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Chapter 1

Introduction

Everywhere we look, we find traces of the past. Footprints in the sand, photographs

of long ago, and kind letters we read to reminisce, all allow us to infer information

from the past. Just as we are able to dig to uncover archeological remains of long

gone civilizations, Nature itself keeps a record; tree rings track the years (Fig. 1.1a)

and allow us to discern historical weather, and the deposited CO2 content in layers

of arctic ice (Fig. 1.1b) allow us to track the legacy of global warming[1].

But not all traces remain and or are readily recognised. Exactly what information

is retained, and what is not, is difficult to define. Here we will focus on a type of

trace that allows us to infer back exactly what information is stored. An everyday

example of this is a clicky pen. As it came out of the packaging in one specific state,

depending on whether the tip is out or in, we can figure out whether it has been

depressed an even or odd number of times. Another example is a mechanical lap

counter (Fig. 1.1c). A simple device with two levers, one of which is used to ’add’ a

lap, and the other to reset the device to zero. Both devices store amemory of the past.

More akin to the layers in trees and ice, is the process of forming layers in atomic and

molecular layer deposition 1. These techniques allow for the deposition of an exact

number of layers on a substrate by repeatedly applying two different processes, akin

to the two processes of pressing and depressing the plunger on a clicky pen or lap

counter. However for some cases where we might not necessarily expect to find such

1In typical layer deposition two reactants A and B are sequentially deposited on to a substrate.
First molecules of type A are deposited on to the substrate, terminating in a surface. Then, a
concentration of a compound we will refer to as B is deposited. This compound crucially only
attaches to A molecules, forming a closed surface of B molecules, of a single molecule thickness.
Next, in a second process, all B molecules are replaced by A molecules, which allows for a repetition
of the cycle.
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an easily quantifiable memory. Famously, a cylindrical rod inserted in a container of

granular matter is able to memorize in what direction the rod was previously rotated

[2], and the plant known as the venus flytrap (Fig. 1.1d), despite not having a brain,

is able to count[3].

1.1 Memory in Materials

Memories are naturally formed in a wide range of materials in response to variety of

external driving protocols. Whether through mechanical deformation or externally

applied magnetic fields, traces of the past remain and show up in a multitude of

ways[4].

A classic example of memory in materials is found in systems of magnetic spins as

modeled by the so-called Preisach model. In this model, the response of a material

is modeled by ”independent elementary hysteresis domains” [5, 6]. Each hysteresis

domain has its two fields at which it flips, thus each state provides a single bit of

information – which state it was flipped to last. When combined, these domains

provide a more complex form of memory called ”return-point memory” (RPM), char-

acterised by the ”tendency of a material to return to the same microstate upon cyclic

driving”[7].

Contrary to its (unfortunate) name, RPM is not merely the ability for a material to

recreate some feature when returning to some remembered driving(point). A linear

(Hookean) spring does not have a form of memory, but would equally fit that descrip-

tion. In a purely linear system, there is no procedure to make a trace which can be

recovered at a later time. In contrast, RPM is the memory of previous turning points

in driving. When driven towards and past a turning point (a previous local extremum

in driving), the measured output of the material will match the previous output at

the turning point, after which the rate of change in the output jumps to a different

value [8] (see figure 1.2). Once crossed, a turning point is removed. Turning points

can thus only be added within the bounds of previous turning point, which puts a

strict hierarchy on the remembered values encoded with the turning points2.

Notably, RPM is observed in a vast number of systems, not only in idealised spin

systems but in many complex systems as well after a break-in-period of an initial

number of training cycles. In crumpled sheets for example, a system that features

internal rearrangements and plasticity, the response of the foil develops as it is pushed

and pulled between set bounds until it reaches a final response curve [9]. When driving

2Perhaps ”hierarchical memory”, or ”pyramidal memory” (due to the requirement that new memories
have to be within the bounds of the previous notches) would be a better fitting term.
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the crumple, it continues to snap and pop, even when displaying RPM, demonstrating

the non-linear nature of these mechanisms.

Some materials which display RPM, display a second form of memory during the

training period[4, 9]. First discussed in the context of charge-density waves[10], these

”multiple transient memories” encode an arbitrary number of values that correspond

to input in arbitrary order, given a significant system size [11, 4]. In contrast to RPM

however, this form of memory is fleeting, or transient, unless noise is introduced [11].

Specifically, after many driving cycles the memories of intermediate driving extrema

fades, and only RPM, the memory of extremal driving, remains [11].

Such transient memories can be described by the park-bench model of memory intro-

duced by S. Nagel[12]. This toy model model effectively captures the main features

of transient memories, including its fleeting nature, by the results of a simple game.

It works as follows: Imagine a number of benches in a line, between which a peculiar

type of grass has grown which gets trimmed by a fixed amount every time a person

walks over it. If this person walks to the first bench and back, only the first patch of

grass is trimmed. If this person walks to the N ’th bench and back, the grass of the

first N benches is trimmed. Upon inspection of the grass, the length of each section

can be used to infer how often each bench has been passed. Note that this does not

allow us to infer in which order the person visited the benches. The park bench model

allows us to store memories, as long as there is still grass left to be trimmed. As soon

as the grass is completely removed, further trips do not leave a complete trace of

memory.

Although of academic interest, this form of memory as it occurs in materials is diffi-

cult to make practical use of. The practical read-out protocols of such memories do

not extract all stored information exactly and the writing and subsequent read out of

signals seems to be limited to about three distinct memories [13]. Note that this is

after multiple training cycles, and the protocol yields only the resulting information

that specific memories occurred, not how often they occurred. This seems to indicate

that these read-out cycles do not yield all information stored according to the (ideal-

ized) park-bench model. From the framework of the park-bench model, neither the

original length of the grass, nor the finite trimming length of the grass can be inferred

from these measurements. In practice, materials that allow for a direct measurement

possibility of the entire trace as proposed by the park bench model are beneficial. In

chapter 2, we will discuss a system with memory that can be made equivalent to the

park-bench model, and beyond, by additionally recording the order of applied inputs.

In this system, the internal memory can be directly read out by a visual inspection.

9
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1.2 Stability of memory

One crucial feature of traces is that they remain stable over time. This time could

be relatively short, as in charge density waves[10] and the Venus flytrap[3], or in very

long, as in disordered systems[11] such as spin systems [6], granular matter[2, 13], and

crumpled foils[9]. In all these cases, the configuration of these systems encodes the

stored information.

In many mechanical systems, the emergent stable states stem from local buckling

events. Consider holding a playing card between your index finger and thumb; when

pressed gently the card remains flat, but with enough force,the card buckles and bends

either left or right. Past the critical buckling point, bending allows the card to reach

a lower potential energy compared to staying straight, thus any small perturbation

will cause the card to deflect to the left or the right instead of remaining straight.

Note that, in perfectly symmetric systems, the direction in which the card initially

buckles — left or right — is essentially random. However, in practice, this direction

is completely determined by the broken symmetries present in the boundaries and

the card itself. In comparison, pulling on the card does not have this effect, it will

merely stretch a possibly imperceptible amount before possibly tearing. The material

of the card, whether it is made of paper, plastic or even metal, does in general not

influence this behaviour but merely the force required to buckle the card: buckling is

a geometric feature. Once buckled, the effective stiffness of the card in response to

compression drops dramatically. In structures like columns and walls, similar buckling

events are to be avoided as they correspond to catastrophic failures, but in the context

of mechanical memory, buckling provides functionality – after buckling, the playing

card is bistable. This can by demonstrated by using a second hand. By pushing on

the arch that is formed by the card, we can snap the card back and forth between

two stable configurations without changing our hold with the first hand.

In the case of crumpled sheets for example, Shohat et al. [9] demonstrated through

3d-scanning that the mechanical stability of the sheet could be decomposed into

many localized bistable elements. These bistable elements emerge from the process of

crumpling and subsequently flattening of the sheet which subsequently allows for the

encoding of memories. Every crease and fold that occurs when crumpling influences

the formation of new creases and folds, thus forming a complex structure of bistable

elements with equally complex emergent coupling. Such complexity is not necessary

however. As shown by Bense et al. [14], a pre-curved rubber corrugated sheet features

similar bistable elements that emerge when compressed. When cyclically compresed,

this system shares some of the phenomenology of disordered systems and is able

to ”count to two” [14]. Here the curvature of the sheet localizes the formation of

the bistable elements. Due to small defects and depending on how the system is
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driven, different functionalities emerge which indicates that despite the comparative

simplicity of this system, the coupling and behaviour of this system in a response to

driving is anything but. Thus localised multi-stability appears as a key feature for

memory in mechanical systems.

1.3 Mechanical Metamaterials - Designing Material

properties

Mechanical metamaterials are artificial materials that obtain their unique and excep-

tional mechanical properties due to their structure. Here ’meta’ means ’beyond’, and

indicates that the properties go beyond that of ordinary materials, similar to how

’metaphysics’ goes beyond the study of the real world. 3. Mechanical metamaterials

are a class of materials inspired by the previously studied optical metamaterials that

have unusual properties such as a negative index of refraction[16]. Mechanical meta-

materials instead focus on novel properties when deformed or stressed[17, 18]. Some

of the earliest mechanical metamaterials have negative poisson ratio’s making them

so-called auxetics, which widen when pulled and narrow when compressed[19, 20],

contrary to most ordinary materials. When pulling on a rubber band for example,

it becomes thinner in the middle. For small deformations, it has been shown that

materials with arbitrary linear responses (that obey thermodynamics) can be formed

with just elastic materials and specific structures[21]. These elastic structures often

feature slender elements, which can exhibit large reversible deformations, allowing for

the creation of complicated mechanisms. Within the context of this thesis, elastic

slender structures are ideal for designed memory effects as well. Elastic materials

such as rubber are a ”clean slate” when it comes to memory: when released these

materials deform back to their initial unconstrained configuration. Furthermore, slen-

der structures are exactly the types of structures that buckle when compressed along

their length. Thus the creation of a mechanical metamaterial with designed memory

functionality is a natural continuation of the earlier buckling-driven developments of

mechanical metamaterials.

Consequently, memory has recently garnered interest in the field of mechanical meta-

materials through the inclusion of elements that are themselves multistable[22, 23].

While such multistability of elements is likely necessary for the emergence of mem-

ory, it is in and of itself not the defining feature that allows for memory properties.

Crucially, how the elements are coupled together is paramount. Elements that are

3This is different from the popular meaning of ’meta’ in words as metadata (data about data) or
metahumor (humor about humor). This second meaning of meta was popularised by Douglas
Hofstadter in the book Gödel, Escher, Bach [15].
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’weakly coupled’ allow for the the existence of many independent local multistabil-

ities, whereas a ’strong’ coupling causes avalanches, transition waves and otherwise

global emergent stable states[24, 25]. Only when the stable states of a metamaterial

remain local, does the capacity for memory in a mechanical metamaterial grow with

the number of multistable elements inside of the material.

Furthermore, the coupling between the multistabilities inside a material needs to

effectively encode the driving enacted on the material. Achieving this through a

rational design such coupling appears to be a non-trivial task, yet (as discussed before)

readily occurs in many disordered systems and ’natural’ materials. Separate from the

ability to recall a single previous event, is the ability for a material to distinguish the

numeracy of repeated inputs. This requires a notion of response that not only depends

on a previous driving input, but on the previous inputs as well. In other words, it

depends on the outside influence and on the current state of the material. In this

thesis we will discuss a recurring pattern specific to such counting like pathways.

Furthermore, by designing metamaterials that feature specific pathways, we make

these features practical. As discussed in the context of ”transient memories” and the

park bench model (Sec. 1.1), only a known structure with a known response can be

used to effectively count and record driving cycles. An emergent counting response

in a natural material can merely be categorised by supervised measurements.

1.4 Materials as Computers

Multistable materials bear a striking resemblance to computers. As discussed, the

specific microstate of a multistable material can be used to infer information from

the past. Whereas in the framework of computing, the internal state of a system is

equivalent to all possible histories that led to that state, as described by M. Min-

sky [26]. To bridge these two concepts of state, we need a notion of how the material

can be manipulated, and how each stable state would transition in response to the al-

lowed manipulations; a state transition graph. This leads us to study such multistable

materials as though they are computers. Specifically, in the language of computation,

as though they are finite state machines (FSMs).

In recent research, mechanical metamaterials have been explored as ’computational’

systems, designed to perform mathematical operations. The focus of many of these

computational metamaterials is on implementing basic Boolean logic operations to

achieve universal combinatorial logic [27, 28, 29]. While such materials are inherently

valuable for certain tasks, the types of computations this class of metamaterials can

perform, is limited by their lack of a preserved state. Furthermore, to perform ar-

bitrary computation such as which can be performed by a Turing machine, a FSM,
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would further need to be coupled to an infinite reservoir of states (tape)4.

We note in passing that RPM - which readily occurs in many materials - could be

used as a source of such basins of stable states. In collaboration with P. Baconnier, we

demonstrated the memory storage capability of RPM. We managed to store and read

out six recognizable states in a NiTinol alloy wire (similar to the work of Perković

et al.[8], and the readout technique found in Keim [4]). The limit to the amount of

states such basins can store are mostly determined by the measurement equipment,

as the model used to describe the memory therein [5, 31], suggests a near-limitless

reservoir of memory in this system.

In this thesis we will focus primarily on the development of mechanical metamaterials

that mimic a specific type of FSMs – cellular automata (CA), a variant of FSMs that

best mimic the spatial cellular nature of many solids. We propose to build mechanical

materials made out of ’cells’, each a small simple FSM with a single state, that remains

mechanically local, and which interacts with its neighbours in a clocked fashion.

4In fact, as demonstrated by M. Minsky [26], a machine consisting of a relatively small FSM and
infinite basin with which the FMS interacts with through a read and write tape, is shown to be
Turing complete. Moreover, as a result of Shannon [30], the finite state machine needs only a single
bit of information (two states), connected to an infinite tape, to compute anything. In the words
of Minsky: ”the demonstration by Shannon (1956) that, allowed enough symbols, one can replace
any Turing machine by a two-state machine, shows that the structure of the state diagram can
be hidden in the details of operation and not clearly represented in the topology of the interstate
connections.”[26].
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1.5 This Thesis

Chapter 2 explores the beam counter mechanical metamaterial. This is a me-

chanical metamaterial consisting of slender beams that buckle and bump to interact,

yielding a cellular automata that is able to count compressive driving cycles. Fur-

ther, we combine multiple of these counters together to realize a metamaterial with

memory properties akin to ”multiple transient memories”. We further develop this

metamaterarial to realize an order dependent response and demonstrate a ’lock-and-

key’ metamaterial.

Chapter 3 delves into the bumping buckled beams. The cornerstone of the inter-

action occurring in the beam counter metamaterial. In this chapter we uncover the

mechanism behind the apparent linear scaling of the critical distance in the bumping

buckled beams.

Chapter 4 discusses the slitted beams. These are a crucial ingredient of the beam

counter metamaterial. This chapter further explores the mechanics of slitted beams

and reveals the origins of their hysteretic behaviour and the observed triple stability

in response to compression.

Chapter 5 discusses the twistbuckler mechanical metamaterial. This is a suc-

cessor to the beam counter metamaterial that offers novel functionality such as cyclic

responses to driving cycles. Instead of utilizing beams, these mechanical metamate-

rials feature elements that twist as they buckle and interact through rigid contact.

This interaction simplifies the interaction between elements as compared to the inter-

action between bumping buckled beams and offers to opportunity to elegantly couple

bistable elements in two dimensions instead of one.

14



Chapter 2

Counting Beams

Materials with an irreversible response to cyclic driving exhibit an evolving

internal state which, in principle, encodes information on the driving history.

Here we realize irreversible metamaterials that count mechanical driving cycles

and store the result into easily interpretable internal states. We extend these

designs to aperiodic metamaterials which are sensitive to the order of different

driving magnitudes, and realize ’lock and key’ metamaterials that only reach a

specific state for a given target driving sequence. Our strategy is robust, scalable

and extendable, and opens new routes towards smart sensing, soft robotics and

mechanical information processing.

This chapter is based on previously published work [32]
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Counting a series of signals is an elementary process that can be materialized in simple

electronic or neural networks [33]. Even the Venus flytrap can count, as it only snaps

shut when touched twice, despite not having a brain [3]. While the ability to count is

not commonly associated with materials, certain complex materials, from crumpled

sheets to amorphous media, can exhibit memory effects where the state depends on

the driving history [34, 4]. Under cyclic driving, their response then may feature

subharmonic behavior [35, 36, 37, 38, 39, 40, 41, 42] or, as was recently shown, a

transient where the system only settles in a periodic response after τ > 0 driving

cycles [43, 14, 9]. The latter response thus counts the number of driving cycles in

principle, but in practice, the link between this number and the internal state is

highly convoluted. Materials that would feature controlled counting could simplify

the design of soft robotics and intelligent sensors, and more widely, open a route

towards sequential information processing. However, we have no rational strategies

to control the link between state and count or to realize in-material counting.

Here we introduce a general platform for metamaterials [44] that count mechani-

cal compression cycles. Our metamaterials consist of unit cells that each feature a

memory-beam (m-beam) that is either buckled left or right, which we represent with

a binary value si = 0 or 1 [45] (Fig. 2.1a). The unit cells are designed to interact with

their neighbors such that under cyclic compression any unit cell in the ’1’ state copies

this state to its right neighbor (Fig. 2.1b-c). This leads to a mechanically clocked wave

where the ’1’ state advances rightward, one unit cell per compression cycle. Hence,

the collective state, S := {s1, s2, . . . }, evolves like in a cellular automaton [46], with

repeated cyclical compression yielding simple predictable pathways.

We combine such beam counters to realize metamaterials which exhibit more com-

plex forms of sequential information processing than counting, including the detection

of compression cycles of multiple amplitudes, as well as their sequential order. To-

gether, these establish a general platform for realizing targeted multi-step pathways in

metamaterials and open a route towards sequential information processing in materia

[47, 27, 48].

2.1 Unit cell and cyclic driving

We aim to realize metamaterials where state ’1’ spreads to the right when the com-

pressive strain ε is cycled between εm and εM (Fig. 2.1). We note that in contrast to

recent metamaterials which exhibit sequential shape changes under monotonic driving

[49, 50, 51, 52, 53], we require a sequential response under cyclic driving. This necessi-

tates unit cells that memorize their previous state, interact with their neighbors, and

break left-right symmetry. We satisfy these requirements with unit cells i containing
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two beams (Fig. 2.1b). The slender m-beams encode states si = 0 or 1 in their left or

right buckled configurations. We choose εm larger than their buckling strain so they

retain their state. The thicker and non-trivially shaped s-beams facilitate interactions

between the m-beams, and buckle at a strain larger than εm but smaller than εM .

The detailed design involves a careful choice of the symmetry breaking beam shapes

and their spacings. First, weakly symmetry breaking rounded corners at the ends of

the m-beams controls their buckling into a desired initial configuration S = {100 . . . }
— this does not appreciably modify the evolution of the sample during compression

cycles, yet allows resetting the beam counter by momentarily cycling the strain to-

wards zero. Second, the s-beams feature similarly rounded corners that makes them

buckle left, and a slit which extends their reach when they snap to the right and

the slit opens up (see chapter 4). As we show below, these symmetry breaking en-

hancements are crucial for their role in right-copying the ’1’-state of the m-beams.

Third, we use the beam spacings d and D to control the interactions between s- and

m-beams. We found that when two buckled beams of unequal thickness are brought

in contact, upon further compression they either both snap left or snap right — the

direction depends on whether their distance is smaller or larger than a critical dis-

tance D∗. We choose di < D∗ and Di > D∗ so that contact interactions between

neighboring m- and s-beams favor rightward snapping of the beams (Fig. 2.1c).

2.2 Counting and controllable transients

We combine our unit cells to construct a ’beam counter’ with n = 11 unit cells, using

standard 3D printing and molding techniques. We cycle the compression in a custom

built setup that allows accurate parallel compression of wide samples, and track the

center locations of the middle of the m-beams (Fig. 2.2b). Ramping up the strain from

zero to εm, the system reaches the initial state {10000000000} (Fig. 2.2b). Repeated

compression cycles show the step-by-step copying of the ’1’state of the m-beams to

the right, which involves rightward snapping of the appropriate m-beam just after ε

has peaked (Fig. 2.2b). Hence, the state evolves as {100 . . . 0} → {110 . . . 0} → · · · →
{111 . . . 1} (Fig. 2.2b). We characterize such ’domain wall’ states consisting of a string

of 1’s followed by 0’s by the number of 0’s, σ. The evolution of our beam counter

under cyclic compression can thus be seen as as counting down from σ = 10 to σ = 0.

Our design is robust, can be scaled down, and can be operated in a hand-held device.

The evolution from the natural initial state {100 . . . } only features a limited set of

states, which do not contain substrings like 010 or 001. To demonstrate that our

metamaterial correctly copies 1-bits to the right, we use manual manipulation to

program the metamaterial in the initial state {01000111010} — this state contains
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I II III IV V

(a)

(b)
I II III IV V

Figure 2.3: Comparison of the evolution of two unit cells during a compression cycle.
(a) Original design. (b) Design without slits, which does not copy the ’1’ state.
Frames (aIV) and (bIV) are not at the same strain, but compare the states where the
second m-beam just loses contact with one of its neighboring s-beams; note that the
m-beam is then, respectively, to the right (a) and left (b) of the neutral line (dashed).

all possible three-bit substrings. Its evolution shows that our metamaterial faithfully

executes our target evolution (Fig. 2.2c). Moreover, we note that this initial state

evolves to the absorbing state {11 . . . } after only τ = 3 cycles, as the largest numbers

of 0’s to the right of a 1 is equal to three. Here, the transient τ is not a material

property but a simple function of the state [43, 14].

A detailed inspection of the evolution of adjacent unit cells during their evolution

illustrates that bit-evolution takes place in a two phases (Fig. 2.3). First, when ε is

increased beyond a unit-cell dependent critical strain ε†, the ’1’ state of mi is copied

to si (Fig. 2.3aI-aIII). During this first phase, the left s-beam snaps open to the

right, and the m-beam becomes sandwiched between two s-beams (Fig. 2.3aIII). In

the second phase, ε is lowered to εm, and the sandwiched m-beam snaps right, after

which all beams relax to their new configuration (Fig. 2.3aIII-aV). To illustrate how

the slits facilitate the copying of the right-buckled state, we compare the sandwiched

states for s-beams with and without slits (Fig. 2.3). Without slits, the sandwiched

m-beam is pushed left and first loses contact with the right beam; with slits, the

m-beam is pushed right, first loses contact with the left beam, and eventually moves

right (Fig. 2.3a-b). We stress that although the slits are essential in the current

design, we also realized beam counting in an alternative design that does not feature

slitted beams.
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2.3 Sequential Processing

To demonstrate process information beyond simple counting, we combine multiple

beam counters into aggregate metamaterials (Fig. 2.4). Our first goal is to realize

metamaterials which discriminate and count driving cycles of different peak compres-

sions εM . Specifically, we combine three n = 4 beam counters labeled aaa, bbb, and ccc

which have respective critical thresholds (ε†a, ε
†
b, ε

†
c) ≈ (0.073(4), 0.085(3), 0.092(2)),

which are all controlled by the same global strain ε (Fig. 2.4a-b). We label the result-

ing metamaterial as aaa|bbb|ccc, and characterize its state by the number of ’0’ beams

in each counter, {σi}. We define driving cycles of different magnitude, A,B,C, as

compression sweeps εm ↗ εA,B,C
M ↘ εm, with

(
εAM , εBM , εCM

)
≈ (0.078, 0.089, 0.099),

such that ε†a < εAM < ε†b < εBM < ε†c < εCM . Starting out in the initial state

{σi} = {3, 3, 3}, a single driving cycle (A, B or C) then advances one, two or all

three counters, yielding three distinct states {2, 3, 3}, {2, 2, 3}, or {2, 2, 2} respec-

tively. Hence, from the state we can uniquely infer the applied driving cycle.

Crucially, longer driving sequences are also encoded in the internal state We

denote sequential driving cycles as, e.g., BAC, for which {σi} evolves as

{3, 3, 3} B−→ {2, 2, 3} A−→ {1, 2, 3} C−→ {0, 1, 2} (Fig. 2.4b). These states all encode spe-

cific information, e.g., state {1, 2, 3} encodes one A and one B pulse, whereas {0, 1, 2}
encodes a memory of one B, one C and an arbitrary number of A pulses. We note

that while the capacity of our metamaterial is limited by one or more counters reach-

ing zero, it can be enlarged by increasing the length n of the counters. Furthermore,

we note that our metamaterial precisely materializes the Park Bench model that has

been introduced as a toy model to understand Multiple Transient Memories [54, 12].

Regardless, our strategy combining multiple beam counters allows to distinguish and

count different signals.

So far, our metamaterials are insensitive to the order of input signals, which limits

their functionality to counting. However, combining unit cells with different thresh-

olds in a single ’strip’ realizes heterogeneous metamaterials whose response is sequence

dependent and, e.g., discriminates driving cycles ABC from BAC. We realize the het-

erogeneous metamaterial bac. (Fig. 2.4c-e). Starting from state σ = 3, we can use

the same logic as before to infer its evolution and we subsequently collect all possible

pathways in a transition graph (Fig. 2.4c). In particular we find that input BAC

yields σ = 0 while all other three-character permutations of A, B and C yield σ = 1

(Fig. 2.4d-e). This illustrates that the response of heterogenous counters is sequence

dependent.

Finally, by combining heterogeneous and homogeneous counters we realize an aggre-

gate metamaterial that unambiguously detect a specific input ‘key’ string and thus
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act as a sequential ‘lock’. We note that state σ = 0 for counter bac is not unique

to input BAC, but can also be reached with input sequences such as BBC and

CCC (Fig. 2.4c). Hence, to uniquely recognize a string BAC, we combine the count-

ing metamaterial aaa|bbb|ccc with the heterogeneous counter bac (Fig. 2.4b,d). Out

of all three-character strings, BAC is the only one that yields the collective state

{σ} = {0, 1, 2, 0} (Fig. 2.4f). The experimental demonstration of the response of he

aaa|bbb|ccc|bac machine to input BAC is shown in Fig. 2.4b,d, which correspond to

a single experimental run where all four counters were actuated in parallel. We note

that our strategy can trivially be extended to longer sequences or larger alphabets.

While the design above cannot distinguish input BAC from longer sequences such as

ABAC, we can detect such longer strings by extending the counter for the weakest

signal: out of all possible input sequences, the metamaterial aaaa|bbb|ccc|bac only

reaches state {0, 1, 2, 0} for input BAC, thus allowing to uniquely filter and detect

such a string. Finally we note that designs featuring one heterogenous with multi-

ple homogeneous counters are not optimal. Unique detection of, e.g., three symbol

sequences with less than four counters can be achieved; in addition, many machines

recognize multiple distinct input sequences (see appendix Sec A.4).

2.4 Outlook

Our platform allows to realize metamaterials with predictable counting-like pathways

and easily readable internal states under cyclical driving. These metamaterials act

as a sequential thresholding devices, and can be generalized to detect more driving

magnitudes and longer sequences. Moreover, similar sequential behavior can be real-

ized in other designs, e.g., without slits. In contrast to recent mechanical platforms

that store mechanical bits [45] and perform Boolean logic [27, 48], our metamaterials

perform sequential computations, which are much more powerful than combinational

logic. Extending our update rules to more complex cases, including those where the

new state depends on multiple neighbors, including in higher dimensions, opens routes

to create systems that are Turing-complete, such as ’rule 110’ or Conway’s game of

life [46, 55]. Such ’cellular automata materials’ would allow massively parallel com-

putations in materia.
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Chapter 3

Bumping Buckled Beams

When a pair of parallel buckling beams of unequal width make lateral contact

under increasing compression, eventually either the thin or the thick beam will

snap, leading to collective motion of the beam pair. Using experiments and

FEM simulations, we find that the distance D between the beams selects which

beam snaps first, and that the critical distance D∗ scales linear with the com-

bined width of the two beams. To understand this behavior, we show that the

collective motion of the beams is governed by a pitchfork bifurcation that oc-

curs at strains just below snapping. Specifically, we use a model of two coupled

Bellini trusses to find a closed form expression for the location of this pitchfork

bifurcation that captures the linear scaling of D∗ with beam width. Our work

uncovers a novel elastic instability that combines buckling, snapping and con-

tact nonlinearities. This instability underlies the packing of parallel confined

beams, and can be leveraged in advanced metamaterials.

This chapter is based on previously published work [56]
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3.1 Introduction

Elastic instabilities govern many of the exotic properties of mechanical metamaterials

[24, 44, 57, 58, 59]. Typically, these metamaterials consist of slender elements that go

through collective buckling or snapping instabilities, causing the material to switch

between two states [59]. However, more advanced functionalities require a sequence

of reconfigurations of the material, controlled by carefully designed instabilities and

nonlinearities [60, 61, 59, 62]. The development of such materials thus requires an

investigation into the complex instabilities mediated by interactions between multi-

stable elements.

While constrained elastica have been thoroughly studied, comparatively less is known

for systems of compressible beams in contact. First, constrained elastica have proven

to be a rich platform of multi-stability with strong interactions between elements.

Both elastica in a potential field [63], and elastica in contact with walls [64, 65, 66,

67] have been known to display multiple branches of stable solutions. Moreover,

in systems with two elastica, the constraint between elements mediated by mutual

contacts can be used as a source of interaction [68, 69]. Second, for compressible

beams, additional complications arise as such beams buckle at finite strains [70].

In addition, for thick beams, the buckling transition changes from supercritical to

subcritical [71, 57].

We recently introduced a beam counter metamaterial which evolves sequentially, and

for which contacts between compressible beams of various widths are crucial (see

chapter 2). Because contacts in such systems are highly nonlinear, their analysis is

divided into subcases based on the quantity and types of contact between elements.

As the number of elements in contact at any time remains small, such an approach

allows for the analysis of larger systems of many elements.

Here, we investigate the symmetry-breaking of two unlike beams that buckle, make

contact, and eventually snap. Crucially, we consider two beams with different thick-

nesses leading to an asymmetry in the system; the beams buckle at different strains,

and have different rigidities. As the beam pairs are compressed, they traverse a se-

quence of reconfigurations. After buckling, the beams come into contact and interact

through a reciprocal constraint. The resulting system is initially stable, but at some

critical compression loses stability, causing one of the beams to snap through. De-

pending on whether the distance D between the beams is smaller or larger than a

characteristic distance D∗, either beam can be selected to snap. To study the emer-

gence of this characteristic distance, we perform both experiments and numerical

simulations for a range of beam thicknesses and distances. Moreover, we derive an

analytical framework that yields a closed-form solution for the scaling of D∗ that
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occurs in the experimental and numerical results. Our work captures the behavior of

a pair of bumping buckled beams, and can be extended to a wide variety of scenarios

where two unlike bistable elements are strongly coupled.

3.2 Phenomenology

We start by discussing the qualitative nature of the evolution of two buckling beams

that come in contact under increased compression (Fig. 3.1a,b). The beams have

rectangular cross sections and equal lengths L; we non-dimensionalize all length scales

with the beam length and thus set L = 1. They are compressed by a distance ∆,

leading to a strain ε = ∆/L. Their out-of-plane non-dimensional thicknesses d are

assumed to be large and equal, so that the buckling strains are governed by the in-

plane dimensionless thicknesses t and T , where t < T ; for definiteness, we assume

that the thin beam is to the left of the thick beam (Fig. 3.1c).

In Fig. 3.1a,b we show the beam’s evolution under quasistatic increase of the strain ε.

The thin beam buckles at εt after which the thicker beam buckles at εT . We assume

that the beams buckle towards each other (Fig. 3.1aII,bII). The distance between

the centrelines of the beams, D, plays a crucial role, and we assume that D is small

enough so that the two beams eventually get into contact at some strain εc > εt —

for now we will assume that εc > εT also. When the strain is increased further, the

contact forces between the beams increase, possibly leading to complex higher order

mode. This configuration becomes unstable for a critical strain εc. Two distinct

scenario’s are then observed: either the thick beam snaps to the right (Fig. 3.1aIV)

or the thin beam snaps to the left (Fig. 3.1bIV). As we will show below, the distance

D selects which of these two scenario’s occurs, and there is a critical distance D∗ that

separates these — for D < D∗, the thick beam snaps, whereas for D > D∗, the thin

beam snaps. Hence, post-snapping there are two distinct states where both beams

are buckled, either to the right (Fig. 3.1aIV) or to the left (Fig. 3.1bIV).

We note that in this example, the thick beam snapping for D < D∗ remains top-down

symmetric (Fig.3.1a), while the thin beam snapping for D > D∗ develops an asym-

metric shape (Fig. 3.1b). This is consistent with the condition for the development of

asymmetric beam shapes for transversely loaded buckled beams: for a beam of thick-

ness τ , such that asymmetric shapes develop when ε ≳ 6.73τ2[72]. Hence, symmetric

and asymmetric snapping is determined by comparing εs to 6.73t2 and 6.73T 2 respec-

tively (Fig. 3.2). Consistent with this, here we typically observe symmetric snapping

when D < D∗ and asymmetric snapping when D > D∗, although deviations of this

can occur for T ≈ t. We note that the beam shape does not influence the left or right

snapping of the beams, i.e., the value of D∗.
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Intuitively, the emergence of the two distinct scenario’s can be understood by con-

sidering the lateral stiffnesses of the two beams as ε increases. We define the lateral

stiffness as the resistance of a beam to a vanishingly small point load applied at the

middle of a beam perpendicular to the axis of compression. This lateral stiffness varies

non-monotonically as the beam buckles: First the stiffness decreases down to zero at

the buckling point, after which it increases again in the buckled configuration. By

taking a small enough D, εc approaches εT , so that upon contact the thick beam is

barely buckled and its lateral stiffness is near zero, whereas the thin beam is deeper in

the post-buckling regime and significantly stiffer. Upon further compression, the thin

beam induces a snapping of the thick beam. For even smaller D, εc becomes smaller

than εT . Then, as the thick beam is not yet buckled when the beams make contact,

the left-right symmetry of the thicker beam is broken, determining its buckling direc-

tion rightward. In contrast, for large enough D, when the beams come into contact

when both beams are significantly curved, the thicknesses of the beams dominate

their lateral stiffness, and the thick beam induces snapping of the thin beam. While

intuitive, this picture does not produce a quantitative insight into what controls D∗,
which is the focus of the remainder of this paper.

Experimental observations

To systematically explore the evolution of two post-buckled beams in contact, we de-

signed and built a custom compression device which is stiff in all rotational and shear

directions and ensures high parallelity between top and bottom plates (Fig. 3.1c,d).

The compressive strain ε is applied through a linear stage, controlled by a stepper

motor and monitored with an inductive probe, yielding repeatable positioning with

an accuracy of 0.05 mm under typical loads. The distance D between adjacent beams

is controlled by four Thorlabs XRN25 manual micrometer stages housing the fixtures

which hold the beams in place with an accuracy of 0.01 mm. We track the deforma-

tion of the beams indicated by white protrusions on the front of the beams with a

grayscale CMOS camera at a resolution of 3088x2064, reaching a pixel density at the

objective plane higher than 10 pixels/mm.

We studied the evolution of pairs of beams of length L = 79.8 mm ± 0.05 mm and

various thicknesses t and T . The samples studied are made out of VPS (Zhermack

Elite Double 32, Young’s modulus E ≈ 1 MPa, poisson ratio ν ≈ 0.5) using molds

made with FDM 3d printing on commercial UltiMaker S3 and S5 printers. After

curing, the samples were allowed to rest for at least one week to allow the material

properties to settle, after which the samples are demolded. Following this, the di-

mensions of the final samples were measured using an Instron universal measurement

device equipped with 10N load cell and a touch probe to measure the thickness of
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the relatively soft beams at various locations. The standard deviation in T along the

surface of the samples is 0.1mm. Experiments were only conducted with beams from

the same batch of rubber.

To measure D∗, we performed multiple measurements for each beam pair at various

D. At the start of each measurement, each beam is manually manipulated such that

its buckled state is towards the adjacent beam. We then slowly increase ε at a rate

of 4.2 × 10−4 s−1 until the beams snap. For a typical beam pair with t = 0.026 ±
0.0006 and T = 0.072 ± 0.0006 (the same pair as in Fig. 3.1a), as we incrementally

increase D between measurements, we observe that the strain at which the beams

snap, εs, varies smoothly up until D ≈ 0.153, as can be seen in (Fig. 3.2a). Here

εs sharply decreases as the system both transitions from displaying the below-D∗ to

above-D∗ phenomenology, as well as shifting from a symmetric snap-through mode

to an asymmetric snap-through mode. We note that the transition between left

and right snapping, and the transition between symmetric and asymmetric beam

shapes, are independent. The transition from symmetric to asymmetric beam shapes

is determined solely by the values of ε/t2 and ε/T 2 — for the example here, 6.73t2 <

εs < 6.73T 2 [72], so that the thick beam remains symmetric while the thin beam

takes on an asymmetric shape (Fig. 3.2a). Finally, we observe that as D is increased

above D∗, a small strain range opens up where the asymmetric beam shape is stable,

before snapping at a larger strain (Fig. 3.2a).

Monotonously increasing D such as in Fig. 3.2 a, unintentionally trains the samples,

such that the apparent value for D∗ differs for increasing and decreasing sweeps of

D. To minimize this hysteresis and accurately measure D∗, we performed iterative

measurements with a specific protocol that reduces the number of subsequent mea-

surements above and below D∗. We chose initial large steps of Di+1 −Di = 1 mm to

find bounds on D∗, and then refined the bounds with decreasing stepsizes: 0.5 mm,

0.25 mm, 0.1 mm and finally 0.05 mm. We then repeated every measurement set

with exchanged left and right beams to correct for small asymmetries in the setup.

We finally estimate D∗ and calculate an error through the average and RMS of the

four measured bounds.

Our experiments yield D∗ for nineteen pairs of beams (Fig. 3.2b). We note that D∗

grows with both t and T , and surprisingly, the data for D∗ can be collapsed on a

single axis by plotting it as a linear function: D∗ = λexp(t + T ) (Fig. 3.2c), with a

least squares fit slope of λexp = 1.484 ± 0.006. We note that this data collapse does

not significantly improve by adding an empirical fit parameter ℓ, i.e. plotting D∗ as

a function of t+ ℓT . We discuss the validity and underlying physics that leads to this

collapse in section 3.3.

31





Section 3.3. Simplified models and theory

3

where λexp = 1.484 ± 0.006. We conclude that the critical distance D∗ is linear in

t+ T .

3.3 Simplified models and theory

The phenomenology of the joint snapping of buckled beam pairs hints at the existence

of a pitchfork bifurcation that occurs when the beams are in contact, i.e., before the

beams snap through. Here we ask what the minimal ingredients are to observe such

a pitchfork scenario. First, we investigate joint snapping for a slender beam model

consisting of spherical beads connected with N bars that are modeled as linear and

torsional springs, as proposed by Guerra et. al. [73]. We find that for large N , this

simplified model captures the full phenomenology, including the existence of D∗ and

both symmetric and asymmetric snapping. For decreasing values of N , the model

becomes more crude, but the existence and linear relation of D∗ with t+ T remains

valid down to N = 2. Such N = 2 beams, which we call Bellini trusses [74], clearly

cannot have asymmetric shapes, again indicating that asymmetry is not essential for

the understanding of the scaling of D∗. Second, inspired by these empirical observa-

tions, we study the joint buckling and snapping of pairs of Bellini trusses in section

3.3. We show that their left or rightward snapping does not require the beams to lose

contact, allowing us to focus on pairs of connected Bellini trusses. Finally, we show

that the joint buckling and snapping is an example of a general scenario involving

pairs of interacting elements that undergo pitchfork bifurcations at different values of

the control parameter ε. We expand the Bellini truss system to analytically solve for

D∗ and find that it is linear in t+T (in lowest order). Together, this shows that joint

snapping and the emergence of D∗ is a robust and universal phenomena.

Elastic Bead-Chains in Contact

We model the contact dynamics of post-buckled beams with a simplified model of

hard beads connected by Hookean and torsional springs. For a large number of links

N , this model has been shown to accurately and computationally effectively model

the dynamics of collections of buckled beams in contact [75, 73]. In addition, in the

limit of small N (N = 2), the model converges to an initially straight Bellini truss [74].

In the beam-chain model we space our nodes equidistantly along the beam length and

choose the spring constants to match the stretching and bending energy of realistic

beams [75]. We implement the contact dynamics between the beams with a stiff

Hertzian contact model. The ends of the beams are controlled through the top and

bottom particles, which control ε and D and which enforce the ”fixed-fixed” boundary
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Figure 3.4: The critical distance D∗ obtained in the elastic bead-chain model. (a)
Scatter plot of the calculated D∗ for N = 62. (b-d) D∗ collapses when plotted as a
function of t + T . Data for the bead-chains and FEM simulations in blue and black
respectively ((b) N = 62 ; (c) N = 4 and (d) N = 2.).
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the evolution for D ̸= D∗ given by unfolding of this pitchfork bifurcation. At larger

strain, the discontinuous snapping transition occurs, but to determine D∗, it suffices

to determine the location of the pitchfork bifurcation.

Instabilities in a pair of Bellini trusses

To understand the mechanisms that govern the critical distance and its scaling with

t+T , we analytically determine the critical values (D∗, ε∗) of the pitchfork bifurcation

in the model based on a pair of initially straight Bellini trusses. First, we connect

their center nodes to model the persistent contact near the bifurcation, and separate

the end nodes to capture D and ε (See Fig. 3.5a). Specifically, we place the end points

of the thin and thick beams at x = α and x = β, and require that

D = β − α+
t

2
+

T

2
, (3.1)

where we account for the thickness of the beams.

Second, we expand the elastic energy of both Bellini trusses up to quartic order in x

and linear order in ε, and and find at leading order (see appendix B):

Ut = (ξt2 − ε)tx2 + tx4, (3.2)

where ξt2 is the buckling strain with ξ = 4B
K . Hence, the buckling strain scales as

the ratio of the constants B and K which parametrizes the compressive stiffness Kt

and bending stiffness Bt3 in the truss. Here, ξ can be considered the inhibition to

buckling due to the applied boundary conditions and degrees of freedom of the beam

model (see appendix B).

Satisfying Eq. 3.1, we obtain the total potential energy:

U = t
[
(ξt2 − ε)(x− α)2 + (x− α)4

]
+ T

[
(ξT 2 − ε)(x− β)2 + (x− β)4

]
. (3.3)

We now obtain a closed form expression for (D∗, ε∗) by locating the pitchfork bifur-

cation in this quartic energy expansion. We first, without loss of generality, choose

αt + βT = 0 → α = −β T
t to eliminate the cubic terms in the expansion. Hence,

D = β(1 + T
t ) +

t
2 + T

2 and we then write the potential in the form:

U = U0 + ax+ bx2 + cx4. (3.4)

The stable and unstable equilibria of the system are found at the roots of F = ∂
∂xU ,
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where:

F = a+ 2bx+ 4cx3 (3.5)

= c · (q + px+ x3) , (3.6)

with:

q = q(β) =
2T 3β3 − 2Tβ3t2 − T 3βξt2 + Tβξt4

2Tt2 + 2t3
, (3.7)

p = p(ε, β) =
6T 2β2 + 6Tβ2t− Tεt+ T 3ξt− εt2 + ξt4

2Tt+ 2t2
. (3.8)

Crucially, we do not need to solve for the roots of F explicitly; to find the bifurcation

point, we only need to detect a change in the number of roots. The multiplicity of the

roots of F can be determined from the discriminant ∆{F/c} = 4p3 + 27q2. We note

that this strategy is generally applicable for polynomials of arbitrary degree, whereas

finding the solutions to such polynomials is generally not possible. As ε increases,

the system changes from monostability to bistability. For D = D∗, this happens

through a pitchfork bifurcation at ε = ε∗. For D ̸= D∗ this happens through a saddle

node bifurcation. This change of stability corresponds to ∆{F/c} crossing 0, where

the pitchfork bifurcation occurs for q = 0 and the saddle node bifurcation occurs

otherwise; in the latter case, the location of the saddle node determines whether the

beams move left or right. As p depends only on β and not ε (Eq. 3.8), we can solve

for β∗:

β∗ = t

√
ξ

2
, (3.9)

which can be substituted into Eq. 3.1 to obtain D∗:

D∗ = (t+ T )

(√
ξ

2
+

1

2

)
. (3.10)

In addition, we obtain the critical strain by solving q = 0 at β = β∗ and obtain

ε∗ = ξ(t+ T )2. (3.11)

We thus find that D∗ scales linearly with t + T , consistent with our experimental

and numerical results. In addition, we find a testable relation between the slope λ

and the strain at which the beams buckle, as both depend on ξ: λ = 1
2 +

√
ξ
2 , while

εt = ξt2. Thus we predict that the boundary conditions of the beams influence D∗,
e.g. pinned-pinned beams will have a smaller D∗ than fixed-fixed beams. Comparing

the Bellini truss model to the N = 2 simulations with ξ = 3
4 (see appendix B), we

find a predicted λ = 1
2 +

9
16 = 1.0625, which is comparable to the value obtained from
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simulations: λmd
N=2 = 1.1542± 0.0007.

3.4 Conclusion and discussion

We studied the collective snapping of two buckled beams in contact by means of

experiment, numerics and theory. Using experiments and FEM simulations, we found

a linear relation between the critical distance and the combined width of the two

beams: D∗ = λ(t+T ). We studied a simplified model consisting ofN compressive rods

connected by torsional springs [73]. We find that at large N , this model accurately

captured the collective snapping and critical distance, while at small N = 2, the

model allows to identify the essential mechanism that controls the eventual direction

of snapping: a pitchfork bifurcation that occurs at critical strain ε∗ and distance D∗.
Furthermore, this model allows to obtain a closed form solution for ε∗ and D∗ which

captures the linear relation between D∗ and t+ T .

Our approach can be extended to a wide variety of scenarios where two bistable el-

ements are strongly coupled, e.g., where the collective state can be described by a

single coordinate. These include Bellini trusses that are precurved, and more gen-

erally, any buckling elements. The essential physics is that when two systems that

undergo symmetric or asymmetric pitchfork bifurcations are coupled, the collective

behavior is governed by a new pitchfork bifurcation.
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Chapter 4

Hysteresis in Slitted Beams

Buckling and snapping instabilities form the backbone of many mechanical

metamaterials. Here we show that slitted beams show both buckling and hys-

teretic snapping under axial load, resulting in a post-buckling regime with triple

stability. We envestigate the hystersis loop under compression as a function of

geometric parameters using both experiments and simulations, and introduce

a minimal model based on the Bellini truss that captures the multistable be-

haviour of the slit beam.

The results in this chapter are the product of the collaborative work of the author of this thesis

and fellow PhD candidate Bernat Durà Fauĺı. The initial concept was developed and used by

the author in the framework of the counting beams (Chap 2). After some initial experiments

showing promising results, Durà Fauĺı took over the main experimental and numerical work.

The setup was built by the author, and the mounting was enhanced by- and the indenter was

implemented by Durà Fauĺı. The Slitted Bellini Truss model shared in Sec. 4.5 was developed

in collaboration, and is the product of many fruitful discussions.

39





Section 4.2. Phenomenology

4

a region of triple stability – a rare phenomenon for such simple compressed structures.

4.2 Phenomenology

We start by discussing the qualitative features of the buckling and snapping of a slitted

beam. We consider vertical rectangular beams (height L, width T , and depth D),

enhanced with a single horizontal slit (length S) that is terminated with a small hole

with a diameter of H = 1 mm to prevent tearing (Fig. 4.1a). We fix the hole size at a

diameter of 1 mm, which is large enough to prevent tearing, is readily manufacturable

and is small enough to not influence the data significantly (as verified by numerics).

For convenience, we will assume the slit is made on the right side of the beam, and

we will further non-dimensionalize the dimensions of the beam by defining t = W/L

and s = S/W . The beam is fixed at both ends under clamped-clamped boundary

conditions and compressed uniaxially to a strain ε. The beam is made from a VPS

rubber (discussed in Sec. 4.3), which in simulations is described as hyperelastic.

As we cycle the strain ε, we measure the mid-beam deflection xm, via tracking of

fiducial markers on the beams with a camera. The graph in Fig. 4.1c shows the

evolution of the system as a function of strain. We distinguish four qualitatively

different beam configurations: unbuckled, left-buckled, right-buckled and the opened

slit configuration. Starting from the initial unbuckled configuration at ε = 0, as ε

is increased the beam buckles, yielding either a left-buckled or right-buckled state.

Note that these branches are mirror-symmetric in xm (Fig. 4.1c), indicating that the

slit has a negligible effect on the initial post-buckling mechanics, and that in both

conditions the slit remains closed. Further compression results in an initial smooth

evolution of the absolute mid-beam deflection |xm|, until at a critical strain ε = εo we

observe a snap of the right-buckled configuration. This snap corresponds to a sharp

increases in the mid-beam deflection and the opening of the slit. Note, that in the

resulting open configuration, the mid-beam deflection is much greater than that of

the left-buckled state at the same strain ε, which is precisely the functionality used

in chapter 2. From this open state, as we subsequently lower the strain, we observe

a snapping transition where the slit closes at εc (Fig. 4.1) 1. As εc < εo, the slitted

beam features a hysteretic response to driving. Moreover, in this hysteretic regime,

we observe three stable states, both the left and right buckled states, as well as the

open state. Thus here the slitted beam is tri-stable.

1We do not observe transitions from the open to left-buckled state when the slit closes, although
these might occur in cases with strong inertia.

41





Section 4.3. Methods

4

plates using a brass beam of a known calibrated length of 140 ± 0.03 mm. Further-

more, a dial indicator with an accuracy of ±0.01mm is used to check for drift in the

position of the top plate between measurements.

The beam samples are cast in 3D printed molds using Smooth-On Mold Star�30 VPS

rubber. A roughly incompressible rubber with a shore hardness of 30A and a Youngs

Modulus of ≈ 0.7 MPa[84]. The beams feature small 2 mm protruding dots along

their center line that are painted white to facilitate tracking. The deformation of the

beam is recorded with a single channel CMOS camera at a resolution of 3088× 2064,

reaching a pixel density at the objective plane at 5 pixels/mm, and a framerate of

3Hz. This set-up yields a tracking accuracy of ±0.02 mm using a custom script based

on OpenCV [85]. The beams are mounted with fixed-fixed boundary conditions to

the plates with accurately aligned clamps (Fig. 4.2).

To repeatably enforce the buckling direction of the beams, we use an indenter. The

indenter pushes the beam laterally at height L/2 by a manually adjusted amount

mid-beam deflection xin. To verify that the indenter has a negligible effect once the

sample is buckled, we performed multiple experiments where we tracked the mid-beam

displacement x, as a function of the indenter position xin. As shown in figure Fig. 4.3,

the indenter does not significantly influence the trajectory of the slit beam when not

in contact. In practice we use xin of 1 mm to determine the buckling direction.

Finally, we apply talc powder between the top and bottom parts of the slit of the beam,

as well as between the indenter and the beam. This reduces the effect of stickiness

which impedes the opening and closing of slit, and improves the reproducibility of the

mounting of the sample.

Abaqus simulations

The experiments are influenced by material related viscous and plastic effects and

and are sensitive to misalagnment of slender beams. To overcome these, we perform

finite element (FEM) simulations on 2D slitted beams using the software package

Abaqus/Explicit [86] in which we eliminate alignment problems, viscous and plastic

effects, and speed up the exploration of the beam parameters. Abaqus/Explicit per-

and the elimination of applied bending due to misalignment in the setup. In tension, such loose
connections are detrimental as they result in enhancing the misalignment, requiring the operator
to continuously check the rigidity and alignment of the setup. Furthermore, the load cells used to
measure the induced load are not conducive to a high degree of parallelism either. Often load cells
are constructed as cantilever element that bending as they deflect, which skews parallelism. As
a side effect, such load cells and are not insensitive to off-center loading either, i.e. an off-center
sample or a sample that enacts a torsion on the load cell yields a skewed force reading. Thus,
a measured load of a buckling beam would shift when the sample is moved off-center and would
depend on the buckling direction of the beam with respect to the orientation of the load cell.
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Figure 4.3: Effect of the indenter. Experimental response of a slitted beam (t = 0.150,
s = 0.8) to consecutive driving cycles where the indenter position is increased by 0.5
mm after each cycle. The effect of the indenter on the relevant parts of the curves is
negligible.

forms dynamic simulations to accurately handle non-linear behavior such as: buckling,

snapping, and contact.

We model the 2D geometry of a slitted beam in the range of parameters s = [0.2, 0.8],

t = [0.05, 0.175] using plain stress and fixed-fixed boundary conditions. We use CPS4

elements [86], a Neo-Hookean material with a Poisson ratio ν = 0.49, a Young’s

modulus E = 0.78 (MPa) and sufficient damping to avoid oscillations. Furthermore,

similar to the experiments, we use an indenter to control the buckling direction.

However, instead of using a fixed indenter as in the experiments, in the simulations it

slowly moves horizontally towards the beam while vertically moving down to remain

at the virtual centre of the deformed beam as it is compressed. This eliminates

tractional forces between the indenter and the beam structure, and does not require

an initial relaxation period which would be required if the indenter were to intersect

the structure at the start of a simulation. Post simulation, we find εo and εc by

determining the strain at which the kinetic energy of the system is at a local maximum.

4.4 Experimental and Numerical Results

Here we discuss and compare the experimental and numerical results. To explore

the dependence of the hysteresis on the geometry of the beams, we use beams of a

constant length L = 80 mm at various t and s.
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Figure 4.5: Effect of the slit size s on the observed hysteresis in simula-
tions. Simulations for beams with with various thicknesses (left to right) t =
(0.050, 0.075, 0.100, 0.125, 0.150), and slit sizes (at a constant hole size of H = 1 mm).
(a) The measured deflection x as a function ε. (b) The measured hysteretic span
εo − εc for various t and s. Note that at larger slit sizes, the initial slope in x is not
flat. This is due to the terminating hole making up a large part of the remaining
midsection of the beam.
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not vary strongly with slit size s, while the closing strain εc decreases as s is increased

(Fig. 4.5b). Hence, the size of the slit widens the hysteresis loop by increasing the

stability of the open state. For small slits (e.g., at s = 0.3 ), the opening and closing

of the slit becomes nearly Indiscernible. For large slits (e.g., s = 0.8), the slit closes at

a strain before buckling, leading to a direct snapping transition from the open state

to a straight beam.

Discussion

Our simulations align well with our experimental results (Fig. 4.4). In particular,

the simulations reproduce the mid-beam deflection magnitude as function of strain.

Notable, the scaling of the snapping strains εo and εc with t are in close agreement

between experiments and simulations, reinforcing the accuracy and validity of the

simulations. We find that t increases both the buckling strain εb as well as εo and εc
in proportion to t2. In contrast, the slit size s affects only the mid-point deflection in

the open state and the corresponding closing strain εc.

4.5 Slitted Bellini Truss

Despite the accuracy of the Abaqus simulations in evaluating the effect of geometry

on the opening and closing strains, they do not provide insight into the origins of

these transitions. We thus introduce a simple spring-based model that captures the

behavior of both the closed and open configurations separately. We show how these

give rise to a perfect and an imperfect pitchfork bifurcation respectively, and show how

the right combination of these two behaviors reveals the mechanisms of the opening

and closing transitions.

The spring based model we will introduce here is based on two observations. First,

when the slit is closed, a slitted beam behaves similar to an ordinary beam under

fixed-fixed boundary conditions. Such a beam can be modeled by a Bellini-Truss [74]3

loaded along its ends. The Bellini truss is one of the simplest models of a structure

that buckles at a finite strain. Second, once the slit is open, the top and bottom part

of the beam each are still beams, yet under different boundary conditions.

Based on these observations, we introduce the slitted Bellini Truss model. We start

from an ordinary Bellini truss of length 1, with spring constant k, internal angles

α, and torsional spring constant κα (See Bellini Truss in appendix Sec B). We then

3the classical ”von Mises truss”[70] stiffened by a torsional spring
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replace the center node of the Bellini truss with an off-center hinge which represents

the slit. This hinge is composed of two rigid trusses of length R at an opening angle

θ ≥ 0, joined with a torsional spring with stiffness κθ (Fig. 4.6a).

The truss is loaded in compression by moving the end-nodes such that their distance

is at 1 − ε. Due to top-down symmetry, we can (to simplify the computations) split

the system in two equivalent sub systems, and consider a ’half beam’ where the middle

node is attached to a constraint that is free to move along the x-axis (Fig. 4.6a).

The potential energy of this system equals the sum of the potential energies of the

springs. We choose the resting angles and lengths of all springs to form a desired

initial ”straight” configuration, and write the potential energy of the system as:

E = ku2 + καα
2 + κθθ

2 , (4.1)

where

u =
1

2
−
√
x2 + y2 , (4.2)

y =
1− ε

2
−R sin

θ

2
, (4.3)

and

α = α0 −
π

2
=

θ − π

2
+ atan2(y, x) . (4.4)

Thus, the energy of the system at each ε can be expressed as a function of x and

θ (through substitution), with the geometric parameter R and energetic param-

eters k, κα, κθ. We can further reduce the number of free parameters by non-

dimensionalizing the potential energy:

Ê = u2 + κ̂αα
2 + κ̂θθ

2, (4.5)

where Ê = E/k, κ̂θ = κθ/k and κ̂α = κα/k. This leaves the following three parame-

ters of interest: R, κ̂θ and κ̂α.

Determining the Slitted Bellini Pathway

The pathway of this system in response to driving can by found by tracing the local

extrema of the potential as a function of ε. This requires to take into account the

linear constraint imposed by the slit: θ ≥ 0. We solve the stability of the complete

system: S0, by considering two related systems, the unconstrained system Su where

in which θ is free and thus the slit can open and even self-intersect, and the system Sf

where θ = 0 remains fixed on the boundary, and the slit remains closed. The stable

states of the slitted beam are then determined by the stable nodes of Su where θ > 0,
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and Sf where θ = 0.

To solve the stable and unstable states of Su, we calculate the potential energy E

on a sufficiently dense grid in x and θ, and find the local minima and saddle points

by intersecting the numerical contour curves 4 at ∂E/∂x and ∂E/∂θ at each ε. For

system Sf , we find the roots of the numerically determined ∂E/∂x at each ε. After

linking together the solutions the critical points for a judicious choice of parameters

(κ̂α ≈ 0.0114, κ̂θ ≈ 0.0023 and R ≈ 0.063), we observe two separate bifurcation

diagrams for Su and Sf (Fig.4.6b). For system Su, we observe a clearly asymmetric

bifurcation diagram characterized by a saddle node bifurcation, whereas system Sf

features a symmetric pitchfork bifurcation (Fig. 4.6b).

To find the trajectory of S0, we combine the stable branches of Su where θ ≥ 0, with

the stable branches of Sf where ∂E/∂θ > 0. Let us consider the same system (at

parameters (κ̂α ≈ 0.0114, κ̂θ ≈ 0.0023 and R ≈ 0.063)), at four illustrative strains

ε = [0.039, 0.045, 0.051, 0.057], as it is driven in ε. At each strain, we can visually infer

the sign of ∂E/∂θ by the contour lines and critical points E in Fig. 4.6c. Starting a

low ε = 0.039, the stable state of the system is governed by Sf , as the stable state

of Su does not satisfy θ ≥ 0 (I). As ε is increased, a stable point and a saddle point

of Su emerge (II). While this results in an extra stability of the system it does not

influence the sign of ∂E/∂θ. As ε is increased further, Sf symmetrically bifurcates

to (x, θ) = (±δ, 0), corresponding to the buckling transition of the truss (III). If

the system selects the x < 0 branch, the system remains stable for larger strains.

However, when the system selects the x > 0 branch, the system eventually snaps

when ∂E/∂θ crosses 0. As can be seen in figures Fig. 4.6cIII-IV, this corresponds to

the strain where the saddle point of Su crosses θ = 0, at which point the system snaps

to the ”open” state given by Sf (IV). For further increases in ε, the system continues

along the same stable branch. At decreasing ε, we follow a different trajectory. We

find that the state of the system follows a smooth trajectory until the system reaches

the saddle node bifurcation of Su. At this point, the system flips the only remaining

stable state (I). In summary, the opening and closing of this system are governed by

the crossing of the saddle point of Su past θ = 0, and the saddle node bifurcation of

Su respectively. Note that here we have chosen an example configuration in which

εc < εb.

Model Parameters

The proposed slit Bellini Truss matches the qualitative behavior of the slitted beam.

However, it features three individual parameters; one more than the physical system

4The numerical contours are obtained with ContourPy; the Python library used to calculate contour
curves in Matplotlib.
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Figure 4.7: Stable configurations of Su at κ̂θ = 0 and E = 0. (a) The symmetric

configuration at ε = 1 − 2
√
R2 + 1

4 . (b) A configuration in the self-intersecting left

branch. (c) A configuration in the open right branch.

we intend to describe. We will demonstrate that R and κ̂α can be chosen to match

the geometry of the uncut beam given by t, and that κ̂θ models the slit length s.

Specifically, we choose R = t/2, which matches the intuitive picture of a beam that

hinges at its edge.

We determine appropriate values of the remaining two parameters κ̂α and κ̂θ by

considering the limits of κ̂θ. In the limit where κ̂θ → ∞, opening the slit is unfeasible,

thus we are left with Sf , a system insensitive to R, which can be readily mapped to

the buckling problem of a regular beam (appendix Sec B) where κ̂α determines the

buckling strain εb. In the limit where κ̂θ = 0, the structure has a mechanism5 when∣∣ 1−ε
2

∣∣ ≤ √
R2 + 1/4, i.e. as long as the truss is not pulled into tension. Here, the

springs remain of length 1/2, and at right angles to the trusses. Within this regime,

the stable configurations can be solved by geometric construction (Fig. 4.7). At ε =

ε∗ = 1−2
√
R2 + 1

4 , there is a single stable state, and for ε > 1−2
√

R2 + 1
4 the system

has two stable configurations, thus this system has a pitchfork bifurcation at ε∗. This
bifurcation however, is not symmetric along θ = 0, but instead at θ∗0 = 2arctan (2R)

and x∗
0 = R

2
√

R2+ 1
4

. At increasing ε, the stable branches follow the equations:

θ∗±(ε) = 2 arctan (2R) ± 2 arccos
1− ε

2
√
R2 + 1

4

, (4.6)

x∗
±(ε) =

1

2
sin θ∗±(ε) . (4.7)

The unstable branch can not be solved geometrically as it requires a notion of energy,

but x∗
0 and θ∗ yield an estimate for xunstable(ε) and θunstable(ε) as this branch should

5A deformation pathway in which E = 0, and the stiffness matrix ∇x,θE becomes singular.
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cross through x∗
0, θ

∗.

Thus, a slitted beam can be modeled with such a split Bellini truss, by using a

constant R and varying only κ̂θ and κ̂α to mimic the buckling strain εb and stiffness

of the slit-induced hinge. At κ̂θ = 0, we find a system analogous to a fully slitted

beam where s ↑ 1, and in the limit where κ̂θ → ∞, we find a system analogous to an

uncut beam where s = 0. Note that we find symmetric pitchfork bifurcations in both

systems but along different axes of symmetry. This disparity could be used to find a

better candidate parameter of R, as it shows up uniquely in the bifurcation point of

the κ̂θ → 0 limit.

4.6 Conclusion and Outlook

In this work, we presented both experimental and numerical investigations of the

slitted beam under compression. Our study reveals a region of triple stability and ob-

served hysteresis in the response to compressive driving. By adjusting the geometric

parameters s and t, we demonstrated the ability to modulate the range of hystere-

sis, providing a mechanism for tuning the system response. Specifically, controlling

the parameter t enables scaling of both switching fields with a quadratic dependence

(∝ t2), while fine-tuning s allows precise control over the snap-back closing tran-

sition. Thus, with control of both parameters, both switching fields can be tuned

independently.

Moreover, we introduced the Slitted Bellini Truss, which effectively models the mul-

tistable behavior of the slitted beam. This model is a natural extension of the Bellini

Truss [74], and allows to model the slit as due to an offset hinge and an internal rigid

self-contact.

Looking ahead, this work lays the groundwork for exploring more complex geometries

and materials, with the goal of enhancing control over multistable systems through

self-contacts. These findings open up potential applications in fields such as energy

absorption, soft robotics, and mechanical metamaterials, where tunable snap-through

transitions offer a platform for novel functionality.
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Twistbucklers

A universal platform to construct (meta) materials with arbitrary memory is

lacking. Here we realize a framework that allows to construct memory mate-

rials that have a multiperiodic response to driving cycles. Our metamaterial

is scalable and extendable and gives insight into pathways in complex media.

This work is foundational in the eventual goal creation of a Turing complete

mechanical metamaterial.

5.1 Introduction

Many materials store information about the past through plasticity [4, 9, 43, 2, 87]. A

bucket of sand in with an inserted cylindrical rod for example can store information

of the rods motion. As the rod is rotated, the grains of sand rearrange. Initially,

rotating the rod is easier but the force required quickly goes up until it reaches an

equilibrium[2]. If we stop rotating the rod, the internal rearrangements stop as well.

But what is now the information stored in this material? If we were to rotate the

rod again, but now in the opposite direction, the force required starts off low again,

after which it rapidly increases, but if we were to have rotated the rod in the original

direction, the force required would immediately start high. Essentially, the bucket

of sand has remembered the previous rotation direction, which we can measure by

rotating the rod. [2, 87]. As long as we do not shake the system or otherwise disturb

the arrangement of sand particles, this information persists. Although this effect

offers a simple method of storing information, only a single bit of information can be

recovered, even though the material has a much larger number of stable states.
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But often, an easily distinguishable original structure allows us to extract a lot more

information from a system. A wooden stick can be engraved to keep track of a tally, a

paper movie ticket torn to indicate entry, and the plastic bumper of a car dented due

driving in to an unobserved bollard. Because the initial structure of these materials

is known, we can infer more complex information from its current state. Clearly, the

amount of information stored in a material, and the amount of information that can

be deduced from a material are not the same. We argue for the following distinction

between information and memory in a material; memory corresponds to information

that allows inference of the past.

Thus, an ideal memory material would have easily distinguishable states, that allow us

to measure desired features of the past. An ideal platform for constructing memory

materials would allow for the construction of many branching bifurcations of the

internal state of the system at any desirable driving field (Fig. 5.1a). Additionally, the

symmetry of each bifurcation would need to be controlled to allow for the determinism

in the system required for reliable behavior (Fig. 5.1b) [50]. For the memory material

to remember past events due to a single driving field, the bifurcations would also need

to occur both at increasing and decreasing driving field (Fig. 5.1cd).

There is no straightforward method to achieve such a material. Instead, we draw

inspiration from the elementary cellular automata[88], simple systems consisting of

bistable cells whose next internal state as a response is defined by a rule; an instruction

that determines each cells next state by their own and their nearest neighbors states.

Although simple in nature, some of these rules demonstrate complex behaviour and

specific examples have been shown to be Turing complete.

What we will show here is a continuation of the beam counter metamaterial that is

based on elements that twist as they buckle. This twisting motion allows for contact

interactions to occur in any rotation direction of each element. First, we will discuss

our bistable twistbuckling elements elements. Second, we will elaborate the design of

the contact interaction. Finally, we will demonstrate two different systems built upon

the framework of interacting twistbucklers. One system with a multiperiodic orbit of

length 2, and one with a cellular design and a multiperiodic orbit of length 6, which

can be scaled up to achieve arbitrary lengths.

5.2 Twistbucklers

Our metamaterial consists of ’twistbuckler’ elements that buckle and then twist under

compression, and which interact with other elements through rigid contacts. Each

element consists of a thin rubber corrugated shell, a thick base, and a rigid plastic
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(a) (b)

(c) (d)

Figure 5.1: State-drive diagrams of various hypothetical systems. S represents the
state of the system, while ε indicates the external drive applied to the system. Filled
dots are accessible from an initial state at ε = 0 (green). The system follows a path
along the solid blue lines, and is unstable along the dashed lines. We are concerned
with the accessible through cyclic driving in ε. (a) A system with multiple subsequent
symmetric buckling transitions. Due to the symmetry of the pitchfork bifurcations,
the exact path taken at increasing ε is determined by imperfections or outside influ-
ences. (b) When introducing asymmetry at the bifurcations in the system of a, the
path is controlled and it becomes deterministic. This introduces irreversible transi-
tions that occur at decreasing ε indicated by the arrows (this system is similar to
the sequential buckling system introduced by Coulais et al. [50] where the biased
hinges and self-contact are used to bias muli-step folding). When starting in the ini-
tial configuration, some stable states are unreachable when just driven in ε. (c) A
system with an irreversible transition that occurs under increasing ε (this system is
similar to a slit beam that is biased to buckle right (see chapter 4)). (d) A system
that features a transient path that ends in teal, and a cyclic path that loops back
in red. The transient path is similar to the counting beams system from chapter 2,
the cyclic path is similar to the clicker in a retractable pen. All these diagrams show
loop-irreversible behavior for some states when starting at ε = 1 and driving to ε = 0
and back. Only the diagram of figure d shows loop-irreversible when driven from ε
from 0 → 1 → 0 as the final state at ε = 0 is different from the starting state. This
blue path has transient behavior, after reaching the orange configuration at ε = 0,
there are no accessible loop-irreversible paths.
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� t/R, the effective wall thickness.

The Cauchy rigidity condition in essence states that instabilities require local concave

regions [98]. This motivates taking xi sufficiently large. We also explored the effect

of the number of folds or lobes, which influences the higher order buckling modes,

self-contact and stiffness. We focus on a single design that was easy to manufacture

and which experimentally was found to function well, and applied this design in all

our (meta)materials. We hence introduce heterogeneity via the design of the caps, as

these offer a simple mechanism for controlled interactions and asymmetry.

Sample Homogeneity and Buckling

To probe the homogeneity of our samples and measure the range of observed angles,

we tracked the buckling branches of a set of 13 isolated twistbucklers with parameters:

H = 25 mm, h = 12.40 mm, R = 10 mm, r = 1.47 mm, xi = 5 mm , xo = 1 mm,

and t = 1 mm. To measure this rotational response, we built a setup that compresses

the twistbucklers against a transparent acrylic plate. The caps of the twistbucklers

are marked with a fiducial as shown in Fig. 5.3a, and tracked with a camera that is

mounted normal to the acrylic plate. We used the same cap to eliminate the variation

in manufactured cap dimensions and used a fixed location on the acrylic plate. Before

starting our measurements, we fix the zero compression with an assembled sample by

eye. This offset stays fixed for all samples and introduces a consistent systematic

error of around ±0.1 mm.

For every sample, we slowly compress at a rate of approximately 0.2 mm/s to ∆ =

6.25 mm, resulting in a maximal compressive strain ε = ∆/H = 0.25. During com-

pression, the cylinder exhibits twistbuckling. We manually adjust the rotation direc-

tion during this compression, after which we decompress at the same rate and track

the rotation angle of the cap. We compress each sample twice, capturing both rota-

tion branches. This results in 26 tracks of the rotation angle θ as a function of the

applied strain (Fig. 5.3). The angle θ is measured relative to the final snapshot taken

at ε = 0 at the end of the experiment.

To better interpret the homogeneity and symmetry of the samples near buckling, we

compare the strains at a fixed rotation of |θ| = 0.5 (Fig. 5.3c). We observe a minor

left-right imbalance; most samples preferentially rotate left at a lower strain than

right. Furhtermore, the buckling strains between samples varies as well. To better

judge the effect of this heterogeneity, we compare the tracked rotations, juxtaposing

the various traces in θ for each combination of twistbuckler (Fig. 5.3d). We observe an

initial dilation of the traces up to around |θi| = 0.25 after which the traces converge.
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(a) (b)

(c) (d)

Figure 5.3: Tracked rotation trajectories of individual, free twistbucklers. (a) The
cap with tracking markers taken through the transparent acrylic compression plate.
(b) The tracked rotated angle θ as compared to the initial frame taken, as a func-
tion of the compressive strain ε for 13 near identical samples in both stable states
measured during decompression. Every sample is represented by its own color. The
major variations between the responses occurs near the buckling bifurcation. (c) The
strain ε at |θ| = 0.5 rad for the left and right branch of each sample. This indicates
the variation in buckling strain for each sample, both between samples and within a
sample between the left and right branches. The left-shaded disc corresponds to the
left buckling branch and the right-shaded disc to the right buckling branch. (d) All
possible trajectories for pairs of twistbucklers as a function of ε. Each trace corre-
sponds to a combination of two branches highlighting the effect of small deviations in
buckling strain. Ideal traces would lie along the diagonals θ2 = ±θ1.
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Our measurements evidence a high level of homogeneity between samples, as well as

good symmetry of the individual samples. The largest spread between curves occurs

near the bifurcation itself, as the actual bifurcation direction is highly sensitive to im-

perfections. Controlling the motion of interacting twistbucklers requires overcoming

this unwanted heterogeneity, which we will accomplish by appropriate design of the

caps.

Moment Strain and Twist

While the measurements of θ as a function of ε demonstrate the behavior of freely

rotating twistbucklers, to characterize interactions between twistbucklers we also need

to measure the moment T as a function of both ε and θ. To do so, we constructed

a setup that allows us to constrain the rotation θ and ε in tandem. Our setup

consists of an adjustable clamp, a bowdrill and an Instron universal testing machine

as shown in Fig. 5.4a. The bowdrill consists of a tensioned bow and a string that

is wrapped around a pulley by 1.5 turns. As the bow is moved, the pulley rotates

without slipping1. The Instron is used to move the bow, twisting the twistbucklers,

and measure the corresponding force. The pulley is attached to the twistbuckler, and

both the pulley and a nylon string are of a known diameter allowing us to calculate

the twist θ and moment T from the Instron force displacement data. The clamp

attaches to the pulley on the static side, and to a flat moveable stage side that allows

the twistbuckler to slip. The moveable side is controlled with a micrometer stage.

As shown in Fig. 5.4, we observe a drastically changing response as a function of

ε. We initially observe a linear relation between θ and T , but as ε increases the

stiffness of the twistbuckler rapidly declines until around ε = 0.12, where locally at

θ = 0 the stiffness becomes negative indicating a buckling bifurcation of the free

structure. As we continue, at around ε = 0.34 a second bifurcation occurs, now of

a previously unstable state, which results in a third stable angle around θ = 0; the

system becomes tristable. This same mode can easily be observed by hand as well, by

fixing the θ and compressing the structure well past the initial buckling point. When

this configuration is decompressed (increasing ε), a snap to one of the two regular

stable configurations is observed (Fig. 5.2c).

We find that the twistbucklers buckle symmetrically as intended and perform like a

nearly ideal bistable element up to ε = 0.26 at which it has stable twisting angles

of θ = ±1.2 rad (Fig. 5.4c). We note that we observe some hysteresis in the T (θ)

curves, leading to a spread in the stable θ configurations. This hysteresis is likely due

1As a result from Euler and Eytelwein, the effective friction due to wrapping a flexible inextensible
rope around a pulley is greatly increased [99, 100]. The effective friction coefficient is µeff =

1− e−µϕ, where the rotion angle of ϕ in is radians.
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the ∆θ1 > 0 & ∆θ2 > 0 and ∆θ1 < 0 & ∆θ2 < 0 directions of rotation. However, by

controlling κ away from ±1, this symmetry can be broken and the rotation directions

of a pair of coupled twistbucklers can be controlled.

Exploring blockades with broken parameter symmetry

We now consider three different pairs of unequal teeth to explore how asymmetries in

the parameters Γi, Γ̂i and αi impact the shape of the blockade. As the teeth shapes

are overdetermined, we choose three pairs of teeth where one of these parameters is

equal for both teeth, and the other two are different.

First, we decrease α2 and increase Γ2 while we fix Γ̂1 = Γ̂2. This produces a change

in the slopes of the blocked regions κ (Fig. 5.8a) and the blockade looks like a paral-

lelogram with rotational symmetry C2. In particular, we find that ±|κ| = ±Γ1/Γ2 as

expected. Moreover, the blockade has decreased in size and has become more narrow

in the θ2 direction. Hence, this modification changes the coupling constant κ.

Second, we decrease α2 and increase Γ2 while keeping Γ1 = Γ2. As expected, the

regular contact slopes of the blockade are along the θ1 = ±θ2 axes, but the tooth-

flank contact spaces are no longer mirror-symmetric and the Mercier contact has

disappeared (Fig. 5.8b). Instead, we now observe tip-tip contact and a transition

from lt to tr, and rt to tl through the two tip-tip contact conditions. Moreover,

the size of the blockade has dramatically gone down. This blockade again has C2

symmetry.

Third, we decrease both Γ and Γ̂ while we fix α1 = α2. We observe a combination of

both effects; a decrease in κ as well as a change in the tip-flank contact. Furthermore,

this blockade has drastically gone down in size, and we again observe tip-tip contact.

Although the resulting blockade is approximately D2, it is not mirror-symmetric, as

we will show in the following section.

Evidently, there are two distinct effects from breaking the symmetry between pairs

of teeth: (i) modifying κ for flank-flank contacts for constant Γ̂, and (ii) breaking

point-flank contact symmetry for constant Γ, driven by differences of the base radii

Γi and the splitting angle αi.
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Analytical determination of the blockades

For the contact surfaces used here, the real-space contact space can be geometrically

constructed and analytically transformed to find the blockade shape (see appendix

C). For flank-flank contact, all points of contact occur along the regular and Mercier

contact curves shown in Fig. 5.5, and are bounded by the maximal radii of both

teeth which form a lenticular patch (Fig. 5.9a). All contacts involving a tip, occur

at the maximal radius of at least one of the teeth. The tip-flank contact space

corresponds the circular arcs of the lenticular patch that connect the sections in the

order mentioned previously in Sec. 5.3.

To transform the real-space contact to the configuration space, we triangulate each

point using the known distance D, the two points of rotation, and the angles from

which the involute curves start. To study the effect of the parameters on the observed

blockades in detail, we use a simple numerical code that performs these operations

for arbitrary teeth pairs. This allows us to demonstrate the effect of teeth size on the

observed blockade shape. For posterity we included a number of calculated blockade

shapes in fig. 5.10 for unequal teeth similar to those shown in fig. 5.8

Let us first consider changing the effective size of the teeth, either through changes of

the dimensions Γ and Γ̂ of both teeth, or equivalently to changing D (Fig. 5.11a-b).

We calculated the blockade shape, by evaluating the contact space for 15 discrete

values of D between D = Γ + Γ̂ (Fig. 5.11aI) and D = Γ̂ + Γ̂ (Fig. 5.11aII) — see

Fig. 5.11b. We observe that as we decrease D, the blockade increases in size. At

large D, the blockade shape is governed by tip-flank and regular gear contacts. At

small D we observe a large regular gear regime, and a smaller Mercier-gear regime.

Hence, decreasing D or increasing the dimensions Γ and Γ̂, increases the size of the

blockades.

Another method of varying the size of the teeth, is trough changing the opening

angles αi. We calculated the shape of the blockades for angles between 10◦(Fig. 5.11cI)
and 230◦(Fig. 5.11cI). Similar to decreasing D, increasing α leads to an increase in the

size of the blockade. However, when increasing α, the Mercier-like regime grows more

rapidly than the normal-gear regime. This can easily be demonstrated geometrically

(see appendix C). We expect that when increasing α → ϕα, the mercier regime grows

by a factor
√
2ϕ, whereas when scaling up the dimensions by ϕ or similarly decreasing

D → D/ϕ, we expect the Mercier regime to grow by ϕ.

In this section, we studied the coupling between twistbucklers through contact using

teeth with flanks which follow the involute of a circle. For such coupling we find that

the magnitude of the coupling ration κ is constant and either positive or negative

depending on whether the surfaces in contact are either opposite or equal handed

67









Section 5.4. Parity Machine

5

5.4 Parity Machine

Combining our previous results, we construct a system of two twistbucklers that mim-

ics a parity machine, i.e., a device which returns to its initial configuration after two

compression cycles [26]. This striking behaviour requires a complicated bifurcation

structure which we achieve using blockades. Without interactions, a system of two

twistbucklers has four individual stable branches that move out and in at increasing

and decreasing ε (Fig. 5.3d). By perturbing these stable branches with blockades, a

complex pathway cyclic pathway is formed (similar to that shown in Fig. 5.1d), such

that at every compression cycle of the system, the stable state of the system is flipped

to the opposite stable resting configuration.

Parity Machine Design

Here we use two caps with three teeth stacked vertically (Fig. 5.12a). Due to this

layering, the final formed blockade is a composite of the blockades of the individual

layers. Each tooth is placed at an angle β with respect to the neutral axis between

the centers of rotation of the two twistbucklers which translates the blockades in

configuration space. Placing blockades near the neutral point θ1 = θ2 = 0, influences

the trajectory of the system at small ε. Blockades further away influence the trajectory

at large ε. By further tuning α and Γ for each tooth, the individual size and shape

of each individual blockade can be controlled.

To obtain the parity machine behaviour, we use two types of teeth pairs. We use

a single ”mesher” pair with parameters Γm
1 /D = 0.296, Γm

2 /D = 0.519, αm
1 =

50◦, αm
2 = 18◦, βm

1 = βm
2 = 0, and two pairs of ”flippers” with parameters Γf

1/D =

0.296, Γf
2/D = 0.519, αf

1 = 50◦, αf
2 = 18◦, βf

1 = ±0.65 (rad), βf
2 = ±0.27 (rad).

This results in the composite blockade shown in Fig. 5.12b. The parameters of each

tooth are chosen to break the interaction symmetry (the exchange symmetry between

twistbucklers) sufficiently strong to overcome the imperfections of the twistbuckler

shells. Note that blockades do not overlap, so that the contacts are mutually ex-

clusive, i.e., there is contact between at most a single pair of teeth. To enforce a

constant D and align the β angles, the twistbucklers are constrained with a bracket.

As βm
1 = βm

2 = 0, we require that the mesher teeth overlap at a rotation angle of

θ1 = θ2 = 0. To accomplish this, and accurately build the system, the bracket features

a repeatable 90◦ rotation adjustment for both twistbucklers. This allows us to first

construct the system without contact, and then rotate both twistbucklers to correctly

place the mesher blockade on the origin of the configuration space.
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Parity Machine Results

We now discuss the choice of tooth parameters by going through a compression cycle

in steps, starting in the initial configuration I (Fig. 5.12bc) where θ1 = θ2 < 0. As

the system is compressed, the initial contact between the mesher pair is broken, and

the magnitude of rotation of both twisters increases. Note that experimentally, the

angles do not follow an ideal diagonal path in phase space due to imperfections of the

samples (Fig. 5.3d). As ε is increased further, contact is formed between co-handed

flanks of one pair of flipper teeth at II (Fig. 5.12cII). Next, while still increasing ε, the

flipper teeth are pushed together which couples the rotation of the two twistbucklers.

As Γ1 < Γ2, and because the teeth are in regular gear contact, θ1 decreases and θ2
increases while following the edge of the blockade until θ2 ≈ 0 at III. Here, the snap-

through instability of twisterbuckler two is triggered, contact is lost, and the system

snaps to configuration IV. While the twistbucklers are no longer in contact, further

compression does not diverge the stable configuration of the system away from the

−θ1 = θ2 > 0 diagonal.

As we start decompressing, the system traverses along the −θ1 = θ2 > 0 diagonal until

contact is formed between the mesher teeth (Fig. 5.12cV). Now, because Γ̂1 ̸= Γ̂2,

the teeth form a tip-flank contact. As this type of contact relies on sliding and the

friction between the caps is not negligible, the teeth stick together for a while until at

some critical strain ε↓ ≈ 0.06 the teeth make a flank-flank contact. The −θ1 = θ2 > 0

diagonal state that was stable at high ε is thus flipped to a θ1 = θ2 > 0 state at low

ε, opposite to the starting configuration (Fig. 5.12cVI).

During the second compression cycle, we observe the same phenomenology, with the

snapping directions reversed. We note that the two cycles differ slightly due to exper-

imental imperfections. In particular, during the second decompression cycle, the for-

mation of flank-flank contact appears more smooth than in the first cycle (Fig. 5.12de),

and the snapping during compression occurs at different ε.

As we continue compressing and decompressing, we observe the same repeated be-

havior (Fig. 5.12d). Hence, a single compression cycle transitions the system from

θ1 = θ2 < 0 to θ1 = θ2 > 0 (or vice versa), and a two cycles takes us back to the

starting configuration. Thus, the system keeps track of the parity of the number of

compression cycles; the state depends only on the initial starting configuration, and

whether an odd or even number of compressive cycles have been applied.

Finally, by representing the state of the system with a single parameter S = arctan2(θ2, θ1),

the similarity of the parity machine to the ideal system shown in Fig. 5.1d becomes

apparent as shown in Fig. 5.12e.
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5.5 Rule 15 and the Hexcycle Machine

We construct a machine with a longer multiperiodic response. Specifically we built

a Hexcycle machine – a system that requires six compressive cycles to return to any

one of its initial configurations.

Hexcycle Design

The hexcycle design uses the same base interactions as the general interactions as

the parity machine, but instead of coupling to a single neighbor, the hexcycle uses

six twistbucklers in a loop. Here the mesher and flipper teeth are oriented such that

their interactions are either with their clockwise or anti-clockwise neighbour.

Specifically, we utilize two types of twistbuckler caps (Fig. 5.13a), and fix the posi-

tions all six twistbucklers along a regular hexagon with side lengths D using brackets

(Fig. 5.13b). The teeth of the twistbucklers are similar to those used before, but they

are now oriented such that the twistbucklers interacts with one neighbor through a

mesher blockade, and the other neighbor through a flipper blockade. We will refer

to the two different twistbucklers as an a-buckler and an m-buckler. An m-buckler

(a-buckler) interacts with its clockwise neighbor through a mesher (flipper) block-

ade (Fig. 5.13d), and its anti-clockwise neighbor through a flipper (mesher) blockade

(Fig. 5.13d). The Hexcycle uses the same mesher parameters as for the parity ma-

chine: Γm
a /D = 0.296, Γm

m/D = 0.519, αm
a = 50◦, αm

m = 18◦, βm
a = βm

m = 0.

The parameters of the flipper teeth are slightly modified: Γf
a/D = 0.295, Γf

m/D =

0.492, αf
a = 106◦, αf

m = 21◦, βf
a = ±0.95, βf

m = ±0.55. These teeth result in block-

ades that are similar to those used before, but proved to be more robust in response

to sample defects and unfavorable loading conditions.

As the variations in |θi|(ε) at higher ε are less ensitive to imperfections, we choose

to design our flipper teeth such that they make contact at large ε. This comes at a

trade off, as the maximal rotation of the twistbucklers is limited, and at high ε the

twistbucklers become tristable. Moreover, the angle at which contact is formed, limits

the range of κ. Specifically, in comparison to the parity machine, contact is made at

a higher strain and at a κ closer to 1.

Due to the sensitivity of the system to imperfections and heterogeneous compression,

we individually shimmed each twistbuckler such that their buckling strains are better

aligned (See appendix C). For these experiments we chose the twistbuckler samples

in the configuration indicated in Fig. 5.13b: in clockwise order: m4 & a6, m9 & a7

and m10 & a5.
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Hexcycle Results

We tracked the rotation of the m-bucklers as a function of driving θ, for 12 driving

cycles (Fig. 5.14a). We observe that at each compression cycle, one of the three

tracked twistbucklers is flipped. In order, we observe a flip of twistbuckler 4, then

9 and then 10. As the state of the system is binary, six compression cycles are

required to return to the initial state; through which all stables resting states of the

system are observed. When considering the pairwise interactions of twistbucklers,

the phenomenological behaviour of the Hexcycle machine is similar to that of the

parity machine. The Mesher pairs determine the stable states at ε = 0 and govern

the irreversible transition at decreasing ε, and the flipper pairs govern the irreversible

transitions at increasing ε. The distinction being, that the Hexcycle machine has a

cellular design. Each cell has a state determined by the mesher pairs, and these cells

interact through the flipper blockades. The Hexcycle system has three cells, each with

two stable states at ε = 0. Starting in the state |S⃗| = sgn(θ4, θ9, θ10) = ( 1,−1, 1),

we follow the cycle: ( 1,−1, 1) → (−1,−1, 1) → (−1, 1, 1) → (−1, 1,−1) →
( 1, 1,−1) → ( 1,−1,−1) → ( 1,−1, 1). Thus, at each compression cycle, if a cell is

in the same configuration as its anti-clockwise neighbor, it gets flipped. Otherwise it

stays in the same configuration.

To better illustrate the six-fold nature of the system states, we projected the state

of the system from a triagonal basis onto two state axes: S1 = θ4 cos(π/12) +

θ10 cos(π9/12)+θ9 cos(π17/12), and S2 = θ4 cos(−π5/12)+θ10 cos(π/4)+θ9 cos(π11/12).

When plotting these as a function of time, we observe a six-fold state diagram and

pathway as shown in figure 5.14c. If we project this state representation to a single

field: S = arctan2(S2, S1), we observe a system that is again similar to the system

observed in Fig. 5.1. Following the same technique, the state of arbitrarily sized cyclic

and transient systems can thus be represented.

The Hexcycle machine successfully demonstrates the working principle of the cellular

strategy to increase the cycle length of twistbuckler systems. We achieved a system

consisting of three cells (two twistbucklers each) that traverses through a cycle of

six stable states through a pattern that matches rule 15 (and 85) of the elementary

cellular automata with periodic boundary conditions [88]. At every compression cycle,

every cell that is in the same configuration as its anti-clockwise neighbor is flipped.

This behavior is, in principle, scalable to arbitrary even length cycles, or arbitrary

length transient responses when the cells are not connected in a loop.

However, the system operates near the edge of what is experimentally possible using

the current samples and manufacturing accuracy. The strains at which the twist-

bucklers snaps is scattered, with some snaps occurring during decompression rather

than compression. We note that the variation in time seems to be smaller than the
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variation between individual samples, indicating that here the viscous properties of

the rubber are not the leading factor in the variations. The system is highly sen-

sitive to defects and manufacturing errors and it required individual shims for each

twistbuckler to better align their buckling strains.

5.6 Conclusion and Outlook

In this chapter, we showed a novel platform that allows for controllable interactions

between neighboring bistable elements, and the creation of arbitrarily long multi-

periodic pathways. We unstable buckling elements that twist under compression

and couple through rigid contacts. We demonstrated the emergence of bistability in

these twistbucklers and demonstrated how the blocked configuration space, due to

the contacts lead to an elegant method of achieving asymmetric bifurcations. We

demonstrated systems of twistbucklers that have a cyclic response to driving length

two and six, and argue that arbitrary even lengths are possible in longer systems.

The framework discussed in this chapter is very promising and there are a number of

possible further developments for this platform that we will discuss here.

First, the development of other simple cellular automata. Currently the flipping

interactions use regular gear contact and thus anti-align when flipping. The use of

Mercier-contacts could be used to align twistbucklers when flipping. This would allow

for the creation of rule 252; the system equivalent of the beam counter [88] (chapter

2). Such interactions would potentially benefit from the use of stacked blockades

forming helical teeth. Using these, the Mercier regime can be increased in size without

increasing the regular gear regime.

Second, the development of a ”Turing complete” cellular automata. Thus far only

cellular automata that consider the state of one neighbor have been developed. A dif-

ferent system topology that interacts to both neighbors could allow for more complex

interactions, such as the development of a system that mimics the rule 110 automa-

ton which is known to be Turing complete at infinite systems sizes [106]. This would

require at least three twistbucklers in contact at one point in time.

Third, increasing the robustness of the system, by improving the manufacturing of the

samples and improving the accuracy of the setup. Further development of the twist-

buckler geometry could improve the bi-stable regime of the twistbucklers. Currently,

the system relies on what we could consider geometric defects. Differences in the teeth

result in the determinism and breaking of the interaction symmetry (Fig. 5.1ab). This

asymmetry however is not completely local. Breaking symmetry in part of the sys-
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tems trajectory can inadvertently cause a problem in another part. This results in

limits of how ’far’ symmetry can be broken and thus the robustness of the system. An

ideal system would be able to affect specific parts of the system trajectory without

interfering in other parts. One method to achieve this might be to use topological de-

fects instead of geometric defects [107], such as through using coupled 4-bar linkages

which have been successfully used in the development of other mechanical computing

systems [108]. Finally, the memory properties of heterogeneous parallel cyclic systems

could be explored. As discussed in chapter 2, using multiple heterogeneous transient

systems in parallel allows us to extract specific information from past driving cycles.

The addition of detecting repeated cycles could greatly improve the ability of these

systems to infer information about repeated cycles and long cycles of inputs. Multiple

cyclic counters of pairwise co-prime cycle length for example, would be able to count

sequence lengths much larger than their own length; a result of the Chinese remainder

theorem [109].
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Appendix A

Counting Beams Details

Sample Fabrication, Setup, Protocol, Design

Samples are made by pouring degassed and refrigerated Zhermack Double Elite 32

VPS mixture into open face molds that are 3D printed on UltiMaker S3 and S5

printers. The samples are cured at room temperature. After curing, the samples

are removed by breaking the molds. The slits in the s-beams are cut using a scalpel

after which the samples are covered with talcum powder to reduce stiction. Before

measurements the samples are allowed to rest for a week to allow their mechanical

properties to settle.

The measurements are performed with a setup consisting of a homebuilt single-axis

compression setup, where the samples are compressed between two plates, one static

and one driven by a linear translation stage. The plates remain parallel within a slope

of < 0.6mm/m and move at a rate of < 0.1mm/s with an accuracy of ±0.01mm. A

ccd camera captures images at a rate of 60Hz.

79



Chapter A. Counting Beams Details

61
.0
8

1.5 1.5 1.2 1.8

3.72

4.748

5.636

37
.0
8

4.748

5.369

4.532

5.886

4.947

96

R
1.
8

Ø1
.2

12

12

Figure A.1: Geometry of the bac counter (distances in mm).

Robustness and Alternative Design

To demonstrate that our design for homogeneous counters is robust, we produced

scaled down versions that we place in a simple hand-held device (see Fig. A.2). The

device consists of a 3D printed flexure which guarantees a finite compression εm, and

reasonably accurate parallel top and bottom plates. After setting the initial state

to {1000}, repeated manual compression advances this counter towards its absorbing

state {1111}.

To demonstrate that beam counting can be realized in a wide variety of designs,

Figure A.2: A hand-operated flexure based device (dark green) containing a smaller
n = 4 beam counter illustrates the robustness of our design.
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Figure A.3: Alternative design for beam counting using symmetry broken beams.

we have explored an alternative design where the s-beams do not feature slits (see

Fig. A.3). Here, the symmetry breaking for counting is realized by pre-curvature

of the m-beams, and the addition of symmetry breaking bumps on the ‘s-beams’.

The latter control the higher order buckling modes of the m-beams and guides their

movement under cyclic compression.

81



Chapter A. Counting Beams Details

Design parameters

All sample geometries have L = 37.1 mm, T = 3.7 mm, and a fixed radius of curvature

of the symmetry breaking bases of R = 1.80 mm (Fig. A.1). We fix T and vary ti,

di and Di to modify ε† (Table. A.1). We measured ε† by determining the rightward

snapping of the relevant beams from the difference in subsequent images for each unit

cell in our aaa, bbb, ccc and bac samples (Table. A.2). We note that there is scatter in

the values of ε†, and in particular that in the homogenous samples (aaa, bbb and ccc),

ε†1 is lower than ε†2 and ε†3. We believe this to be due to the right-ward symmetry

breaking of the left (0-th) m-beam in these samples. Not withstanding the scatter,

our driving amplitudes bracket all the measured values for ε†a, ε
†
b and ε†c.

Table A.1: Dimensions of homogeneous and heterogeneous samples

Parameter Dimension (mm) ±0.05 (mm)
m-beam thickness t [a] 1.2
m-beam thicknesst [b] 1.5
m-beam thicknesst [c] 1.8
Beam length L 37.1
m-beam → s-beam distance d [a, . . .] 7.6
m-beam → s-beam distance d [b, . . .] 7.9
m-beam → s-beam distance d [c, . . .] 8.2
s-beam → m-beam distance D [. . . , a] 8.9
s-beam → m-beam distance D [. . . , b] 9.4
s-beam → m-beam distance D [. . . , c] 9.8
Radius of slit-ending hole 0.6
Radius of rounded corners R 1.8

Table A.2: Sample design and thresholds ε†.

Sample t1 ±5 × 10−4 (-) t2 ±5 × 10−4 (-) t3 ±5 × 10−4 (-) t4 ±5 × 10−4 (-)
aaa 0.032 0.032 0.032 0.032
bbb 0.040 0.040 0.040 0.040
ccc 0.049 0.049 0.049 0.049
bac 0.040 0.040 0.032 0.049

Sample ε†1 ±0.5 × 10−3 (-) ε†2 ±0.5 × 10−3 (-) ε†3 ±0.5 × 10−3 (-)

aaa 6.96 × 10−2 7.58 × 10−2 7.71 × 10−2

bbb 8.17 × 10−2 8.47 × 10−2 8.76 × 10−2

ccc 9.28 × 10−2 9.44 × 10−2 9.30 × 10−2

bac 7.85 × 10−2 7.58 × 10−2 9.03 × 10−2

82



Details of bit-copy operation

Here we discuss in more detail the right copying of a ’1’ bit, as shown in Fig. 3 of the

main paper — see also movie 4. During this process, the rightward buckled state of

m1 is copied to s1, and subsequently, the rightward buckled state of s1 is copied to

m2. A detailed inspection of this dynamics further illustrates our design choices. (i)

First, upon increasing the compression from the initial state at εm (main Fig. 3aI),

beam m1 makes contact with the interaction beam s1 before m2: this is guaranteed

by our choice of spacings d < D, and by s1 buckling left due the rounded corners at

its ends (main Fig. 3aII). Increased compression beyond the critical strain ε† results

in the rightward snapping of s1 — this is why we take d < D∗ (see main Fig. 1c). (ii)

After s1 has snapped, m2 is sandwiched between s1 and s2, and takes on a complex

shape (main Fig. 3aIII). Further compression does not lead to significant evolution.

In this state, s1 has a much larger deflection to the right than s2 has to the left due to

the presence of the slit, thus overcoming the difference between D and d. This pushes

m2 to the right, and when the strain is lowered, m2 loses contact with s1 and leans

to the right (main Fig. 3aIV). We stress that the slits in the s-beams are crucial, as

they enhance the rightward motion of s1 — without slits, the s-beams would push m2

to the left as d < D (see main Fig. 3b). Upon further lowering of the strain to εm,

the m-beam reaches a purely rightward buckled configuration and the system reaches

state {11} (main Fig. 3aV). We have verified that all other initial conditions ({00},
{01}, {11}) remain invariant under the same cyclic driving — as seen in main Fig. 1c.

Hence, a judicious choice of geometry allows our unit cells to perform the irreversible

rightwards advancing of 1-bits.
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Table A.3: Examples of aggregate metamaterials consisting of two heterogeneous
counters that reach a unique state for a given input string (key) of length two.

key metamaterial unique state

AA ba [2]
AB ac|ba [1 1]
AC ac|ba [0 1]
BB bb|ca [0 2]
BC ba|ca [0 1]
CA ab|ca [1 0]
CB ac|cb [1 0]
CC cc [0]

Heterogeneous machines

In the main text we presented a general strategy to uniquely detect an input string

of length ls = 3, featuring m = 3 characters, using m homogeneous counters of

length ls + 1(+2) and one heterogeneous counter of length ls + 1. This strategy can

be extended to recognize strings of arbitrary length, where m homogeneous counters

determine the multiplicity of each symbol, and a single heterogeneous counter uniquely

reaches zero when its input matches its design.

However, often one can uniquely detect a given string with a aggregate metemate-

rial that features more than one heterogeneous counters. To demonstrate this we

performed an exhaustive search of the combinations of heterogeneous counters that

uniquely detect input strings of length ls two and three, using m = 3 characters,

{A,B,C}. For every target string we found a combination of q counters, with q ≤ ls
(Tables A.3-A.4). We note that some metamaterials can simplified even further, e.g.,

to detect AA the metamaterial aa|b suffices.

Transitions in complex aggregate metamaterials

To illustrate the complexity of metamaterials featuring multiple heterogeneous coun-

ters, we show the transition graph for the aggregate metamaterial aba|baa|caa,
starting out at state {3, 3, 3} (Fig. A.4). Clearly, the state that is reached en-

codes information on the driving sequence. First, restricting ourselves to input

strings of length three, there are eight states that encode a unique driving sequence:

{1, 0, 2}, {1, 2, 2}, {0, 0, 2}, {1, 2, 3}, {1, 0, 3}, {2, 3, 3}, {0, 1, 2}, {2, 0, 0} and {2, 0, 3} —

as can be readily verified from Fig. A.4, each of these is only reached in response to

a unique three-character input sequence. Second, taking input strings of arbitrary
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Figure A.4: The full transition-graph for the aggregate metamaterial aba|baa|caa (
labels are always to the right of the transition arrow).
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length into account, a different set of seven states is associated with a unique input

sequence: {3, 3, 3}, {2, 1, 1}, {2, 2, 3}, {1, 1, 2}, {1, 1, 3}, {2, 1, 3} and {2, 2, 2}.
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Chapter B. Bellini Truss

A Bellini truss corresponds to the N = 2 case. Under imposed top-down symmetry

(u1 = u2 and θ2 = 2θ1 = 2θ3) the summation can be performed to obtain:

U = Ktu2 +Bt3θ2, (B.2)

where we absorbed the summation over the number of springs into the coefficients K

and B.

To express the potential in x and ε, we express u = 1 −
√
x2 +

(
1
2 − ε

2

)2
, θ =

arctan 2x
1−ε to obtain:

U = Kt

1−

√
x2 +

(
1

2
− ε

2

)2
2

+Bt3
(
arctan

2x

1− ε

)2

. (B.3)

Instead of attempting to minimize the full energy Eq. (B.3), we expand it to fourth

order in x and first order in ε around (x, ε) = (0, 0), and obtain:

U ≈ (Kt− 32Bt3

3
)x4 + (4Bt3 + 8Bt3ε−Ktε)x2, (B.4)

As x, ε, and t are all small, we discard the highest order terms O(t3x4) and O(tεx2),

and obtain the leading order potential:

U ≈ Ktx4 + (4Bt2 −Kε)tx2. (B.5)

This potential transitions from a monostable to a bistable form when the x2 term

switches sign at ε = 4B
K . Diving by K produces the rescaled potential that makes this

transition explicit:

U = tx4 + (ξt2 − ε)tx2, (B.6)

where the transition from a monostable to bistable potential occurs at ε = ξt2.
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Appendix C

Twistbuckler Details

Tracking images

To determine the configurations of the twistbucklers from the images, we track the

fiducials movement using Trackmate [110]. Trackmate tracks markers, by first finding

all markers in each frame and subsequently linking these frames together by solving

the linear assignment problem with a cost-function that minimizes the movement of

the dots between frames [110]. We then calculate the rotation of each frame, by fitting

the affine transformation matrix that best matches the movement between the target

and reference image using scikit-image [111]. This allows us to calculate the rotation

θ of the fiducial and therefore the cap of each twistbuckler with respect to a reference

frame.

Circle Involute Curve Construction

The involute of a circle, otherwise known as the anti-clothoid, and often referred to

as the evolute, is a curve that is defined by the involute [112]. An involute of a plane

curve is defined by the curve that is formed by tracing the end of a taut wire, as it is

wound around the plane curve. It is the curve for which all normals are tangent to the

base circle. Thus, each point can be constructed geometrically. For a circle of radius

b, every line of length t that is tangent to the base circle, touches an involute curve

at an angle that is normal to that curve. This curve is rooted at the cusp, the point

at which opposite handed evolutes meet, at an angle of α = t
2π (Fig. C.2a). All equal
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handed involute curves constructed from a circle are parallel (Fig. C.2b). The image

that is formed by rotating a circular involute by an angle α around the center of the

base circle, is at a distance of αb along the entire curve. Therefore it is also parallel to

an opposite handed evolute at a distance 2πb (Fig. C.2c)[112], and an equal handed

evolute at a distance 2
√
π2 + b2 (Fig. C.2d). These properties allow us to construct

a projection of two dimensional space onto rotation angles of auto-parallel evolutes

[112].

Deriving Blockade Shapes

The involute can be parameterized with the following equation:

z = b · (1− it)eit, (C.1)

where b is the radius of the base circle, and t is the length of unwrapped string length.

When we define the curve to start at a specific angle α with respect to the real axis,

we can reach any point outside of the base circle:

z = b · (1− it)ei(α+t), (C.2)

The cusp of the curve occurs at t = 0. For t > 0, this corresponds to a right-handed

curve, and when t < 0 the curve is left-handed. This mapping can be inverted such

that any point in space z to an angle α and unwrapping t, or equivalently a distance

to the center r.

As discussed in the main text, contact between involute teeth occurs along straight

lines tangent to the curves base circles, or circular arcs perpendicular to the origin

of one of the base circles. To transform this real-space contact shape, we transform

each point using the inverse of Eq. C.2.

Performing these transformations, we have to account for the offsets of the starting

angle of the specific surfaces that are in contact.

To find the domain of inaccessible angles in phase space θ1, θ2, we have to transform

the real space coordinate space to phase space, taking into account the resting angles

of the flanks of both teeth. Teeth are defined by two flanks, and either: an implied

maximal radius at the flank’s intersection, or an explicit maximal radius when the

caps are terminated in a circular arc. This is computed in the aforementioned program

for the different sections.
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Contacts lines along: rt, rl, tl, ll, lt, lr, tr, rr, and the two specific tip-tip points:

tt+, tt−.

Qualitatively, the normal-gear tooth flanks (rr and ll) are longer edges with negative

slope in phase space. These edges exist as long as |D| < |R1|+ |R2| The Mercier edges

(rl and lr) are always shorter than normal contact edges, and possibly do not occur.

By making the teeth of contact helical (facing down or up), the blocked domain in

space can be increased. This is equivalent to having multiple teeth on different layers.

Criterion for different types of contact

We can geometrically work out the requirements for the various types of contact to

occur.

Having any form of contact between teeth trivially requires:

D < Γ̂1 + Γ̂2. (C.3)

To further determine the type of contact that is formed, we can geometrically con-

struct the contact space and determine the conditions for each type of contact.

Flank contact occurs along straight lines tangent to both base circles with radii Γ1,

Γ2. Ordinary gear contact occurs on the intersecting lines and Mercier contact occurs

along the non-intersecting lines. These lines correspond to potential contact spaces,

whether contact occurs is determined by the finite size of the teeth. To determine

the criteria of contact, we construct the intersection of these potential contact spaces

with the lens that is formed by intersecting the outer circles with radii Γ̂1 and Γ̂2.

As the ordinary contact space crosses the line that connects the centers of rotation

of both teeth, any contact will immediately correspond to ordinary gear contact.

The existence of Mercier contact is more complicated. Mercier contact only occurs

when the rl and lr lines cross through the lens. We can geometrically construct the

criterion:

Γ1 +
Γ2 − Γ1

D
·D1 >

√
Γ̂1

2
−D2

1 , (C.4)

where

D1 =
Γ̂1

2
− Γ̂2

2
+D2

2D
. (C.5)
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When Mercier contact can occur, there can be no tip-tip contact and vice versa.

Symmetric

For the symmetric case when Γ1 = Γ2, the existence of the Mercier regime corresponds

to the following inequality:

D ≥
√

Γ̂2 − Γ2 . (C.6)

Thus, the minimal distance Dmin occurs when Dmin =
√

Γ̂2 − Γ2. Scaling up D →
ϕD, is equivalent to scaling up both Γ̂ → ϕΓ̂ and Γ → ϕΓ, whereas scaling up

α → ϕα increases Γ̂/Γ → ϕΓ̂/Γ for Γ̂/Γ >> 1. Expanding to first order

√
Γ̂/Γ

2
− 1

near Γ̂/Γ = 1, we get
√
2

√
Γ̂/Γ. Thus, assuming Γ̂/Γ > 1, and that the regime grows

linearly with
√
Γ̂2 − Γ2, we expect a

√
2 increase of the Mercier regime when scaling

up in α as opposed to scaling up the dimensions (Γ̂2 and Γ) of both teeth.

Cap design

The interaction between the twistbucklers is mediated through rigid contact inter-

faces. The shape of the contact is determined by rigid ’caps’ that are pressed in to

the twistbuckler shells (replaceable/adjustable). The contact surfaces are circularly

involute in the plane perpendicular to the rotation axis.

In the main paper, we discussed the creation of blockades due to pairs of teeth. We

also discussed the creation of composite blockades by combining teeth from multiple

layers. This combination would allow us to create a wide array of possible composite

blockades.

Here we offer the interested reader some insight into the achievable functionality

obtained by blockades. Although the form of the blockades can vary wildly in function,

there is only a finite number of observable phenomenological behaviors, both due to

the deterministic behavior of system and due the physical limitations imposed by

the shells. First, the actual twistbucklers have a limited amount of twist before

the twistbucklers lock up. At large enough driving the snapping angle will become

observably hysteretic as the higher order deformation modes of the twister come

at play. At some large enough driving, the twistbucklers will not be able to snap

until they are forced well past θ = 0. Second, the (visco)plasticity of the twister

material will skew the stable resting configuration of the twistbucklers away from

the ideal. The twistbucklers preferentially buckle in the ’previous’ (depending on the
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Figure C.6: Before (a) and after (b) correcting for the variation in buckling strains of
the individual twistbucklers for the Hexcycle experiments. These curves are measured
at once with all twistbucklers attached to the bracket in the same locations between
the before and after experiments. Figures (c) and (d) show the comparison of |θ| for
all combinations of twistbucklers without and with shims for decreasing ε.
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X XI XII

Figure C.7: Isolated frames near ∆ = 1 of two cycles of the hexcycle machine. The
differences between the frames are subtle, so a green reticle indicating the approximate
neutral lines is added. Between every frame, a single twistbuckler cell is flipped.
Between I and II, the top left cap is flipped, after that the top right, and bottom.
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[3] J. Böhm, S. Scherzer, E. Krol, I. Kreuzer, K. von Meyer, et al. The Venus

Flytrap Dionaea Muscipula Counts Prey-Induced Action Potentials to Induce

Sodium Uptake. Current Biology, 26, 286 (2016). ISSN 09609822. doi:

10.1016/j.cub.2015.11.057.

[4] N. C. Keim, J. D. Paulsen, Z. Zeravcic, S. Sastry, and S. R. Nagel. Memory

Formation in Matter. Rev. Mod. Phys., 91, 035002 (2019). ISSN 0034-6861,

1539-0756. doi:10.1103/RevModPhys.91.035002.
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Summary

This dissertation covers the research I performed at the University of Leiden and the

AMOLF research institute in Amsterdam. I investigated mechanical metamaterials;

a relatively new field of science that studies material properties which go beyond the

properties of ordinary materials.

In this dissertation, I ventured into one of the newest areas of metamaterials: memory.

My research was initially started with the question: ”can we make a block of rubber

that can count?”, which I set out to discover. Very quickly, I realized that counting

not only requires a retention of information, but a simple form of computation as

well. Thus, after developing an initial ’counting material,’ I investigated the essential

components required for such a material, its potential capabilities, and the limitations

of various configurations of these minimal components. Would these ingredients allow

us to learn more about memory, possibly even allow us to perform computations?

Chapter one serves as the introduction of this dissertation and it discusses the wide

variety of memory observed in materials and devices. I start by discussing footprints in

the sand and mechanical lap counters, two vastly different systems yet both featuring

a form of memory. We narrow down our definition of memory, introduce mechanical

metamaterials, and discuss the concept of materials as computers.

Chapter two discusses the beam counter metamaterial; a block of rubber with a

specific structure such that allows it to count how often it is compressed.

The beam counter metamaterial consists of an array of parallel beams of two different

thicknesses, separated by gaps of alternating size. Additionally, the thicker beams

feature a slit such that they can ‘fold open’ in one direction. All beams have a small

geometric asymmetry such that their buckling direction is predetermined. Similarly,

all other features of the beam counter are chosen such that through a contact inter-

action, successive compression cycles are effectively recorded in the bistable state of

the thinner beams. Effectively the block of rubber is able to count how often it is
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compressed. In a practical sense, one could include such a block of rubber in a struc-

ture to register and log wear and tear. Under a bridge, for example, such a material

could track how many overweight trucks drove across it without external sensors or

power sources.

Finalizing the chapter, we demonstrate beam counters that are able to distinguish dif-

ferent compression intensities. Combining these, and by using counters that feature a

sequence of different thresholds, we realize a metamaterial that detects a specific input

sequence, similar to a lock: this metamaterial only reaches a well defined accepting

(open) state given a specific sequence of thresholds (key).

Chapter three discusses the interaction that occurs between buckled beams in con-

tact, which is fundamental for the working of the beam counter metamaterial. As

two beams of equal length and unequal thickness are compressed, buckle and bump

in to each other, they collectively snap in either the direction of the thinner or the

thicker beam. We find that the direction is decided solely by the distance between

these two beams. We find that for every pair of unequal beams there is a certain

critical spacing: when the beams are closer together than this critical distance, the

beams snap in the direction of the thicker beam, and when the beams are further

apart, the beams snap in the direction of the thinner beam. This interaction is the

crucial ingredient for the working of the beam counter metamaterial.

Using both experiments and simulations, we study the phenomenon and found a

surprising linear relation between the observed critical distance and the combined

thickness of the two beams. Finally we introduce a minimal model based on the

truss structure introduced by Bellini et al., and the beam models of Guerra et al.,

which explains this linear scaling. With this simple model, we further learn that the

direction of snapping is determined before contact is lost, and can be understood as

the result of a pitchfork bifurcation.

Chapter four discusses the slitted beams used in the beam counter metamaterial.

These beams feature a partial slit cut into the beam, forming a hinge that opens

only towards one side. These elements play a crucial role in the function of the beam

counter metamaterial, as these beams behave equivalent to an uncut beam at small

compression, and a strongly asymmetric beam at large compression when the hinge

opens up. In the beam counter these are beneficial as they extend further towards one

side. This chapter however is concerned more with the hysteretic response that these

beams have when compressed; as a slitted beam is compressed and it snaps open, it

will remain open when decompressed below the compression where it initially opened.

These slitted beams therefore have a memory of the past.

The chapter specifically delves into the observed phenomenology as a function of the
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beam’s geometry, and uncovers the mechanisms behind the hysteretic transitions of

the opening and closing of the slit. Using both experiments and simulations, we find

that the opening and closing strains can be individually tuned, and we find a fitting

parameterization of the Bellini Truss which matches the observations.

Chapter five discusses twistbuckler metamaterials, which build on the beam counter

metamaterial by extending to two dimensions and allowing for interactions to occur

between two bistable elements in all four stable states. These metamaterials fea-

ture base elements that twist as they buckle and interact through rigid contact with

precisely shaped interfaces.

The twistbucklers enable the creation of cyclical counters. While all beam counters

eventually ‘run out’ due to their configuration in a line, the twisting motion of the

twistbucklers allows for more diverse types of coupling and specifically the ability to

connect the ends of the line and place elements in a loop such that after a number of

cycles they return to their initial state.

In this chapter, we first discuss the individual twistbucklers and measure their tor-

sional response. Next, we discuss the contact interaction and the design of the contact

interfaces. These interfaces, which are based on the shape of gear teeth block parts of

configuration space, and allow the rotation rates of twistbuckler to be coupled when in

contact. We demonstrate how the blocked configuration space can be used to design

when twistbucklers interact, and how the coupling can be used to determine which

twistbuckler is forced to switch states in each interaction.

Finally, we demonstrate a counter consisting of two twistbucklers that cyclically goes

through two states, and a counter consisting of six twistbucklers that goes through

six states and could be scaled up to arbitrarily long length cycles.
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Samenvatting

Deze dissertatie behandelt het onderzoek dat ik uitgevoerd heb bij de universiteit

van Leiden en het onderzoeksinstituut AMOLF in Amsterdam. Ik heb onderzoek

gedaan naar mechanische metamaterialen; een nieuw veld in de wetenschap waarin

materiaaleigenschappen onderzocht worden die verder rijken dan dan eigenschappen

van normale materialen.

In deze dissertatie behandel ik een nieuwe eigenschap binnen de studie van de me-

tamaterialen: geheugen. Mijn onderzoek was oorspronkelijk begonnen met de vraag:

”kan een blok rubber gemaakt worden dat kan tellen?”. In een mum van tijd werd

het mij duidelijk dat een blok tellend rubber niet alleen een vorm van geheugen nodig

heeft, maar ook een vorm van berekening moet uitvoeren. Nadat ik het eerste tellende

materiaal gemaakt had, onderzoch ik wat in algemene zin de benodigde ingredient

voor zo’n materiaal zouden zijn en wat er nog meer gemaakt zou kunnen worden met

deze ingrediënten. Zouden deze ingrediënten ons helpen verder te kunnen onderzoe-

ken hoe geheugen ontstaat in materialen, en mogelijk zelfs berekening te kunnen laten

doen?

Hoofdstuk één dient ter introductie van deze dissertatie en introduceert een aantal

vormen van geheugen die gevonden worden in materialen en apparaten. Het hoofd-

stuk begint met een discussie over voetafdrukken in het zand en mechanische tellers,

twee compleet verschillende systemen maar beide met een vorm van geheugen. Ver-

volgens maken we onze definitie van geheugen preciezer, introduceren we mechanische

metamaterialen, en bespreken het concept van een materiaal als een computer.

Hoofdstuk twee behandelt het ”balken-teller”1 metamateriaal; een blok rubber met

een specifieke structuur zodat het kan tellen hoe vaak het ingedrukt is.

Het balken-teller metamateriaal bestaat uit een reeks parallelle balken van twee ver-

1Beam counter in het Engels. Een woordspeling gebaseerd op de term bean counter ; een pejoratieve
term voor een accountant.
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schillende diktes, om en om met kleinere en grotere openingen ertussen. Bovendien

bevatten de dikkere balken een spleet zodat ze in één richting kunnen ‘openvouwen’.

Alle balken hebben een kleine geometrische asymmetrie, zodat hun knikrichting vooraf

is bepaald. Evenzo zijn alle andere kenmerken van de balken-teller zodanig gekozen

dat door een contactinteractie opeenvolgende compressiecycli worden vastgelegd in de

bistabiele toestand van de dunnere balken. Effectief kan het blok rubber tellen hoe

vaak het wordt samengedrukt. Zo’n blok rubber zou in de praktijk verwerkt kunnen

worden in een bouwstuk om slijtage bij te kunnen houden. Een balken-teller zou bij-

voorbeeld onder een brug geplaatst kunnen worden om bij te houden hoe vaak deze

overbelast wordt.

Ten slotte demonstreren we balken-tellers die verschillende belastingen kunnen her-

kennen. Door meerdere van deze tellers samen te gebruiken en tellers te gebruiken die

voor een specifieke volgorde van kleine en grote belastingen gevoelig zijn, demonstre-

ren we vervolgens een metamateriaal dat een specifieke volgorde van invoer herkent,

net zoals een slot en sleutel. Het metamateriaal bereikt alleen een specifieke ‘accep-

terende’ (open) toestand als een specifieke sequentie van belastingen ingevoerd wordt

(sleutel).

Hoofdstuk drie behandelt de interactie die voorkomt tussen geknikte balken welke

ten grondslag ligt voor de werking van het balken-teller metamateriaal. Naarmate

twee balken van gelijke lengte maar ongelijke dikte knikken en tegen elkaar tikken,

klakken ze tezamen in de richting van de dunnere of dikkere balk. Die richting blijkt

enkel bepaald te worden door de afstand tussen de balken. We vinden dat voor elk

paar ongelijke balken er een kritieke afstand is: als de balken dichter bij elkaar staan

dan deze kritieke afstand, dan klakken de balken in de richting van de dikke balk,

als de balken verder weg staan dan dit criterium, dan klakken ze in de richting van

de dunne balk. Deze interactie is het cruciale ingredient voor de werking van het

balken-teller metamateriaal.

Gebruikmakend van zowel experimenten als simulaties bestuderen we het fenomeen

en vinden we een verrassende lineaire relatie tussen de geobserveerde kritieke afstand

en de som van de diktes van de balken. Ten slotte introduceren we een minimaal

model gebaseerd op de ”vakwerk”(truss) structuur gëıntroduceerd door Bellini et al.,

en de balk-modellen van Guerra et al., welke deze relatie verklaard. Met dit simpele

model ontdekken we verder dat de richting van klakken bepaald wordt voordat de

balken los komen van elkaar en bepaald wordt door een hooivork-bifurcatie.

Hoofdstuk vier behandelt de half-gesneden balken welke in het balken-teller meta-

materiaal gebruikt worden. Deze balken bevatten een snede halverwege het midden

van de balk zodat deze een scharnier vormt. Deze elementen spelen een cruciale rol

in de werking van het balken-teller metamateriaal doordat deze balken zich in de
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dichte toestand nagenoeg identiek gedragen aan een niet-ingesneden balk, maar naar

één kant drastisch verder uitbuigen wanneer deze ver ingedrukt wordt. In de teller

worden deze balken gebruikt omdat ze naar één kant verder uitwijken, maar in dit

hoofdstuk wordt een andere eigenschap van deze balken onderzocht; als de balken in-

gedrukt en losgelaten worden blijft het openen en dichtgaan van het scharnier achter

(hysterese). Deze balken bevatten daarom een vorm van geheugen.

Dit behandelt de geobserveerde fenomenologie als functie van de geometrie van de

balken, en onthult het onderliggende mechanisme van de achterblijvende transitie.

Door het uitvoeren van zowel experimenten als simulaties vinden we dat de indrukking

waarbij het scharnier opent en sluit onafhankelijk gekozen kan worden, en vinden we

een mathematisch model gebaseerd op het vakwerk van Bellini welke overeen komt

met onze observaties.

Hoofdstuk vijf behandelt de ”draai-knikker”(twistbuckler) metamaterialen welke

voortborduren op het balken-teller metamateriaal door deze uit te breiden naar twee

dimensies en interacties tussen alle vier toestanden van twee bistabiele elementen

mogelijk te maken. Deze metamaterialen bevatten basis-elementen welke draaien als

ze knikken en welke interacteren door middel van hard contact met precies gevormde

contactvlakken.

De draai-knikkers maken het mogelijke cyclische tellers te maken. Hoewel normale

balken-teller metamaterialen uiteindelijk een ’eindtoestand’ bereiken, maakt de draai-

ende beweging van de draai-knikker het mogelijk om deze in een lus te zetten en de

interactie zo te kiezen dat de toestand herhaaldelijk terug komt bij de begintoestand.

In dit hoofdstuk behandelen we eerst het gedrag van individuele draai-knikkers en

meten we het moment welke deze uitoefenen onder verschillende indrukkingen en

draaihoeken. Vervolgens behandelen we de interactie door middel van contact en

het ontwerp van de contactvlakken. Het ontwerp van de contactvlakken is gebaseerd

op de vorm van tandwieltanden, en net as bij tandwielen, blokkeren deze tanden

combinaties van hoeken en zorgen deze voor een koppeling tussen de draaisnelheden

van de draai-knikkers. We demonstreren hoe een geblokkeerde configuratieruimte

gebruikt kan worden om te bepalen wanneer de draai-knikkers interacteren, en hoe

de koppeling gebruikt kan worden om te bepalen welke draai-knikker van toestand

wisselt in elke interactie.

Ten slotte behandelen we een teller bestaande uit twee draai-knikkers die cyclisch

tussen twee toestanden wisselt, en een teller bestaande uit zes draai-knikkers die door

zes toestanden wisselt en uitgebreid kan worden om tot willekeurig grote hoeveelheden

te tellen.
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