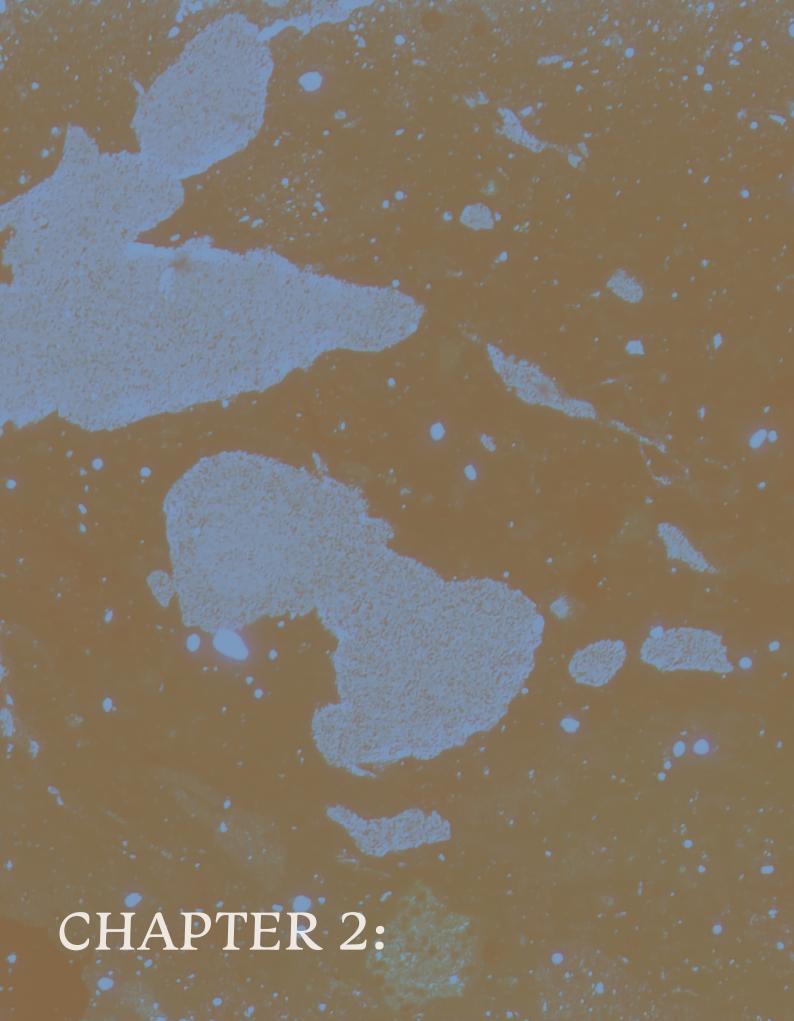


Connecting crafting communities: reconstructing interactions between communities in and out of Cyprus in the early third millenium BC Hadjigavriel, M.

Citation

Hadjigavriel, M. (2025, May 22). Connecting crafting communities: reconstructing interactions between communities in and out of Cyprus in the early third millenium BC. Retrieved from https://hdl.handle.net/1887/4246917


Version: Publisher's Version

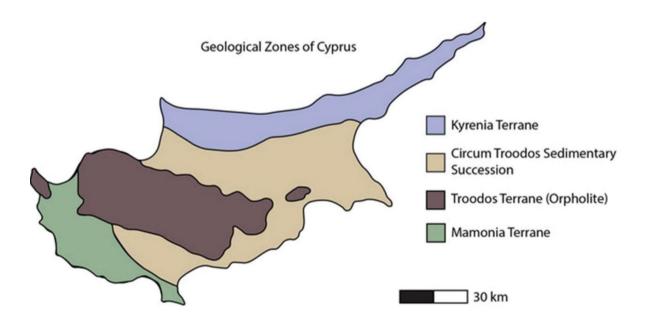
License: License agreement concerning inclusion of doctoral thesis in the Institutional

Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/4246917

Note: To cite this publication please use the final published version (if applicable).

Chapter 2 — Cyprus and Cilicia in the Third Millennium BC


Prehistoric Cyprus and Cilicia, in Anatolia, have been studied extensively and are the focal points of numerous publications (e.g. Mellink, 1991; Bolger, 2007; 2013; Peltenburg, 2007; 2018; Webb & Frankel, 2007; Goldman, 1956; Sagona & Zimansky, 2009; Eslick, 2024). When it comes to the early third millennium BC, literature on both areas is filled with various regional characteristics, diverse periodization and chronologies, and a number of debates on topics like the nature of the Anatolian Trade Network or the emergence of the Bronze Age in Cyprus (e.g. Crewe 2023). This chapter is an attempt to navigate through the immense –and often contradictory, literature on the archaeology of Cyprus and Cilicia and to present a summary of the current state of scholarship. To do so, this chapter consists of three sections: a section focused on Cyprus in the third millennium BC, followed by a section focused on Cilicia in the same period, and finally, a section dealing with the current debates concerning the interactions between these two regions.

2.1. Cyprus in the Third Millennium BC

2.1.1. Geography and Environment

Cyprus is the third largest island in the Mediterranean Sea, after Sicily and Sardinia, with a territorial extent of 9521 km². It is located at the edge of eastern Mediterranean, in between Turkey, the Levantine coast and Egypt. It has been an island with no land connecting it to the neighbouring lands at least since the Pliocene (Stanley-Price, 1979, pp. 1-5; Held, 1989, pp. 66-69). Cyprus consists of four main geological terranes: the Troodos Ophiolite Complex, the Circum Troodos Sedimentary succession, the Kyrenia terrane, and the Mamonia terrane (Figure 1). Especially important is the Troodos Ophiolite Complex, since it contains immense copper deposits, a metal that played a crucial role in the economy of the island from the Bronze Age onwards (Kassianidou, 2014, p. 261; Zomeni, 2019, p. 23). A detailed overview of the island's geology is presented later in Chapter 6.

Although we lack detailed climate proxies, scholars have argued that climatic changes evident in the neighbouring mainlands also occurred in Cyprus (Stanley-Price, 1979, p. 9; Crewe, 2015, p. 135). Until recently, paleoclimatic reconstructions have been based on proxies from neighbouring areas (Brayshaw *et al.*, 2011; Clarke *et al.*, 2015, p. 14). However, recent research on the island has revealed local data on the paleoclimate: coring data have provided complete ¹⁴C dated sequences of the Larnaca Salt Lakes from ca. 9000 BP onwards; while pollen and diatom analysis of radiocarbon dated marsh sediments have revealed the Akrotiri Marsh has responded to major climatic events in the past 5000 years (Devillers *et al.*, 2015; Hazell *et al.*, 2022; Chelazzi, 2023).

It is believed that the climate in the Mediterranean during the third millennium BC was dry, although it was accompanied by temporal rainfall increases, droughts, or floods (Broodbank, 2013, pp. 257, 264). Climate conditions appear to have been similar to today's Mediterranean climate, and they have been attributed to several factors such as landscape manipulation or changing solar radiation levels (Nocete *et al.*, 2005, p. 1566; Finné *et al.*, 2011, p. 3170; Butzer, 2005, p. 1798). Soil samples from Kalavassos-*Kokkinoyia* and Kalavassos-*Ayious* indicate potential climate changes at the end of the fifth millennium BC and the beginning of the fourth millennium BC (Todd & Croft, 2004, p. 216; Clarke *et al.*, 2015, p. 15). At present, freshwater sources on Cyprus stem from autumn or winter rainfall and snowfall in the mountains. Variabilities in rainfall can be extreme, and rivers, like the Pedieos River, are only active in rainy winters (Stanley-Price, 1979, p. 11; Knapp, 2013, p. 7). Scholars have argued that the archaeological record on Cyprus around 4000 BC is "consistent with adaptation to more arid conditions, indicated by the regional climate proxies around this time" (Clarke *et al.*, 2015, p. 15).

2.1.2. History of Research

2.1.2.1. Archaeology in Cyprus

Archaeological activity in Cyprus begun in the 20th century, and it has been influenced and restricted by the political, historical, and social circumstances ever since. The first fieldwork occurred in the 1860s, when the island was part of the Ottoman Empire. At the time, mainly foreigners, like Luigi Palma de Cesnola – the American consul, conducted large scale excavations and exported Cypriot antiquities selling them around the globe (Cesnola, 1877; Knapp, 2013, p. 20).

Towards the end of the 19th century, in 1878, Cyprus became a British colony. Conducting excavations without official permission was prohibited. From then onwards, only archaeological institutions, like the British Museum, were allowed to excavate on the island. In the early 20th century, an important project was the Swedish Cyprus Expedition, led by Einar Gjerstad, conducting fieldwork across the island from 1927 to 1931 (Gjerstad, 1934a). The significance of this project, besides the extensive fieldwork and the vast datasets it provided, lies in the introduction of the culture-historical approach, the confirmation of the existence of the Neolithic, and the establishment of the Bronze Age chronology. Also, the publications of its contributors, such as Furumark and Sjöqvist, allowed Cypriot archaeology to be embedded in the Mediterranean and Near Eastern archaeologies (Sjöqvist, 1940; Furumark, 1944).

A landmark in Cypriot Archaeology is the foundation of the Department of Antiquities in 1935, followed by the first Antiquities Law (Karageorghis, 1987, p. 4; Knapp, 2013, pp. 21-22). A few decades later, in 1960, Cyprus became an independent state and, since then, the Department of Antiquities has conducted countless excavations, while also regulating numerous foreign projects on the island. These include long-lasting French missions in Salamis, Khirokitia and Amathous, the German project in Tamassos, and recently Idalion, the Swedish Expedition at Hala Sultan Tekke and the British Lemba Archaeological Project in the Paphos region (Karageorghis *et al.*, 1999; Le Brun, 1994; Aupert

& Hellmann, 1984; Bucholz & Untiedt, 1996; Schmid & Horacek, 2018; Åström & Eriksson, 1989; Peltenburg, 1985, 1998, 2003). Since 1974, 36% of the island's territory is occupied by Turkish troops and is therefore officially inaccessible to research. As a result, the available archaeological data since 1974 come from the southern regions.

Lastly, an important step for Cypriot Archaeology was the foundation of the Archaeological Research Unit (ARU) of the University of Cyprus in 1991. This establishment plays a pivotal role in the education and training of several Cypriot archaeologists. For research, the Cypriot American Archaeological Research Institute (CAARI), which was founded in 1978, has also been important, along with the Science and Technology in Archaeology and Culture Research Centre (STARC) of the Cyprus Institute, which was founded in 2003. Overall, as Knapp noted, over the past five decades "a widespread concern for the detailed description, classification and chronological ordering of the Cypriot archaeological record, together with a well-established tradition of publishing final reports, have resulted in a relatively complete publication record of Cypriot sites "(Knapp, 2013, p. 30).

2.1.2.2. Archaeology of the Chalcolithic and the Early Bronze Age

The Chalcolithic Period in Cyprus was first identified by Porphyrios Dikaios, when he led the excavations of the site of Erimi-Pamboula, in 1933-1935. Hence, he initially named it the "Erimi Culture" (Dikaios, 1936, 1962; Bolger, 1985; 1988). Most of the evidence we have for the Chalcolithic comes from the Paphos district, mainly due to the work of the Lemba Archaeological Project (LAP) led by the late Edgar J. Peltenburg from the University of Edinburgh. The sites excavated by the LAP include the settlements of Kissonerga-Mylouthkia, Lemba-Lakkous, and Kissonerga-Mosphilia, and the cemeteries of Souskiou-Laona and Souskiou-Vathyrkakas (Peltenburg, 1985; 1998; 2003; 2006; Peltenburg et al., 2019). Moreover, extensive surveys were conducted by LAP across the Paphos district (Bolger, 1987). Since 2015, another Chalcolithic site in the region, Chlorakas-Palloures, is under investigation by Leiden University, under the direction of Bleda S. Düring, along with Victor Klinkenberg and Maria Hadjigavriel (Düring et al. 2018; 2019).

More Chalcolithic sites in the Paphos district were found by the Polis Pyrgos Survey Project in the north-western coastal area of the island (Maliszewski, 2013). One site first identified by this survey project, Makounta-*Voules*, is currently being investigated by the Polis Region Archaeological Project, directed by Lisa Graham, Kathryn Grossman, Tate Paulette and Andrew McCarthy (Grossman *et al.*, 2018). In the south-eastern part of the island, in the Larnaca district, two Chalcolithic sites were excavated by Ian Todd and Joanne Clarke: Kalavassos-*Ayious* and Kalavassos-*Pamboules* (Todd & Croft, 2004; Clarke, 2004). In the central lowlands of the island there is only one excavated Chalcolithic site so far, Politiko-*Kokkinorotsos*, which was investigated by David Frankel and Jennifer Webb in 2006 and 2007 (Webb *et al.*, 2009a). Lastly, a number of Chalcolithic sites are known through surveys (Stanley-Price, 1979; Given & Knapp, 2003; Şevketoğlu, 2000; Georgiou, 2007), and small-scale excavations of sites such as Lapithos-*Alonia ton Plakon* (Gjerstad, 1934a, pp. 19-33), Karavas-*Yrisma* (Dikaios, 1936, p. 74), Kythrea-*Ayios Dhimitrianos* (Gjerstad, 1934a, pp. 277-301), Ayios Epiktitos-*Mezarlik* (Dikaios, 1936, p. 74), Ambelikou-*Agios Georghios*, Philia- *Drakos*, Kyra-*Alonia* and Nicosia-*Ayios Prodromos* (Dikaios, 1962, pp. 141-155, 1935, p. 12; Nicolaou, 1967, pp. 37-52).

The subsequent Philia Phase (ca.2400-2350/2250 BC), which chronologically marks the beginning of the Early Bronze Age, was also first identified by Porphyrios Dikaios, in the 1940s, when he excavated several tombs, mainly in the northern part of the island (Dikaios, 1962). In general, sites that are ascribed to the Philia Phase are few, most of them are poorly published, while well-documented sites are only known in the west, southwest and centre of the island (Dikomitou-Eliadou, 2012). Philia material comes mainly from tombs, while the first excavations to unearth Philia evidence from a settlement context were those at Kissonerga-Mosphilia (Peltenburg, 1998; Dikomitou-Eliadou,

2012). In Period 4 of Kissonerga-Mosphilia spurred annular pendants occur, characteristic finds of Philia contexts of central Cyprus (Peltenburg, 1991a, p. 19). Meanwhile, the contexts of Period 5 have provided a large number of Red Polished Philia Ware sherds, the most popular pottery ware of the Philia Phase (Peltenburg, 1998; Bolger & Webb, 2013). Philia artefacts have also been found in Kissonerga-Skalia, a Bronze Age settlement right next to Kissonerga-Mosphilia, currently excavated by Lindy Crewe, director of the Cypriot American Archaeological Research Institute (CAARI) (Crewe, 2010). Finally, maybe the most significant information concerning the Philia Phase comes from the settlement of Marki-Alonia. This site was excavated by David Frankel and Jennifer Webb from 1990 to 2000 and has yielded Philia material from stratified domestic contexts (Frankel & Webb 1996, 2006).

The origins of the Philia culture, as well as the nature of the transition from the Chalcolithic to the Philia Phase have been and are the topic of vivid debates. The Philia Phase has been described as a "wholesale change in the island's material culture" (Steel, 2004, p. 119), a change often attributed to the arrival of migrating populations from Anatolia (Frankel *et al.*, 1996; Webb & Frankel, 2007; Frankel, 2000). More information on the Philia debate is provided later in this chapter.

2.1.3. Chronology and Periodization

2.1.3.1. Chronology and Periodization of Prehistoric Cyprus

The chronology of Cyprus follows the broader three age system of Stone Age, Bronze Age and Iron Age. The Chalcolithic Period falls in between the Stone Age and the Bronze Age, while the Philia Phase marks the beginning of the latter. To begin with, since Palaeolithic evidence on the island is so far absent –despite some mentions of possible Middle or Upper Palaeolithic tools, the archaeology of the island begins with the Epipaleolithic phase (ca. 11000-9000 BC) (Knapp, 2013, p. 43). Subsequently, the Neolithic Period in Cyprus dates from ca. 9000 BC to ca. 4000 BC, followed by the Chalcolithic Period (ca. 4000/3900-2400 BC). The Chalcolithic is divided in three sub-periods: the Early Chalcolithic (ca. 4000/3900-3500 BC), the Middle Chalcolithic (ca. 3500-2900BC) and the Late Chalcolithic (ca. 2900-2400 BC). The subsequent Bronze Age starts with the Philia Phase (ca. 2400-2350/2250 BC), and ends with the Late Bronze Age or Late Cypriot Period (ca. 1650-1050 BC) (Knapp 2013, p. 27; Bolger & Webb, 2013, p. 39; Peltenburg, 2014, p. 253; Paraskeva, 2019). However, one must keep in mind that research has shown that there is definitely some overlap, although the amount of overlap is debated (e.g. Peltenburg 1998; Paraskeva, 2019). Therefore, the periodization used in this study is not absolute. This periodization, in more detail, is listed in Table 1 below.

Table 1: Time frame of Cypriot Prehistory (created by Maria Hadjigavriel after Knapp 2013, 27; Peltenburg, 2013; Peltenburg 2014, 253; Paraskeva, 2019)

CYPRIOT PREHIS	STORY TIME FRAME			
Epipaleolithic	Late Epipaleolithic	ca. 11000-9000 BC		
Neolithic	Initial Aceramic Neolithic	ca. 9000-8500/8400 BC		
	Early Aceramic Neolithic	ca. 8500/8400-7000/6800 BC		
	Late Aceramic Neolithic	ca. 7000/6800-5200 BC		
	Ceramic Neolithic	ca. 5200/5000-4500/4000 BC		
Chalcolithic	Early Chalcolithic	ca. 4000/3900 BC		
	Middle Chalcolithic	ca. 3500-2900 BC		
	Late Chalcolithic	ca. 2900-2400 BC		
Bronze Age	Philia Phase	ca. 2400-2350/2250 BC		
	Early Cypriot	ca. 2400-2000/1850 BC		
	Middle Cypriot	ca. 1850-1650 BC		
	Late Cypriot	ca. 1650-1050 BC		

One should keep in mind that chronology and periodization in prehistoric Cyprus are based primarily on pottery seriations and limited radiocarbon dates. Initially each period was characterised by a type-site, which then took on temporal significance. Therefore the Khirokitian Culture is a signifier for the Aceramic Chalcolithic, the Sotira Culture for the Ceramic Neolithic, and the Erimi Culture for the Chalcolithic (Knapp, 2013, p. 25). When studying Bronze Age material, Stewart (1962, pp. 208, 210-211) recognised issues with applying a tripartite issue. Since the markers that distinguish the chronological periods are arbitrary, chronological gaps are created, which are usually explained by assumptions of abandonment, migration, or colonization. Additionally, developments in the material record are explained as transitional periods (Knapp, 2013, pp. 25-26).

This thesis focuses on the Late Chalcolithic (ca. 2900-2400 BC), and the Philia Phase (ca. 2400-2350-2250 BC). When Dikaios first identified the Chalcolithic Period, he divided it in two sub-periods, Chalcolithic I and Chalcolithic II (Dikaios, 1936, pp. 1-2; 1962, pp. 184-189). Later on, the period was divided in three parts, into the Early, Middle and Late Chalcolithic, based on changes in the architecture and the pottery production (Steel, 2004, 13, pp. 83-118) These differences are discussed later in this chapter, and in Chapter 3.

The chronology and periodization of the subsequent Philia Phase has been the topic of a complicated debate. The recent excavations at Marki-*Alonia* have shown that it is definitely chronologically and culturally earlier than the subsequent Early Cypriot, and it is now considered as the start of the Early Bronze Age in Cyprus (Frankel & Webb, 2006; Webb & Frankel, 2013a). Marki-*Alonia* is the only settlement with a continuous stratigraphic succession from the later part of the Philia Phase to the Middle Cypriot, dating from ca. 2400 to ca. 1700 BC (Frankel & Webb, 2006, p. 35). In recent literature the Philia Phase is often referred to as Philia Early Cypriot Bronze Age (Bolger & Webb, 2013, p. 48). Since there are no dates for the beginning of the Philia facies, the end of the Late Chalcolithic – ca. 2400 BC based mainly on radiocarbon chronologies from Kissonerga-*Mosphilia*, functions as a *terminus ante quem* (Crewe, 2015, p. 133). Radiocarbon chronologies published in the ARCANE volume on Cyprus set the end of the Philia at ca. 2300/2250 BC, but Bayesian modelling indicated that the transition from the Philia to the Early Cypriot I-II is closer to ca. 2200 BC (Manning,

2013, p. 17; Paraskeva, 2019, p. 65). The end of the Philia Phase is possibly linked to several changes in the neighbouring regions such as the collapse of the Anatolian Trade Network (Şahoğlu, 2005, pp. 354-355), and an episode of drastic climate change that took place at ca. 2200 BC (Walker *et al.*, 2012, pp. 653-656; Manning, 2014, pp. 23-24; Crewe, 2015, p. 131). In the Tables 2 and 3 below, overviews of the main Chalcolithic and Philia sites are presented.

Table 2: Periodization, primary sites, and publications of the Chalcolithic(created by Maria Hadjigavriel after the publications mentioned in the table)

CHRONOLOGICAL PERIOD	APPROXIMATE BC DATES	MAIN SITES	MAIN SITES' PUBLICATIONS
Early Chalcolithic	ca. 4000/3900-	Erimi-Pamboula (period 1)	Dikaios, 1936;1962; Bolger, 1988
(EChal)	3600/3400 BC	Kalavassos-Ayious	Clarke & Todd, 1993; Todd & Croft, 2004;
		Kalavassos-Pamboules	Clarke, 2004
		Ayios Epiktitos-Vrisi	Dikaios, 1936
		Kissonerga-Mosphilia (period 2)	Peltenburg, 1998
		Kissonerga-Mylouthkia (Period 2)	Peltenburg, 2003
		Maa-Palaikastro	Karageorghis & Demas, 1988
Middle Chalcolithic	ca. 3600/3400- 2900 BC	Agios Epiktitos-Mezarlik	Dikaios, 1936
(MChal)		Lapithos-Alonia ton Plakon and Kythrea - Agios Dhimitrianos	Gjerstad et al., 1934
		Erimi-Pamboula (Period II)	Dikaios, 1936;1962; Bolger, 1988
		Lemba-Lakkous (Period 2)	Peltenburg, 1985
		Kissonerga-Mosphilia (Period 3)	Peltenburg, 1991; 1998
		Kissonerga-Mylouthkia (Period 3)	Peltenburg, 2003
		Makounta- <i>Mersinouthkia</i> or Makounta- <i>Voule</i> s	Maliszewski, 2013 Grossman et al., 2018
		Souskiou- <i>Laona</i> and Souskiou- <i>Vathyrkaka</i> s	Peltenburg, 2006; Peltenburg, Bolger & Crewe, 2019
		Chlorakas-Palloures	Düring et al., 2018; 2019; 2021
Late Chalcolithic	ca. 2900-2400 BC	Lemba-Lakkous (Period 3)	Peltenburg, 1985
(LChal)		Kissonerga-Mosphilia (Period 4)	Peltenburg, 1998
		Politiko-Kokkinorotsos	Webb et al., 2009
		Chlorakas-Palloures	Düring et al., 2018; 2019; 2021

Table 3: Periodization, primary sites, and publications of the Philia Phase (created by Maria Hadjigavriel after the publications mentioned in the table)

CHRONO- LOGICAL PERIOD	APPROXIMATE BC DATES	MAIN SITES	TYPE OF SITE	MAIN SITES' PUBLICATIONS
Philia Phase	ca. 2400-2350	Marki-Alonia	Settlement	Frankel & Webb, 1996; 2006
	/2250 BC	Marki-Davari	Cemetery	Frankel & Webb, 1996
		Kyra-Alonia	Settlement	Dikaios, 1962
		Philia-Drakos B	Settlement	Dikaios, 1962; Paraskeva, 2017
		Kissonerga-Mosphilia (Period 5)	Settlement	Peltenburg, 1998
		Kissonerga-Skalia	Settlement	Crewe, 2014; 2015
		Sotira-Kaminoudhia A and B	Cemetery	Dikaios, 1948; Webb & Frankel, 1999
		Bellapais-Vounourouthkia	Cemetery	Henessy et al., 1988; Webb & Frankel, 1999
		Dhenia-Kafkala	Cemetery	Nicolaou & Nicolaou, 1988
		Episkopi-Bamboula	Cemetery	Benson et al., 1973; Webb & Frankel, 1999
		Khrysilliou-Ammos	Cemetery	Dikaios, 1953; Webb & Frankel, 1999
		Marki-Vounaros/Pappara	Cemetery	Frankel, 1983; Webb & Frankel, 1999
		Kyra-Kaminia	Cemetery	Dikaios, 1962; Webb & Frankel, 1999
		Nicosia-Ayia Paraskevi	Cemetery	Kromholz, 1982
		Philia-Laksia tou Kasinou	Cemetery	Dikaios, 1962; Webb & Frankel, 1999
		Philia-Vasiliko Kafkala	Cemetery	Dikaios, 1962; Webb & Frankel, 1999
		Vasilia-Kafkala and Klistra	Cemetery	Stewart, 1957; Webb & Frankel, 1999
		Vasilia-Loukkos Takhonas	Cemetery	Karageorghis, 1960; Webb & Frankel, 1999
		Vasilia-Alonia	Cemetery	Karageorghis, 1960; Webb & Frankel, 1999

2.1.4. The Cypriot Archaeological Record in the Late Chalcolithic and the Philia Phase

The transitions from both the Neolithic to the Chalcolithic, and later from the Chalcolithic to the Philia Phase are often considered to have been abrupt, sudden, and accompanied by marked changes (Peltenburg, 2014, p. 252; Knapp, 2013, p. 195; Steel, 2004, p. 119). The start of the Chalcolithic occurs with the abandonment of several sites and the appearance of new ones. Throughout the Chalcolithic period curvilinear architecture was prevalent, pottery and figurine production innovations occured, increased social differentiation is observed, cemeteries emerge, and the beginning of copper metallurgy takes place (Knapp, 2013, pp. 195-197).

Similarly, the transition from the Chalcolithic to the Philia Phase coincides with innovations such as the replacement of curvilinear architecture with rectangular, and often multi-cellular architecture, the introduction of plough and equids, the re-introduction of cattle, numerous distinctive pottery types, various copper tools, weapons and ornaments, new mortuary practices and symbolic representations, occurring gradually throughout the Philia Phase and the Early Cypriot (Knapp, 2013, p. 263; Webb, 2002a; Frankel, 2000; Frankel & Webb, 1998; Webb & Frankel, 1999). Overall, from the Philia "a distinctive material homogeneity is evident in all aspects of material culture, including metallurgy and textile technology, food preparation and consumption, personal ornamentation and pottery" (Dikomitou-Eliadou, 2012, p. 29). An overview of the archaeological record of the Late Chalcolithic and the Philia Phase, including site distribution and architecture, subsistence strategies, material culture, and social organization is presented in this chapter, with the exception of pottery, which is discussed in Chapter 3.

2.1.4.1. Site Distribution and Architecture

With the beginning of the Chalcolithic period, most of the pre-existing Neolithic sites are abandoned and about 125 new ones are founded throughout this period (Peltenburg, 2014, p. 252; Knapp, 2013, p. 195). In the past, scholars have argued for a demographic shift towards the southern and western areas of the island. Nonetheless, one must keep in mind that this may reflect the visibility of the archaeological record, since the northern region of Cyprus has been inaccessible to research since 1974, and most of the extensive research projects focused on the Chalcolithic were conducted in the western district of Paphos (Knapp, 2013, p. 197; Peltenburg, 2014, p. 253).

As far as the Late Chalcolithic is concerned, most of the main well-investigated sites are situated in the western and southern regions, namely Lemba-*Lakkous*, Kissonerga-*Mosphilia*, Chlorakas-*Palloures*, Souskiou-*Laona* and Souskiou-*Vathyrkakas* (Peltenburg, 1985; 1998; Düring *et al.*, 2018; 2021; Peltenburg *et al.*, 2019). Another important site is Politiko-*Kokkinorotsos*, situated in the central lowlands, which has no evidence of permanent architecture and has been interpreted as an ephemeral hunting station (Webb *et al.*, 2009a).

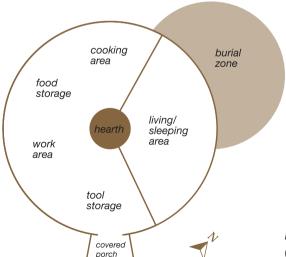


Figure 2: Schematic plan of a typical Chalcolithic house (after Steel, 2004, p. 88).

The prevalent architecture in settlements consists of curvilinear structures with stone foundations (Steel, 2004, p. 88; Knapp, 2013, p. 206; Peltenburg, 2014, pp. 256-257; Figure 2). One Late Chalcolithic structure worth mentioning is the so-called Pithos House from Kissonerga-*Mosphilia*. It is quite big in size, with a diameter of 8 meters and has provided significant finds. Among them, a cache of 47 stone tools, several conical stones, faience beads, triton shells, food preparation vessels, and at least 37 storage vessels with a total capacity of ca. 4000 litres. This building was destroyed by the end of the Late Chalcolithic (Peltenburg, 1998, pp. 38-43, pp. 252-254).

With the emergence of the Philia Phase, occupation in all the aforementioned sites ceases – with the exception of some Philia material culture in the late phases of Kissonerga-*Mosphilia* (Knapp, 2013, p. 277). Whether the Philia Phase overlapped with the Late Chalcolithic is not clear. Overall, sites ascribed to the Philia are few and most of them have been published poorly. The majority of them are cemeteries, while settlement material comes only from Kyra-*Alonia*, Period 5 of Kissonerga-*Mosphilia*, Kissonerga-*Skalia*, and Marki-*Alonia* (Webb & Frankel, 1999, pp. 7-8; Crewe, 2015, p. 131). Several of the sites ascribed to the Philia Phase are situated in close proximity to the copper ores of the foothills of Troodos mountains. In fact, various scholars have argued that the exploitation of new copper sources was one of the main driving forces for the emergence of the Philia culture (e.g. Webb, 2013a, p. 63; Crewe, 2015). Stewart argued that coastal sites may indicate that access to the coast for trade purposes was also important (Stewart, 1962, pp. 288-289; Webb & Frankel, 1999, pp. 7-8). Swiny (1997, p. 195) has suggested that arable land and water sources were also important motives for the establishment of settlement, highlighting the importance of copper accessibility in site hierarchy.

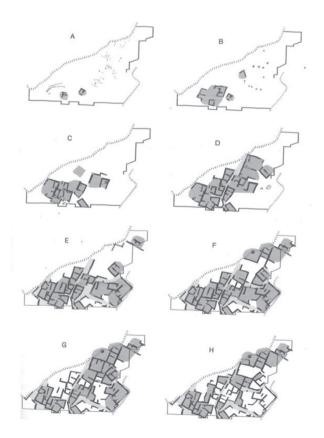


Figure 3: Schematic plan of Marki-Alonia over time (after Frankel & Webb, 2006)

Architecture in the Philia Phase is fundamentally different from Chalcolithic architecture both for construction techniques and design (Frankel, 2000, p. 175). Houses in the Chalcolithic are round and single-celled. On the other hand, in Marki-*Alonia*, the only substantially excavated settlement ascribed to the Philia Phase so far (Phases A and B), structures are rectilinear and multi-roomed, built of mudbrick on stone footings (Webb & Frankel, 2011, p. 31; Webb, 2013b, pp. 138-139). Moreover, hearths during the Chalcolithic are circular and placed in the centre of the structure, but the only preserved Philia hearth from Marki-*Alonia* is semi-circular and attached to a wall (Frankel, 2000, p. 171; Frankel & Webb, 2006, pp. 17-21).

2.1.4.2. Subsistence Strategies

Research has shown that Chalcolithic communities employed a dual subsistence strategy, combining both agropastoralism and hunting. People kept livestock and ate cereals such as emmer, barley and wheat, legumes such as lentils and chickpeas, and wild grasses and fruits such as olive, fig and grape, (Stanley-Price, 1979, pp. 75-77; Murray in Peltenburg, 1998, table II.I; Knapp, 2013, pp. 196, 217). Pig and ovicaprines were more commonly consumed in the Late Chalcolithic, while deer consumption, which was prominent in earlier periods, declines (Croft, 1991, pp. 71-93; Keswani, 1994, p. 264). Archaeobotanical data indicate several domesticated plants like emmer, bread wheat, einkorn, barley, lentil, chickpea, pea, vetch, and rye. Also, in Kissonerga-*Mylouthkia* and Kissonerga-*Mosphilia* there is evidence for possibly domesticated olive, grape, fig and pistachio (Murray, 1998, p. 216 Table 11.1; Colledge, 2003, p. 241-243).

In the Philia Phase, evidence indicates that communities also followed a mixed agropastoral economy (Knapp, 2013, p. 263). While according to the archaeological record, agriculture in the Chalcolithic was hoe-based, it has been argued the cattle/plough system is employed for the first time on the island during the Philia Phase, along with backed sickle blades, although evidence for this is limited (Webb, 2013b, p. 135). Also, new animal species such as donkey, cattle and novel breeds of sheep and goat are introduced (Webb, 2013b, p. 135; Crewe, 2015, p. 131). As mentioned above, pig was the most commonly consumed meat the Late Chalcolithic, but in Marki-Alonia, caprines comprise ca. 62% of the fauna remains, followed by cattle (ca. 24%), and then deer and pig (ca. 11%) (Webb & Frankel, 2011, p. 32). Finally, both archaeobotanical data and the ground stone repertoire from Marki-Alonia indicate an increase in cereal consumption (Webb, 2013b, pp. 135-136). Webb (2013b, p. 135), has argued that these changes in subsistence strategies suggest differences not only in dietary preferences, but also in animal-human relationships.

2.1.4.3. Metallurgy

Substantial copper metallurgy in Cyprus is attested only from the Philia Phase onwards, chronologically later than in Anatolia and the Levant, where metallurgy begins in the 6th-5th millennia BC (Rowan & Golden, 2009; Düring, 2011, p 255). Evidence for copper metallurgy in the previous periods is limited, while its beginning remains uncertain (Düring *et al.*, 2018, p. 12; 2021). The earliest copper items found on the island so far are two spiral ornaments, corded pieces of copper and a blade, found in Middle Chalcolithic contexts in Souskiou-*Laona* and Souskiou-*Vathyrkakas* (Crewe *et al.*, 2005, pp. 51, 65, fig. 16.2; Peltenburg, 2006, pp. 99-100 pl. 10.5). In Erimi-*Pamboula*, two needles and two unidentified metal artefacts probably also come from Middle Chalcolithic contexts (Bolger, 1985, pp. 180-186).

However, the number of finds increases during the Late Chalcolithic, even though metal artefacts are still rare. For example, a chisel and two possible parts of a blade have been found in Lemba-Lakkous, and six metal artefacts in Kissonerga-Mosphilia (Peltenburg, 2011, p. 4 table 1.1;

Knapp, 2013, p. 256). The circulation of metal object at the time is indicated from the existence of similar artefacts in different sites, such as a copper spiral and snake/spiral formed pendant that were found in Chlorakas-*Palloures* and have strong parallels at the Souskiou sites. Additionally, a spout of a Red-on-White vessel from Chlorakas-*Palloures*, depicts a snake very similar to the aforementioned copper snake/spiral ornaments, indicating the possible importance of these metal artefacts and a connection between the two locales (Düring *et al.*, 2018, p. 19; 2021; Figure 4).

Figure 4: The copper snake/spiral artefact and a spout depicting a snake from Chlorakas-Palloures, and the copper snake/spiral from Souskiou-Laona (after the Chlorakas-Palloures archive and Peltenburg et al., 2019).

Furthermore, the excavations at Chlorakas-*Palloures* have unearthed the oldest copper axe found on the island, dating to ca. 2600 BC. This axe was found in a big storage jar, along with four hooks made of pig tusks and a stone axe. The jar was lying on the hearth of a Late Chalcolithic building (Düring *et al.*, 2018, p. 14; 2021; Figure 5). Subsequently, several other metal objects were found at Chlorakas-*Palloures*, including a pin and a snake-like spiral. A detailed overview on prior literature on metallurgy on the Chalcolithic and its connection to possible extra-insular interactions is presented later in this thesis, in Chapter 7.

Figure 5: The artefacts found in a jar in Chlorakas-Palloures, including the earliest copper axe (after Düring et al., 2018, p. 15).

2.1.4.4. Figurines, Symbolism, and Other Artefacts

During the Chalcolithic the most prevalent material for the production of figurines was picrolite, a soft green/blue stone. It can be found mainly in the southern region, along the Kouris and Dhiarizos Rivers, close to the Souskiou-*Laona*, Souskiou-*Vathyrkakas* and Erimi-*Pamboula* sites, but also in the Troodos mountains (Steel, 2004, p. 93). It has been suggested that the picrolite objects were produced at household level, but also in workshops at the Souskiou sites (Bolger et al. 2019; Bolger, 1994, pp. 14-15; Peltenburg et al., 2019). Additionally, a connection between picrolite procurement and the earliest exploitation of copper ores has been proposed by Peltenburg, who argued that a decentralized production system of picrolite objects seems more probable than the circulation of finished artefacts via exchange networks (Peltenburg, 1982a, pp. 54-56; Steel, 2004, p. 5). Other preferred materials for the manufacture of figurines and ornaments were clay, limestone, faience, dentalium shell and bone (Croft et al., 1998a, p. 189, pp. 192-193).

For figurines, there is a preference in representing the human body, a tendency which preexisted in the Neolithic but evolved in the Chalcolithic. During the Middle Chalcolithic, a vast repertoire of representations is observed, made of clay, limestone, or picrolite, and occurring in various sizes (Steel, 2004, p. 99). One notable example is the so-called Lemba Lady, a 36 cm tall limestone anthropomorphic female figure found in Lemba-*Lakkous* (Figure 6). The anthropomorphic figurines of the Chalcolithic have been divided in four types: a cruciform representation in sitting position with elongated arms and neck (Figure 7); squatting figures; schematic figures with triangular bodies; and schematic plug-shaped figures. Several interpretations have been suggested concerning the symbolism of these figurines, like that they represent a matriarchical society, a mother-goddess or that they were used as cult objects (Steel, 2004, p. 101).

Figure 6: The Lemba Lady from Lemba-Lakkous (after cyprus-mail.com)

Figure 7: Cruciform picrolite figurines from Cyprus (after Cycladic Art Museum in Athens cycladic.gr)

By contrast, not much is known concerning figurine production and symbolism in the Philia Phase. Picrolite, shell and bone continued to be used, but with the employment of new technologies and production techniques (Frankel & Webb, 2006, p. 244, p. 261). Artefacts that are distinctive of the Philia Phase are annular pendants, pierced annular earrings and pendants from picrolite or shell and beads (Webb & Frankel, 1999). Additionally, in Marki-Alonia, clay spindle whorls and loom weights have been found, suggesting the use of a vertical warp-weighted loom for the first time in Cyprus (Webb & Frankel, 2011).

2.1.4.5. Mortuary Practices

Mortuary practices in the Chalcolithic are well attested. The most common burial type was a pit grave of ca. 0.2 metres wide and ca. 1-2 metres deep. In the settlements, burials would often be placed in close association with the buildings, but rarely inside them (Knapp, 2013, p. 217). In Kissonerga-*Mosphilia*, 73 burials were excavated, and have been categorized in five groups: burials in pits without capstones, pit graves with capstones, burials in pots, scoop graves, and –only in the Late Chalcolithic, chamber tombs (Peltenburg, 1998, pp. 64-92).

The earliest cemeteries in Cyprus occur in the Middle Chalcolithic, at Souskiou, in the south of the island. Four discrete cemeteries have been investigated at Souskiou, one at Souskiou-*Laona* and three at Souskiou-*Vathyrkakas*, all physically removed from the Souskiou-*Laona* settlement (Crewe *et al.*, 2005, p. 43). One should keep in mind that the Souskiou sites have complex stratigraphy, and relative chronological assessment based on pottery has shown that the Laona outcrop was used earlier, Vathyrkakas Cemetery 1 first occurred while Laona was still in use and was in use for longer, while neither was used in Period II, when intramural burials occur (Peltenburg et al., 2019, p. 324). The majority of the cemeteries consist of collective burials in shaft graves (Steel, 2004, pp. 95-98; Knapp, 2013, p. 221; Peltenburg, 2014, p. 258; Peltenburg *et al.*, 2019). Some tombs are quite elaborate.

Shaft tombs are used reused over many generations, some secondary burials and inhumations occur, and they can include a variety of grave goods (Crewe *et al.*, 2005, p. 43). In the Late Chalcolithic, the amount of grave goods decreases, but multiple interments and group burials increase. Also, multistage burial rites and possibly secondary treatment of the deceased are attested, while adults and children are buried together at Lemba-*Lakkous* and pot burials assosiated with infants occur in Kissonerga-*Mosphilia* (Peltenburg, 1985, pp. 70-73; Peltenburg, 1998, p. 72; Bolger, 2003, pp. 153-155; Crewe *et al.*, 2005, p. 45).

In the Philia Phase, mortuary contexts comprise the main component of the archaeological record. Among them are cemeteries which demonstrate high inter- and intra-site variability in comparison to the Chalcolithic cemeteries of Souskiou, such as Vasilia-*Kafkallia* and *Klistra*, Vasilia-*Loukkos Takhonas*, Vasilia-*Alonia*, Philia-*Laksia tou Kasinou*, Philia-*Vasiliko*, Philia-*Vasiliko*/*Kafkala*, Kyra-*Kaminia*, Khrysilliou-*Ammos*, and Deneia-*Kafkala* in the Ovgos Valley; Marki-*Alonia* and Nicosia-*Ayia Paraskevi* in the central plain; and Episkopi-*Bamboula*, Sotira-*Kaminoudhia A* and *B*, and Kissonerga-*Mosphilia* in the south and southwest (Webb & Frankel, 1999, pp. 7-13; Swiny, 1997, pp. 177-185; Knapp, 2013, p. 279).

Most of the Philia Phase burials are shallow circular pit graves, and visible funerary architecture, such as dromoi, rarely occurs, while chamber tombs occur in the whole island. Also pot burials occur in Marki-*Alonia* (Webb & Frankel, 1999, p. 8; 2006, pp. 283-285 Plate 64; Keswani, 2004; 2013). When it comes to the Early and Middle Cypriot periods, scholars have argued that funerary contexts functioned as an arena for status and identity negotiations, due to the increased visibility of cemeteries, complex rituals, funerary architecture and the deposition of metal objects (Webb & Frankel, 2007, pp. 197-198; Mina, 2014, p. 239). Additionally, Keswani has suggested that the treatment of the dead, the labour required to construct chamber tombs, and the grave goods, made it possible to immortalize the ancestors, the negotiation of social identities, and the forming of social alliances (Keswani, 2004, p. 81, p. 198; 2005, p. 342, p. 359, n. 59).

2.1.4.6. Social Organisation

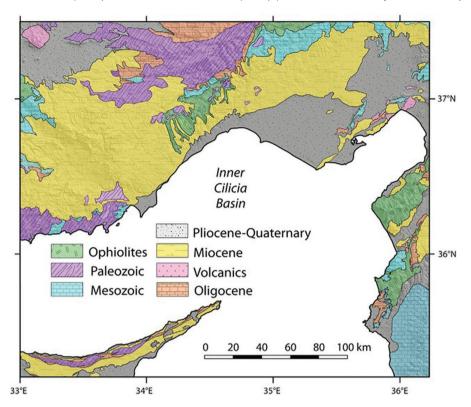
Social organisation in the Chalcolithic Period and the Philia Phase present some similarities. Societies were small-scale, with low-levels of social hierarchy and an agropastoral economy, but with more crafting in the Philia (Frankel, 2002, p. 173; 2005, p. 20). When interpreting social organisation within settlements, Knapp has argued for social differentiation and wealth, especially in Lemba-Lakkous and Kissonerga-Mosphilia, based on the existence of better-built and larger structures, wealthy inter-settlement burials, figurines, and the house-shaped clay vessel found in Kissonerga-Mosphilia (Knapp, 2013, pp. 245-250). The Pithos House in Late Chalcolithic Kissonerga-Mosphilia has been interpreted as evidence for social differentiation and higher social or political status of its residents, or as a storage building for the community (Peltenburg, 1998, p. 253; Steel, 2004, pp. 112-113). Possible indications of social differentiation are also evident in the Souskiou-Laona and Souskiou-Vathyrkakas cemeteries. Metal and faience objects, although rare, are often considered as prestige goods which might indicate social or economic superiority of some people.

In the Philia Phase, various innovations in the domestic sphere are evident. These include new technologies for textile production like low whorl spinning, the use of clay whorls and the vertical warp-weighted loom, new hearth and oven types and related cooking vessels (Muti, 2022). For example, when it comes to pottery production, Dikomitou-Eliadou (2012; 2013; 2014), who examined various pottery types from the Philia Phase by employing ceramic thin section petrography and chemical analysis, has suggested that both island-wide and regional interactions were in place, illustrated by the co-existence of pottery workshops of different scales, conforming to different modes and scales of production and catering to different needs.

According to Webb and Frankel, these innovations demonstrate drastic changes in modes of behaviour, values, beliefs and cultural practices (Webb & Frankel, 2007; Webb, 2013b). However it should be noted that recent studies have shown that many of these elements are not necessarily new and have demonstrated continuity with the Chalcolithic material record. For example Mutti (2022) emphasized the possible presence of spindle whorls and the potential for additional tools made from perishable materials during the Late Chalcolithic. She further demonstrated that both the possible Late Chalcolithic whorls and their Philia counterparts share similar characteristics.

At a larger scale, Stewart has argued that the apparent demographic shift to the north during the Philia Phase was the result of warfare and 'frontier feuds' (Stewart, 1962, p. 299). Additionally, the wealth of mortuary contexts in the north, such as the nine metal objects found beneath the plaster floor of the dromos of Vasilia-*Kafkala* Tomb 1 and thirteen metal items which come probably from the same site, indicate that at some point individuals started hoarding or caching metal wealth (Webb *et al.*, 2006, p. 277).

2.2. Cilicia in the Third Millennium BC


2.2.1. Geography and Environment

Anatolia, or Asia Minor, is a peninsula, with the Mediterranean Sea to the south, the Aegean to the west, and the Sea of Marmara and the Black Sea to the north, and covers ca. 450,000km². In terms of geography, there are six regions: the Marmara, the Mediterranean, the Central, the Black Sea, the Eastern and the South Eastern regions. Among them, four main morphological classes can be identified: coastal areas, highlands, mountains, and plateaus (Sagona & Zimansky, 2009, pp. 1-2).

Cilicia is located along the southeast coast of Anatolia. It is a large alluvial plain, covering approximately 8000 km, defined by the Taurus Mountains to the north, the Rough Cilicia mountainous region to the west, the Amanus Mountains to the east, separating Cilicia from the Amuq Plain, and the Mediterranean Sea to the south. It is separated into a western coastal part (Çukurova) and an eastern inland part (Yukarıova). Several rivers travers the plain: the Ceyhan, Seyhan, and Berdan Rivers from east to west, and the Göksu River in the Rough Cilicia mountainous region (Novák *et al.* 2017, p. 150).

Anatolia's geology is complex, as it was created by the coalition of several continental plates, seismic activity and effects of volcanism since the mid-Tertiary creating several folding zones with diverse landscapes. Cilicia specifically, is an alluvial plain created in the Holocene, deposited mainly by the Berdan and Seyhan Rivers. North of these, are Quaternary sediments consisting of travertine deposits running in northeast-southwest direction, creating the Taurus Mountain Range, which consist of terraces covered with caliche and alluvium. These terraces date back to the Pliocene-Pleistocene and are comprised of gravel, sand, silt, clay, and carbonates. Twelve formations are reported where gypsum are identified as the main components (Şahin *et al.*, 2003, pp. 13-15; Usta & Beyazcicek, 2006, pp. 12-15; Görür, 1973, pp. 228f., fig. 2; Figure 8).

Figure 8: Geological map of the Central Taurus Mountains and its surroundings. Simplified and redrawn from Blumenthal (1963) and Erentöz and Ternek (1962) (after Walsh-Kennedy et al., 2014, p. 19).

One could argue that the climate of Anatolia is characterised by extremes. Coastal Anatolia is mostly humid, and snow is rarely present, but the mountains in the eastern region are covered with snow most of the year. In general, four climate zones are observed in Anatolia today: high precipitation, mild winters and summers, along the Black Sea littoral; Mediterranean climate along the southern and western coasts; in the Marmara Region, the climate conditions are somewhere in between of those of the two aforementioned regions; and in central Anatolia the climate is drier than the rest of the country. Findings with sequences spanning the mid-late Holocene indicate drier and warmer conditions, following the Neolithic climatic optimum (Roberts et al., 2011; Kuzucuoğlu et al., 2011; Massa & Şahoğlu, 2015, p. 63). Additionally, simulations of prehistoric rainfall regimes indicate that coastal areas were 15-20% wetter and the central plateau 1-10% wetter than today for the period of ca. 7000 - 2500 BC (Roberts et al., 2011, pp. 9-11 fig.4e). In terms of environmental conditions, nowadays Cilicia falls within the dry farming range when it comes to annual rainfall, it has hot and humid summers and humid but mild winters. The humidity is caused by the sea and restricted by the mountains surrounding Cilicia, rendering the plain very fertile for cultivation, allowing both dry-farming and irrigation agriculture (Novák et al., 2017, p. 151).

In an attempt to reconstruct the vegetation of ancient Anatolia, van Zeist and Bottema (1991, p. 23) have identified nine broad vegetational zones in the Near East, most of which were present in Anatolia: EU-Mediterranean vegetation, montane forest, mixed broad-leaved and needle-leaved mountain woodland, cold deciduous broad-leaved mountain woodland, cold deciduous woodland, dwarf shrublands (steppe), subalpine and alpine vegetation, river valley vegetation, and open tree and shrub. This reconstruction is based mainly on palynological evidence. Ten pollen diagrams from Turkey are relevant to Late Quaternary and Holocene vegetation, mostly from the region west of Euphrates River. Studying these pollens show a transition from steppe to woodland between 11 000 and 9 000 years ago (Sagona & Zimansky, 2009, pp. 7-9).

2.2.2. History of Research

2.2.2.1. Archaeology in Anatolia

The archaeology of Anatolia, just like Cypriot archaeology, is situated in between the fields of Aegean/Mediterranean and Near Eastern archaeology. Therefore, Anatolia is often perceived as a bridge and crossroads, between the east and the west. This notion is evident in the relatively marginal role of Anatolian archaeology in western research and in the media (Yazıcıoğlu, 2007; Greaves, 2007; Özdoğan, 2007, p. 18). Its only in the 1960s that Anatolian archaeology started emerging as an entity of its own, even though research was conducted there well before that. As Machteld Mellink (1966, p. 115) wrote: "Anatolia appears neither as an assemblage of oriental and classical colonies nor as a transit station but as a land with a character of its own. It is seen to have developed cultural characteristics which are native, tenacious, and of potential impact on both the east and the west".

Many scientific excavations in Anatolia were conducted after the foundation of the Republic of Turkey, in the 1930s-60s (Fidan *et al.*, 2015, p. 60). However, the earliest archaeological projects occured in the Ottoman Period (1481-1922), when museums were established for the first time (Özgüner, 2015, p. 17). Among them is the Istanbul Archaeology Museum, which was founded in 1868. Osman Hamdi Bey, who was the Director of the Istanbul Archaeology Museum, excavated at Sidon, Lagina, Nemrut Dağ, Alabanda, Sidamara, and Tralles (Düring, 2011, p. 22). The first large scale excavation in Anatolia was carried out in 1834 by the French archaeologist Charles Texier at Boğazköy-*Hattuşa*, the capital of the Hittite Empire (Texier, 1839, p. 209). Subsequently, in 1865, Frank Calvert, a British expat, conducted initial excavations in Troy. Heinrich Schliemann, a German merchant visited the excavation and continued the research in the area from 1870 to 1890 (Jablonka, 2012, p. 851). In the subsequent 50 years, a large number of excavations were conducted, and museums and foreign research institutes were established (Üre, 2014, p. 3).

Until the First World War, Ottoman archaeology was conducted by a few people who were connected to the Istanbul Archaeology Museum (Düring, 2011, p. 23). In 1923, following the Turkish War of Independence, the Republic of Turkey was founded, with Mustafa Kemal, also known as Atatürk becoming the first president. In 1931, Mustafa Kemal established the Turkish History Committee (Türk Tarih Kurumu). The Turkish Archaeological Institute and the Istanbul Archaeological Institute were also founded in the same year.

With the fall of the Ottoman Empire, a need for a new national identity for the newly founded Turkish Republic emerged. So, the "Turkish History Thesis" was created (Atakuman, 2008, pp. 219-220). According to this thesis, the Turks were a civilised population whose civilization came to an end after adverse climatic episodes, resulting in migrations to several areas, including Anatolia. Therefore, civilizations like those of the Greeks and the Hittites, originated from these migrant populations, and were in essence Turkish. Most of the elements comprising this thesis were dropped soon enough, and the emphasis shifted to "Anatolia as a cradle of civilization and to cultural continuity in Anatolia from the earliest Prehistory up to the modern era" (Düring, 2011, p. 24). Mustafa Kemal encouraged the development of professional archaeology, by establishing archaeology departments in universities, employing Jewish German scholars who fled Germany to avoid Nazi prosecution, and funding Turkish archaeologists to study abroad. Besides Atatürk, another important figure of the 20th century was Hamit Koşay, who founded museums in Ankara and in 1945 and he became the director-general of the Department of Antiquities and Museums. He also acted as director for many excavations, including Ahlatlibel, Kumtepe, Pazarlı, and Alaca Höyük.

In between the foundation of the Turkish Republic and the Second World War, it has been estimated that approximately 100 excavations took place, the majority of which, were conducted by Turkish archaeologists (Arik, 1950, p. 60). Among those are the excavations of Alaca Höyük, Gavur Kalesi and Ahlatlibel (Davis, 2003). There were also numerous foreign expeditions, such as those at Alişar, Mersin-Yumuktepe, Tarsus-Gözlükule, Kusura, Kültepe-Kanesh, the excavations at Troy by Blegen, and the Amuq survey project along with its subsequent excavations (Whittemore, 1943; Arik, 1950; Joukowsky, 1986, p. 40). In 1934, Kurt Bittel published his book "Prähistorische Forschung in Kleinasien", which set the basis for Prehistoric research in Turkey (Bittel, 1934). In the 1930s-50s several excavations were conducted, mainly at Roman and Classical sites, while a number of foreign research institutes were established, including the Dutch Institute in Istanbul (NIT) in 1958. Nowadays, archaeological practice and its legal framework are overseen by the Ministry of Culture and Tourism, and its Directorate-General of Monuments and Museums.

All prehistoric sites researched in Anatolia before the Second World War dated from the Late Chalcolithic (ca. 4000-3000 BC) onwards, while during the Second World War some Neolithic and Early Chalcolithic sites were excavated in the region south of the Taurus Mountains. This scarcity of earlier evidence led some archaeologists to believe that the Neolithic did not occur at all north of the Taurus Mountains, a position supported also by Bittel (1945, p. 15), and Lloyd (1956, pp. 53-54). The first substantial critique for this hypothesis was voiced in 1945 by Özgüc, who argued that a Chalcolithic phase can be observed in Central Anatolia (Özgüc 1945, p. 357; Düring, 2011, p. 26). Subsequently, from the 1950s onwards, more data on the Prehistory of Anatolia before ca. 3500 BC was unearthed, thanks to several research projects. For example, in 1951-52, Mellaart conducted a survey in the Konya plain, finding pre-Bronze Age assemblages. The most important excavations, whose results changed the image of Neolithic Anatolia substantially are those at Hacılar and Catal Höyük by Mellaart, in 1957-60 and 1961-67 respectively, and those at Canhasan 1 and 3 by French, conducted in 1961-67 (Mellaart, 1967; 1970; French, 1998). Additionally, another important project which also played a pivotal role in the training of several Turkish archaeologists was that of Cayönü in southeast Anatolia, led by Braidwood and Çambel, of Chicago and Istanbul Universities respectively (Çambel, 1995; Düring, 2011, p. 27). Nowadays, there are numerous archaeological projects in Turkey, conducted by local and foreign archaeologists and more and more data regarding Anatolian Prehistory is becoming available.

The studies concerning the archaeology of Anatolia in the Early Bronze Age are based mainly on sites such as Alişar Höyük, Beycesultan, Demircihüyük, Tarsus-*Gözlükule*, and Troy, but also on evidence from Alaca Höyük, Horoztepe, Yortan, Aphrodisias-*Pekmez*, Bademağacı, Harmanören, Kanlıgeçit, Küllüoba, Liman Tepe, and Panaz Tepe (Düring, 2011, pp. 258-259). The term "Early Bronze Age" was used for the first time by Blegen in relation to Troy (Blegen *et al.*, 1950, p. 22). A few years later, after the excavations at Tarsus-*Gözlükule*, the Early Bronze Age was divided in three sub-periods: Early Bronze Age I, II and III, and was compared with the chronology of Mesopotamia (Goldmann, 1956). Moreover, Mellaart (1954, p. 189) used this periodization at the excavations of Beycesultan. According to Massa (2016) and Bachhuber (2008; 2015) the study of Anatolian Early Bronze Age archaeology remains dominated by a cultural-historical approach that emphasises classificatory studies.

2.2.2.2. Archaeology of Bronze Age Cilicia

Specifically in Cilicia, a number of explorations of the Graeco-Roman remains have been conducted, particularly in the 19th century. However, investigations of the prehistoric remains of Cilicia have been fewer in number and limited to more defined periods in the past. Most of the work on prehistoric Cilicia was conducted from the 1930s to the mid-1950s (Steadman, 1994, p. 36). In 1930, Einar Gjerstad conducted a survey of Cilicia and the surrounding regions following his excavations in Cyprus in 1926. Gjerstad reasoned that the prehistoric ceramic assemblage of Cilicia might have had close relations to that of Cyprus (1934b, p. 155). His survey encompassed approximately ten sites, including Tarsus, and his report provides a brief overview of the ceramic types recovered from these locations. Another early work that addresses Cilicia is Brown's article on the prehistoric relations between Anatolia, the Aegean and Cyprus, published in 1933, which included published data and a few sherds collected from various sites in Cilicia (Brown, 1933, p. 43).

After a brief survey of the Cilician plain in 1937, Garstang conducted excavations at several sites. While he focused primarily on Mersin, also known as Yümük Tepe, he also explored Kazanli Hüyük and Sirkeli, located between Mersin and Tarsus (Garstang 1938; 1939). The work at Kazanli Hüyük and Sirkeli consisted mainly of preliminary "soundings," whereas Mersin was the site of a full-scale excavation (Garstang 1953). In the 1950s a substantial survey was conducted by Seton-Williams, and Mellaart surveyed the Göksu Valley of Rough Cilicia (Seton-Williams, 1954; Mellaart, 1954). More recently, French has conducted the Göksu River Valley and the Bilkent University the Eastern Cilician Plain Survey (French, 1967; Steadman, 1994).

Some key-sites are Tarsus-*Gözlükule*, Mersin-*Yumuktepe*, Sirkeli Höyük, Kilisi Tepe, and Kinet Höyük (Goldman, 1956; Garstang, 1953; Garstang, 1937; Novák *et al.* 2017; Kozal & Novák, 2015; Gates *et al.* 2014; Lehmann, 2017; Eslick, 2021; 2024). Excavations at these sites are presented later in this chapter.

2.2.3. Chronology and Periodization

2.2.3.1. Chronology and Periodization of Prehistoric Anatolia

The chronology of Anatolia follows the broader three age system Stone Age, Bronze Age and Iron Age. Nevertheless, one needs to keep in mind that Anatolia is a vast geographic area with many regions which have their own chronologies. In general, the first archaeological traces in Anatolia are ascribed to the Palaeolithic Period. Evidence from the Palaeolithic is scarce, since good evidence for the Early Upper Palaeolithic (ca. 40000-26000 BC) come only from the Marmara Region and the Hatay, while the Late Upper Palaeolithic is absent (Otte, 2008, p. 907). The Epipaleolithic Period is ascribed to ca. 20000-10000 BC (Düring, 2011, pp. 31-32). The Neolithic follows from ca. 8500 to ca. 6000 BC, followed by the Chalcolithic (ca. 6000-3000 BC), the Early Bronze Age (ca. 3000-2000 BC) the Middle Bronze Age (ca. 2000-1600 BC), and the Late Bronze Age (ca. 1600-1200 BC). This periodization is presented in Table 4.

Table 4: Timeframe of Anatolian Prehistory (created by Maria Hadjigavriel after Düring 2011, 21-21; Yakar 2011, 60-78).

ANATOLIAN PREHISTORY TIME FRAM	E
Early Upper Paleolithic	ca. 40000-26000 BC
Epipaleolithic	ca. 20000-10000 BC
Neolithic	
Aceramic Neolithic	ca. 8500-7000 BC
Ceramic Neolithic	ca. 7000-6000 BC
Chalcolithic	
Early Chalcolithic	ca. 6000-5500 BC
Middle Chalcolithic	ca. 5500-4000 BC
Late Chalcolithic	ca. 4000-3000 B
Bronze Age	
Early Bronze Age I	ca. 3000-2600 BC
Early Bronze Age II	ca. 2600-2300 BC
Early Bronze Age III	ca. 2300-2000 BC
Middle Bronze Age	ca. 2000-1600 BC
Late Bronze Age	ca. 1600-1200 BC

In Cilicia, a refined comparative stratigraphy and chronology of the region has been put together recently by a workgroup of researchers working in the area, as the result of three workshops led by Novák, covering from the Pottery Neolithic to the Medieval Period (Novák *et al.*, 2017, p. 182). For the purposes of this thesis, the Late Chalcolithic Period (ca. 4500-3000 BC) and the Early Bronze Age (ca. 3000-2000 BC) in Cilicia are particularly important and are presented in the table 5 below.

Table 5: Comparative stratigraphy of sites in Cilicia during the Late Chalcolithic and Early Bronze Age (created by Maria Hadjigavriel, simplified and re-drawn after Novák et al. 2017, p. 184)

COMPARATIVE STRATIGRAPHY OF CILICIA DURING THE LATE CHALCOLITHIC AND THE EARLY BRONZE AGE					
Conventional Periodization	Dates (3)	Kilisi Tepe	Mersin- Yumuktepe	Tarsus- Gözlükule	Kinet Höyük
Late Chalcolithic	4500-3300 BC		XV-XIV	Goldman Chalcolithic	
EB la	3300-2900 BC		Hiatus (3800-2800 BC)	Goldman EB la	
EB lb (1)	2900-2700 BC		VIII VIII	Goldman EB lb	29-25
EB II (1,2)	2700-2400 BC			Goldman EB II	24
EB IIIa (1,2)	2400-2200 BC	V	XIII-XII	Goldman EB Illa	23-22
EB IIIb (1,2)	2200-2000 BC			Goldman EB IIIb	21-19

⁽¹⁾ According to the chronology proposed by Goldman and Mellink (cf. 1965; 1992)

2.2.4. The Archaeological Record in the Early Bronze Age I and II

The Early Bronze Age of Anatolia has been mainly known through the excavations in Tarsus, Beycesultan, Karataş-Semayük, Demircihüyük, and Troy, but also through several other excavations and survey projects, being a diverse but well-investigated area (Fidan et al., 2015, p. 82). Anatolia is an immense geographical area which was comprised by a variety of local characteristics during the Early Bronze Age. However, in order to provide the archaeological framework which is necessary for this study, this section focuses on the archaeology of Cilicia (Figure 9). An overview of the archaeological record of the Early Bronze Age I and II, including site distribution and architecture, subsistence strategies, material culture, and social organization is presented in this chapter, with the exception of pottery, which is discussed in detail in Chapter 3.

⁽²⁾ According to the traditional Levantine Chronology, cf. Orthmann et al. (2013, p. 584): EBII = EBIII, EBIIIa = EBIVa, and EBIIIb=EBIVb

⁽³⁾ According to Middle Chronology of Manning et al. 2016

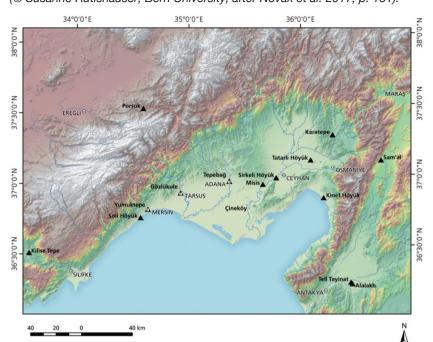


Figure 9: Map of Plain Cilicia with sites mentioned in the text, and some modern cities (© Susanne Rutishauser, Bern University; after Novák et al. 2017, p. 151).

2.2.4.1. Site Distribution and Architecture

Sagona and Zimansky (2009, p. 178), have argued that during Early Bronze Age (EB) I and II the socio-political system was primarily rural, with small villages and towns across Anatolia. Similarly, the EB I in Cilicia has been characterized as a 'proto-urban' period by Yakar, with villages of different sizes, some of which were surrounded by defensive walls. These communities relied on agriculture for subsistence but also had evidence of long-distance trade and craft specialization (Yakar, 1985, pp. 3-4). For this study, an overview of excavated sites is presented.

Tarsus-Gözlükule

Tarsus-Gözlükule is a mound that was first excavated in 1935-39 and 1947-49, under the direction of Hetty Goldman, of Bryn Mawr College. Since 2001, the site has been investigated by Boğaziçi University under the direction of Aslı Özyar. The EB I levels have revealed a large open area which Goldman identified as a street. To the west of this area is a stone-built wall, with two circular stone structures along its southern part (Goldman, 1956, p. 9). Clay constructions, such as hearths, bins, and benches, are located on the west of the street, along a clay wall. The largest of these hearths was placed on its own platform, and has been associated with an anthropomorphic clay figure found next to it (Goldman, 1956, p.10). Finally, a series of rooms with pisé walls have been revealed at the southern end of the street. One of these rooms has been considered large enough for being a domestic structure, while some others have been interpreted as storage facilities (Goldman, 1956, pp. 11-12).

In EB II levels, a substantial area with domestic and workshop structures has been revealed, as well as fortification walls. Domestic structures seem to have workshop structures attached to them, while the fortification walls have gates lined with towers and rooms (Goldman, 1956, p. 12).

Kilise Tepe

Kilise Tepe was excavated from 1994 to 1998 by the Silifke Museum and the British Institute at Ankara. Later on, Postgate, who was one of the leading excavators the first time, restarted the excavations from 2007 to 2013. The chronology of the site spans all the way to the Byzantine Period, and the Bronze and Iron Age levels are located to the north-western part of the mound (Postgate & Thomas, 2007; Postgate in Novák *et al.*, 2017). One level dates to the end of the EB II, Level Vg. This level—buried under a thick layer of destruction debris comprising ash, dark red soil, and mudbrick pieces—was the earliest archaeological phase. It revealed domestic structures, whose walls were plastered in a yellowish brown clay and red pigments occurred on parts of the floor (Şerifoğlu, 2019, pp. 70-71). This layer is followed by layer Vf, which is characterized as the Great Fire layer, as it documents great destruction by fire, and then Level Ve, which is the last level ascribed to the Bronze Age (Şerifoğlu, 2019, pp. 71-72).

Mersin-Yumuktepe

Mersin-Yumuktepe was first investigated by a British mission in 1947 (Garstang, 1953). In 1993 excavations started anew by Istanbul University and La Sapienza University of Rome first, and then Salento University, under the leadership of Sevin and Caneva. The site spans from the Neolithic to the Hittite, Roman and Medieval periods. For the EB levels at the site, a long hiatus of ca. 1000 years is observed between the Chalcolithic and the Bronze Age. At the beginning of the third millennium BC, a large EB II settlement with a huge fortification wall was built. The settlement was constructed of contiguous rectangular buildings, with mudbrick walls with stone foundations (Breniquet, 1995; Caneva & Köroğlu, 2010; Caneva & Sevin, 2004; Garstang, 1953; Caneva et al., in Novak et al. 2017, pp. 156-159).

Kinet Höyük

Kinet Höyük is in the Iskenderun region and has been excavated by Gates of Bilkent University of Ankara, from 1992 to 2012, and then continued under the direction of Eslick. The latest excavations have recently been published in an edited volume (Eslick, 2024). As far as the Early Bronze Age levels are concerned, which are dated to ca. 2800-2000 BC, starting in EB II (Periods 29-25), they were revealed on the lower West Slope in Area M, and in two soundings north of the mound, in Areas V and Z (Gates, 2009; 2004; as cited in Eslick, 2021). However, EB sherds have been found over the whole site in later levels, suggesting that the EB town was extended over the whole mound and around the harbour to the north (Eslick, 2021, p. 73). The excavations have revealed a settlement with rectangular structures made of mudbrick, without stone foundations and a massive fortification wall encircling the settlement (Eslick *et al.* in Novák *et al.* 2017). Architecturally, the structures resemble those in Tarsus-Gözlükule, ascribing to a Cilician architectural tradition, although specific features of the layout may differ (Eslick, 2021, p. 73). In Periods 29, 27 and 26 the mound was enclosed in a fortification wall, but in Periods 28 and 25 domestic structures extend beyond the wall. The rooms that date to the EB seem to have been cleared and abandoned, as very few items are found in situ, mostly from fills used for levelling before rebuilding (Eslick, 2021, p. 74).

2.2.4.2. Subsistence Strategies

In Cilicia, excavations so far have provided limited information on the subsistence economy of the Early Bronze Age (Steadman, 1994, p. 21). However, Cilicia is comprised of fertile alluvial deposits which are perfect for agriculture. Surveys indicate that early inhabitants of the region avoided coastal areas, likely because they were swampy and unsuitable for settlement, and instead preferred the terraced alluvial plains (Mellaart, 1954, p. 177; Seton-Williams, 1954, pp. 121-23). Given that the coastal areas were hard to navigate and the alluvial plains offered a sufficient food supply, it is likely that the exploitation of marine resources such as fish and shellfish was minimal (Steadman, 1994, p.21). So far, there is no evidence of significant food imports into or exports out of Cilicia during prehistoric periods, implying that the region's carrying capacity was adequate for its prehistoric inhabitants. Hunting was also feasible, as equids and deer were native to the region (Steadman, 1994, p. 22).

2.2.4.3. Metallurgy

In Anatolia, the largest sulphide ore deposits are found in the metallogenic districts of Ergani Maden in the eastern Taurus Mountains, and in Küre and Murgul/Göktaş in the Black Sea region (Lehner & Yener, 2014, p. 531). The development of metallurgy in EB Cilicia follows the development of metallurgy in the rest of Anatolia, making an overview of metallurgical development in Anatolia required here. Overall, the repertoire of metal artifacts in EB I is similar to that of the Late Chalcolithic and Transitional Period into the EB, except for a variety of dagger types (Efe & Fidan, 2006; Fidan, 2006). Excavations at sites like Demircihöyük, Beycesultan, Iasos, Liman Tepe, Bakla Tepe, and Beşiktepe have revealed metal tools, weapons, and jewelry (Efe & Fidan, 2006; Keskin, 2011). Most evidence for EB I metals comes from coastal western Anatolia, particularly Liman Tepe, Bakla Tepe, Ephesus-Çukuriçi Höyük, Troy, and Milet. These sites yielded several objects such as crucible pieces, mould fragments, ore-preparation tools, and slags, indicating extensive metalworking activities (Müller-Karpe, 1994; Horejs, 2009; Horejs et al., 2010; Keskin, 2011; Bachhuber, 2014; Fidan et al., 2015).

In the EB II, there is a notable advancement in metal production and use (Fidan *et al.*, 2015). Tin bronze artifacts, especially weapons, appear for the first time, alongside an increase in gold, silver, and lead finds. Larger-scale mining and copper processing into ingots occurred near mines (Yalçın, 2013). Ingot molds were found at Küllüoba, Troy, Liman Tepe, Milet, Çukuriçi Höyük, and Aphrodisias (Müller-Karpe, 1994; Fidan, 2013). Later in the EB II, tin-bronze spread from Syria-Cilicia to inland western Anatolia, while other areas continued using arsenical bronze (Yalçın, 2013). Syro-Cilician metal objects, such as toggle pins, lead bottles, and daggers, were found at Demircihöyük, Küllüoba, and cemeteries at Demircihüyük-Sarıket and Bozüyük-Küçükhöyük (Seeher, 2000). Toggle pins were also found at Kaklık Mevkii, Harmanören, and Karataş-Semayük cemeteries (Fidan, 2012). Metalworking in Troy, Liman Tepe, Çeşme-Bağlararası, and other coastal sites continued from EB I with little change (Keskin, 2011).

In Cilicia, the EB I metalwork at Tarsus primarily consists of small utility objects, such as knives, sickles, awls, needles, and pins. A notable artifact from this period is a lead macehead, which is the earliest known metal example in Anatolia (Goldman, 1956, p. 256). In EB II, there is a greater variety of metalwork. This includes the appearance of toggle pins and a fragment of an early fibula, although fibulae do not become common until the Late Bronze Age. Cilicia seems to have been the region from where the toggle pin was introduced into Anatolia. It may have been a local development that later spread during the EB III to Central, Western, and Northwestern Anatolia, as well as to the Eastern Aegean, Cyprus, and the Levant (de Jesus, 1977, p. 195).

2.2.4.4. Anthropomorphic Figurines

Anthropomorphic figurines have been recovered from EB sites across Anatolia. Figurine production in Cilicia follows the same tendencies as figurine production in the rest of Anatolia. Figurines were made of fired clay, stone (such as marble, limestone or alabaster), bone, shell or metal (such as gold, silver and bronze) (Figure 10). The most popular figurine type is violin-shaped, with semi-circular lower body and a semi-circular head on an extended neck, occasionally with stump-like lumps on the upper body. Variants of this type are present across Anatolia (Atakuman, 2017, p. 86).

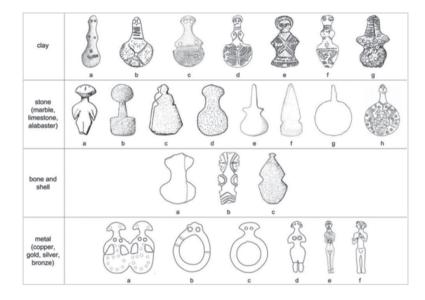


Figure 10: Comparison of Early Bronze Age figurines from Anatolia (not to scale) (after Atakuman, 2017, p. 91)

2.2.4.5. Mortuary Practices

Numerous cemeteries occurred in Anatolia in the EB II, with the emergence of several of them probably stretching back to the EB I. Among them are Babaköy, Bakla Tepe, Demircihüyük-Sarıket, Harmanören-Göndürle Höyük, Iasos, Ilipinar, Kaklık-Mevkii, Karataş-Semayük, Küçükhüyük, and Yortan. Not all of them can be associated with a settlement, while the majority is located in western and northern Anatolia (Düring, 2011, p. 278). Most of the known EB cemeteries are in western, north-central and southeastern parts of Anatolia. When it comes to types of burials, five can be observed: earthen simple pits; roofed pits with structural roof and walls, which are accessible through the roof; cist tombs, earthen tombs with structural walls and roof; and ceramic containers like pithoi or other domestic jars used to bury people inside them (Rankin, 1997; Sagona & Zimansky, 2009, p. 212).

However, in Tarsus, only one extramural cemetery with earthen tombs and burials in ceramic containers has been found, but it dates to the Late Chalcolithic and not the EB (Goldman, 1956, pp. 6-7).

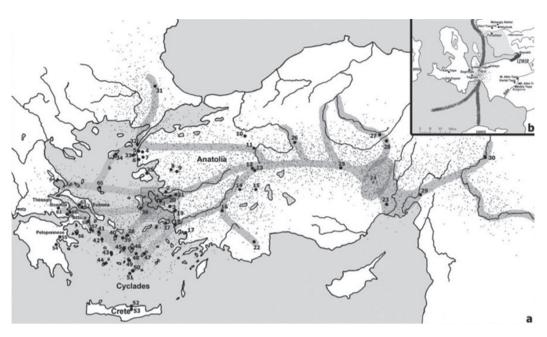
2.2.4.5. Social Organization

Initially, in the EB I, just like in the Chalcolithic, small settlements seem to be the norm, architecture is more or less comparable between sites, while pottery production is characterized by regional variations. However, during the latter part of EB II, several changes take place, leading towards urbanization. As mentioned above, Yakar identifies proto-urban and urban communities in Early Bronze II-III southern and southeastern Anatolia at several sites, including Tarsus (Yakar, 1985, pp. 4-5). Fortified upper towns occur, and an elite culture can be suggested by the production, consumption, and deposition of valuable goods, and by a preference for materials and artefacts arriving to Anatolia through long-distance exchange networks.

It has been argued that Anatolian communities created urban hierarchical societies later than those of the neighboring Syro-Mesopotamian region, something often perceived of in a negative way by Near Eastern archaeologists. On the other hand, Düring has argued that "these are surely processes that are to be understood as local phenomena developing out of local conditions. Contact with more complex societies does not automatically result in their emulation", and that "the normative idea that urban life and social hierarchy are great achievements, and that people not living in this manner are culturally backward, is a modern teleological way of perceiving human societies" (Düring, 2011, p. 298).

In Cilicia, the evidence from EB Tarsus indicates a community that had progressed well beyond a basic agricultural or pastoral subsistence model. There were significant trade connections, organized labour forces, and possibly both private and state-run markets operating within the settlement. Additionally, the excavations reveal architecture beyond domestic structures, including some potentially related to cultic practices, as well as clearly defensive constructions (Steadman, 1994, p. 86).

2.3. Cyprus and Anatolia ca.2900-2200 BC: A Debate of Interactions


Generally, social change in both Cyprus and Anatolia has been examined through a migratory cultural-historical lens (Knapp, 2008, pp. 47-53, pp. 103-114, 2013, pp. 264-267; Kouka, 2009, p. 36; Bachhuber, 2014). The contacts between the two regions from ca.2700 to ca.2200 BC have often been studied from perspectives which consider the sharing of material culture elements as proof of migration, colonization, acculturation or hybridization (e.g. Knapp, 2013). In addition, Frankel and Webb have emphasized changes in the ways everyday tasks were carried out, arguing that populations moved to Cyprus along with their everyday practices, which can be traced in the archaeological record (Webb & Frankel, 2007).

2.3.1. Anatolia: The Anatolian Trade Network (ca. 2500-2000 BC)

The interactions between the regions of the eastern Mediterranean during the third millennium BC are evident in the archaeological record. At the end of EB II, a distinctive set of cultural features can be observed in several regions including the southeastern Anatolia, central and western Anatolia, the islands of the eastern Aegean, the Cyclades, and mainland Greece. These features signify a cultural change include large settlements with citadels, lower towns and fortifications, the first introduction of wheel-made pottery and the first appearance of novel pottery types like the tankard and the cut-away spouted jug, and the first examples of tin bronzes (Sahoğlu, 2005, p. 339).

Several theories have been put forward to describe these cultural features, including the "Caravan Trade Route" by Efe (2007). The most recent idea, which is quite similar to the "Caravan Trade Route", and widely accepted is the "Anatolian Trade Network" (ATN), suggested by Şahoğlu (2005; 2019), who states: that "a sophisticated trade network was formed from Mesopotamia to Anatolia, extending to Cyprus (Philia culture), from coastal western Anatolia to the Cyclades (Kastri group) and to the Greek Mainland (Lefkandi I) and over Thrace into the Balkans" (Şahoğlu, 2019, p. 115). Generally, it dates to ca. 2500-2200 BC (Şahoğlu, 2005, p. 344). Some of the regional centres were Kültepe, Alacahöyük, Acemhöyük, Karahöyük, Seyitömer, Küllüoba, Liman Tepe, Miletos and Troy (Şahoğlu 2019, pp. 115-116; Figure 11). The main economic focus of the ATN was the trade in metals, but also of other raw materials and products, such as ceramic vessels, resulting in exchange processes of not only finished goods, but also of technologies and ideas. Throughout Anatolia, a great metallurgical boom is observed, along with the imitation of metal vessels in pottery (skeumorphs). The exchange of copper, silver, tin, and several textiles is probable during the second half of the third millennium BC, and has been documented in the later Old Assyrian trade colonies archives from Kültepe (Barjamovic, 2011; Massa & Palmisano, 2018).

Figure 11: Map showing the extent of EB Anatolian Trade Network (after Şahoğlu 2005, pp. 342-3).

1-Liman Tepe	12-Karaoğlan Mevkii	23-Tarsus- Gözlükule	34-Lemnos- Poliochni	45-Paros	56-Aegina
2-Panaztepe	13-Kaklık Mevkii	24-Kestel	35-Lesbos-Thermi	46-Naxos	57-Thorikos
3-Bakla Tepe	14-Beycesultan	25-Acemhöyük	36-Chios-Emborio	47-Amorgos	58-Raphina
4-Troya	15-Kusura	26-Polatlı	37-Samos-Heraion	48-Keros	59-Eutresis
5-Kum Tepe	16-Aphrodisias	27-Alişar	38-Mykonos	49-los	60-Thebes
6-Beşik Tepe	17-lasos	28-Kültepe	39-Delos	50-Thera	61-Orchomenos
7-Hanay Tepe	18-Milet	29-Gedikli- Karahöyük	40-Syros	51-Christiana	62-Lefkandi
8-Babaköy	19-Efes	30-Titriş Höyük	41-Keos	52-Poros	63-Manika
9-Yortan	20-Bayraklı	31-Kanlıgeçit	42-Kythnos	53-Knossos	64-Pevkakia
10-Demircihöyük	21-Ulucak	32-Protesilas	43-Siphnos	54-Lerna	65-Skyros
11-Küllüoba	22-Karataş- Semayük	33-Imbroz-Yeni- bademli Höyük	44-Melos	55-Tiryns	

The main artefact category which provides information on the ATN, besides metal, is pottery. Western Anatolia is in a key location for the ATN and all of the characteristic pottery types of this network are present there (Şahoğlu, 2019, pp. 122-123). The natural routes through central Anatolia would end up at harbor settlements in western Anatolia such as Liman Tepe, Troy, and Miletos. Moreover, the inhabitants of these coastal settlements would possess the skills necessary to navigate both maritime and land routes. This hypothesis is also suggested by the strong Anatolian influences in islands close to western Anatolia, like the Cyclades, but also in other areas such as Lefkandi I in mainland Greece (Broodbank, 2000; Kouka, 2000; Manning, 1995; Maran, 1998; Rutter, 1979; Sotirakopoulou, 1993; Wilson, 1999; Rambach, 2000). The decline of the ATN started from ca. 2200 BC, during the "4.2 ka BP event". While this climatic episode might not have affected the Anatolian communities directly, it definitely affected other regions involved in the ATN, such as the Aegean and Cyprus (Weiss, 2015; Crewe, 2023). Additionally, evidence of damage linked with collapse and reorganization occur at several sites in Anatolia, which can maybe be connected to this climatic event (Mass, 2014; Massa & Şahoğlu 2015).

2.3.2. History of Research: The Origins and Evolution of the Philia Debate

It has been argued that both insularity and connectivity are demonstrated throughout Cypriot prehistory. Cyprus, also because of its central location in the Eastern Mediterranean, has been frequently part of networks of mobility, interaction, and exchange (Knapp, 2013, p. 35). However, especially in Prehistory, Cyprus has been seen as culturally isolated, and as a "particular regional entity from the outset" (McCartney & Peltenburg 2000). By contrast, several researchers have argued that Cyprus was in constant – although sometimes irregular, contact with other areas. The most noteworthy evidence for this in Early Prehistory is the increase of imported obsidian in the Early Aceramic Neolithic (Clarke, 2003, p. 204; Moutsiou, 2018). Nevertheless, in the Later Aceramic Neolithic, contacts seem to decrease. Therefore, Cyprus is considered isolated until the mid-third millennium BC, when with the emergence of the Philia Phase, interactions with neighboring regions are clearly evident again in the form of novel pottery types, new agricultural practices and the development of metallurgy (Mellink, 1991, p. 167; Steel, 2004, p. 119; Bolger, 2013, p. 1).

Recently, this view has been challenged, since research indicates extra-insular interactions also in the Middle and Late Chalcolithic. Relevant evidence from the Middle Chalcolithic is scarce, consisting of small amounts of residual imported obsidian, and faience beads (Knapp, 2013, p. 206). In the Late Chalcolithic, imports include faience beads in Kissonerga-*Mosphilia*, and extra-insular contacts are suggested by aspects of pottery production, metal objects made of Anatolian ores, faience beads and annular pendants (Bolger, 2013; Peltenburg, 2018; Peltenburg *et al.*, 2019; Düring *et al.* 2021). A detailed overview of evidence of interaction between Cyprus and the mainlands from the Chalcolithic to the Philia Phase is provided in Chapter 7.

The nature and intensity of interactions between Cyprus and Anatolia in the third millennium BC has been the focal point of a long-standing debate among archaeologists. In general, the discussion concentrates on several innovations characterizing the Philia Phase (ca. 2400-2350/2250 BC), often attributed to the arrival of migrating populations from Anatolia (Webb & Frankel, 2007). The presence of migrant groups in Cyprus at the time has been widely argued, as researchers "acknowledge that during the third millennium BC in Cyprus indigenous populations –whether eagerly, unwillingly, or inadvertently- shared their terrain with foreigners, and that the cultural changes that ensued profoundly reshaped the island's identity" (Bolger, 2007, p. 167). Therefore, the emphasis is put on the nature of this transition and how migrant groups co-existed with local populations.

Initially, Myres (1914, pp. xxviii-xxix) suggested a migration event from the mainland, and Gjerstad (1926, pp. 299-302) agreed, highlighting similarities of Cypriot pottery with that of southwestern Anatolia. Subsequently, after several Neolithic and Chalcolithic excavations, and the excavation of the Bellapais-*Vounous B* cemetery, Dikaios argued for ceramic affinities between the Neolithic and the Chalcolithic and therefore "the continuity of [indigenous] cultures", while acknowledging a transitional period between the Chalcolithic and the Early Bronze Age (Dikaios, 1940, p.162, 167). Additionally, he noticed "anatolianising" vessel shapes, which according to him occurred because of close contact of the island with Anatolia (Dikaios, 1940, p. 168).

However, in the 1940s-1950s, Philia Phase assemblages were first excavated, and Dikaios changed his perspective, arguing that a peaceful migration of 'superior' Anatolian populations occurred replacing the 'inferior' Cypriot culture (Dikaios, 1962, p. 202). On the other hand, Stewart (1962, pp. 230, 241-242), after his excavation of Early Cypriot tombs at Bellapais-*Vounous A*, argued that the Philia pottery and metal actually reflect a regional variation. According to him the novel pottery characteristics, such as cut-away spouts on jugs, only has a 'generic resemblance' with Anatolian pottery (Stewart, 1962, pp. 274-275).

In the 1970s, Catling (1971, pp. 815, 819-20) suggested that refugees from EB II Anatolia where destruction took place, ended up in Cyprus and mingled with the indigenous people, bringing technological expertise with them. Studying Philia Phase pottery, Bolger (1983; 1991a) focused on Philia innovations such as flaring rims and flat bases, but noted that they don't occur in the same combinations as in Anatolian vessels, arguing for an introduction of Anatolian techniques. Peltenburg (1982) had also argued for the introduction of decorative practices like the white-filled incisions, from EB II Tarsus. Swiny (1986) argued for more innovations coming to the island from EB II southern Anatolia, and especially Tarsus, such as new types of pottery, gaming stones, rectilinear architecture, cattle, and spindle whorls. According to him these were the result of 'stimulus diffusion' and a probably "arrival of a few Cilician refuges" (Swiny, 1986, p. 40).

In the 1990s, discussions on social complexity influenced views on the Philia transition. Held credited the 'delayed' occurrence of Bronze Age to 'cultural retardation' because of insularity, whereas Knapp and Manning saw internal sociocultural development and competition as the main factors (Held, 1989; Manning, 1993; Knapp, 1994). Knapp (1990; 1993; 1994) argued that the "Secondary Products Revolution package" and metallurgy were adopted by local populations on the island, while Manning (1993, p. 49) argued that Philia innovations like drinking sets associated with alcohol consumption, were first introduced by an 'existing emergent elite' in the north of the island due to their participation in the "Aegean-Anatolian-eastern Mediterranean world system". Peltenburg (1993, p. 20; 1994, p. 159; 1996, pp. 23-27) also attributed innovations to trade, along with influences from Anatolian migrants.

After excavating Marki-Alonia, Webb and Frankel (1999) reassessed all available Philia evidenced and suggested that it was a distinct cultural entity, with no strong continuity from the Late Chalcolithic, but an enculturation of the Chalcolithic culture by Anatolian migrants either from southwestern Anatolia or Cilicia, reflecting a "focal migration of extended family groups into western [Northwestern] Cyprus from southwestern Anatolia" (Webb and Frankel, 1999, p. 40). Since then, both Webb and Frankel have elaborated this idea, employing ethnicity and habitus (e.g., Frankel, 2000; 2005; Frankel and Webb, 2001; 2004; Webb, 2002b; Webb and Frankel, 2007; 2011; 2013a). More recently they have also argued for a well-organized colonization episode that introduced resources unavailable to Cyprus, focused on copper metallurgy and involved a 'transported landscape' (Webb and Frankel, 2011, p. 30).

Therefore, a Philia migration became widely accepted, stimulating a debate on how these migrants interacted with the indigenous islanders. Knapp (2013, pp. 269-277), after discussing the Philia Phase novelties has suggested that these migrants could have come from anywhere in the Eastern Mediterranean, and the issue should be viewed within the framework of hybridization processes. Bolger (2007; 2013) and Peltenburg (2007; 2018) have argued that many of the Philia novelties already existed in the Late Chalcolithic. Kouka (2009) and Bachhuber (2014) have suggested small-scale movement of populations from Anatolia already the Late Chalcolithic. Additionally, Paraskeva has argued for the possibility of episodes of violence and adoption of technologies but not style, and emphasised the regionalism of the Late Chalcolithic which might have resulted in various regional responses to the arrival of migrants during the Philia (Paraskeva, 2015).

Recently, Muti (2022) highlighted the possible presence of spindle whorls and the potential for additional tools made from perishable materials during the Late Chalcolithic (LChal) period. Lastly, Laoutari (2023) studied pottery production, metal artefacts and mortuary practices across the island in the Prehistoric Bronze Age (ca. 2500-1750 BC) and has argued for various types of interactions within and outside the island, moving beyond the migration model.

2.3.3. Bridging the Gaps: The Anatolian Trade Network in Relation to the Philia Culture

The Philia culture is in part contemporary to the Anatolian Trade Network (Şahoğlu, 2005; Webb et al., 2006). According to Manning (2014, p. 24), "the Philia transformation was a form of secondary or reactive development" to the increased connectivity of the island within this exchange network. The mechanisms involved in this development must have been multiple and complicated. The Anatolian influences on the Philia material record seem to come from several areas within the extent of the Anatolian Trade Network (Manning, 2014, p. 24). This indicates multiple migration events, and "rather contact stimulus, selected reception and emulation/hybridity from this wider zone" (Manning, 2014, p. 24). These influences include annular pendants and pottery characteristics. Additionally, some scholars have argued that several of the Philia innovations seem to have closer connections to the Aegean or the Levant than to Anatolia (Kouka, 2009; Bolger, 2013; Keswani, 2004, p. 55).

How the Philia relates to the Anatolian Trade Network is a topic investigated by very few Anatolian prehistorians (Bachhuber, 2014, p. 139). Archaeologists working from the Anatolian perspective (predating Manning, 2013; 2014) had accepted the dates of around 2300 BC for the end of the Philia Phase. Hence, Cyprus would stop being part of the Anatolian Trade Network before its collapse. Following this line of thought, this supposed early exit of Cyprus from the exchange network has been cited as an explanation for the lack of characteristic pottery types, like the depas cups and tankards from the island (Bachhuber, 2014, p. 151; Şahoğlu, 2014). Nevertheless, other aspects of pottery production, like the surface treatment of the Red Philia Polished Ware, demonstrate clear Anatolian influences (Bachhuber, 2014, p. 143).

But why would population groups from Anatolia relocate to Cyprus? One explanation could be that the great development of agricultural, pastoral and metallurgical industries in Anatolia, led to demographic expansion and changes in the landscape, forcing some communities to relocate. Another scenario would be a relocation fuelled by the search for copper ores. However, this seems less likely since there is an abundance of copper ores within the Anatolian peninsula. In any case, the migrant groups would have maintained some social, ideological and exchange links with communities in Anatolia.

2.5. Concluding Summary

To conclude, this chapter has provided an overview of the archaeological record of the regions in question in the third millennium BC, except for pottery, which is presented in the following Chapter. Extensive research has been conducted on prehistoric Cyprus and Cilicia resulting in numerous publications. Particularly concerning the early third millennium BC, literature on both regions is abundant with regional peculiarities, varied periodization and chronologies, and numerous debates covering topics such as the Anatolian Trade Network's nature and the emergence of the Bronze Age in Cyprus. This chapter endeavoured to navigate through the vast and often conflicting literature on the archaeology of Cyprus and Anatolia, offering a summary of the present state of scholarship. This overview lays the foundation for understanding the archaeology of the regions in question and the current debates concerning their interactions, providing the research context for this thesis.