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The impact of common and rare genetic 
variants on bradyarrhythmia development

To broaden our understanding of bradyarrhythmias and conduction 
disease, we performed common variant genome-wide association analyses 
in up to 1.3 million individuals and rare variant burden testing in 460,000 
individuals for sinus node dysfunction (SND), distal conduction disease 
(DCD) and pacemaker (PM) implantation. We identified 13, 31 and 21 common 
variant loci for SND, DCD and PM, respectively. Four well-known loci 
(SCN5A/SCN10A, CCDC141, TBX20 and CAMK2D) were shared for SND and 
DCD, while others were more specific for SND or DCD. SND and DCD showed 
a moderate genetic correlation (rg = 0.63). Cardiomyocyte-expressed genes 
were enriched for contributions to DCD heritability. Rare-variant analyses 
implicated LMNA for all bradyarrhythmia phenotypes, SMAD6 and SCN5A for 
DCD and TTN, MYBPC3 and SCN5A for PM. These results show that variation 
in multiple genetic pathways (for example, ion channel function, cardiac 
developmental programs, sarcomeric structure and cellular homeostasis) 
appear critical to the development of bradyarrhythmias.

Bradyarrhythmias are common cardiac rhythm abnormalities charac-
terized by pathological slowing of heart rate or electrical conduction 
and represent a major public health problem1,2. Bradyarrhythmias 
can lead to syncope, heart failure or sudden cardiac death. The  
only established therapy for serious bradyarrhythmias is pacemaker 
(PM) implantation, which carries the risk of complications and  
morbidity.

Bradyarrhythmias have largely been considered diseases of aging, 
with fibrosis of the conduction system implicated as a major precipi-
tant. However, the molecular causes of bradyarrhythmias are poorly 
understood, despite evidence supporting an inherited basis3. Some 
conduction system disorders manifest early in life or aggregate in  
families, with candidate gene approaches implicating ion channel or ion 
channel-associated genes4–6. Genome-wide association studies (GWAS) 
have focused on very broad bradyarrhythmia definitions (for example,  
PM3) and have had limited power to detect robust associations.  
One previous GWAS of sinus node dysfunction (SND)—the inability of 
the sinoatrial node to generate sufficient electrical impulses—identi-
fied six loci including a rare susceptibility variant in MYH6, a gene 
encoding a myosin heavy chain isoform7. There have been no GWAS 
to date for distal conduction disease (DCD), which reflects disease 
distal to the sinus node, such as a block within the atrioventricular 

node or His-Purkinje system8. The recent availability of genetic data 
from multiple large-scale studies may enable the detection of com-
mon and rare variations underlying bradyarrhythmias with greater 
physiologic specificity.

Here we performed multi-ancestry meta-analyses of GWAS and 
rare-variant burden tests for SND, DCD and conditions necessitating 
PM to elucidate the genetic variation underlying these distinct and 
clinically relevant conditions.

Results
Figure 1 summarizes the study design and depicts the anatomical  
regions affected by SND and DCD. We first performed common vari-
ant analyses, including 1.3 million participants for SND and DCD.  
We conducted additional analyses examining restrictive definitions of 
SND or DCD (onset at age ≤75 years resulting in PM) and a combined 
outcome of PM for SND or DCD. In total, ten studies were included. 
Depending on the phenotype, 89–94% of cases and 88–89% of refe-
rents were of European ancestry. Baseline characteristics are given 
in Supplementary Tables 1–5. Manhattan and Miami plots are shown 
in Fig. 2 and Supplementary Figs. 1 and 2. Quantile–quantile (Q–Q) 
plots did not suggest systematic test statistic inflation (λ < 1.10;  
Supplementary Fig. 3).
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between SND and previous GWAS of cardiovascular traits13–18, includ-
ing pulse and systolic blood pressure, PR interval, electrocardiogram 
morphology, heart rate or heart rate recovery from exercise, heart 
failure and stroke (Supplementary Table 10).

Significant expression quantitative trait loci (eQTL) are presented 
in Supplementary Table 11. We observed likely shared causal vari-
ants (posterior probabilities (PP) >0.80 in colocalization analyses) for  
SND and cardiac expression for genes CEP68, CAMK2D, FAM13B and 
CACUL1. In transcriptome-wide analysis (TWAS), a higher risk of SND 
was associated with higher predicted cardiac expression of CEP68 
and lower predicted cardiac expression of FAM13B, RP11-325L7.2, 
SRRT, GIGYF1, CACUL1, ZKSCAN1, PRRX1 and SCN10A (Supplementary 
Table 12).

Common variants associated with DCD
We identified 31 genome-wide significant loci associated with DCD 
in 37,798 cases and 1,263,549 referents (Fig. 2, Supplementary 
Table 6 and Supplementary Fig. 2). In conditional analyses, we identified  
additional signals at the TTN, SCN5A/SCN10A, TBX20 and STN1 loci  
(Supplementary Table 7). In contrast to SND, the index variant for 
DCD at the SCN5A/SCN10A locus was intronic within SCN10A, and  
we observed a weaker independent signal for a synonymous variant 
within SCN5A.

Common variants associated with SND
We identified 13 genome-wide significant loci (P < 5 × 10−8) associated 
with SND in 9,511 cases and 1,249,043 referents (Fig. 2, Supplemen-
tary Table 6 and Supplementary Fig. 1). In conditional analyses, we 
observed a secondary signal at two loci (PITX2 and SCN5A/SCN10A; 
Supplementary Table 7). At the SCN5A/SCN10A locus, both the index 
variant and the independent variant in the conditional analysis were 
intronic within SCN5A.

The restrictive SND definition (4,940 cases) yielded six of the 
above-mentioned genome-wide significant loci and an additional 
locus close to MTHFSD. Generally, significant index variants were 
either shared or exhibited high linkage disequilibrium (LD; r2 > 0.6 
in 1000 Genomes European samples) between inclusive and restric-
tive SND, with larger effect sizes for the restrictive definition. Inclu-
sive and restrictive SND were highly genetically correlated (rg = 1.03, 
P = 1.49 × 10−221; Supplementary Table 8).

Among 13 SND loci, 4 (CCDC141, PITX2, ZFHX3 and SCN5A/SCN10A) 
have been reported in previous SND GWAS9. Index variants between the 
two studies were in moderate-to-high LD (r2 = 0.60–1.00) for three loci 
but distinct for the SCN5A/SCN10A locus (r2 = 0.006). Seven loci have 
been previously associated with atrial fibrillation (AF)10–12, with stronger 
effects for AF at the PITX2 and ZFHX3 loci and stronger or similar effects 
for SND at five loci (Supplementary Table 9). We report co-associations 
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(cases/total)

28,899/1.30M37,798/1.30M
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Fig. 1 | Study design. a, Typical anatomical regions in which conduction tissue 
affected by SND and DCD are localized in the heart. A dual-chamber PM is also 
demonstrated. Sample sizes are shown by common variant GWAS and rare 
variant association tests (RVAT) for all three outcomes. b, Overview of common 
and rare variant analyses for SND, DCD and PM implantation. Common-variant 
GWAS were performed in ten collaborating studies with genotyped and imputed 
data, and rare variant burden testing was performed for the same phenotypes 
in two studies with whole-exome sequencing. The results were combined 

in meta-analyses, including up to 1.3 million individuals for GWAS and 471k 
individuals for rare variant association testing. For common variant loci reaching 
genome-wide significance, follow-up evaluations included analyses of cardiac 
gene expression profiles, predicted transcriptomes, pleiotropic associations, 
genetic correlations, Mendelian randomization (MR), polygenic risk scores 
(PRS) derivation and relations with risk of PM implantation and phenome-wide 
association study (PheWAS). The interaction of rare variants and polygenic risk 
was further evaluated.
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The restrictive DCD definition yielded six significant loci. Index 
variants were identical or in moderate LD (r2 > 0.5) between inclusive 
and restrictive DCD, with larger effect sizes for the restrictive defini-
tion. Inclusive and restrictive DCD were highly genetically correlated 
(rg = 0.91, P = 1.11 × 10−108; Supplementary Table 8).

Next, we evaluated co-associations between DCD and previ-
ous GWAS of cardiovascular traits (Supplementary Tables 9 and 10).  
In total, 11 and 10 of the DCD index variants or their proxies have  

been previously associated with PR interval or QRS duration, respec-
tively. Index variants or their proxies at several loci have also been 
associated with AF (six loci, including four with discordant effect direc-
tions for DCD and AF), Brugada syndrome and other cardiovascular 
diseases (hypertrophic cardiomyopathy, heart failure and stroke) in 
previous GWAS.

In genetic colocalization analyses, we observed likely shared causal 
variants (PP > 0.80) for DCD and the cardiac expression of 13 genes  
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Fig. 2 | Manhattan plot for bradyarrhythmias. a–c, GWAS results are shown 
separately for SND (a; n = 1,258,554), DCD (b; n = 1,314,957) and PM implantation 
(c; n = 1,304,231). Two-sided P values (on −log10 scale) for each association test 
between variants and bradyarrhythmias from fixed-effect meta-analyses of 

multi-ancestry individuals are shown on the y axis. Genome-wide significant 
association loci (P < 5 × 10−8 after Bonferroni correction; dashed line) are 
annotated with the name of the gene closest to the index variant.
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(Supplementary Table 11). In TWAS, a higher risk of DCD was asso-
ciated with higher predicted cardiac expression of FOLH1, FKBP7,  
STRN, MOB3C, C6orf106 and CXCR6 and lower predicted cardiac 
expression of COQ8A, BCL2, MYOZ1, SCN10A, SYNE2, METTL21B and  
PLEC (Supplementary Table 12).

Common variants associated with PM implantation
We performed a GWAS meta-analysis combining all 28,899 cases with 
PM for any bradyarrhythmia and identified 21 genome-wide significant 
loci. Among these loci, nine overlapped with SND, ten overlapped with 
DCD and six were not discovered in either subtype-specific analysis 
(Fig. 2, Supplementary Fig. 4 and Supplementary Table 6). Four loci 
(CCDC141, SCN5A/SCN10A, CAMK2D and TBX20) were shared among 
SND, DCD and PM. In conditional analyses, we identified secondary 
signals in four loci (PLEKHA3, PITX2, ROS1 and TBX20; Supplementary 
Table 7).

In 14 of 21 PM loci, index variants or their proxies have been pre-
viously associated with at least one electrocardiogram (ECG) para-
meter (including six with heart rate, six with PR interval and three with  
QRS duration; Supplementary Table 10). In addition, index variants or 
their proxies in 10 of 21 loci have been previously associated with AF 
(Supplementary Table 9), and three loci (CCDC141, PITX2 and ZFHX3) 
have been associated with SND.

In genetic colocalization analyses of PM and eQTLs of cardiac 
expression, we observed likely shared causal variants (PP > 0.80) at the 
CEP68, CAMK2D, FAM13B and C6orf106 loci (Supplementary Table 11). 
In TWAS, a higher risk of PM was associated with higher and lower pre-
dicted cardiac expression levels of seven and nine genes, respectively 
(Supplementary Table 12).

Common variant genetic correlation analyses
We observed a moderate genetic correlation between SND and DCD 
(rg = 0.63, P = 3.62 × 10−25; Supplementary Table 8 and Supplementary 
Fig. 5). Correlation was higher for restrictive SND and DCD (rg = 0.85, 
P = 1.18 × 10−25).

We also evaluated genome-wide correlations between brady-
arrhythmias and ECG/vectorcardiographic features. SND (rg = −0.48, 
P = 3.23 × 10−22), DCD (rg = −0.15, P = 5.76 × 10−6) and PM (rg = −0.31, 
P = 1.94 × 10−25) were genetically correlated with resting heart rate, 
whereas DCD was genetically correlated with conduction times includ-
ing the P-wave duration (rg = 0.36, P = 3.62 × 10−4), PR interval (rg = 0.40, 
P = 1.39 × 10−29) and QRS duration (rg = 0.32, P = 3.18 × 10−11). DCD was 
also genetically correlated with the frontal QRS-T angle (fQRSTa) 
(rg = 0.24, P = 1 × 10−4), a vectorcardiographic measure of global elec-
trical heterogeneity.

For each genetically correlated bradyarrhythmia and ECG trait 
pair, we further evaluated the concordance of effect directions for 
associations of the index variants identified for each member of the 
pair. Consistent with weak-to-moderate overall genetic correlations, 
a moderate proportion (23–67%) of index variants for bradyarrhyth-
mias had concordant associations for respective ECG traits at nominal 
significance (P < 0.05; Supplementary Table 13). A moderate propor-
tion (12–50%) of index variants for ECG traits also showed concordant 
associations with bradyarrhythmias at nominal (P < 0.05) significance.

Common variant polygenic risk score (PRS) analyses
We derived PRSs for SND, DCD and PM in meta-analyses excluding UK 
Biobank (UKBB) individuals. We then evaluated associations between 
each PRS and incident PM in 327,702 unrelated UKBB participants with 
no PM at baseline and observed that, over median 11.2 (Q1–Q3, 10.5–11.7) 
years, increasing tertile of all three PRSs was associated with incident 
PM (n = 2,183 events, P = 1.9 × 10−5 to 4.4 × 10−10; Fig. 3a). Compared to 
the bottom tertile of the SND, DCD and PM PRS, the top tertile had haz-
ard ratios for PM of 1.25 (95% confidence interval (CI): 1.13–1.39), 1.40 
(1.26–1.55) and 1.37 (1.24–1.52), respectively (Supplementary Table 14).

We then performed a PheWAS by examining associations between 
each PRS and 1,329 phecode traits19,20. A PRS for SND was associated 
with multiple traits, including AF, SND, mitral valve disease, valve 
disorders, cerebrovascular disease, nonhypertensive heart failure and 
appendicitis (Fig. 3b and Supplementary Table 15). A PRS for PM was 
associated with a largely overlapping set of cardiovascular conditions. 
In contrast, despite a higher number of susceptibility loci, a PRS for 
DCD was only associated with atrioventricular block and bundle branch 
block. The SND and PM PRS had much stronger associations with AF 
and other tachyarrhythmias compared to DCD, but the SND PRS also 
appeared more strongly associated with valve disorders compared to 
the DCD or PM PRS.

Causal associations
In a bidirectional Mendelian randomization (MR) screen, we examined 
potential causes of bradyarrhythmias (Supplementary Table 16 and 
Supplementary Note) and used causal analysis using summary effect 
estimates (CAUSE, ref. 21) to verify the associations among factors with-
out substantial evidence of directional pleiotropy (Fig. 4 and Supple-
mentary Table 17). For SND, we identified higher AF liability and slower 
pulse rate as potential causal factors when applying CAUSE (P < 0.017)21. 
For DCD, we identified higher height, weight and systolic blood pres-
sure as potential causal factors when applying CAUSE (P < 0.017). For 
PM, higher height, higher systolic blood pressure, and slower pulse 
rate reached a nominal level of significance (0.0083 < P < 0.05), while 
higher AF liability, higher weight and higher coronary artery disease 
liability all reached significance (P < 0.0083) in CAUSE.

As part of our bidirectional MR screen, we assessed brady-
arrhythmias as exposures for other outcomes. We did not find evi-
dence of bidirectional or implausible causal relationships involving 
the exposures nominated for causal effects on bradyarrhythmias. We 
did find evidence for stroke as a potential consequence of SND liability 
and stroke, hematocrit and hemoglobin concentration as potential 
consequences of PM liability, each without significant MR–Egger inter-
cepts (Supplementary Fig. 6), although none were verified by CAUSE 
(P > 0.05). We did not observe substantial genetic evidence for the 
potential consequences of DCD liability.

Common variation and cell-type enrichment in the human 
heart
Using stratified LD score regression (s-LDSC) with single-nucleus  
RNA-sequencing (snRNA-seq) data from adult human myocardial  
samples22, we observed enriched GWAS heritability near cardiomyocyte- 
specific genes for DCD, which may be explained by the inclusion  
of nonspecific intraventricular conduction delay in DCD, or by the  
origin of the conduction system from a cardiomyocyte lineage 
(Extended Data Fig. 1 and Supplementary Table 18)23. In contrast, no 
individual cell type reached significance for SND or PM.

Rare-variant burden test for bradyarrhythmias
Next, we performed rare variant (minor allele frequency (MAF) <0.1%) 
burden testing in 460,000 whole-exome sequenced individuals  
meta-analyzed across UKBB and Mass General Brigham Biobank 
(MGB; Fig. 1). We included 1,766 SND cases, 12,422 DCD cases, 5,645 PM 
cases and 459,047 referents. Various rare variant masks were assessed  
and combined in a layered approach using the Cauchy distribution 
test (Methods). While the meta-analyses showed some evidence for 
inflation for SND (λ95% = 1.25) and PM (λ95% = 1.14), cohort-specific test 
statistics were well-calibrated (Supplementary Fig. 7).

We observed an exome-wide significant (Cauchy P < 2.7 × 10−6) 
burden of rare protein-disrupting variants in LMNA for SND and  
in three genes for DCD (LMNA, SMAD6 and SCN5A; Fig. 5 and  
Supplementary Table 19a). Participants with PM carried a higher  
burden of rare protein-disrupting variants in LMNA, TTN, MYBPC3 
and SCN5A.
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implantation in UKBB participants stratified by PRSs for SND, DCD and PM 
implantation. The shaded area surrounding each line refers to the two-sided 
95% CI. PRSs were constructed using the clumping and thresholding method 
separately for each phenotype (nvariants for SND PRS = 28, nvariants for DCD = 57 and  
nvariants for PM = 51). A total of 327,702 unrelated participants without a history of PM 
implantation at study enrollment were included in the analyses. Participants were 
stratified into three groups based on the tertiles of residuals of each PRS after 
adjustment by the first ten PCs. The statistical significance of the associations 
between tertiles of each PRS and PM incidence was evaluated using analysis of 
variance comparing a Cox proportional hazards model with only sex, age and 

genotyping array as predictors and Cox proportional hazards models with each 
PRS tertile as an additional predictor. The median follow-up time was 11.2 (Q1–Q3, 
10.5–11.7) years. b, Associations of PRS residuals (after adjustment by the first ten 
PCs) for bradyarrhythmias with a wider set of outcomes based on the phecode 
system in 350,872 unrelated individuals in the UKBB. The associations were 
tested by logistic regression, and the P values were based on two-sided tests. Only 
outcomes with at least one significant association after Bonferroni correction 
are shown (P < 3.76 × 10−5), and significant associations are highlighted with black 
borders. A total of 42 outcomes were significantly associated with at least one 
bradyarrhythmia-related PRS. CHF, congestive heart failure; AV, atrioventricular; 
NOS, not otherwise specified; NEC, not elsewhere classified.
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We performed a further examination of individual variation  
classes (Supplementary Fig. 8 and Supplementary Table 19b). In 
LMNA, only missense variants and the combination of missense  
and loss-of-function (LOF) variants were significantly enriched for 
all phenotypes (P = 1.4 × 10−6 to 0.08 for SND, 2.4 × 10−10 to 5.9 × 10−5 
for DCD and 1.6 × 10−22 to 6.5 × 10−4 for PM). Additionally, LOF variants 
showed nominal enrichment when examining all exons in patients with 
DCD or PM (P = 0.02 and 0.006, respectively), or canonical transcripts 
in PM patients (P = 0.03).

For other exome-wide significant genes (TTN, MYBPC3, SCN5A  
and SMAD6), LOF variants had larger effect sizes compared with 
missense variants (odds ratios for LOF variants in canonical tran-
scripts = 2.1–19.3; odds ratios for missense variants in canonical tran-
scripts = 0.8–10.8; Supplementary Fig. 9 and Supplementary Table 19c). 
In SCN5A and SMAD6, however, we observed additional significant 
or suggestive enrichment of missense variants (Cauchy P values for 
missense variants in the canonical transcript = 1.4 × 10−4 to 7.8 × 10−4 
for SCN5A and 1.2 × 10−5 for SMAD6 in DCD). In addition, for every 
exome-wide significant gene, effect estimates of missense variants 
increased commensurately with the proportion of bioinformatics tools 

predicting a damaging/deleterious effect. Findings were generally 
consistent across all eight tested tissue-specific masks.

We then performed replication in the All of Us Research Pro-
gram (853 SND cases, 4,221 DCD cases, 1,147 PM cases and 152,304  
referents)24,25. We excluded samples from Massachusetts (to avoid sam-
ple overlap with MGB) and used a representative mask (for example,  
missense or LOF) for each gene–phenotype pair based on findings  
from the discovery dataset (Supplementary Note). We observed sig-
nificant replication (P < 0.05/8 gene–phenotype pairs = 0.00625)  
for rare protein-disrupting variation in LMNA, SMAD6 and SCN5A  
with DCD and for MYBPC3 with PM (Supplementary Table 20). At a 
nominal level (P < 0.05 with the concordant direction of effect), we 
also replicated evidence for LMNA and TTN with PM.

SMAD6 has been previously associated with congenital cardio-
vascular malformations that may necessitate invasive cardiac 
procedures26,27. However, among UKBB participants, LOF variants in 
SMAD6 remained similarly associated with DCD before (odds ratio = 3.4, 
P = 1.2 × 10−6) and after excluding 24,683 participants with congenital 
heart disease, cardiac surgery or stenosis or regurgitation of the aortic, 
tricuspid or mitral valves (odds ratio = 3.5, P = 3.5 × 10−6), supporting  
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a, Results for SND. b, Results for DCD. c, Results for PM. The y axis represents the 
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annotated in bold with a red or blue color also passed all subsequent filters and 
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only a nominal association using CAUSE (one-sided P < 0.05); traits/diseases 
annotated with smaller font in gray either failed MR–Egger intercept filtering 
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disease.
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a more direct role in DCD rather than an effect mediated by post-
procedural conduction block.

We then assessed associations with PM among carriers of a rare 
LOF or damaging missense variant in any of the five rare variant genes 
of interest among 305,633 unrelated UKBB participants (Fig. 6a and 
Supplementary Table 21). A total of 2.11% (95% CI: 1.76–2.54%) of rare 
variant carriers had prevalent or incident PM compared with 0.98% 
(0.94–1.01%) of noncarriers. Among rare variant carriers (Fig. 6b), 
the proportion with PM was highest in those with LMNA mutations 
(6.59%, 4.09–10.36) and lowest in those with TTN mutations (1.48%, 
1.05–2.06%). When restricted to LOF variants, the proportion of par-
ticipants with PM was greater for a subset of the genes, albeit with less 
precision (Supplementary Fig. 10).

Overlap and interaction between rare and common variations 
associated with bradyarrhythmias
Among genes with a significant burden of rare protein-disrupting  
variants in bradyarrhythmias, two genes (SCN5A and TTN) overlapped 

with GWAS loci. In contrast, no genome-wide significant common  
variant signal was observed in the loci containing LMNA, MYBPC3  
or SMAD6.

We then evaluated the utility of rare variant burden tests in  
prioritizing causative genes in GWAS loci (regions within ±1 Mb of 
index variants). Excepting the exome-wide significant SCN5A and  
TTN, we observed no rare variant signals at a suggestive P-value 
threshold (Supplementary Table 22). However, the well-known cardio-
myopathy genes MYH7 (Cauchy P = 6.6 × 10−3 for DCD, 0.28 for SND and 
3.1 × 10−6 for PM) and NKX2-5 (Cauchy P = 1.6 × 10−3 for DCD, 0.51 for SND 
and 0.07 for PM) were still most strongly prioritized in their respective 
DCD GWAS loci. In contrast, we observed minimal rare variant signals 
in some well-established arrhythmia loci, such as the locus containing 
PITX2 (Cauchy P = 0.07–0.56 for SND, DCD and PM).

We also assessed for common variant associations with ECG traits 
in the regions of genes identified in rare variant association testing. 
We observed genome-wide significant associations with at least one 
ECG trait in the loci of LMNA, TTN, SCN5A and MYPBC3. At the SMAD6 

b

a

21

18

15

12

9

LMNA

LMNA

LMNA

TTN

SCN5A MYBPC3

SCN5A
SMAD6

SND

DCD

–l
og

10
(P

)
–l

og
10

(P
)

–l
og

10
(P

)

PM implantation

6

3

0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 2122

21

18

15

12

9

6

3

0

21

18

15

12

9

6

3

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Chromosome
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

20 2122

20 2122

c

Fig. 5 | Rare-variant association tests. a–c, Gene-level results from rare variant 
burden tests are shown separately for SND (a; n = 460,813), DCD (b; n = 471,469) 
and PM implantation (c; n = 464,692). Two-sided Cauchy P values (on −log10 scale) 
from fixed-effect meta-analysis for each gene are shown on the y axis. Dashed 

lines indicate exome-wide significance thresholds (P < 2.7 × 10−6 after Bonferroni 
correction). Significant associations are presented in red, and gene names are 
annotated.

http://www.nature.com/naturegenetics


Nature Genetics | Volume 57 | January 2025 | 53–64 60

Article https://doi.org/10.1038/s41588-024-01978-2

locus, the most significant common variant association was with the 
PR interval (P = 2.9 × 10−6; Supplementary Table 23).

We then evaluated the interaction of rare and common variation 
in 305,633 unrelated UKBB participants. Among 5,255 carriers of a 
protein-disrupting variant (LOF or predicted pathogenic missense  
variant), a higher tertile of a PM PRS was associated with a higher  
likelihood of PM during study enrollment or follow-up (P = 7.7 × 10−4; 
Fig. 6c and Supplementary Table 24). We observed evidence for  
positive interaction between rare variant status and PRS tertile 
(P = 0.04).

Integration of in silico approaches from rare and common 
variant analyses
To prioritize potentially causal genes, we evaluated multiple lines  
of evidence for all genes within ±500 kb from each index variant— 
nearest genes, polygenic priority score (PoPS)28, variants to genes 
(V2G) scores from Open Targets Genetics29, significant cardiac  
eQTL with colocalization probability ≥0.8, significant cardiac  
TWAS and suggestive evidence from rare variant association test-
ing. Evidence for each gene is given in Supplementary Table 25. We 
observed more than one supporting line of in silico evidence for  
29 genes in 13 loci for SND, 63 genes in 31 loci for DCD and 38 genes 
in 21 loci for PM.

Discussion
We performed large-scale meta-analyses of bradyarrhythmias in 
>1.3 million individuals, including 30,000 cases from ten studies across 
multiple continents. We identified 13 common variant loci for SND, 
31 loci for DCD and 21 loci for PM. Rare-variant association testing in 
460,000 participants uncovered five genes influencing susceptibility 
to bradyarrhythmias. Most associations we identified are new, consist-
ent with expectations, and implicate ion channel function, cardiac 
development, cellular homeostasis and sarcomeric components in 
the pathogenesis of bradyarrhythmias. Cardiomyocyte-specific genes 
contributed significantly to DCD heritability, whereas cell-specific 
enrichments were less evident for SND and PM.

Our findings support and extend previous analyses by expand-
ing sample sizes, increasing precision for specific bradyarrhythmia 
subtypes and exploring the shared genetics of cardiac arrhythmias. 
Although rare familial forms of isolated conduction system disease 
exist, only ~5% have an identifiable mutation30, most commonly in 
cardiac ion channels (refs. 6,31,32). Familial conduction diseases can 
co-occur with cardiomyopathy, in which case mutations are more com-
monly found in cardiac transcription factors33 or structural genes30. 
Here we observed robust associations between distinct bradyarrhyth-
mias and rare variations in SCN5A, LMNA, MYH7 and MYBPC3. Moreover, 
we identified an association between DCD and protein-disrupting 
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variants in SMAD6, which was replicated in an independent dataset. 
SMAD6 is a structurally distinct member of the SMAD family of pro-
teins within the transforming growth factor-β pathway and a prefer-
ential inhibitor of bone morphogenic protein responses34. Although 
protein-disrupting mutations in SMAD6 have previously been linked 
with congenital cardiac malformations26,27, the DCD association  
was robust to the exclusion of participants with congenital or struc-
tural heart disease, suggesting that functioning SMAD6 is required  
for normal development or maintenance of the distal conduction 
system.

In addition to rare variants, our findings substantially expand 
our understanding of the contribution of common genetic variation 
to bradyarrhythmias. Here we identified common variant association 
signals in known monogenic bradyarrhythmia loci (HCN4 for SND and 
SCN5A/SCN10A for SND and DCD), replicated four previously reported 
loci for SND (CCDC141, SCN5A/SCN10A, PITX2 and ZFHX3) and identi-
fied multiple new and partly distinct common variant associations 
for SND and DCD. Despite the convergence of some rare and common 
variant signals, the GWAS loci were much more numerous. In addi-
tion to lower statistical power, the lack of rare variant association 
signals may also stem from the underrepresentation of individuals 
with severe brady arrhythmias given attained age at sample collec-
tion (that is, interquartile range = 50–63 in UKBB and 38–66 in MGB) 
or depletion of damaging variants in the general population due to 
premature mortality or embryonic lethality, as previously suggested 
for the essential transcription factor PITX2 (ref. 35). Thus, common 
variant analyses, enabled by much larger sample sizes, may facilitate 
broader biological insights.

Although the loci we identified span a wide range of cardiac biol-
ogy, our results generally highlight a critical role of cardiac ion chan-
nels in the development of bradyarrhythmias. We identified several 
associations implicating ion channel genes, including SCN5A, SCN10A, 
HCN4, CAMK2D and RNF207. At the SCN5A/SCN10A locus, we observed 
spatially distinct localization of primary signals within SCN5A for SND 
and within SCN10A for DCD. Mutations in SCN5A are known causes 
of familial SND, long QT syndrome type 3 and Brugada syndrome31. 
Noncoding enhancers within SCN10A have been shown to regulate 
SCN5A expression36. The locus containing HCN4, a gene that encodes 
an ion channel responsible for spontaneous sinus PM activity and a 
cause of familial sinus bradycardia6, was associated with SND. The ion 
channel-related proteins RNF207, a delayed rectifier and voltage-gated 
potassium channel regulator, and CAMK2D, a kinase that regulates 
myocyte calcium homeostasis and excitation–contraction coupling, do 
not appear to have been previously associated with bradyarrhythmias. 
The locus containing RNF207 is associated with the QT interval37,38, 
and knockdown of RNF207 in zebrafish has been reported to result 
in reduced conduction velocity and occasional 2:1 atrioventricular 
block39.

Common variations in genes relevant to cardiac development 
and cellular homeostasis appear to broadly influence the risk of brady-
arrhythmias. In addition to the known SND gene CCDC141, involved in 
the centrosomal function and neural migration, we identify additional 
loci including CEP68 and ITGA9, encoding proteins involved in centro-
somal cohesion and cell–cell and cell–matrix adhesion, respectively, 
and GIGYF1, participating in insulin-like growth factor 1 signaling. 
Protein-disrupting mutations in GIGYF1 have been recently implicated 
in type 2 diabetes, adverse metabolic health and clonal mosaicism40,41, 
consistent with our observation that higher predicted expression of 
GIGYF1 is associated with lower risk of SND. Broadly, our findings sug-
gest that genes involved in cellular function and maintenance appear 
to influence bradyarrhythmia risk at multiple levels of the cardiac 
conduction system.

Activation or repression of cardiac development and cell fate 
programs, which have been reported for tachyarrhythmias such 
as AF and supraventricular tachycardia, also appear important for 

bradyarrhythmias. Both NKX2-5 and TBX20 encode transcription fac-
tors important for the appropriate development of the cardiac septum, 
which houses critical components of the conduction system. We also 
observed an association between SND and PITX2, a well-known AF 
susceptibility locus critically involved in the promotion of correct 
left–right differen tiation in the developing heart and specification 
of pulmonary vein myocardial sleeves42. Several other new associa-
tions, such as ERBB4 and BAG3, primarily with DCD and PM, implicate 
potentially abnormal cardiac developmental programs as risk factors 
for bradyarrhythmias.

Despite some common signals, our analyses also highlight distinct 
genetic mechanisms underlying bradyarrhythmias originating from 
the sinus node versus the distal conduction system. Of the 13 significant 
loci identified for SND and 31 loci identified for DCD, only 4 (CAMK2D, 
CCDC141, SCN5A/SCN10A and TBX20) were shared. Genome-wide cor-
relations with electrocardiographic traits also yielded distinct asso-
ciation profiles, as we observed genetic correlations between cardiac 
conduction times and DCD but not SND. Moreover, we observed a 
greater overlap between AF loci and SND versus DCD. Several loci 
specific to DCD appear to be involved in diverse processes such as cel-
lular apoptosis (for example, BCL2), cellular metabolism (for example, 
PPARGC1A) and inflammation (for example, IL25).

Our findings raise several considerations for future research 
efforts and translation of insights into the management of human 
disease. First, our observation of the substantial contribution of car-
diomyocyte genetics to DCD heritability supports current consensus 
recommendations to maintain a high index of suspicion for a potential 
cardiomyopathic process even among individuals presenting with 
apparently isolated conduction system disease31. Second, the identi-
fication of specific genetic contributors to bradyarrhythmia subtypes 
represents an important initial step toward the future development 
and validation of genetic risk stratification tools. Third, although we 
used complementary approaches to identify candidate genes, we 
acknowledge that the potential role of several genes remains poorly 
defined. Future experimental work to elucidate specific mechanisms 
by which candidate genes may affect bradyarrhythmia development 
is warranted. Fourth, especially given the current absence of medi-
cal treatments for bradyarrhythmias, our findings prioritize specific 
genes and respective pathways (for example, SCN5A and SMAD6) and 
potentially causal risk factors (for example, weight and blood pres-
sure), whose modification may ultimately prove capable of prevent-
ing and treating bradyarrhythmias. Fifth, MR analyses examining 
bradyarrhythmia trait-related variants as exposures were limited in 
statistical power; future work based on larger sample sizes is needed 
to understand the potential causal associations of bradyarrhythmias 
with other outcomes.

Our results should be interpreted in the context of the study 
design. First, to maximize statistical power for relatively rare diseases, 
we used all samples for discovery. Generally consistent variant effect 
sizes across multiple datasets support the validity of our findings, 
although future replication in even larger external studies is war-
ranted. Second, participants of some cohorts, such as the UKBB, may 
be healthier than average. Third, study participants were predomi-
nantly of European ancestry. We anticipate that larger multi-ancestry 
biorepositories will enable the assessment of the generalizability of 
our findings. Fourth, although we used ECG-based diagnoses in the 
three cohorts in which they were available, we primarily leveraged 
diagnostic and procedural codes to define SND and DCD, an approach 
with limited sensitivity for bradyarrhythmia conditions, which may be 
asymptomatic. Nevertheless, our findings demonstrated a very high 
correlation between effect sizes from a meta-analysis of all studies  
versus studies including ECG-based diagnoses (Supplementary Fig. 11). 
In addition, we observed consistent results in our restrictive anal-
yses requiring PM, which is less subject to misclassification. Fifth, 
indications for PM and practices regarding device type (for example, 
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single-chamber versus dual-chamber) vary across settings, and analyses  
stratified by device type are outside the scope of our study. Sixth, to 
maximize bradyarrhythmia cases, our DCD definition included non-
specific intraventricular conduction delays, which may indicate disease 
within the specialized conduction system (for example, relatively bal-
anced delay within the bundle branches)43, versus conduction delay 
at the level of cardiomyocytes. Refined subtyping of DCD may reveal 
pattern-specific biological insights in the future. Finally, although 
we report comprehensive genetic discovery analyses, future work is 
needed to understand the underlying biological pathways and causality 
of individual genes in the identified loci.

In summary, we performed common variant genetic association 
testing in ten study populations across two continents, representing 
>1.3 million individuals and 30,000 cases with either SND, DCD or PM. 
We identified 13 genome-wide significant loci for SND, 31 loci for DCD 
and 21 loci for PM, with most being new. Rare-variant burden testing 
identified five genes, including the new association of SMAD6 with 
DCD. Our findings suggest that variations in multiple genetic pathways 
including ion channel function, cardiac developmental programs, sar-
comeric structural components and cellular homeostasis are critical 
to the development of bradyarrhythmias.
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Methods
Study sample of common variant GWAS
We performed meta-analyses of common variant GWAS with at least 
100 cases from ten participating studies, and we present methodo-
logical details of data collection, genotyping, imputation and quality 
controls in the Supplementary Note and Supplementary Table 26. All 
participants provided verbal or written consent, and participating 
studies were approved by their respective ethics committees or insti-
tutional review boards.

Phenotype definitions
All phenotypes were determined using relevant International Classi-
fication of Diseases, Ninth or Tenth Revision (ICD-9 or ICD-10) codes, 
presence of relevant procedural codes, medical history or standard 
12-lead electrocardiogram data in a study-specific manner as described 
in the Supplementary Note and Supplementary Table 27. SND was 
defined as the presence of a diagnosis of sinoatrial node dysfunction or 
sick sinus syndrome. DCD was defined as atrioventricular nodal disease 
or more distal conduction disease, including first-degree AV block, 
second-degree atrioventricular (AV) block, third-degree AV block, 
bundle branch block or combinations of those conditions. PM included 
codes corresponding to PM implantation, replacement, removal or 
interrogation. In secondary analyses, we defined more restrictive early 
onset SND and DCD definitions focusing on cases with disease-onset 
age before 75 years and a history of PM implantation. We excluded 
individuals with valvular heart disease, cardiac surgery or myocardial 
infarction at or before the time of bradyarrhythmia diagnosis because 
these conditions may secondarily cause conduction disease.

Common variant GWAS
Ancestry-specific common variant GWAS were performed separately 
in each participating study site. Common variant genetic association 
testing assumed an additive genetic model, and study-specific statisti-
cal models are described in Supplementary Table 26.

Post-GWAS quality controls were performed centrally using 
EasyQC (v11.4)44. We removed variants with invalid or mismatched 
alleles from the reference file (1000 Genomes p1v3 European/African/
Admixed American samples), duplicates, variants with poor imputation 
quality (INFO < 0.3), rare variants (MAF × number of cases × INFO < 10) 
or variants with invalid summary statistics. To ensure the variant posi-
tion was consistent across studies, we used LiftOver45 to align each 
variant to Genome Reference Consortium Human Build 37 positions 
before meta-analysis.

Meta-analysis of common variant GWAS
We performed separate meta-analyses of six studies of SND (five SND 
restrictive), nine studies of DCD (five DCD restrictive) and nine stud-
ies of PM using a fixed-effects approach implemented in METAL46. To 
control for inflation due to population structure, we applied genomic 
control to all studies. We removed variants present in only a single study 
and insertion–deletion variants to avoid mismatch across studies. We 
set the GWAS significance threshold at P = 5 × 10−8, and we only report 
the top (index) variants within a ±1 Mb range or a peak region (if appro-
priate) with at least one supportive variant nearby (P < 1 × 10−6). We used 
the qqman47 packages in R v4.0 to generate Manhattan and Q–Q plots.

We applied the conditional and joint analysis approach in 
genome-wide complex trait analysis (GCTA)-cojo (v1.93.2beta) to the 
summary statistics to identify independent signals at identified loci48. 
Based on the suggestions from GCTA) developers (that is, minimum 
refe rence sample size >4,000 individuals), we specifically conditioned 
on all index variants with LD information from 322,987 unrelated Euro-
pean individuals in the UKBB who contributed to all examined pheno-
types in this analysis. We included all biallelic hard-call transformed 
(probability >0.8) common single-nucleotide polymorphisms with 
a MAF ≥ 0.01.

Effect on gene expression and pleiotropic associations
We assessed the association of index variants and their proxies (r2 ≥ 0.6 
in 1000 Genomes p3v5 European participants in a 1-Mb window) with 
gene expression in two heart tissues (right atrial appendage and left 
ventricle) from Genotype-Tissue Expression (GTEx, v8)49. We report 
all significant eQTL with q value < 0.05. We assessed the PP of shared 
causal variants between GWAS and eQTL results, using the coloc R 
package50. The testing region comprised all variants in both the eQTL 
(minimum to maximum position of significant eQTL of the gene) and 
GWAS (minimum to maximum position of the top GWAS significant 
variant within ±250 kb) regions and an additional ±5 kb.

We also performed TWAS to test associations between predicted 
gene expression in the aforementioned two heart tissues and each 
phenotype using the elastic-net model in S-Predixcan (MetaXcan pack-
age, v0.7.4)51. We considered expressed genes significant based on a 
P-value threshold of 0.05 divided by the total number of tested genes.

We accessed the National Human Genome Research Institute- 
European Bioinformatics Institute (NHGRI-EBI) GWAS Catalog 
(accessed on 11 January 2023) to explore whether index variants or 
their proxies were previously reported for other cardiovascular dis-
orders13. Additionally, we compared associations for bradyarrhythmias 
and AF based on summary-level data from large AF meta-analyses10–12. 
To examine overall genetic links among bradyarrhythmias and with 
electrocardiographic and vectorcardiographic endophenotypes as 
reported in previous GWAS52–57, we performed genetic correlation 
analyses, using LDSC with European LD scores from 1000 Genomes 
provided by LDSC (v1.0.1) package58,59.

To further clarify the genetic association between bradyarrhyth-
mias and other traits, we performed a meta-analysis without individuals 
from UKBB and derived PRS for SND, DCD and PM without ambiguous 
variants (A/T or C/G) or variants only available in one study, using the 
clumping and thresholding method (P-value cut-off = 5 × 10−8, r2 = 0.5 
in 1000 Genome p3v5 European participants, window size = 2 Mb) 
in PLINK. Due to the high genome-wide correlations of bradyar-
rhythmia subtypes but distinct locus architecture, we limited PRS 
to genome-wide significant variants in each GWAS meta-analysis to 
reduce pleiotropic associations. We calculated PRS by summing the 
product of effect sizes and allele dosages in the top loci and evaluated 
the associations of the PRS with incident PM implantation using Cox 
proportional hazards models with survival time from study enrollment 
to PM implantation or censoring as the time scale and sex and age as 
additional covariates. We removed close relatives, prioritizing the 
inclusion of PM cases. In addition to the exclusion criteria applied to 
our main analysis (Supplementary Table 27), participants with preva-
lent SND, DCD or PM at study enrollment were excluded from incident 
disease analyses, leaving a total of 327,702 unrelated UKBB European 
individuals (2,183 with PM) for analyses, with a median of 11.2 (Q1–Q3, 
10.5–11.7) years of follow-up. Individual-level PRS in these analyses 
were the residuals of each PRS after adjusting for the first ten principal 
components (PCs).

We additionally performed logistic regression to assess the asso-
ciations between SND, DCD and PM PRS residuals (PC adjusted) with 
1,329 disease outcomes (with at least 100 cases), defined using v1.2  
of the phecode map19,20. Models were fit within 350,872 unrelated 
UKBB European individuals with complete information on genetic 
and disease status (regardless of their bradyarrhythmia status at study 
enrollment). Models were adjusted for age at enrollment, sex and 
genotyping array. Significant P-value thresholds for genetic correlation 
and PRS association tests were adjusted for multiple testing using the 
Bonferroni correction.

Causal associations from bidirectional MR analysis
For each of the bradyarrhythmia GWAS, we performed a bidirectional 
MR screen for 74 other bradyarrhythmia-related traits to test causality  
between the given bradyarrhythmia and relevant cardiovascular 
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traits. Because UKBB data are typically included in all contemporary, 
well-powered GWAS, we used bradyarrhythmia GWAS meta-analyses 
that excluded UKBB for all MR analyses to minimize sample overlap in 
two-sample MR. The GWASs for the other 74 traits encompassed a list 
of relevant phenotypes, including AF10, heart failure60, coronary artery 
disease61, type 2 diabetes62, chronic kidney disease63, thyroid disease64, 
smoking, alcohol use65, stroke66 and additional commonly measured 
quantitative traits (including blood pressure, anthropometry and 
laboratory values)67. The GWAS summary statistics were chosen such 
that they were largely of European ancestry, and if European-only 
summary statistics were available, those were used (this was chosen 
to make the LD structure most comparable to the bradyarrhythmia 
GWAS). Furthermore, studies were preferably chosen so that FinnGen 
was not included in the GWAS to keep sample overlap to a reasonable 
minimum for two-sample MR. An exception was stroke, for which  
we used a GWAS that included FinnGen and several non-European  
datasets, as other publicly available GWAS were relatively 
underpowered.

The bidirectional MR screen was performed to test genetic liabil-
ity to each of the three bradyarrhythmia traits (SND, DCD and PM) 
against genetic liability to 74 other traits (Supplementary Table 16). 
For each trait pair, genetic liability to the bradyarrhythmia trait was 
in turn evaluated as the outcome and as the exposure. In total, there 
were 222 trait pairs (74 for each bradyarrhythmia trait) and 444 tests. 
For any given MR comparison, we first harmonized summary statis-
tics by (1) lifting over to GRCh37 if on a different build, (2) removing 
ambiguous variants and InDels, (3) removing variants with <70% of 
the total case numbers contributing to the bradyarrhythmia GWAS, 
(4) removing variants with MAF < 1% in either study (if present in the 
summary statistics), (5) removing variants with imputation accuracy 
<0.3 in either study (if present in the summary statistics), (6) aligning 
effect and reference alleles and (7) restricting to variants also present 
in the LD reference (built from 5K random European ancestry sam-
ples from UKBB). After the harmonization, before MR, variants were 
filtered and pruned based on genome-wide significance (P < 5 × 10−8) 
and r2 < 0.0005 taking 10-Mb windows. The initial screening step was 
performed using the weighted median method implemented in the 
R-package TwoSampleMR (v0.5.6). The weighted median method may 
give more robust results than the inverse-variance-weighted approach 
in the case of outliers68. Any signal, for a given bradyarrhythmia GWAS, 
with P < 3 × 10−4 (0.05/(2 × 74 traits)) was determined significant in the 
screening phase and proceeded further.

In a second phase, we removed associations with significant MR–
Egger intercept (P < 0.025), to exclude results potentially driven by 
major directional pleiotropy bias in the initial screen68. In the final 
confirmatory phase, we used the sophisticated mixture model in CAUSE 
(v1.2.0)21. In short, CAUSE assesses whether GWAS data for two traits 
are consistent with a causal effect by fitting and comparing two nested 
models. These include a ‘sharing’ model that allows only a pleiotropic 
pathway and a ‘causal’ model that additionally estimates a causal path-
way. These models are compared using the expected log pointwise 
posterior density, and a one-sided P value is computed from a z test 
comparing the ‘causal’ model to the ‘sharing’ model. For step 1 of CAUSE 
(estimating nuisance parameters), we used default parameters that 
include using 1 million random genome-wide markers for parameter 
estimation. For step 2 of CAUSE (estimating causal effects), we used 
filtered and pruned variants (two-sided P < 0.001 and r2 < 0.0005 over 
10-Mb windows) and otherwise default parameters. Significance for 
CAUSE was corrected for the number of comparisons that reached 
the final phase (that is, passed all screening and previous filters)  
for the given exposure/outcome set. For instance, if five potential  
risk factors were identified for a bradyarrhythmia trait in the screen-
ing phase, of which one was removed due to failing the MR–Egger  
filter, then the significance level for CAUSE was set to P < 0.05/4  
for that set.

Cell-type enrichment with s-LDSC
To identify relevant cell types for bradyarrhythmia GWAS, we used 
s-LDSC69 as described in ref. 70. Using snRNA-seq data from ref. 22, 
we defined cell-type-specific gene expression profiles by collapsing 
nuclei into nine major cell types from the human heart. We tested for 
differentially expressed genes in each cell type compared to all other 
cell types by summing gene expression counts for each combina-
tion of individual, cell type and chamber across all nuclei to create a 
pseudo-bulk expression profile. If a given combination of individual, 
cell type and chamber had less than 20 nuclei, it was omitted. Lowly 
expressed genes were removed using the function filterByExpr() in 
edgeR71. After DESeq2 normalization72, differential expression testing 
was performed using the limma-voom framework73 with a design of 
~0 + cell_type + individual + chamber and extracting an explicit con-
trast comparing expression in each cell type to all other cell types. For 
each cell type, we defined the cell-type-specific profile as the top 10% 
most upregulated genes based on the t statistic from the differential 
expression test.

We then annotated SNPs near cell-type-specific genes by build-
ing a 100-kb window on either side of the transcribed region of each 
gene annotated to a particular cell type, as described in ref. 70 All  
gene coordinates were based on the GRCh38 gene reference used  
in the snRNA-seq data analysis. To test for enriched heritability in 
regions near cell-type-specific genes, we mapped GWAS summary  
statistics to GRCh38 using LiftOver45 and ran s-LDSC with our cell-type- 
specific annotations along with the baseline model69 using the pre-
viously derived 1000 Genomes European ancestry LD reference. 
To account for the nine cell types tested for each GWAS trait, we 
applied a Bonferroni significance cut-off by setting significance at 
0.05/9 = 0.0056.

Rare-variant association tests
We performed exome-wide rare variant burden tests from whole- 
exome-sequencing data for SND, DCD and PM in UKBB and MGB  
(nSND cases, UKBB = 803; nSND cases, MGB = 963; nDCD cases, UKBB = 9,379; nDCD cases, MGB =  
3,043; nPM cases, UKBB = 4,091; nPM cases, MGB = 1,554; nreferents, UKBB = 414,360; 
nreferents, MGB = 44,687). Details of the datasets, quality controls and  
variant annotations are described in the Supplementary Note and Sup-
plementary Table 28. Within both datasets, we used REGENIE (v3.1.3)74 
to perform burden tests across various rare variant masks. The REGENIE 
null model (step 1) was fit using genome-wide autosomal common vari-
ants from genotype array data, adjusting for sex, age, age2, sequencing 
batch, ancestral PCs 1–4, as well as any component from 5 to 20 if associ-
ated with any of the outcomes. In step 2, a logistic regression model was 
used to test for the association between rare variant burdens and the 
outcomes; an approximate Firth’s regression—with back-computation 
of s.e.—was used for associations reaching nominal P < 0.05 (ref. 74). 
The same covariates were applied for step 2, additionally adding the 
REGENIE PRS as a fixed effect67,74. Study-specific results were subse-
quently meta-analyzed using a fixed-effects inverse-variance weighted 
meta-analysis approach. Before meta-analysis, any results with <10 
alternative allele carriers were removed, while after meta-analysis, 
mask results with <20 alternative allele carriers were removed; this was 
done to avoid spurious results from low allele count.

For each gene, up to 198 different masks were tested for associa-
tion with a given outcome. The different masks were based on 2 filters 
for MAF (<0.1% and <0.001%), 11 filters based on variant annotation 
(LOF, missense with different predicted-deleteriousness cutoffs40, 
LOF + missense) and 9 filters based on affected transcripts (canonical 
transcript, all exons, seven tissue-specific transcripts as determined 
by pext values). We used a layered approach to combine the many 
mask-phenotype P values into a single gene–phenotype P value using 
the Cauchy distribution test75. The Cauchy distribution test allows for 
valid aggregation of multiple, potentially correlated test statistics into 
a single omnibus test statistic. Details on this pipeline, including details 
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on the various filters and Cauchy combination layers, are presented in 
Extended Data Fig. 2.

We used two approaches to identify bradyarrhythmia-related 
genes. First, we identified exome-wide significant genes with Cauchy 
P < 2.7 × 10−6 for each of the phenotypes. For all exome-wide significant 
genes, we further explored the most relevant variation classes con-
tributing to the Cauchy test (that is, the variant class with the lowest  
nominal P value). Second, we evaluated the intersection of rare and 
common variation by examining the Cauchy P values of all genes within 
±1 Mb of index variants in all GWAS loci. Suggestive significance thresh-
olds for these genes were set by correcting P values for the number of 
tested genes across GWAS loci for each phenotype.

We performed additional sensitivity analyses for LOF variation in 
SMAD6, evaluating their association with DCD among UKBB partici-
pants using logistic regression and identical covariates to the discovery 
analyses. Analyses were performed separately in all whole-exome 
sequenced UKBB participants and in participants without prevalent 
or incident congenital heart disease, cardiac surgery, or stenosis or 
regurgitation of the aortic, tricuspid or mitral valves.

To verify the findings from our rare-variant analysis, we examined 
representative rare variant masks for each of the identified gene– 
phenotype pairs within the All of Us Research Program. To avoid 
potential issues of sample overlap between this dataset and MGB, we 
excluded any individual with a ZIP code from Massachusetts. After 
applying phenotypic inclusion and exclusion criteria similar to those 
used in discovery analyses, including additional All of Us-specific data 
sources (Supplementary Table 29), we then restricted to unrelated par-
ticipants with available electronic health records and whole-genome 
sequencing data, leaving 853 SND cases, 4,221 DCD cases, 1,147 PM cases 
and 152,304 referents. Firth’s logistic regression models were used to 
assess the associations between rare variant masks and bradyarrhyth-
mia outcomes. Details regarding the All of Us cohort, sample selection, 
quality control, phenotyping, rare variant masking and association 
analyses are described in the Supplementary Note.

Finally, we calculated estimates of the proportion of unrelated 
UKBB participants who had prevalent or incident PM. We derived esti-
mates separately for participants with and without protein-disrupting 
variants (defined as LOF variants or missense variants predicted to 
be damaging/deleterious by over 80% of bioinformatics tools) and 
further stratified analyses by the tertiles of a PRS for PM adjusted 
for the first ten PCs. We used the Agresti–Coull method to calculate 
binomial 95% CIs.

Aggregating gene scores from various gene features
To determine the nearest gene, we sorted all genes within ±500 kb 
from our index variants and determined the closest genes (between 
the transcription start site and our index variant) and assigned gene 
annotation (that is, index variant overlap with gene body).

To calculate PoPS scores, we first performed gene region-based 
analysis with MAGMA (v1.10)76 using the 1000 Genomes Phase 3 Euro-
pean subset as a reference dataset and then computed PoPS scores for 
18,383 genes using the full set of features provided with PoPS (v0.2)28.

We accessed the overall V2G score from Open Targets Genetics29. 
The scores were the sum of weighted data, including in silico functional 
prediction, various QTL, interaction and distance.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The data for eQTL look-ups in this manuscript were obtained from the 
Single-Tissue cis-QTL Data from Datasets at the GTEx Project for Portal 
(https://gtexportal.org/). The GWAS summary statistics of various 
health outcomes for GWAS look-ups were obtained from the GWAS 

Catalog (https://www.ebi.ac.uk/gwas/). GWAS summary statistics used 
in genetic correlation analyses were obtained from the GWAS Catalog, 
Cardiovascular Disease Knowledge Portal at https://cvd.hugeamp.
org/ or the lead authors of relevant studies. The summary statistics 
for quantitative traits used in the MR analyses were obtained from the 
Cardiovascular Disease Knowledge Portal (https://personal.broadinsti-
tute.org/ryank/Jurgens_Pirruccello_2022_GWAS_Sumstats.zip), while 
the other summary statistics came from various studies as described 
in the Methods. The single-cell data for cell-type enrichment analyses 
were obtained from the single-cell portal at https://singlecell.broadin-
stitute.org/single_cell/study/SCP498/. The human genome reference 
builds (NCBI36/hg18, GRCh37/hg19 and GRCh38/hg38) are included 
as part of the local LiftOver tool (https://genome.sph.umich.edu/wiki/
LiftOver#Lift_genome_positions) and on the LiftOver website (https://
genome.ucsc.edu/cgi-bin/hgLiftOver). This study used data from the 
All of Us Research Program’s Controlled Tier Dataset v7, available to 
authorized users on the Researcher Workbench.
The full common variant GWAS summary statistics are available on 
dbGaP (accession phs001672.v11.p1). Common variant GWAS summary 
statistics without MVP-specific variants, rare variant analysis results 
and PRSs are available on the Cardiovascular Disease Knowledge Portal 
at https://cvd.hugeamp.org/.

Code availability
We used publicly available software to conduct analyses, details of 
which are listed in the Methods and below. The genotyping calling 
software and software used to impute variants in each participating 
cohort are detailed in Supplementary Table 20. Alignment, processing 
and joint-calling of sequenced variants in MGB were performed using 
the Genome Analysis ToolKit (GATK v4.1). Alignment of sequenced vari-
ants in UKBB using Burrows-Wheeler Aligner-Maximum Exact Matches 
(BWA-MEM), calling using DeepVariant (v0.10.0) and joint genotyping 
using GLNexus (v1.3.1) have been described in detail elsewhere (https://
biobank.ndph.ox.ac.uk/showcase/ukb/docs/UKB_WES_Protocol.pdf).
Software used for GWAS is detailed in Supplementary Table 20. 
Post-GWAS quality controls were performed centrally using EasyQC 
(v11.4). Local LiftOver (https://genome.sph.umich.edu/wiki/
LiftOver#Lift_genome_positions) or LiftOver site (https://genome.
ucsc.edu/cgi-bin/hgLiftOver) were used to align variants to the 
Genome Reference Consortium Human Build 37 or 38 if necessary. 
The meta-analyses were conducted using METAL version ‘2018-08-
28’. Subsequent analyses were performed using R (v3.6.0, v4.1 and 
v4.3.0), GCTA (v1.93.2beta), S-PrediXcan (MetaXcan package v0.7.4), 
LDSC (v1.0.1), CAUSE (v1.2.0), custom pipeline (https://github.com/
seanjosephjurgens/MR_pipeline_sjj) and PLINK (v1.90b1g) and PLINK 
2.0. Variants were annotated for rare variant association testing in 
each dataset using dbNSFP (v4.2a for MGB and v4.3a for UKB) and the 
Loss-of-Function Transcript Effect Estimator plug-in implemented in 
the Variant Effect Predictor (v105). The tx_annotation tool (https://
github.com/macarthur-lab/tx_annotation) was used to annotate 
variants with their tissue-specific ‘proportion expression across tran-
scripts’ (pext) values. Rare-variant association testing was performed 
using REGENIE v3.1.3.
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Extended Data Fig. 1 | Heritability enrichment for bradyarrhythmias in nine 
major cell types from human heart. Results of stratified LD score regression 
(s-LDSC) on the combined major cell types in heart. One-sided P values were 
derived by testing for GWAS heritability enrichment near cell-type-specific 

genes controlling for an annotation based on SNPs near any gene and 52 
additional baseline annotations from s-LDSC. Dashed lines show statistical (red, 
with Bonferroni correction) and nominal (blue, P = 0.05) significant P-value 
thresholds.
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Extended Data Fig. 2 | The layered Cauchy combination pipeline in rare 
variant studies of bradyarrhythmia, as applied for each gene. a, Birds-eye 
view of the pipeline as applied to each transcript of a given gene. As shown on the 
far left, we defined 9 ‘transcripts’ that were defined as (1) all exons; (2) canonical 
gene transcripts as determined by Ensemble; (3) aortic expressed transcripts, 
formed by variants with aortic-specific pext values ≥ 0.8; (4) atrial appendage-
expressed transcripts; (5) left ventricle-expressed transcripts; (6) coronary 
artery-expressed transcripts; (7) tibial artery-expressed transcripts; (8) whole 
blood-expressed transcripts; and (9) mean transcript expression across GTEx 
tissues. For each of the defined gene transcripts, burden-testing P values based 
on LOF variant masks were combined into a single P value using the Cauchy 
distribution test; burden-testing P values based on various missense masks 
were combined into a single P value using the Cauchy distribution test; and all 

LOF + missense burden P values were combined into a single P value using the 
Cauchy distribution test. Then the LOF, missense and LOF + missense P values 
were combined into a single transcript P value using the Cauchy distribution 
test. This approach was repeated across the different transcripts, after which 
the various transcript P values were finally combined into a single P value for 
the gene–phenotype association using the Cauchy distribution test. All P values 
are two-sided. b, Schematic showing in more detail the various frequency and 
annotation filters used within the pipeline for a given transcript. Mainly, two 
frequency filters were applied (MAF < 0.1% and MAF < 0.001%), and 11 different 
annotation filters were used (1 annotation for LOF variants and 5 for missense 
variants). The cutoffs for missense variants are based on the proportion of 
bioinformatic tools that predict a deleterious effect for the given missense 
variant.

http://www.nature.com/naturegenetics







	The impact of common and rare genetic variants on bradyarrhythmia development
	Results
	Common variants associated with SND
	Common variants associated with DCD
	Common variants associated with PM implantation
	Common variant genetic correlation analyses
	Common variant polygenic risk score (PRS) analyses
	Causal associations
	Common variation and cell-type enrichment in the human heart
	Rare-variant burden test for bradyarrhythmias
	Overlap and interaction between rare and common variations associated with bradyarrhythmias
	Integration of in silico approaches from rare and common variant analyses

	Discussion
	Online content
	Fig. 1 Study design.
	Fig. 2 Manhattan plot for bradyarrhythmias.
	Fig. 3 Associations of polygenic risk scores for bradyarrhythmias with outcomes in unrelated UKBB participants.
	Fig. 4 Causal links of bradyarrhythmias with potential causes.
	Fig. 5 Rare-variant association tests.
	Fig. 6 PM implantations in carriers of protein-disrupting variants among 305,633 unrelated UKBB participants.
	Extended Data Fig. 1 Heritability enrichment for bradyarrhythmias in nine major cell types from human heart.
	Extended Data Fig. 2 The layered Cauchy combination pipeline in rare variant studies of bradyarrhythmia, as applied for each gene.




