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CHAPTER 1

Introduction

In recent decades, quantum algorithms have been discovered that are ex-
ponentially faster than our best-known classical algorithms. However, the
quantifier best-known is needed, as we do not know if quantum computers
are fundamentally faster on these tasks or if we just haven’t discovered
equivalently fast classical algorithms yet. This thesis addresses this discon-
nect, firstly by expanding our theoretical understanding of the consequences
if quantum computers and classical computers are equivalently powerful,
and then by analysing multiple algorithms which may allow us to make
better use of quantum computers deployable today or in the near future.

Chapter 1 provides a set of definitions of the mathematical tools and
definitions (such as quantum computing, various complexity classes, and
machine learning) we will use in later chapters. For concepts used in only
one chapter, we leave definitions to those chapters.

Chapter 2 provides the strongest evidence that quantum computers
can implement functions or sampling from distributions that classical
computers cannot.

Motivated by understanding the separation between quantum and clas-
sical methods in machine learning we develop the concept of bounded
advice in Chapter 3, i.e. enhancing some limited Turing machines with
advice given by a stronger machine. This concept allows us to understand
if quantum computers used to prepare advice (such as during training) can
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provide an edge over classical machine learning even when the ultimate
model is entirely classical. Bounded advice proves to have utility beyond
this, being useful for understanding situations in cryptography and for
general inquiry into complexity theory.

The next chapters develop methods to make better use of near-term
machines. For the following two chapters we focus on a technique called
circuit cutting, which reduces the number of qubits needed for a quan-
tum computation at the cost of an exponentially increasing number of
evaluations of quantum circuits.

Chapter 4 proposes a new quantum machine learning algorithm. The
algorithm combines many smaller quantum circuits, just as circuit cutting
does, but allows for the setting of the number of circuits as a hyperpa-
rameter. Lower circuit counts yield an algorithm that could be practically
used, higher circuit counts approximate the full circuit cutting scheme.
We analyse the learning performance of this model and experimentally
test it, this allows us to compare quantum and classical computing more
large-scale quantum machines are available.

Chapter 5 continues the above research line by proving that while it may
be possible to reduce the number of smaller circuits produced by cutting
a larger circuit for certain circuits, this is not the case in general. We
prove that if any cut-local1 cutting scheme can remove even a single qubit
from a circuit without running an exponential (in number of gates such a
cut would entail) number of smaller circuits, then all decision problems
solvable by a quantum computer can also be solved by a classical computer.

In the Chapter 6, we develop a quantum machine learning algorithm
which can be deployed on a classical computer while still reaping the
benefits of a quantum computer to train. This is formally linked to
quantum-generated classical advice, as treated in Chapter 2.

1this will be defined in Chapter 5
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1.1 Quantum Computing
To define quantum computation we first state the postulates of quantum
mechanics. Quantum mechanics is commonly defined by 4 postulates. We
provide these postulates using bra-ket notation for vectors [1].

1. The state space of any physical system is a Hilbert space. The system
is entirely described by a state vector in this Hilbert space.

2. The evolution of a closed quantum system over a fixed amount of
time can be described by a unitary transform acting on that system’s
Hilbert space.

3. The measurement of a system is defined by a set of linear measure-
ment operators {Mm}. The probability of measuring outcome m
for state |ψ⟩ is p(m) = ⟨ψ|M†

mM |ψ⟩. The state after measurement
outcome m is Mmψ/

√
p(m).

4. The composition of multiple physical systems is given by the tensor
product of their associated Hilbert spaces. The composed state of
these physical systems is the tensor product of the individual states.

These postulates define the rules of quantum mechanics. This thesis
concerns quantum computing, which is an attempt to improve computa-
tional efficiency by using the increased capabilities provided by these rules,
as compared to those provided by the rules of classical physics.

In quantum computing, we are often only concerned with the quantum
bit, as a minimum-sized unit of information which is always a linear
combination of 0 and 1. Here we use bra-ket notation and α, β ∈ C for
|α|2 + |β|2 = 1

|ψ⟩ = α |0⟩+ β |1⟩

Larger systems (such as a computer) can be described as the combination
of individual qubits following postulate 4.

Before we define quantum computing, we must define gate sets and
circuits. A gate set is a set of unitaries we can apply on our quantum
computer, due to the infinite nature of the space of unitaries there is an
infinite set of possible gate sets. Any particular quantum device will have
some gates that are more natural than others. Fortunately, some gate sets
are universal, that is they can approximate any unitary operation on a
quantum system to arbitrary precision. For the purpose of theory, it is
therefore sufficient to define a single universal gate set and rely on the
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ability of other universal gate sets (that may be native to any given device)
to approximate our circuit with high accuracy.

The following gates are defined using the vector notation of quantum
states (|0⟩ = (1, 0)T , |1⟩ = (0, 1)T ).

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


H = 1√

2

(
1 1
1 −1

)
T =

(
1 0
0 eiπ/4

)
It is often easiest to describe a quantum circuit pictographically, for

single-qubit gates this is normally given by a white box with the name
of the gate inside of it. For some 2 qubit gates, we have less direct
representations, the CNOT is represented by the following symbol.

(1.1)

The 3 above gates form a universal gate set. Depending on the circum-
stance it can be easier to write operations with other gates instead, such
as with the following “rotation” gates. Of course, these gates could be
equally approximated by the above gates, but this would require much
more complicated notation for some situations.

Rx(θ) := Rx(θ) =
(

cos θ2 −i sin θ
2

−i sin θ
2 cos θ2

)
(1.2)

Ry(θ) := Ry(θ) =
(

cos θ2 − sin θ
2

sin θ
2 cos θ2

)
(1.3)

Rz(θ) := Rz(θ) =
(
e−iθ/2 0

0 eiθ/2

)
(1.4)
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1.1.1 Limited modern machines
The previous section described an idealised quantum computation. In
the real world, we are not able to perfectly execute quantum circuits;
noise is naturally introduced that destroys quantum superposition [1].
Fortunately, if noise is suppressed below a threshold error correction is
possible, where many qubits are used to simulate one nearly-perfect or
logical qubit. Unfortunately, this process of error correction often requires
a large number of physical qubits to produce one logical qubit, and a
large overhead on the number of physical gates needed to implement one
logical gate. Thus it is often considered how we could perform interesting
computations while avoiding costly error correction with our modern Noisy
Intermediate Scale Quantum computers (NISQ) [2].

There are many interesting approaches to dealing with noise in quantum
computing without error correction, but this work instead tackles the other
component of NISQ: intermediate scale. In the following subsection, we
outline one such method, circuit cutting.

1.1.2 Circuit Cutting
Circuit cutting [3–11], sometimes referred to as circuit partitioning or
circuit knitting, is a set of techniques to take one large quantum circuit
and to estimate its output by measuring many smaller quantum circuits.
Existing schemes either make multiple calls to the device [3–6] or link
multiple devices with classical communication [7, 9] to simulate the larger
circuit.

Each of the existing circuit-cutting schemes works slightly differently,
but they all take a local element of the large circuit and represent it as
the sum of terms, which can then be separated into smaller circuits. We
will give a generalization of circuit cutting by cutting the unitaries. This
generalization involves decomposing a unitary into the sum of several
smaller unitaries. Here, decomposing means expressing a given n-qubit
unitary as a sum of tensor products of two fewer-qubit unitaries:

U =
L∑
i

αiU
′
i ⊗ U ′′

i , (1.5)

As every 2 qubit unitary matrix is equal to the sum of (at most) 4
single qubit tensor product matrices this scheme can break any connecting
elements across a large circuit and allow the two chunks to be evaluated
independently. This is shown in figure 1.1.
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Figure 1.1: Figure depicts circuit cutting applied to a quantum circuit. By
separating the three controlled-Z gates into the sum of a polynomial number of
single qubit unitary we produce a bottom circuit with n − 1 qubits and a top
circuit consisting of one qubit, which can be run independently, lowering the
required number of qubits to evaluate the original circuit.

This circuit-cutting generalisation most closely resembles the original
proposal [12]. Other circuit cutting schemes do not necessarily fit this
unitary cutting generalisation but cut some other element of the circuit.
While these schemes do not fit within the generalisation presented we will
see that the theorems we develop for unitary cutting carry over to these
cases as they are not conceptually different.

1.2 Machine Learning
Machine learning is a set of statistical methods that take data from some
problem and, by adjusting internal weights, are able to generalise to
solve that problem at large. There are many fields nested inside machine
learning, such as supervised, unsupervised and reinforcement learning. For
the sake of this thesis, we will only be interested in supervised learning,
i.e. when the problem is to label data in a similar manner to labelled
examples.

To define supervised learning we will break it down into a number of
separate parts: the task, the model and the training procedure.

Let us begin by formalising the task. We define a supervised learning
task on a domain (inputs) X and co-domain (outputs) Y with a probability
distribution (the probability of each input and output pair) over X × Y,
P , and loss function, ℓ : Y × Y → R.

To formalise the model, we first define a hypothesis, h : X → Y. The
hypothesis defines a map from input data points to output labels, this
definition does not allow for probabilistic labelling but that can be included
in more complicated definitions. Writing out a truth table for h would be
cumbersome. Instead, we often define some parameterised model, such as
a neural network, that has some set of parameters we can tune, modifying
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these parameters gives us access to different hypotheses.
Formalising the training procedure is more complicated as there are

many potential training methods in SL (supervised learning). Broadly the
training objective is to find parameters that allow the model to perform
well on the task. Performing well is often defined by minimising the
expected value of the loss function on the output of the model and the
correct label. If this distance is small, the model is mostly correct most
of the time. So the training procedure’s task is to minimise the expected
amount of loss2. Define the risk for a hypothesis h on a space of continuous
inputs/outputs as the expected loss:

R(h) =
∫

X ×Y
ℓ(h(x), y)dP (x, y). (1.6)

The ultimate objective is to minimise this loss.
In practical settings, we normally lack access to the underlying prob-

ability distribution, P , so the true risk cannot be evaluated. Instead,
we have a data set, this data is drawn from P but is only a sample,
S = {(xi, yi) ∼ P | i ∈ [m]}. This dataset makes it possible to approximate
the risk, we call this the empirical risk of h with respect to S:

R̂S(h) = 1
|S|

∑
(xi,yi)∈S

ℓ(h(xi), yi). (1.7)

Optimising our hypothesis on the training data optimises the empirical
risk, which is generally a good proxy for the true risk, but it is possible
that these two diverge, this is sometimes called ‘generalisation error’ and
can be characterised by ‘over/underfitting’. More about this divergence
will be said in Chapter 4 where showing the model defined in that section
has a small generalisation loss is of key interest.

1.3 Complexity Theory
Large parts of this thesis are written in terms of complexity classes, loosely
defined as sets of problems which can be solved by different levels of
computational ability. We assume the reader is familiar with the standard
definitions of Turing machines and focus here on establishing the notation
and variant models used throughout this work.

2It is possible other training objectives could be given.
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1.3.1 Computational Models
The deterministic Turing machine (DTM) [13] serves as the standard
theoretical formalisation of computation. This thesis assumes familiarity
with the DTM, but we will also use some standard variants:

A non-deterministic Turing machine (NTM) [13] extends the determin-
istic model by allowing any given state of the Turing machine to lead to a
number of possible next states and actions. The NTM is said to accept
an input if there exists at least one sequence of non-deterministic choices
leading to an accepting state.

A probabilistic Turing machine (PTM) [13] builds upon the non-deterministic
model by assigning probabilities to each possible transition. While an
NTM simply explores all possible computational paths, a PTM randomly
selects transitions according to their associated probabilities, providing a
framework for randomised algorithms and error bounds in computation.
The acceptance criteria for a PTM are given by the particular complexity
class it is used in.

A quantum Turing machine (QTM) [1] incorporates quantum mechanics
into the computational model, allowing configurations to exist in superpo-
sitions and employing quantum operations (unitary transformations and
measurements) for transitions.

An oracle Turing machine [13] augments the standard model with an
external ‘oracle’ that can decide membership in some language L in a single
step. These machines are central to defining relativized complexity classes
like NPA, where A represents the oracle, and help establish relationships
between different complexity classes.

1.3.2 Formal Languages
A formal language is a set of strings over a finite alphabet Σ. Formally,
a language L ⊆ Σ∗ is a set of strings that can be recognized by a com-
putational model, such as a Turing machine. A decision problem can be
framed as a language by considering the set of all “yes” instances as the
strings that belong to the language. For example, the decision problem
“Is a number prime?” can be represented as a language where the strings
are the binary representations of prime numbers.

1.3.3 Complexity classes
Using the tools of the previous subsections we can now define a ‘zoo’ of
complexity classes.
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• P is the class of decision problems, {L ⊂ {0, 1}∗}, that a deterministic
Turing machine can determine membership of in time polynomial in
the length of x.

• NP is the class of decision problems solvable by a non-deterministic
polynomial-time Turing machine that accepts if at least one path
accepts.

• CoNP is the complement of NP.

• We define levels of the polynomial hierarch with the following notation
ΣP

0 = ΠP
0 = ∆P

0 := P. ∆P
i+1 := PΣP

i . ΣP
i+1 := NPΣP

i . ΠP
i+1 := CoNPΣP

i 3.

• PH: The polynomial hierarchy is defined as PH =
⋃

i ΣP
i .

• BPP is the class of decision problems solvable by a probabilistic
Turing machine with at most a 1/3 probability of error both for
x ∈ L and x /∈ L.

• ZPP is the zero error alternative to BPP. A language is in ZPP if
there exists a probabilistic Turing machine which either refuses to
answer (which it does with less than 1/3 probability) or correctly
determines if x ∈ L.

• EXP is the class of decision problems solvable by a Turing machine
running in O(2p(n)) for any polynomial p(n).

• PP is the class of decision problems solvable by a probabilistic Turing
machine with a probability of error less than 1/2.

• AM is the class of decision problems for which x ∈ L can be verified
by a probabilistic check: L is in AM if there exists a probabilistic
polynomial time verifier, V , such that if x ∈ L then, with at least
2/3 probability there exists a proof, y, such that V accepts. If x /∈ L,
with at least 2/3 probability, regardless of y, V must reject.

• BQP is the class of decision problems solvable by a quantum Turing
machine with at most a 1/3 probability of error.

• QMA is the class of decision problems such that there exists a ‘verifier’
quantum Turing machine which takes the input and a quantum state
‘proof’. For all yes inputs there exists a quantum state that leads the
verifier to accept with probability at least 2/3. For all no inputs, all
states lead the verifier to reject with probability at least 2/3.

3The notation _P signals the polynomial hierarchy, not an oracle to P.
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• P/poly is the class of decision problems solvable by a family of
polynomial-size circuits. Equivalently P/poly is the class of decision
problems solvable by a polynomial time deterministic Turing machine
with polynomial length advice. Advice is an additional input string
which may depend on the size of the input, but not on the input
itself. Chapter 3 will provide more information on advice and it’s
associated concepts.

In complexity theory, a functional problem is defined by a relation, R.
An algorithm solves this problem if, for all inputs, x, the algorithm outputs
y such that (x, y) ∈ R or halts if no such y exists. As with decision classes,
there are a number of functional complexity classes we will need to define.

• #P is the class of functional problems that consist of computing the
number of accepting paths of a non-deterministic Turing machine.

• FBPP is the class of functional problems that can be solved by a
polynomial time probabilistic Turing machine which achieves any
failure probability ϵ > 0 given input x, 0⌈1/ϵ⌉.

• FBQP is the class of functional problems that can be solved by a
polynomial-time quantum Turing machine which achieves any failure
probability ϵ > 0 given input x, 0⌈1/ϵ⌉4.

While it is well known that functional and sampling problems are closely
related [14], we will still make reference to the following sampling problems.
A sampling problem is defined by a function that maps each input, x, to a
probability distribution Dx. An algorithm solves the problem if, on input
x, it outputs y sampled from close to Dx (where close is defined for each
individual class).

• SampP is the class of sampling problems, S = (D)x∈{0,1}∗ for which
there exists a polynomial-time probabilistic Turing machine which
given input x, 0⌈1/ϵ⌉ outputs a distribution ϵ close to the problem’s
distribution in total-variation distance.

• SampBQP is the class of sampling problems for which there exists a
polynomial-time quantum Turing machine which given input x, 0⌈1/ϵ⌉

outputs a distribution ϵ close to the problem’s distribution in total-
variation distance.

4the notation 0n refers to a string of n 0s
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Figure 1.2: A diagrammatic representation of various complexity classes which
contain each other. → represents a known inclusion that we believe to be strict.
↔ represents classes we believe are unequal, while ↔ represents two classes we
believe to be equal. → is a known strict inclusion.

One particularly relevant problem in SampBQP is BosonSampling. This
problem can be defined with reference to a Bosonic computer [15], but
it is perhaps clearer to use the equivalent mathematical definition. For
a matrix A ∈ Cm×n and string of numbers x ∈ Nm such that

∑
xi = n,

define the submatrix Ax as the n× n matrix made by repeating the ith
row of A xi times. The target distribution of BosonSampling is dependent
on the permanents of these submatrices. On input A, a column orthonor-
mal complex matrix, the string x ∈ Nm should be sampled probability
Per(Ax)/x0!x1! . . . xm!.

This finishes the definitions necessary for this thesis. It is also noteworthy
to explore connections between these classes, a quick representation is
given in Figure 1.2. Of particular note to this thesis are the questions of
BQP ?= BPP or FBQP ?= FBPP, which ask whether quantum computers
can solve decision problems or functional/search problems that classical
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probabilistic computers cannot.

1.3.4 Proof Relativisation
In chapter 2 we will note that our particular style of proof contains insight
beyond it’s literal results. Namely, our proofs overcome the so called
‘relativisation barrier’ [16], and as such, they may serve as a starting point
for further advancements in complexity theory. While a full description
of the numerous barriers in complexity theory is outside the scope of this
thesis, we can provide a brief introduction to the relativisation barrier.

The relativisation barrier is a concept used by complexity theorists to
determine if a certain style of proof can be used to establish a result, based
on whether that result holds (or fails to hold) relative to various oracles.
To illustrate, suppose we are trying to prove two complexity classes are
not equal, e.g. P and NP. If we know there exists an oracle A such that
PA = NPA and a second oracle B such that PB ̸= NPB, then any proof of
P ̸= NP must somehow not function when the classes are made relative to
A [16].

For a number of results, we know the result does not hold relative to
all oracles, thus we know the proof of the result must be ‘non relativising’.
This makes proof techniques which ‘cross the relativisation barrier’ very
exciting for proving non relativising results.

1.4 Research questions
It is useful to frame this thesis with a number of research questions.

Research question 1
What is the strongest theoretical basis for the claim “In polynomial time
quantum computers can perform computations that classical computers
cannot”?

The first chapter to address this question is Chapter 2, which approaches
from a complexity theoretic angle. Particularly, we see what unexpected
complexity theory collapses might occur if FBQP is equal to FBPP. This
chapter finds if FBQP = FBPP then the polynomial hierarchy collapses to
the second order. The strongest known collapse for any implementable
quantum class. Chapter 3 asks subquestions to this research question,
first asking if quantum computers can outperform classical on the task of
generating advice (in the sense of P/poly), then asking if quantum com-
puters can outperform classical computers when receiving advice. Chapter
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3 demonstrates the importance of these questions to the questions of
BQP ?= P/poly and BQP ?= BPP/samp. The answers to these subquestions
naturally lead to the next research question.

Research question 2
If polynomial-time quantum computers can give better advice than polynomial-
time classical computers, can we find such an advice-generating algorithm?

This research question is the topic of Chapter 6, which describes a
machine learning algorithm which uses the quantum computer to find
a good set of weights (the advice in this case), but which can then be
deployed purely on a classical computer for any input. Indeed, we show
that this algorithm captures all other surrogate models and is in some
sense universal for this type of problem.

The machine learning model developed in Chapter 6 is naturally more
suited to modern quantum computers because it does not require the use
of an expensive quantum computer for each evaluation. This is a useful
property to have and leads us to ask if we can further reduce the burden
of quantum machine learning by reducing the requirements on the size of
our quantum computer.

Research question 3
Do there exist methods to reduce the number of qubits required to run a
given machine learning algorithm?

Chapter 4 first provides evidence that for some circuits this may be
possible. It develops a quantum machine learning algorithm which can
naturally simulate larger quantum circuits than those which are being used
to deploy the quantum algorithm, it does this while also presenting a path
to reduce the runtime of this simulation when such an option is available.
Numerical evidence is then used to show that there exist examples where
this algorithm is indeed capable of reducing qubit counts, by learning
the output of a random quantum circuit using circuits of half the size.
However, Chapter 5 shows that not all circuits can be reduced by this (or
any other) method. It shows that there exist circuits such that the ability
to remove even one qubit efficiently (lowering the number of qubits needed
by even one) would imply BQP = BPP.
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