The finite radius I'; makes the actual contact space where the teeth interact finite.
For two teeth with contact radii I'y and I's at a distance D, all contact has to occur
within the lenticular shape defined by the circles with corresponding radii (Fig. 5.6b-

‘1["1)

c¢). Moreover, the presence of the tip requires to consider additional types of contact
surface, so called tip-flank contacts and tip-tip contacts (Fig. 5.6b-c) as we will discuss
in the next section.

Phenomenology of symmetric teeth pairs

To gain insight into the shape of the blockades, we experimentally investigate the
blockades for pairs of teeth. Let us first discuss and elaborate the contact between a
pair of equal teeth with parameters a = 92°,T" = (.29, I = 0.61, at a fixed distance
D = 69 mm. By manually rotating both caps while keeping their surfaces in contact,
we observe three different types of contact over eight sections: between equal handed
flanks (rr, ll), between oppositely-handed flanks (rl, Ir), and between one tip and
one flank (I¢, tr, rt, tl) (Fig. 5.7a). We observe that as we rotate the caps while
maintaining contact, the contact type smoothly transitions through interchanges of
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Figure 5.8: The measured interactions of caps with unequal teeth. (a) At equal
I = fg, and unequal I'; and «;. (b) At equal I'; = I'y, and unequal I'; and o;. (c)
At equal a; = as, and unequal I'; and I';. The measured data is superimposed on
the analytically derived blockade shape and an illustration of the shape of the teeth
is inset in the top right corner of each plot.

one of the two surfaces. Starting in the rr contact space (Fig. 5.71) where both right-
handed flanks are in contact, the system transitions to the rt (Fig. 5.71I) contact
space where the right-handed flank of cap one and the tip of cap two are in contact,
or the tr (Fig. 5.7VIII) contact space where the tip of cap one and the right flank
of cap two are in contact, depending on the direction of rotation. Moving in the
former direction, the system transitions through contact types rr,rt, ri, tl, I, It, lr, tr,
and through the opposite sequence for opposite rotations.

By tracking the rotation of both caps, we can plot the perimeter of the blockade
(Fig. 5.7b). We note that for this example of teeth of equal parameters, the blockade
appears approximately rectangular and features Dy symmetry; both mirror symmetry
along the 3 = +6, axes as well as rotation symmetry by 7 radians (Fig. 5.7b).
The slopes of the blockade are diagonal and correspond to the constant ratios |k| =
I’y /T's = 1. Specifically, we observe ordinary gear contacts that lead to negative slopes,
Mercier gear contacts that correspond to positive slopes and tip-flank contacts which
produce the rounded corners that form the connection between ordinary gear and
Mercier contacts. We find that the measured blockade matches well with the model.
The measured blockade in Fig. 5.7b is symmetric along the expected axes with the
correct slopes.

As we assume that the twistbuckler shells are symmetric, their observed post-buckling
rotation direction is not determined by their design. Furthermore, as the moment of
the twistbuckler shells is antisymmetric in 6: T'(#) = —T'(#), a coupling of K = 1 will
result in rotations of both twistbucklers of equal magnitude in two possible directions
Af; >0 & Afy <0 or Af; > 0 & Afy < 0 and likewise for K = —1, we observe both
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the Af; > 0 & Afy > 0 and Af; < 0 & Ay < 0 directions of rotation. However, by
controlling xk away from =41, this symmetry can be broken and the rotation directions
of a pair of coupled twistbucklers can be controlled.

Exploring blockades with broken parameter symmetry

We now consider three different pairs of unequal teeth to explore how asymmetries in
the parameters IT';, I'; and o impact the shape of the blockade. As the teeth shapes
are overdetermined, we choose three pairs of teeth where one of these parameters is
equal for both teeth, and the other two are different.

First, we decrease iy and increase I's while we fix fl = fg. This produces a change
in the slopes of the blocked regions « (Fig. 5.8a) and the blockade looks like a paral-
lelogram with rotational symmetry Cq. In particular, we find that +|k| = £I'1 /Ty as
expected. Moreover, the blockade has decreased in size and has become more narrow
in the 65 direction. Hence, this modification changes the coupling constant k.

Second, we decrease ap and increase I's while keeping I'y = T's. As expected, the
regular contact slopes of the blockade are along the #; = +6, axes, but the tooth-
flank contact spaces are no longer mirror-symmetric and the Mercier contact has
disappeared (Fig. 5.8b). Instead, we now observe tip-tip contact and a transition
from [t to tr, and 7t to tl through the two tip-tip contact conditions. Moreover,
the size of the blockade has dramatically gone down. This blockade again has Co
symmetry.

Third, we decrease both I'" and I" while we fix a1 = ag. We observe a combination of
both effects; a decrease in x as well as a change in the tip-flank contact. Furthermore,
this blockade has drastically gone down in size, and we again observe tip-tip contact.
Although the resulting blockade is approximately Do, it is not mirror-symmetric, as
we will show in the following section.

Evidently, there are two distinct effects from breaking the symmetry between pairs
of teeth: (i) modifying « for flank-flank contacts for constant I, and (ii) breaking
point-flank contact symmetry for constant I', driven by differences of the base radii
I'; and the splitting angle «;.
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Figure 5.9: An illustration of the contact space in real-space and the corresponding
blockade in configuration space 5.7. (a) Real space contact curves for I'; /D =Ty /D =
0.287 and a = 1.61. Every point corresponds to a configuration of teeth in contact.
The different types of contact are color coded and labeled. (b) Configuration space
contact curves with labels matching the diagram from a. In transforming the real-
space to configuration space, the transformation makes explicit use of the angles
a; = ag = 92°. Not pictured here is tip-tip contact which occurs when Mercier
contact vanishes.
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Analytical determination of the blockades

For the contact surfaces used here, the real-space contact space can be geometrically
constructed and analytically transformed to find the blockade shape (see appendix
C). For flank-flank contact, all points of contact occur along the regular and Mercier
contact curves shown in Fig. 5.5, and are bounded by the maximal radii of both
teeth which form a lenticular patch (Fig. 5.9a). All contacts involving a tip, occur
at the maximal radius of at least one of the teeth. The tip-flank contact space
corresponds the circular arcs of the lenticular patch that connect the sections in the
order mentioned previously in Sec. 5.3.

To transform the real-space contact to the configuration space, we triangulate each
point using the known distance D, the two points of rotation, and the angles from
which the involute curves start. To study the effect of the parameters on the observed
blockades in detail, we use a simple numerical code that performs these operations
for arbitrary teeth pairs. This allows us to demonstrate the effect of teeth size on the
observed blockade shape. For posterity we included a number of calculated blockade
shapes in fig. 5.10 for unequal teeth similar to those shown in fig. 5.8

Let us first consider changing the effective size of the teeth, either through changes of
the dimensions I' and I' of both teeth, or equivalently to changing D (Fig. 5.11a-b).
We calculated the blockade shape, by evaluating the contact space for 15 discrete
values of D between D = T' + T' (Fig. 5.11al) and D = I' + T' (Fig. 5.11all) — see
Fig. 5.11b. We observe that as we decrease D, the blockade increases in size. At
large D, the blockade shape is governed by tip-flank and regular gear contacts. At
small D we observe a large regular gear regime, and a smaller Mercier-gear regime.
Hence, decreasing D or increasing the dimensions I' and I, increases the size of the
blockades.

Another method of varying the size of the teeth, is trough changing the opening
angles ;. We calculated the shape of the blockades for angles between 10°(Fig. 5.11cI)
and 230°(Fig. 5.11cI). Similar to decreasing D, increasing « leads to an increase in the
size of the blockade. However, when increasing «, the Mercier-like regime grows more
rapidly than the normal-gear regime. This can easily be demonstrated geometrically
(see appendix C). We expect that when increasing o — ¢, the mercier regime grows
by a factor v/2¢, whereas when scaling up the dimensions by ¢ or similarly decreasing
D — D/¢, we expect the Mercier regime to grow by ¢.

In this section, we studied the coupling between twistbucklers through contact using
teeth with flanks which follow the involute of a circle. For such coupling we find that
the magnitude of the coupling ration k is constant and either positive or negative
depending on whether the surfaces in contact are either opposite or equal handed

67



Chapter 5. Twistbucklers

1 I 1

-0.5 0.0 0.5 -0.5 0.0 0.5 -0.5 0.0 0.5
91 61 61

Figure 5.10: Calculated blockades for a range of different teeth with asymmetries
comparable to those in fig. 5.8, for many different parameters. (a) At symmetric
I'; = Iy, and asymmetric I'; and a; for five values of I in the range (0.28,0.60). (b)
At symmetric I'y = I's, and asymmetric fi and o; for five values of a in the range
(0.48,1.8). (c) At symmetric a; = a9, and asymmetric I'; and T'; for T in the range
(0.24,0.39).

respectively. For contact that includes the tip of finite sized-teeth, the blockade
boundary connects both regions with an intermediary smoothly evolving k.

Through experimental and analytical investigations, we studied the resulting block-
ades; the parts of phase space blocked by contact. We first considered symmetric
teeth with equal base radii I', opening angle of a, and a tip radius I". For these teeth
we found two distinct blockade size effects allowing us to tune the ratio of the regular-
gear and mercier-gear contact regimes. For asymmetric teeth we found two distinct
chiral effects for asymmetric tooth modifications, influencing the coupling constant
k£ or influencing the tip-flank contact. Second, we showed how the exact shapes of
blockades can be determined. We studied how the sizes of blockades correspond to
homogeneous tooth size, and how the three variants of tooth-size asymmetry result in
combinations of two distinct effects. As the shape of the blockades can be analytically
determined as a function of the teeth parameters, we can thus determine k along the
blockades, for various tooth parameters and for various types of contact.

Our findings suggest that by carefully designing the teeth of twistbucklers, one can
control the direction and magnitude of their rotational coupling, thus enabling the
deterministic behavior of the system. This capability to manipulate the coupling
characteristics opens new possibilities for designing mechanical systems with specific,
predictable responses based on geometric configurations.
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(a)

oo
&
S

Figure 5.11: The effect on the blockade shape for two types of symmetric tooth
modifications. (a) Moving in and out or equivalently scaling up and down teeth with
a constant o = 92°. At the maximal distance, D = 2T, (i) the caps are only touching
at the tips, and at the minimal distance D = I" + I" (ii) the caps are spaced such
that the tip of one tooth can touch the base circle of the other. (b) The calculated
blockade shapes for 15 different D for the homogeneous teeth from (a). The Mercier-

like contact for these gears appears at around 2 _2I£,_f = 0.6 (c) Contact between

the right-flanks for a between 10° and 250° at a constant D = I' + I' and (d) the
corresponding blockade shapes. When increasing a, the Mercier regime grows rapidly.
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Figure 5.12: The behavior of the two-twistbuckler parity machine. (a) The geometry
and parameters of the twistbuckler caps. (b) The phase space blockades and the
measured (61, f2) response to two driving cycles in € (between ¢ = 0 and £ = 0.172).
(c) Snapshots of the two twistbucklers at six specific configurations illustrating the
phenomenology of the system: the starting configuration in a state where 6; < 0
and #y < 0 at ¢ = 0 (I), initial contact between the flippers (II), the configuration
around 6 = 0 before snapthrough (III), the (6; < 0,62 > 0) state after snapthrough
(IV), contact between the meshing teeth along the (6; = —6 > 0) diagonal (V), after
re-meshing in the new stable resting configuration at € = 0 in the (§; > 0,62 > 0)
state (VI). From (VI) to (X) and back to (I), we follow a similar trajectory but where
01 and f2 are permuted. (d) THe angles 6; and 6 as a function of time. (e) A
representation of the continuous state of the system S = arctanfs/6; as a function
of e.
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5.4 Parity Machine

Combining our previous results, we construct a system of two twistbucklers that mim-
ics a parity machine, i.e., a device which returns to its initial configuration after two
compression cycles [26]. This striking behaviour requires a complicated bifurcation
structure which we achieve using blockades. Without interactions, a system of two
twistbucklers has four individual stable branches that move out and in at increasing
and decreasing ¢ (Fig. 5.3d). By perturbing these stable branches with blockades, a
complex pathway cyclic pathway is formed (similar to that shown in Fig. 5.1d), such
that at every compression cycle of the system, the stable state of the system is flipped
to the opposite stable resting configuration.

Parity Machine Design

Here we use two caps with three teeth stacked vertically (Fig. 5.12a). Due to this
layering, the final formed blockade is a composite of the blockades of the individual
layers. Each tooth is placed at an angle § with respect to the neutral axis between
the centers of rotation of the two twistbucklers which translates the blockades in
configuration space. Placing blockades near the neutral point 7 = 62 = 0, influences
the trajectory of the system at small €. Blockades further away influence the trajectory
at large €. By further tuning o and I" for each tooth, the individual size and shape
of each individual blockade can be controlled.

To obtain the parity machine behaviour, we use two types of teeth pairs. We use
a single "mesher” pair with parameters I'""/D = 0.296, I')'/D = 0.519, of* =
50°, ay* = 18°, BT = B5* = 0, and two pairs of "flippers” with parameters F{/D =
0.296, T /D = 0.519, of =50°, of = 18°, g/ = £0.65 (rad), 8] = £0.27 (rad).
This results in the composite blockade shown in Fig. 5.12b. The parameters of each
tooth are chosen to break the interaction symmetry (the exchange symmetry between
twistbucklers) sufficiently strong to overcome the imperfections of the twistbuckler
shells. Note that blockades do not overlap, so that the contacts are mutually ex-
clusive, i.e., there is contact between at most a single pair of teeth. To enforce a
constant D and align the § angles, the twistbucklers are constrained with a bracket.
As BT = BY = 0, we require that the mesher teeth overlap at a rotation angle of
6, = 0> = 0. To accomplish this, and accurately build the system, the bracket features
a repeatable 90° rotation adjustment for both twistbucklers. This allows us to first
construct the system without contact, and then rotate both twistbucklers to correctly
place the mesher blockade on the origin of the configuration space.
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Parity Machine Results

We now discuss the choice of tooth parameters by going through a compression cycle
in steps, starting in the initial configuration I (Fig. 5.12bc) where 61 = 62 < 0. As
the system is compressed, the initial contact between the mesher pair is broken, and
the magnitude of rotation of both twisters increases. Note that experimentally, the
angles do not follow an ideal diagonal path in phase space due to imperfections of the
samples (Fig. 5.3d). As ¢ is increased further, contact is formed between co-handed
flanks of one pair of flipper teeth at IT (Fig. 5.12¢II). Next, while still increasing e, the
flipper teeth are pushed together which couples the rotation of the two twistbucklers.
As T'; < T'3, and because the teeth are in regular gear contact, 6 decreases and 65
increases while following the edge of the blockade until 6, ~ 0 at III. Here, the snap-
through instability of twisterbuckler two is triggered, contact is lost, and the system
snaps to configuration IV. While the twistbucklers are no longer in contact, further
compression does not diverge the stable configuration of the system away from the
—0, = 65 > 0 diagonal.

As we start decompressing, the system traverses along the —0; = 6, > 0 diagonal until
contact is formed between the mesher teeth (Fig. 5.12¢V). Now, because I'; # Iy,
the teeth form a tip-flank contact. As this type of contact relies on sliding and the
friction between the caps is not negligible, the teeth stick together for a while until at
some critical strain e+ ~ 0.06 the teeth make a flank-flank contact. The —6; = 65 > 0
diagonal state that was stable at high ¢ is thus flipped to a 8; = 65 > 0 state at low
€, opposite to the starting configuration (Fig. 5.12¢VI).

During the second compression cycle, we observe the same phenomenology, with the
snapping directions reversed. We note that the two cycles differ slightly due to exper-
imental imperfections. In particular, during the second decompression cycle, the for-
mation of flank-flank contact appears more smooth than in the first cycle (Fig. 5.12de),
and the snapping during compression occurs at different e.

As we continue compressing and decompressing, we observe the same repeated be-
havior (Fig. 5.12d). Hence, a single compression cycle transitions the system from
01 = 03 < 0tofy =0 >0 (or vice versa), and a two cycles takes us back to the
starting configuration. Thus, the system keeps track of the parity of the number of
compression cycles; the state depends only on the initial starting configuration, and
whether an odd or even number of compressive cycles have been applied.

Finally, by representing the state of the system with a single parameter S = arctang(6s, 61),

the similarity of the parity machine to the ideal system shown in Fig. 5.1d becomes
apparent as shown in Fig. 5.12e.
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Figure 5.13: Design of the hexcycle. (a) The design of the two caps. (b) Spatial
layout of the twitbucklers as built. (c) Blockade within a unit cell indicated in blue.
(d) The composite blockade that determines the interaction between unit cells. The
two colors correspond to the different layers of the flipper teeth. The gray outlines
indicate the shape of the blockades that are not present in that interaction.

Thus we have successfully built a parity machine which successfully tracks the parity of
the number of input compression cycles. This demonstrates the fundamental working
principle of using contact interactions with twistbucklers to construct a mechanical
metamaterial with memory. The parity machine features two irreversible transitions
at each compression cycle; one transition during compression as twistbuckler two is
flipped and the twistbucklers anti-align, and one during decompression as the mesher
pair meshes together and the twistbucklers align.
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5.5 Rule 15 and the Hexcycle Machine

We construct a machine with a longer multiperiodic response. Specifically we built
a Hexcycle machine — a system that requires six compressive cycles to return to any
one of its initial configurations.

Hexcycle Design

The hexcycle design uses the same base interactions as the general interactions as
the parity machine, but instead of coupling to a single neighbor, the hexcycle uses
six twistbucklers in a loop. Here the mesher and flipper teeth are oriented such that
their interactions are either with their clockwise or anti-clockwise neighbour.

Specifically, we utilize two types of twistbuckler caps (Fig. 5.13a), and fix the posi-
tions all six twistbucklers along a regular hexagon with side lengths D using brackets
(Fig. 5.13b). The teeth of the twistbucklers are similar to those used before, but they
are now oriented such that the twistbucklers interacts with one neighbor through a
mesher blockade, and the other neighbor through a flipper blockade. We will refer
to the two different twistbucklers as an a-buckler and an m-buckler. An m-buckler
(a-buckler) interacts with its clockwise neighbor through a mesher (flipper) block-
ade (Fig. 5.13d), and its anti-clockwise neighbor through a flipper (mesher) blockade
(Fig. 5.13d). The Hexcycle uses the same mesher parameters as for the parity ma-
chine: T"/D = 0.296, I'"/D = 0.519, al* = 50°, o) = 18°, g = gm = 0.
The parameters of the flipper teeth are slightly modified: T'J/D = 0.295, T/ /D =
0.492, of =106°, of =21°, pf = +0.95, 3/ = £0.55. These teeth result in block-
ades that are similar to those used before, but proved to be more robust in response
to sample defects and unfavorable loading conditions.

As the variations in |6;|(¢) at higher e are less ensitive to imperfections, we choose
to design our flipper teeth such that they make contact at large . This comes at a
trade off, as the maximal rotation of the twistbucklers is limited, and at high € the
twistbucklers become tristable. Moreover, the angle at which contact is formed, limits
the range of k. Specifically, in comparison to the parity machine, contact is made at
a higher strain and at a k closer to 1.

Due to the sensitivity of the system to imperfections and heterogeneous compression,
we individually shimmed each twistbuckler such that their buckling strains are better
aligned (See appendix C). For these experiments we chose the twistbuckler samples
in the configuration indicated in Fig. 5.13b: in clockwise order: m4 & a6, m9 & a7
and m10 & ab.
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Figure 5.14: Design and working of the tricycle (a) The states of the m-bucklers as
a function of time, over 12 compression cycles. (b) The states of the m-bucklers as a
function of . (c) A sixfold representation of the state of the state of the system. The
color represents the strain ¢ of each point. (d) The single field state representation of
the system as a function of <.
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Hexcycle Results

We tracked the rotation of the m-bucklers as a function of driving 6, for 12 driving
cycles (Fig. 5.14a). We observe that at each compression cycle, one of the three
tracked twistbucklers is flipped. In order, we observe a flip of twistbuckler 4, then
9 and then 10. As the state of the system is binary, six compression cycles are
required to return to the initial state; through which all stables resting states of the
system are observed. When considering the pairwise interactions of twistbucklers,
the phenomenological behaviour of the Hexcycle machine is similar to that of the
parity machine. The Mesher pairs determine the stable states at ¢ = 0 and govern
the irreversible transition at decreasing ¢, and the flipper pairs govern the irreversible
transitions at increasing €. The distinction being, that the Hexcycle machine has a
cellular design. Each cell has a state determined by the mesher pairs, and these cells
interact through the flipper blockades. The Hexcycle system has three cells, each with
two stable states at e = 0. Starting in the state |S| = sgn(fs, 0y, 610) = (1,1, 1),
we follow the cycle: (1,-1, 1) —» (-1,-1,1) — (-1, 1, 1) —» (-1, 1,-1) —
(1,1,-1) - (1,-1,-1) — (1,—1, 1). Thus, at each compression cycle, if a cell is
in the same configuration as its anti-clockwise neighbor, it gets flipped. Otherwise it
stays in the same configuration.

To better illustrate the six-fold nature of the system states, we projected the state
of the system from a triagonal basis onto two state axes: S; = 64cos(m/12) +
010 cos(m9/12)+60g cos(r17/12), and Sy = 04 cos(—w5/12)461¢ cos(m/4)+0g cos(m11/12).
When plotting these as a function of time, we observe a six-fold state diagram and
pathway as shown in figure 5.14c. If we project this state representation to a single
field: S = arctany(Ss,S1), we observe a system that is again similar to the system
observed in Fig. 5.1. Following the same technique, the state of arbitrarily sized cyclic
and transient systems can thus be represented.

The Hexcycle machine successfully demonstrates the working principle of the cellular
strategy to increase the cycle length of twistbuckler systems. We achieved a system
consisting of three cells (two twistbucklers each) that traverses through a cycle of
six stable states through a pattern that matches rule 15 (and 85) of the elementary
cellular automata with periodic boundary conditions [88]. At every compression cycle,
every cell that is in the same configuration as its anti-clockwise neighbor is flipped.
This behavior is, in principle, scalable to arbitrary even length cycles, or arbitrary
length transient responses when the cells are not connected in a loop.

However, the system operates near the edge of what is experimentally possible using
the current samples and manufacturing accuracy. The strains at which the twist-
bucklers snaps is scattered, with some snaps occurring during decompression rather
than compression. We note that the variation in time seems to be smaller than the
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variation between individual samples, indicating that here the viscous properties of
the rubber are not the leading factor in the variations. The system is highly sen-
sitive to defects and manufacturing errors and it required individual shims for each
twistbuckler to better align their buckling strains.

5.6 Conclusion and Outlook

In this chapter, we showed a novel platform that allows for controllable interactions
between neighboring bistable elements, and the creation of arbitrarily long multi-
periodic pathways. We unstable buckling elements that twist under compression
and couple through rigid contacts. We demonstrated the emergence of bistability in
these twistbucklers and demonstrated how the blocked configuration space, due to
the contacts lead to an elegant method of achieving asymmetric bifurcations. We
demonstrated systems of twistbucklers that have a cyclic response to driving length
two and six, and argue that arbitrary even lengths are possible in longer systems.

The framework discussed in this chapter is very promising and there are a number of
possible further developments for this platform that we will discuss here.

First, the development of other simple cellular automata. Currently the flipping
interactions use regular gear contact and thus anti-align when flipping. The use of
Mercier-contacts could be used to align twistbucklers when flipping. This would allow
for the creation of rule 252; the system equivalent of the beam counter [88] (chapter
2). Such interactions would potentially benefit from the use of stacked blockades
forming helical teeth. Using these, the Mercier regime can be increased in size without
increasing the regular gear regime.

Second, the development of a ”Turing complete” cellular automata. Thus far only
cellular automata that consider the state of one neighbor have been developed. A dif-
ferent system topology that interacts to both neighbors could allow for more complex
interactions, such as the development of a system that mimics the rule 110 automa-
ton which is known to be Turing complete at infinite systems sizes [106]. This would
require at least three twistbucklers in contact at one point in time.

Third, increasing the robustness of the system, by improving the manufacturing of the
samples and improving the accuracy of the setup. Further development of the twist-
buckler geometry could improve the bi-stable regime of the twistbucklers. Currently,
the system relies on what we could consider geometric defects. Differences in the teeth
result in the determinism and breaking of the interaction symmetry (Fig. 5.1ab). This
asymmetry however is not completely local. Breaking symmetry in part of the sys-
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tems trajectory can inadvertently cause a problem in another part. This results in
limits of how ’far’ symmetry can be broken and thus the robustness of the system. An
ideal system would be able to affect specific parts of the system trajectory without
interfering in other parts. One method to achieve this might be to use topological de-
fects instead of geometric defects [107], such as through using coupled 4-bar linkages
which have been successfully used in the development of other mechanical computing
systems [108]. Finally, the memory properties of heterogeneous parallel cyclic systems
could be explored. As discussed in chapter 2, using multiple heterogeneous transient
systems in parallel allows us to extract specific information from past driving cycles.
The addition of detecting repeated cycles could greatly improve the ability of these
systems to infer information about repeated cycles and long cycles of inputs. Multiple
cyclic counters of pairwise co-prime cycle length for example, would be able to count
sequence lengths much larger than their own length; a result of the Chinese remainder
theorem [109].
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Appendix A

Counting Beams Details

Sample Fabrication, Setup, Protocol, Design

Samples are made by pouring degassed and refrigerated Zhermack Double Elite 32
VPS mixture into open face molds that are 3D printed on UltiMaker S3 and S5
printers. The samples are cured at room temperature. After curing, the samples
are removed by breaking the molds. The slits in the s-beams are cut using a scalpel
after which the samples are covered with talcum powder to reduce stiction. Before
measurements the samples are allowed to rest for a week to allow their mechanical
properties to settle.

The measurements are performed with a setup consisting of a homebuilt single-axis
compression setup, where the samples are compressed between two plates, one static
and one driven by a linear translation stage. The plates remain parallel within a slope
of < 0.6mm/m and move at a rate of < 0.lmm/s with an accuracy of £0.0lmm. A
cced camera captures images at a rate of 60Hz.
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Figure A.1: Geometry of the bac counter (distances in mm).

Robustness and Alternative Design

To demonstrate that our design for homogeneous counters is robust, we produced
scaled down versions that we place in a simple hand-held device (see Fig. A.2). The
device consists of a 3D printed flexure which guarantees a finite compression &,,,, and
reasonably accurate parallel top and bottom plates. After setting the initial state
to {1000}, repeated manual compression advances this counter towards its absorbing
state {1111}.

To demonstrate that beam counting can be realized in a wide variety of designs,

Figure A.2: A hand-operated flexure based device (dark green) containing a smaller
n = 4 beam counter illustrates the robustness of our design.
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Figure A.3: Alternative design for beam counting using symmetry broken beams.

we have explored an alternative design where the s-beams do not feature slits (see
Fig. A.3). Here, the symmetry breaking for counting is realized by pre-curvature
of the m-beams, and the addition of symmetry breaking bumps on the ‘s-beams’.
The latter control the higher order buckling modes of the m-beams and guides their
movement under cyclic compression.
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Design parameters

All sample geometries have L = 37.1 mm, 7' = 3.7 mm, and a fixed radius of curvature
of the symmetry breaking bases of R = 1.80 mm (Fig. A.1). We fix T and vary t;,
d; and D; to modify ef (Table. A.1). We measured ! by determining the rightward
snapping of the relevant beams from the difference in subsequent images for each unit
cell in our aaa, bbb, ccc and bac samples (Table. A.2). We note that there is scatter in
the values of f, and in particular that in the homogenous samples (aaa, bbb and ccc),
EJ{ is lower than 55 and 5;. We believe this to be due to the right-ward symmetry
breaking of the left (0-th) m-beam in these samples. Not withstanding the scatter,
our driving amplitudes bracket all the measured values for €, EZ and /.

Table A.1: Dimensions of homogeneous and heterogeneous samples

Parameter Dimension (mm) £0.05 (mm)
m-beam thickness ¢ [a] 1.2
m-beam thicknesst [b] 1.5
m-beam thicknesst [c] 1.8
Beam length L 37.1
m-beam — s-beam distance d |a, .. .] 7.6
m-beam — s-beam distance d [b, .. .] 7.9
m-beam — s-beam distance d|c, .. .] 8.2
s-beam — m-beam distance D|...,a] 8.9
s-beam — m-beam distance D |..., ] 9.4
s-beam — m-beam distance D|. .., ] 9.8
Radius of slit-ending hole 0.6
Radius of rounded corners R 1.8

Table A.2: Sample design and thresholds &f.

Sample | t1 £5x 1074 () | t2 £5x 107 (1) | t3 £5x 107* (1) | t4 £5 x 107% (5)

aaa 0.032 0.032 | 0.032 0.032
bbb 0.040 0.040 0.040 0.040
cece 0.049 0.049 0.049 0.049
bac 0.040 0.040 0.032 0.049
Sample | el 40.5 x 1073 (1) | el £0.5 x 1073 (1) | el £0.5 x 1072 (=)

aaa 6.96 x 10~ 2 7.58 X 1072 7.71 x 1072

bbb 8.17 x 1072 8.47 x 1072 8.76 x 1072

cee 9.28 x 1072 9.44 x 1072 9.30 x 1072

bac 7.85 x 1072 7.58 x 1072 9.03 x 1072
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Details of bit-copy operation

Here we discuss in more detail the right copying of a ’1’ bit, as shown in Fig. 3 of the
main paper — see also movie 4. During this process, the rightward buckled state of
m; is copied to s;, and subsequently, the rightward buckled state of s; is copied to
mo. A detailed inspection of this dynamics further illustrates our design choices. (i)
First, upon increasing the compression from the initial state at €, (main Fig. 3al),
beam m; makes contact with the interaction beam s; before ms: this is guaranteed
by our choice of spacings d < D, and by s; buckling left due the rounded corners at
its ends (main Fig. 3all). Increased compression beyond the critical strain ef results
in the rightward snapping of s; — this is why we take d < D* (see main Fig. 1c). (ii)
After s; has snapped, ms is sandwiched between s; and sg, and takes on a complex
shape (main Fig. 3alll). Further compression does not lead to significant evolution.
In this state, s; has a much larger deflection to the right than s, has to the left due to
the presence of the slit, thus overcoming the difference between D and d. This pushes
my to the right, and when the strain is lowered, my loses contact with s; and leans
to the right (main Fig. 3aIV). We stress that the slits in the s-beams are crucial, as
they enhance the rightward motion of s; — without slits, the s-beams would push m,
to the left as d < D (see main Fig. 3b). Upon further lowering of the strain to &,
the m-beam reaches a purely rightward buckled configuration and the system reaches
state {11} (main Fig. 3aV). We have verified that all other initial conditions ({00},
{01}, {11}) remain invariant under the same cyclic driving — as seen in main Fig. lc.
Hence, a judicious choice of geometry allows our unit cells to perform the irreversible
rightwards advancing of 1-bits.
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Table A.3: Examples of aggregate metamaterials consisting of two heterogeneous
counters that reach a unique state for a given input string (key) of length two.

key ‘ metamaterial ‘ unique state

AA ba 2]

AB aclba [11]
AC aclba [01]
BB bblca [0 2]
BC balca [01]
CA ablca [10]
CB aclcb [10]
cc ce [0]

Heterogeneous machines

In the main text we presented a general strategy to uniquely detect an input string
of length I, = 3, featuring m = 3 characters, using m homogeneous counters of
length s + 1(4+2) and one heterogeneous counter of length I + 1. This strategy can
be extended to recognize strings of arbitrary length, where m homogeneous counters
determine the multiplicity of each symbol, and a single heterogeneous counter uniquely
reaches zero when its input matches its design.

However, often one can uniquely detect a given string with a aggregate metemate-
rial that features more than one heterogeneous counters. To demonstrate this we
performed an exhaustive search of the combinations of heterogeneous counters that
uniquely detect input strings of length s two and three, using m = 3 characters,
{4, B,C}. For every target string we found a combination of ¢ counters, with ¢ < I
(Tables A.3-A.4). We note that some metamaterials can simplified even further, e.g.,
to detect AA the metamaterial aa|b suffices.

Transitions in complex aggregate metamaterials

To illustrate the complexity of metamaterials featuring multiple heterogeneous coun-
ters, we show the transition graph for the aggregate metamaterial abalbaa|caa,
starting out at state {3,3,3} (Fig. A.4). Clearly, the state that is reached en-
codes information on the driving sequence. First, restricting ourselves to input
strings of length three, there are eight states that encode a unique driving sequence:
{1,0,2},{1,2,2},{0,0,2},{1,2,3},{1,0,3},{2,3,3},{0,1,2},{2,0,0} and {2,0,3} —
as can be readily verified from Fig. A.4, each of these is only reached in response to
a unique three-character input sequence. Second, taking input strings of arbitrary

84



A,B,C

Figure A.4: The full transition-graph for the aggregate metamaterial aba|baa|caa (
labels are always to the right of the transition arrow).
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length into account, a different set of seven states is associated with a unique input
sequence: {3,3,3},{2,1,1},{2,2,3},{1,1,2},{1,1,3},{2,1,3} and {2,2,2}.
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Appendix B

Bellini Truss

A compressible beam can be modelled by a collection of compressive trusses serially
linked by torsional springs, as shown by Guerra et.al. [75]. For small angles 6; we
can write the potential of such a beam as (Fig. B.1):

N+1

N
1 2 1 2
=§k2uz +§b¥ 93, (B'l)

where u; is the compression of each spring and é; the change in angle from the resting
configuration. The spring constants & and b are chosen to match the compressive
stiffness and bending stiffness of beams with a rectangular cross section, so that k o ¢
and b o 3.

Figure B.1: The geometry of the top-down symmetric Bellini truss.
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A Bellini truss corresponds to the N = 2 case. Under imposed top-down symmetry
(u1 = ug and 02 = 2607 = 263) the summation can be performed to obtain:

U = Ktu® + Bt*6?, (B.2)

where we absorbed the summation over the number of springs into the coefficients K
and B.

To express the potential in z and e, we express u = 1 — /22 + (% — %)2, 0 =

arctan 12%5 to obtain:
2

1 &\’ 3 2z \?
U=Kt|1l—y[az?+|=-—-2 + Bt arctanl_E . (B.3)

2 2

Instead of attempting to minimize the full energy Eq. (B.3), we expand it to fourth
order in z and first order in € around (z,¢) = (0,0), and obtain:

32Bt3

U~r (Kt— Yzt 4 (4Bt + 8Bt3e — Kte)a?, (B.4)
As x, ¢, and t are all small, we discard the highest order terms O(t3z%) and O(tex?),
and obtain the leading order potential:

U~ Ktx* + (4Bt* — Ke)ta?. (B.5)

This potential transitions from a monostable to a bistable form when the z? term

switches sign at € = %. Diving by K produces the rescaled potential that makes this
transition explicit:

U = ta* + (6% — e)ta?, (B.6)

where the transition from a monostable to bistable potential occurs at € = ££2.
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Appendix C

Twistbuckler Details

Tracking images

To determine the configurations of the twistbucklers from the images, we track the
fiducials movement using Trackmate [110]. Trackmate tracks markers, by first finding
all markers in each frame and subsequently linking these frames together by solving
the linear assignment problem with a cost-function that minimizes the movement of
the dots between frames [110]. We then calculate the rotation of each frame, by fitting
the affine transformation matrix that best matches the movement between the target
and reference image using scikit-image [111]. This allows us to calculate the rotation
0 of the fiducial and therefore the cap of each twistbuckler with respect to a reference
frame.

Circle Involute Curve Construction

The involute of a circle, otherwise known as the anti-clothoid, and often referred to
as the evolute, is a curve that is defined by the involute [112]. An involute of a plane
curve is defined by the curve that is formed by tracing the end of a taut wire, as it is
wound around the plane curve. It is the curve for which all normals are tangent to the
base circle. Thus, each point can be constructed geometrically. For a circle of radius
b, every line of length ¢ that is tangent to the base circle, touches an involute curve
at an angle that is normal to that curve. This curve is rooted at the cusp, the point
at which opposite handed evolutes meet, at an angle of a = % (Fig. C.2a). All equal
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L

Transparent _/

bottom plate

Light source
front and
back

Figure C.1: The Crushinator setup with the acrylic transparent bottom plate used
for the camera tracking of Twistbuckler experiments.
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handed involute curves constructed from a circle are parallel (Fig. C.2b). The image
that is formed by rotating a circular involute by an angle o around the center of the
base circle, is at a distance of ab along the entire curve. Therefore it is also parallel to
an opposite handed evolute at a distance 27b (Fig. C.2¢)[112], and an equal handed
evolute at a distance 2v/72 4+ b2 (Fig. C.2d). These properties allow us to construct
a projection of two dimensional space onto rotation angles of auto-parallel evolutes
[112].

Deriving Blockade Shapes

The involute can be parameterized with the following equation:
z="0b-(1—it)e, (C.1)
where b is the radius of the base circle, and ¢ is the length of unwrapped string length.

When we define the curve to start at a specific angle o with respect to the real axis,
we can reach any point outside of the base circle:

z=0b-(1—it)e’ @t (C.2)

The cusp of the curve occurs at t = 0. For ¢ > 0, this corresponds to a right-handed
curve, and when ¢ < 0 the curve is left-handed. This mapping can be inverted such
that any point in space z to an angle o and unwrapping ¢, or equivalently a distance
to the center r.

As discussed in the main text, contact between involute teeth occurs along straight
lines tangent to the curves base circles, or circular arcs perpendicular to the origin
of one of the base circles. To transform this real-space contact shape, we transform
each point using the inverse of Eq. C.2.

Performing these transformations, we have to account for the offsets of the starting
angle of the specific surfaces that are in contact.

To find the domain of inaccessible angles in phase space 61,02, we have to transform
the real space coordinate space to phase space, taking into account the resting angles
of the flanks of both teeth. Teeth are defined by two flanks, and either: an implied
maximal radius at the flank’s intersection, or an explicit maximal radius when the
caps are terminated in a circular arc. This is computed in the aforementioned program
for the different sections.
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(b)

b

(c) (d)

A ._.

Figure C.2: Construction of an involute curve. (a) Involute curve unwrapped from a
circle of radius b. Every point along the curve can be constructed with a right-angled
triangle. The length ¢ indicated in green is tangent to the base circle and of equal
length as the arc defined by # and the base radius b. Thus the length of ¢ is ab. The
internal angle +y is trivially related: tan-y = a. (b) Involutes of a circle are parallel to
each other. (c) Involutes are auto-parallel. At a distance of 27b, all points of contact
occur on a line (the Mercier contact line [101]) indicated in black. (d) Similarly for
regular gear contact, all contact occurs along a line that crosses the mid-line between
both circles.
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Contacts lines along: «f, «l, tl, ((, (t, lx, tz, vz, and the two specific tip-tip points:
tr, .

Qualitatively, the normal-gear tooth flanks (vz and () are longer edges with negative
slope in phase space. These edges exist as long as |D| < |R1|+|Rz| The Mercier edges
(20 and (%) are always shorter than normal contact edges, and possibly do not occur.

By making the teeth of contact helical (facing down or up), the blocked domain in
space can be increased. This is equivalent to having multiple teeth on different layers.

Criterion for different types of contact

We can geometrically work out the requirements for the various types of contact to
occur.

Having any form of contact between teeth trivially requires:

D < fl + fQ. (03)

To further determine the type of contact that is formed, we can geometrically con-
struct the contact space and determine the conditions for each type of contact.

Flank contact occurs along straight lines tangent to both base circles with radii I'y,
I'5. Ordinary gear contact occurs on the intersecting lines and Mercier contact occurs
along the non-intersecting lines. These lines correspond to potential contact spaces,
whether contact occurs is determined by the finite size of the teeth. To determine
the criteria of contact, we construct the intersection of these potential contact spaces
with the lens that is formed by intersecting the outer circles with radii I'; and Ts.

As the ordinary contact space crosses the line that connects the centers of rotation
of both teeth, any contact will immediately correspond to ordinary gear contact.
The existence of Mercier contact is more complicated. Mercier contact only occurs
when the rl and Ir lines cross through the lens. We can geometrically construct the

criterion:
I‘1+%~D1 > /T, - D2, (C.4)
where
pyofi-T+D? ©s)
2D
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When Mercier contact can occur, there can be no tip-tip contact and vice versa.

Symmetric

For the symmetric case when I'y = I's, the existence of the Mercier regime corresponds

to the following inequality:
D>\T2 -T2, (C.6)

Thus, the minimal distance D,,;, occurs when D,,;, = V 2 -2, Scaling up D —
¢D, is equivalent to scaling up both I' — ¢I' and I' — ¢I', whereas scaling up

a — ¢a increases f‘/l" — ¢f‘/F for f‘/l" >> 1. Expanding to first order 4/ 1:‘/1“2 -1
near f‘/I‘ =1, we get \/§\/f‘/1“. Thus, assuming f‘/F > 1, and that the regime grows

linearly with /T2 — I'2, we expect a v/2 increase of the Mercier regime when scaling
up in a as opposed to scaling up the dimensions (I'> and T') of both teeth.

Cap design

The interaction between the twistbucklers is mediated through rigid contact inter-
faces. The shape of the contact is determined by rigid 'caps’ that are pressed in to
the twistbuckler shells (replaceable/adjustable). The contact surfaces are circularly
involute in the plane perpendicular to the rotation axis.

In the main paper, we discussed the creation of blockades due to pairs of teeth. We
also discussed the creation of composite blockades by combining teeth from multiple
layers. This combination would allow us to create a wide array of possible composite
blockades.

Here we offer the interested reader some insight into the achievable functionality
obtained by blockades. Although the form of the blockades can vary wildly in function,
there is only a finite number of observable phenomenological behaviors, both due to
the deterministic behavior of system and due the physical limitations imposed by
the shells. First, the actual twistbucklers have a limited amount of twist before
the twistbucklers lock up. At large enough driving the snapping angle will become
observably hysteretic as the higher order deformation modes of the twister come
at play. At some large enough driving, the twistbucklers will not be able to snap
until they are forced well past 8 = 0. Second, the (visco)plasticity of the twister
material will skew the stable resting configuration of the twistbucklers away from
the ideal. The twistbucklers preferentially buckle in the 'previous’ (depending on the
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(a) (b) (c)

Figure C.3: Blockades splits stable state of system. As a blockade is stretched, snaps
along the surface will occur. When a blockade crosses from the stable to the unstable
path of the twister element, a snap to an other state occurs. (a) A symmetric block-
ade leading to either left-handed or richthandel traversal around the blockade. This
corresponds to two pitchfork bifurcations opening and closing. (b) An asymmetric
blockade resulting in two broken pitchfork bifurcations leading to two snaps. (c) A
blockade that causes the stable state of the system to reach a saddle point of one of
the stable elements.

magnitude of recent events) twisting direction. But also due to the limitations in the
caps. Both due to friction, as near the critical points of the twisting shell potential,
the normal force between contacts becomes large with respect to the force induced
by the shells. As well as due the manufacturing errors of the caps that influence
the shape of the blockades strongly. Thus, all interaction through blockades needs to
occur close enough the origin ; = 0Vi to induce a snap-through, but the blockades
must also be big enough so that the contact is formed by design.

We will group the functions of the blockades into two: "meshing” which determines
the stable state as € decreases, and ”flipping” which determines the stable state on
increasing €.

Hexcycle Details

Shimming individual Twistbucklers

Using PLA shims of 0.06 mm =+ 0.01 mm thickness, we corrected for some of the
heterogeneity in the buckling strain. We a second set of caps with markers on all
caps, such that we could record the free buckling branch of all six twistbucklers in
parallel. We set up a compression cycle where we labelead all twistbucklers fixed
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(a) (b) (c)

Figure C.4: Meshing blockade variants. (a) When decompressing into a blockade,
the teeth mesh together. Asymmetries in the teeth determine the observed final
configuration. (b)Apart from symmetry these are the three types of meshing rules we
can observe. The dots indicate a "snap”. Rotating the diagrams by 7 /4, or mirroring
along a vertical or horizontal axes provides the other diagrams. From left to right:
non-meshing (-1), chiral (-4), preferential (-4). Pictured here are the aligning (”ferro-
magnetic”) meshing effects that result in a stable state in the ++ or —— quadrant.

them in individual locations in the compression machine. We measured the rotation
response as a function of driving, and by intersecting the strain at |#| = 0.5 rad, we
found values that we used to correct for the heterogeneity. We chose to adjust for
the rotation near 0.5 rad, as this approximates the angle at which the twistbucklers
make contact in the systems used.

After applying the shims to all twistbucklers, we found a reduction in the standard
deviation from 0.13 mm to 0.05 mm at 0.5 rad (Fig. C.6). As the assembled height
of the caps varies by the same order of magnitude, and we can’t track the angles of
all measurement caps, we measured the height both the measurement caps used here,
and the caps used in the Hexcycle experiments, and matched these to accommodate
further differences.
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(a) (b)

(d) (e)

Figure C.5: Various identified hypothetical flipper blockade phenomenologies that
arise from the interactions of multiple teeth pairs. Apart from symmetry (-n), these
are the 6 identifiable ways of flipping. From left to right and top to bottom: (a) The
no flipping blockade (-1 variant). (b) The single flip blockade (-8 variants). A blockade
is illustrated, and the trajectory followed is indicated with the orange arrows. Dots
represent unstable states at which point one of the twistbucklers snaps. (c) A chiral
flipper blockade (-4) in which the state of one twistbuckler is always copied to the
other twistbuckler. (d) A biased blockade (-4). (e) A two-step blockade (-8), (f) A
converging blockade (-8) in which each state can be brought to a single identifiable
state.
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Figure C.6: Before (a) and after (b) correcting for the variation in buckling strains of
the individual twistbucklers for the Hexcycle experiments. These curves are measured

at once with all twistbucklers attached to the bracket in the same locations between

the before and after experiments. Figures (¢) and (d) show the comparison of |6]| for
all combinations of twistbucklers without and with shims for decreasing e.
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Figure C.7: Isolated frames near A = 1 of two cycles of the hexcycle machine. The
differences between the frames are subtle, so a green reticle indicating the approximate
neutral lines is added. Between every frame, a single twistbuckler cell is flipped.
Between I and II, the top left cap is flipped, after that the top right, and bottom.
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Summary

This dissertation covers the research I performed at the University of Leiden and the
AMOLF research institute in Amsterdam. I investigated mechanical metamaterials;
a relatively new field of science that studies material properties which go beyond the
properties of ordinary materials.

In this dissertation, I ventured into one of the newest areas of metamaterials: memory.
My research was initially started with the question: ”can we make a block of rubber
that can count?”, which I set out to discover. Very quickly, I realized that counting
not only requires a retention of information, but a simple form of computation as
well. Thus, after developing an initial ’counting material,” I investigated the essential
components required for such a material, its potential capabilities, and the limitations
of various configurations of these minimal components. Would these ingredients allow
us to learn more about memory, possibly even allow us to perform computations?

Chapter one serves as the introduction of this dissertation and it discusses the wide
variety of memory observed in materials and devices. I start by discussing footprints in
the sand and mechanical lap counters, two vastly different systems yet both featuring
a form of memory. We narrow down our definition of memory, introduce mechanical
metamaterials, and discuss the concept of materials as computers.

Chapter two discusses the beam counter metamaterial; a block of rubber with a
specific structure such that allows it to count how often it is compressed.

The beam counter metamaterial consists of an array of parallel beams of two different
thicknesses, separated by gaps of alternating size. Additionally, the thicker beams
feature a slit such that they can ‘fold open’ in one direction. All beams have a small
geometric asymmetry such that their buckling direction is predetermined. Similarly,
all other features of the beam counter are chosen such that through a contact inter-
action, successive compression cycles are effectively recorded in the bistable state of
the thinner beams. Effectively the block of rubber is able to count how often it is
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compressed. In a practical sense, one could include such a block of rubber in a struc-
ture to register and log wear and tear. Under a bridge, for example, such a material
could track how many overweight trucks drove across it without external sensors or
power sources.

Finalizing the chapter, we demonstrate beam counters that are able to distinguish dif-
ferent compression intensities. Combining these, and by using counters that feature a
sequence of different thresholds, we realize a metamaterial that detects a specific input
sequence, similar to a lock: this metamaterial only reaches a well defined accepting
(open) state given a specific sequence of thresholds (key).

Chapter three discusses the interaction that occurs between buckled beams in con-
tact, which is fundamental for the working of the beam counter metamaterial. As
two beams of equal length and unequal thickness are compressed, buckle and bump
in to each other, they collectively snap in either the direction of the thinner or the
thicker beam. We find that the direction is decided solely by the distance between
these two beams. We find that for every pair of unequal beams there is a certain
critical spacing: when the beams are closer together than this critical distance, the
beams snap in the direction of the thicker beam, and when the beams are further
apart, the beams snap in the direction of the thinner beam. This interaction is the
crucial ingredient for the working of the beam counter metamaterial.

Using both experiments and simulations, we study the phenomenon and found a
surprising linear relation between the observed critical distance and the combined
thickness of the two beams. Finally we introduce a minimal model based on the
truss structure introduced by Bellini et al., and the beam models of Guerra et al.,
which explains this linear scaling. With this simple model, we further learn that the
direction of snapping is determined before contact is lost, and can be understood as
the result of a pitchfork bifurcation.

Chapter four discusses the slitted beams used in the beam counter metamaterial.
These beams feature a partial slit cut into the beam, forming a hinge that opens
only towards one side. These elements play a crucial role in the function of the beam
counter metamaterial, as these beams behave equivalent to an uncut beam at small
compression, and a strongly asymmetric beam at large compression when the hinge
opens up. In the beam counter these are beneficial as they extend further towards one
side. This chapter however is concerned more with the hysteretic response that these
beams have when compressed; as a slitted beam is compressed and it snaps open, it
will remain open when decompressed below the compression where it initially opened.
These slitted beams therefore have a memory of the past.

The chapter specifically delves into the observed phenomenology as a function of the
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beam’s geometry, and uncovers the mechanisms behind the hysteretic transitions of
the opening and closing of the slit. Using both experiments and simulations, we find
that the opening and closing strains can be individually tuned, and we find a fitting
parameterization of the Bellini Truss which matches the observations.

Chapter five discusses twistbuckler metamaterials, which build on the beam counter
metamaterial by extending to two dimensions and allowing for interactions to occur
between two bistable elements in all four stable states. These metamaterials fea-
ture base elements that twist as they buckle and interact through rigid contact with
precisely shaped interfaces.

The twistbucklers enable the creation of cyclical counters. While all beam counters
eventually ‘run out’ due to their configuration in a line, the twisting motion of the
twistbucklers allows for more diverse types of coupling and specifically the ability to
connect the ends of the line and place elements in a loop such that after a number of
cycles they return to their initial state.

In this chapter, we first discuss the individual twistbucklers and measure their tor-
sional response. Next, we discuss the contact interaction and the design of the contact
interfaces. These interfaces, which are based on the shape of gear teeth block parts of
configuration space, and allow the rotation rates of twistbuckler to be coupled when in
contact. We demonstrate how the blocked configuration space can be used to design
when twistbucklers interact, and how the coupling can be used to determine which
twistbuckler is forced to switch states in each interaction.

Finally, we demonstrate a counter consisting of two twistbucklers that cyclically goes

through two states, and a counter consisting of six twistbucklers that goes through
six states and could be scaled up to arbitrarily long length cycles.
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Samenvatting

Deze dissertatie behandelt het onderzoek dat ik uitgevoerd heb bij de universiteit
van Leiden en het onderzoeksinstituut AMOLF in Amsterdam. Ik heb onderzoek
gedaan naar mechanische metamaterialen; een nieuw veld in de wetenschap waarin
materiaaleigenschappen onderzocht worden die verder rijken dan dan eigenschappen
van normale materialen.

In deze dissertatie behandel ik een nieuwe eigenschap binnen de studie van de me-
tamaterialen: geheugen. Mijn onderzoek was oorspronkelijk begonnen met de vraag:
“kan een blok rubber gemaakt worden dat kan tellen?”. In een mum van tijd werd
het mij duidelijk dat een blok tellend rubber niet alleen een vorm van geheugen nodig
heeft, maar ook een vorm van berekening moet uitvoeren. Nadat ik het eerste tellende
materiaal gemaakt had, onderzoch ik wat in algemene zin de benodigde ingredient
voor zo’n materiaal zouden zijn en wat er nog meer gemaakt zou kunnen worden met
deze ingrediénten. Zouden deze ingrediénten ons helpen verder te kunnen onderzoe-
ken hoe geheugen ontstaat in materialen, en mogelijk zelfs berekening te kunnen laten
doen?

Hoofdstuk één dient ter introductie van deze dissertatie en introduceert een aantal
vormen van geheugen die gevonden worden in materialen en apparaten. Het hoofd-
stuk begint met een discussie over voetafdrukken in het zand en mechanische tellers,
twee compleet verschillende systemen maar beide met een vorm van geheugen. Ver-
volgens maken we onze definitie van geheugen preciezer, introduceren we mechanische
metamaterialen, en bespreken het concept van een materiaal als een computer.

Hoofdstuk twee behandelt het ”balken-teller”! metamateriaal; een blok rubber met
een specifieke structuur zodat het kan tellen hoe vaak het ingedrukt is.

Het balken-teller metamateriaal bestaat uit een reeks parallelle balken van twee ver-

1 Beam counter in het Engels. Een woordspeling gebaseerd op de term bean counter; een pejoratieve
term voor een accountant.
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schillende diktes, om en om met kleinere en grotere openingen ertussen. Bovendien
bevatten de dikkere balken een spleet zodat ze in één richting kunnen ‘openvouwen’.
Alle balken hebben een kleine geometrische asymmetrie, zodat hun knikrichting vooraf
is bepaald. Evenzo zijn alle andere kenmerken van de balken-teller zodanig gekozen
dat door een contactinteractie opeenvolgende compressiecycli worden vastgelegd in de
bistabiele toestand van de dunnere balken. Effectief kan het blok rubber tellen hoe
vaak het wordt samengedrukt. Zo’n blok rubber zou in de praktijk verwerkt kunnen
worden in een bouwstuk om slijtage bij te kunnen houden. Een balken-teller zou bij-
voorbeeld onder een brug geplaatst kunnen worden om bij te houden hoe vaak deze
overbelast wordt.

Ten slotte demonstreren we balken-tellers die verschillende belastingen kunnen her-
kennen. Door meerdere van deze tellers samen te gebruiken en tellers te gebruiken die
voor een specifieke volgorde van kleine en grote belastingen gevoelig zijn, demonstre-
ren we vervolgens een metamateriaal dat een specifieke volgorde van invoer herkent,
net zoals een slot en sleutel. Het metamateriaal bereikt alleen een specifieke ‘accep-
terende’ (open) toestand als een specifieke sequentie van belastingen ingevoerd wordt
(sleutel).

Hoofdstuk drie behandelt de interactie die voorkomt tussen geknikte balken welke
ten grondslag ligt voor de werking van het balken-teller metamateriaal. Naarmate
twee balken van gelijke lengte maar ongelijke dikte knikken en tegen elkaar tikken,
klakken ze tezamen in de richting van de dunnere of dikkere balk. Die richting blijkt
enkel bepaald te worden door de afstand tussen de balken. We vinden dat voor elk
paar ongelijke balken er een kritieke afstand is: als de balken dichter bij elkaar staan
dan deze kritieke afstand, dan klakken de balken in de richting van de dikke balk,
als de balken verder weg staan dan dit criterium, dan klakken ze in de richting van
de dunne balk. Deze interactie is het cruciale ingredient voor de werking van het
balken-teller metamateriaal.

Gebruikmakend van zowel experimenten als simulaties bestuderen we het fenomeen
en vinden we een verrassende lineaire relatie tussen de geobserveerde kritieke afstand
en de som van de diktes van de balken. Ten slotte introduceren we een minimaal
model gebaseerd op de ”vakwerk” (truss) structuur geintroduceerd door Bellini et al.,
en de balk-modellen van Guerra et al., welke deze relatie verklaard. Met dit simpele
model ontdekken we verder dat de richting van klakken bepaald wordt voordat de
balken los komen van elkaar en bepaald wordt door een hooivork-bifurcatie.

Hoofdstuk vier behandelt de half-gesneden balken welke in het balken-teller meta-
materiaal gebruikt worden. Deze balken bevatten een snede halverwege het midden
van de balk zodat deze een scharnier vormt. Deze elementen spelen een cruciale rol
in de werking van het balken-teller metamateriaal doordat deze balken zich in de
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dichte toestand nagenoeg identiek gedragen aan een niet-ingesneden balk, maar naar
één kant drastisch verder uitbuigen wanneer deze ver ingedrukt wordt. In de teller
worden deze balken gebruikt omdat ze naar één kant verder uitwijken, maar in dit
hoofdstuk wordt een andere eigenschap van deze balken onderzocht; als de balken in-
gedrukt en losgelaten worden blijft het openen en dichtgaan van het scharnier achter
(hysterese). Deze balken bevatten daarom een vorm van geheugen.

Dit behandelt de geobserveerde fenomenologie als functie van de geometrie van de
balken, en onthult het onderliggende mechanisme van de achterblijvende transitie.
Door het uitvoeren van zowel experimenten als simulaties vinden we dat de indrukking
waarbij het scharnier opent en sluit onafthankelijk gekozen kan worden, en vinden we
een mathematisch model gebaseerd op het vakwerk van Bellini welke overeen komt
met, onze observaties.

Hoofdstuk vijf behandelt de ”draai-knikker” (twistbuckler) metamaterialen welke
voortborduren op het balken-teller metamateriaal door deze uit te breiden naar twee
dimensies en interacties tussen alle vier toestanden van twee bistabiele elementen
mogelijk te maken. Deze metamaterialen bevatten basis-elementen welke draaien als
ze knikken en welke interacteren door middel van hard contact met precies gevormde
contactvlakken.

De draai-knikkers maken het mogelijke cyclische tellers te maken. Hoewel normale
balken-teller metamaterialen uiteindelijk een ’eindtoestand’ bereiken, maakt de draai-
ende beweging van de draai-knikker het mogelijk om deze in een lus te zetten en de
interactie zo te kiezen dat de toestand herhaaldelijk terug komt bij de begintoestand.

In dit hoofdstuk behandelen we eerst het gedrag van individuele draai-knikkers en
meten we het moment welke deze uitoefenen onder verschillende indrukkingen en
draaihoeken. Vervolgens behandelen we de interactie door middel van contact en
het ontwerp van de contactvlakken. Het ontwerp van de contactvlakken is gebaseerd
op de vorm van tandwieltanden, en net as bij tandwielen, blokkeren deze tanden
combinaties van hoeken en zorgen deze voor een koppeling tussen de draaisnelheden
van de draai-knikkers. We demonstreren hoe een geblokkeerde configuratieruimte
gebruikt kan worden om te bepalen wanneer de draai-knikkers interacteren, en hoe
de koppeling gebruikt kan worden om te bepalen welke draai-knikker van toestand
wisselt in elke interactie.

Ten slotte behandelen we een teller bestaande uit twee draai-knikkers die cyclisch
tussen twee toestanden wisselt, en een teller bestaande uit zes draai-knikkers die door
zes toestanden wisselt en uitgebreid kan worden om tot willekeurig grote hoeveelheden
te tellen.
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