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ABSTRACT
ISS
BACKGROUND A lesion-level risk prediction for acute coronary syndrome (ACS) needs better characterization.

OBJECTIVES This study sought to investigate the additive value of artificial intelligence–enabled quantitative coronary

plaque and hemodynamic analysis (AI-QCPHA).

METHODS Among ACS patients who underwent coronary computed tomography angiography (CTA) from 1 month to 3

years before the ACS event, culprit and nonculprit lesions on coronary CTA were adjudicated based on invasive coronary

angiography. The primary endpoint was the predictability of the risk models for ACS culprit lesions. The reference model

included the Coronary Artery Disease Reporting and Data System, a standardized classification for stenosis severity, and

high-risk plaque, defined as lesions with $2 adverse plaque characteristics. The new prediction model was the reference

model plus AI-QCPHA features, selected by hierarchical clustering and information gain in the derivation cohort. The

model performance was assessed in the validation cohort.

RESULTS Among 351 patients (age: 65.9� 11.7 years) with 2,088 nonculprit and 363 culprit lesions, themedian interval from

coronary CTA to ACS eventwas 375 days (Q1-Q3: 95-645 days), and 223 patients (63.5%) presentedwithmyocardial infarction.

In the derivation cohort (n ¼ 243), the best AI-QCPHA features were fractional flow reserve across the lesion, plaque burden,

total plaque volume, low-attenuation plaque volume, and averaged percent total myocardial blood flow. The addition of AI-

QCPHA features showed higher predictability than the reference model in the validation cohort (n ¼ 108) (AUC: 0.84 vs 0.78;

P < 0.001). The additive value of AI-QCPHA features was consistent across different timepoints from coronary CTA.

CONCLUSIONS AI-enabled plaque and hemodynamic quantification enhanced the predictability for ACS culprit lesions

over the conventional coronary CTA analysis. (Exploring the Mechanism of Plaque Rupture in Acute Coronary Syndrome

Using Coronary Computed Tomography Angiography and Computational Fluid Dynamics II [EMERALD-II]; NCT03591328)

(JACC Cardiovasc Imaging. 2024;17:1062–1076) © 2024 by the American College of Cardiology Foundation.
N 1936-878X/$36.00 https://doi.org/10.1016/j.jcmg.2024.03.015
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AB BR E V I A T I O N S

AND ACRONYM S

ACS = acute coronary

syndrome

AI-QCPHA = artificial

intelligence—enabled

quantitative coronary plaque

and hemodynamic analysis

APC = adverse plaque

characteristic

APS = axial plaque stress

CAD = coronary artery disease

CTA = computed tomography

angiography

FFRCT = fractional flow reserve

derived from coronary

computed tomography

angiography

HRP = high-risk plaque

ICA = invasive coronary

angiography

LAPV = low-attenuation

plaque volume

MBF = myocardial blood flow

MI = myocardial infarction

NCPV = noncalcified plaque

volume

TPV = total plaque volume

WSS = wall shear stress
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A cute coronary syndrome (ACS) remains the
leading cause of mortality worldwide.1,2

Three-fourths of patients with myocardial
infarction (MI) present as new coronary artery
events,3 and MI precursors can be related to nonob-
structive stenoses.4,5 Accordingly, risk evaluation
for future ACS events is required in the upfront diag-
nostic stage before fatal coronary events or severe
obstructive coronary stenosis.

Coronary computed tomography angiography
(CTA) is the established noninvasive imaging modal-
ity to diagnose coronary artery disease (CAD).6,7 The
recent ESC (European Society of Cardiology) and ACC
(American College of Cardiology)/AHA (American
Heart Association) guidelines recommend the use of
coronary CTA as a first-line test in patients with sus-
pected CAD because of its excellent negative predic-
tive value, which enables exclusion of CAD.8,9 In
addition to assessment of stenosis severity, coronary
CTA can also identify adverse plaque characteristics
(APCs) associated with an increased risk of ACS,10 and
the standard coronary CTA interpretation criteria
encompass both stenosis severity and APCs.11 How-
ever, their low positive predictive value for treatment
decision making in clinical practice necessitates the
use of an additional metric to enhance prediction of
future ACS events.12

The biomechanical substrate of atherosclerotic
coronary lesions leading to ACS comprises complex
interactions between plaque composition and the
hemodynamic environment surrounding the plaque.
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analyses have been operator dependent, and
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analysis, which incorporates plaque and he-
modynamic characteristics, has yet to be fully
established. In this regard, the current study
aims to identify the plaque and hemody-
namic features for ACS prediction using AI-
based analysis and investigate their additive
value to the stenosis severity and APCs and
explore their potential implications for
selecting appropriate treatment strategies.
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suspected plaque rupture or thrombus or with
angiographic stenosis of $90%. Patients with the
following characteristics were excluded: 1) those with
no clear evidence of culprit lesion; 2) those with
previous stent implantation in 2 or more coronary
arteries (vessel territories) before coronary CTA or
revascularization between coronary CTA and the ACS
event; 3) those with the ACS culprit lesion in a pre-
viously stented segment; 4) those with secondary
ACS or history of coronary artery bypass graft surgery;
and 5) those with poor-quality coronary CTA not
suitable for quantitative plaque and hemodynamic
analysis. The study protocol was approved by the
Institutional Review Board of each site and was per-
formed in accordance with the Declaration of Helsinki
(NCT03591328).

STUDY DESIGN. The detailed study design is pre-
sented in Supplemental Figure 1. Patients undergoing
invasive coronary angiography (ICA) following ACS
were identified by searching the database of partici-
pating centers, and those who had undergone coro-
nary CTA from 1 month to 3 years before the ACS
event and met the inclusion criteria were enrolled in
the study. Clinical characteristics, coronary CTA, and
ICA images were collected and analyzed by indepen-
dent core laboratories. Coronary CTA images were
sent to 2 independent coronary CTA core laboratories
for quantitative plaque and hemodynamic analysis
(HeartFlow Inc) and for conventional coronary CTA
analysis according to the standard coronary CTA
interpretation criteria11 (University of British
Columbia). ICA images were sent to the angiographic
core laboratory (Samsung Medical Center) blinded to
patient characteristics and coronary CTA findings to
define the ACS culprit lesion. For each patient, all
lesions were matched between coronary CTA and ICA
images, and subsequently, culprit and nonculprit le-
sions on coronary CTA were labeled. The culprit le-
sions were defined as cases and the nonculprit lesions
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TABLE 1 Baseline Patient Characteristics

Total Patients
(N ¼ 351)

Derivation Cohort
(n ¼ 243)

Validation Cohort
(n ¼ 108) P Value

Age, y 65.9 � 11.7 65.8 � 11.8 66.0 � 11.7 0.860

Male 261 (74.4) 182 (74.9) 79 (73.1) 0.831

Diagnosis 0.919

Myocardial infarction 223 (63.5) 156 (64.2) 67 (62.0)

NSTEMI 128 (36.5) 90 (37.0) 38 (35.2)

STEMI 95 (27.1) 66 (27.2) 29 (26.9)

Unstable angina 128 (36.5) 87 (35.8) 41 (38.0) 0.789

Diabetes 116 (33.0) 82 (33.7) 34 (31.5) 0.769

Hypertension 258 (73.5) 179 (73.7) 79 (73.1) >0.999

Hyperlipidemia 218 (62.1) 152 (62.6) 66 (61.1) 0.891

Current smoker 84 (23.9) 61 (25.1) 23 (21.3) 0.525

Time to event from coronary CTA to ACS event, d 375.0 (95.0-644.5) 381.0 (97.0-640.5) 361.5 (94.5-662.0) 0.967

Medications at the time of coronary CTA

Aspirin or P2Y12 inhibitor 155 (44.3) 111 (45.9) 44 (40.7) 0.438

ACEI/ARB 127 (36.3) 86 (35.5) 41 (38.0) 0.752

Beta-blocker 82 (23.4) 57 (23.6) 25 (23.1) >0.999

Calcium channel blocker 89 (25.4) 63 (26.0) 26 (24.1) 0.798

Statin 134 (38.3) 93 (38.4) 41 (38.0) >0.999

Values are n (%), mean � SD, or median (Q1-Q3). Diabetes was defined as fasting plasma glucose level of $126 mg/dL, glycated hemoglobin of $6.5%, or treatment with any
antidiabetic drugs. Hyperlipidemia was defined as triglycerides of $200 mg/dL, total cholesterol of $240 mg/dL, low-density lipoprotein cholesterol of $160 mg/dL, high-
density lipoprotein cholesterol of <40 mg/dL, or treatment with any lipid-lowering medications.

ACEI ¼ angiotensin-converting enzyme inhibitor; ACS ¼ acute coronary syndrome; ARB ¼ angiotensin receptor blocker; CTA ¼ computed tomography angiography;
NSTEMI ¼ non–ST-segment elevation myocardial infarction; STEMI ¼ ST-segment elevation myocardial infarction.

J A C C : C A R D I O V A S C U L A R I M A G I N G , V O L . 1 7 , N O . 9 , 2 0 2 4 Koo et al
S E P T E M B E R 2 0 2 4 : 1 0 6 2 – 1 0 7 6 Plaque and Hemodynamic Predictors for ACS

1065
of 30-130 HU); low-attenuation plaque volume (LAPV)
(plaque composition of –30 to 30 HU); and their
normalized volume corresponding to the vessel,
defined as the relevant plaque volume divided by the
vessel volume, multiplied by 100 (percent TPV,
percent NCPV, and percent LAPV).

CONVENTIONAL CORONARY CTA ANALYSIS.

According to the standard coronary CTA interpreta-
tion criteria, Coronary Artery Disease Reporting and
Data System (CAD-RADS) and APCs were obtained.11

CAD-RADS is a standardized classification for stenosis
severity ranging from 0 (ie, absence of plaque or
stenosis) to 5 (ie, total occlusion).11 APCs include low
attenuation plaque (plaque with a pixel with #30
HU), positive remodeling (remodeling index of $1.1),
spotty calcification (average density of >130 HU and
diameter of <3 mm in any direction), and napkin ring
sign (ring-like attenuation form with peripheral high
and central lower attenuation portion). High-risk
plaque (HRP) was defined as a lesion with $2 APCs.11

PRIMARY HYPOTHESIS AND ANALYSIS ENDPOINT.

The working hypothesis of the study was that addi-
tion of the best quantitative plaque and hemody-
namic features into the conventional coronary CTA
analysis could enhance the discrimination ability for
identification of the culprit lesions of ACS. The anal-
ysis endpoint was the differences in predictability
between the reference model with CAD-RADS and
HRP and the new prediction model that was con-
structed with the addition of the best AI-QCPHA fea-
tures to the reference model. The best features were
defined from the derivation cohort, and the model
performance was compared between the new pre-
diction model and the reference model in the vali-
dation cohort. A secondary analysis was performed
using the model with only AI-QCPHA features.

STATISTICAL ANALYSIS. The detailed statistical
methods are presented in the Supplemental Methods.
In the selection of best features in the derivation
cohort, hierarchical clustering was used to categorize
similar features, and one feature from each cluster
with the highest information gain for the culprit
lesion was designated as an AI-QCPHA feature.18 The
prediction models were developed using the XGboost
model,19 which uses an ensemble of gradient-boosted
decision trees and merges multiple weak classifiers
(single-tier decision trees) into one robust classifier
for predicting culprit lesions. Statistical significance
was set at P < 0.05. All analyses were performed using
R language version 4.2.0 (R Foundation for Statistical
Computing). The R packages used in the current
analysis are detailed in the Supplemental Methods.

RESULTS

BASELINE PATIENT CHARACTERISTICS. Among 449
enrolled ACS patients, 351 patients were finally

https://doi.org/10.1016/j.jcmg.2024.03.015
https://doi.org/10.1016/j.jcmg.2024.03.015


TABLE 2 Comparison of Lesion Characteristics Between Culprit and Nonculprit Lesions

Derivation Cohort Validation Cohort

Nonculprit Lesion
(n ¼ 1,247)

Culprit Lesion
(n ¼ 248) P Valuea

Nonculprit Lesion
(n ¼ 841)

Culprit Lesion
(n ¼ 115) P Valuea

Vessel 0.024 0.011

LAD 475 (38.1) 118 (47.6) 331 (39.4) 58 (50.4)

LCX 312 (25.0) 53 (21.4) 220 (26.2) 30 (26.1)

RCA 460 (36.9) 77 (31.0) 290 (34.5) 27 (23.5)

CAD-RADS 1.0 (1.0-2.0) 3.0 (2.0-4.0) <0.001 2.0 (1.0-3.0) 3.0 (2.0-4.0) <0.001

0 19 (1.5) 0 (0.0) <0.001 0 (0.0) 0 (0.0) <0.001

1 624 (50.0) 37 (14.9) 335 (39.8) 12 (10.4)

2 353 (28.3) 61 (24.6) 295 (35.1) 28 (24.3)

3 161 (12.9) 81 (32.7) 148 (17.6) 25 (21.7)

4 90 (7.2) 69 (27.8) 63 (7.5) 50 (43.5)

APCs

Low-attenuation plaque 146 (11.7) 101 (40.7) <0.001 219 (26.0) 69 (60.0) <0.001

Positive remodeling 256 (20.5) 116 (46.8) <0.001 204 (24.3) 63 (54.8) <0.001

Spotty calcification 82 (6.6) 55 (22.2) <0.001 57 (6.8) 13 (11.3) 0.130

Napkin ring sign 33 (2.6) 30 (12.1) <0.001 17 (2.0) 15 (13.0) <0.001

High-risk plaque ($2 APCs) 143 (11.5) 98 (39.5) <0.001 192 (22.8) 64 (55.7) <0.001

Quantitative plaque analysis

Plaque burden, % 73.1 � 15.0 85.2 � 10.2 <0.001 71.9 � 13.3 85.3 � 11.3 <0.001

TPV, mm3 79.9 � 72.3 132.8 � 96.9 <0.001 68.9 � 67.7 119.2 � 80.2 <0.001

NCPV, mm3 70.1 � 60.1 114.9 � 82.4 <0.001 60.4 � 56.6 107.4 � 71.1 <0.001

LAPV, mm3 2.2 � 2.9 4.5 � 5.1 <0.001 1.9 � 3.6 4.4 � 4.4 <0.001

Percent TPV 60.1 � 14.5 69.3 � 10.8 <0.001 59.7 � 12.5 69.2 � 11.0 <0.001

Percent NCPV 54.2 � 13.1 61.5 � 12.0 <0.001 53.8 � 12.8 63.4 � 12.0 <0.001

Percent LAPV 2.0 � 2.3 2.8 � 3.0 <0.001 1.9 � 2.4 3.2 � 3.7 <0.001

Quantitative hemodynamic analysis

DFFRCT 0.05 � 0.08 0.16 � 0.14 <0.001 0.04 � 0.07 0.17 � 0.15 <0.001

Peak FFRCT gradient 0.02 � 0.05 0.08 � 0.09 <0.001 0.02 � 0.04 0.08 � 0.09 <0.001

Averaged WSS, dyne/cm2 151.2 � 103.0 229.8 � 133.7 <0.001 141.1 � 106.6 245.1 � 179.2 <0.001

Peak WSS, dyne/cm2 598.2 � 861.4 1,550.1 � 1,509.6 <0.001 502.5 � 728.4 1,559.1 � 1,517.8 <0.001

Averaged APS, dyne/cm2 1,084.1 � 1,970.8 1,671.6 � 1,845.1 <0.001 2,098.1 � 3,453.9 2,139.6 � 2,338.9 0.880

Peak APS, dyne/cm2 30,572.7 � 15,631.5 39,968.8 � 17,575.6 <0.001 29,521.9 � 16,762.0 40,058.7 � 16,576.5 <0.001

Averaged percent total MBF 22.6 � 12.2 25.0 � 9.6 <0.001 22.7 � 12.4 26.4 � 12.1 0.002

Peak percent total MBP 23.6 � 13.1 27.2 � 11.7 <0.001 23.8 � 13.4 28.5 � 14.0 0.001

Averaged percent left ventricular MBF 23.8 � 13.7 26.9 � 11.4 <0.001 24.1 � 14.5 29.5 � 14.7 <0.001

Peak percent left ventricular MBF 24.7 � 14.8 29.3 � 14.3 <0.001 25.2 � 15.8 31.6 � 17.0 <0.001

Values are n (%), mean � SD, or median (Q1-Q3). aP values were derived from a generalized estimating equation model to account for the interrogated lesions within the same subjects.

APC ¼ adverse plaque characteristics; APS ¼ axial plaque stress; CAD-RADS ¼ Coronary Artery Disease Reporting and Data System; FFRCT ¼ fractional flow reserve derived from coronary computed
tomography angiography; LAD ¼ left anterior descending artery; LAPV ¼ low-attenuation plaque; LCX ¼ left circumflex artery; MBF ¼ myocardial blood flow; NCPV ¼ noncalcified plaque volume;
RCA ¼ right coronary artery; TPV ¼ total plaque volume; WSS ¼ wall shear stress.
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included in the study (Supplemental Figure 1) after
exclusion of 47 (10.5%) patients with inadequate im-
age quality for AI-QCPHA and 51 (11.4%) patients who
had no identifiable culprit lesions; 243 patients and
108 patients were assigned to the derivation and
validation cohorts, respectively. The baseline patient
characteristics are presented in Table 1. The mean age
of patients was 65.9 � 11.7 years, and 74.4% of pa-
tients were male. The median time to event from
coronary CTA to ACS was 375.0 (Q1-Q3: 95.0-644.5)
days, and 223 patients (63.5%) presented with MI.
Overall patient characteristics were well balanced
between the derivation cohort and the validation
cohort (Table 1).

COMPARISON OF LESION CHARACTERISTICS BETWEEN

CULPRIT AND NONCULPRIT LESIONS. On coronary
CTA, 1,495 lesions (248 [16.7%] culprit lesions) in the
derivation cohort and 956 lesions (115 [12.0%] culprit
lesions) in the validation cohort were identified.
Coronary artery segments of culprit lesions are shown
in Supplemental Table 2. CAD-RADS, APCs, and fea-
tures from AI-QCPHA were compared between non-
culprit and culprit lesions (Table 2). In the derivation

https://doi.org/10.1016/j.jcmg.2024.03.015
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FIGURE 1 Risk Stratification by CAD-RADS and HRP in the Derivation Cohort
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FIGURE 2 Correlation and Relative Importance Among Plaque and Hemodynamic Features
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FIGURE 3 Incremental Value of AI-QCPHA Features Over CAD-RADS and HRP

0.0

0.0

CAD-RADS + HRP 0.76
<0.001

0.86CAD-RADS + HRP + AI-QCPHA
features

Se
ns

iti
vi

ty

1- Specificity

Derivation CohortA B

Model AUC P-Value

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

0.0

0.0

CAD-RADS + HRP 0.78
<0.001

0.84CAD-RADS + HRP + AI-QCPHA
features

Se
ns

iti
vi

ty

1- Specificity

Validation Cohort

Model AUC P-Value

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

The predictability for culprit lesions of the model with CAD-RADS, HRP, and AI-QCPHA features was compared to that with CAD-RADS and HRP in the

derivation cohort (A) and the validation cohort (B). HRP was defined as the presence of $2 APCs. AI-QCPHA features were DFFRCT, plaque burden, total

plaque volume, low-attenuation plaque volume, and averaged percent total myocardial blood flow. AUC ¼ area under the curve; other abbreviations as in

Figures 1 and 2.

J A C C : C A R D I O V A S C U L A R I M A G I N G , V O L . 1 7 , N O . 9 , 2 0 2 4 Koo et al
S E P T E M B E R 2 0 2 4 : 1 0 6 2 – 1 0 7 6 Plaque and Hemodynamic Predictors for ACS

1069
cohort, culprit lesions had a higher CAD-RADS (3.0
[Q1-Q3: 2.0-4.0] vs 1.0 [Q1-Q3: 1.0-2.0]; P < 0.001) and
a higher proportion of HRP (39.5% vs 11.5%; P < 0.001)
compared to nonculprit lesions. In AI-QCPHA, culprit
lesions showed a greater plaque burden, TPV, NCPV,
LAPV, and normalized volume relative to the corre-
sponding vessel volume (all P < 0.001). All hemody-
namic parameters, including DFFRCT, peak FFRCT

gradient, WSS, APS, percent total MBF, and percent
left ventricular MBF, were also higher in culprit le-
sions compared to nonculprit lesions. These results
were similar in the validation cohort (Table 2).

DISCRIMINATION FOR CULPRIT LESIONS BY THE

CONVENTIONAL CORONARY CTA ANALYSIS. In the
derivation cohort, the proportion of culprit lesions
significantly increased with increasing CAD-RADS
(5.4%, 14.7%, 33.%, and 43.4% for 0 or 1, 2, 3, and 4
in CAD-RADS, respectively; P for trend < 0.001) or the
number of APCs (10.2%, 20.4%, 34.9%, and 50.0% for
0, 1, 2, and $3 APCs, respectively; P for
trend < 0.001). The lesions with HRP showed a higher
proportion of culprit lesions than those without HRP
among lesions with CADS-RADS of #2 (21.5% vs 8.0;
P < 0.001) or with CAD-RADS of $3 (50.0% vs 28.9%;
P < 0.001) (Figure 1). Similar results were observed in
the validation cohort (Supplemental Figure 2).

AI-QCPHA FEATURES AND THEIR INCREMENTAL

VALUES TO CAD-RADS AND HRP. The covariance
matrix of 18 features from AI-QCPHA in the derivation
cohort is shown in Figure 2. Hierarchical clustering
revealed 5 clusters, mainly representing hemody-
namics, relative plaque burden, lipid-rich plaque
volume, myocardial territory, and absolute amount of
plaque. The best features from each cluster were
DFFRCT, plaque burden, TPV, LAPV, and averaged
percent total MBF. These 5 AI-QCPHA features pro-
vided additive diagnostic performance for culprit le-
sions over CAD-RADS and HRP in the derivation
cohort (AUC: 0.86 vs 0.76; P < 0.001). The additive
value of 5 AI-QCPHA features was demonstrated in
the validation cohort (AUC: 0.84 vs 0.78; P < 0.001)
(Figure 3). In both the derivation and validation co-
horts, all 5 AI-QCPHA features were associated with a
higher risk of culprit lesions independent of CAD-
RADS and APCs (Table 3). When each AI-QCPHA
feature was added into the model with CAD-RADS

https://doi.org/10.1016/j.jcmg.2024.03.015


TABLE 3 Association of AI-QCPHA Features With ACS Culprit Lesions

Unadjusted OR (95% CI) P Value Adjusted ORa (95% CI) P Value

Derivation cohort

DFFRCT, per 0.1 increase 2.26 (1.96-2.60) <0.001 1.68 (1.43-1.97) <0.001

Plaque burden, per 10% increase 2.28 (1.96-2.67) <0.001 1.62 (1.37-1.93) <0.001

TPV, per 100-mm3 increase 1.98 (1.71-2.29) <0.001 1.48 (1.25-1.76) <0.001

LAPV, per 10-mm3 increase 4.49 (2.97-6.80) <0.001 2.08 (1.38-3.14) <0.001

Averaged percent total MBF, per 10% increase 1.17 (1.08-1.28) <0.001 1.23 (1.10-1.37) <0.001

Validation cohort

DFFRCT, per 0.1 increase 2.44 (1.95-3.05) <0.001 1.83 (1.40-2.39) <0.001

Plaque burden, per 10% increase 2.85 (2.15-3.77) <0.001 2.01 (1.48-2.75) <0.001

TPV, per 100-mm3 increase 2.05 (1.59-2.65) <0.001 1.75 (1.37-2.23) <0.001

LAPV, per 10-mm3 increase 3.56 (1.35-9.43) 0.011 2.03 (1.00-4.11) 0.049

Averaged percent total MBF, per 10% increase 1.24 (1.10-1.41) <0.001 1.44 (1.21-1.70) <0.001

APCs included low-attenuation plaque, positive remodeling, spotty calcification, and napkin-ring sign. HRP was defined as the presence of $2 APCs. aAdjusted for CAD-RADS
and HRP.

AI-QCPHA ¼ artificial intelligence–enabled coronary plaque and hemodynamic analysis; other abbreviations as in Tables 1 and 2.
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and HRP in the reverse order of importance, the
predictability of the models increased sequentially
from 0.76 to 0.86 (Supplemental Figure 3). The in-
cremental value of AI-QCPHA features was consistent
when the reference model was defined as CAD-RADS,
HRP, and FFRCT (Supplemental Figure 4). The model
with AI-QCPHA features showed a similar predict-
ability to the new prediction model in both the deri-
vation and validation cohorts (Supplemental
Figure 5).

PROGNOSTIC IMPLICATIONS OF AI-QCPHA FEATURES BY

THE TIME TO EVENT. In the entire cohort, 169 (48.1%)
patients experienced ACS events within 1 year of
coronary CTA, and 182 (51.9%) patients experienced
ACS events after 1 year. When the relationship of the
AI-QCPHA features with culprit risk was explored
according to the time to event of 1 year, an increase in
DFFRCT, plaque burden, TPV, LAPV, and averaged
percent total MBF was significantly associated with a
higher risk of culprit lesion regardless of the time to
event of 1 year (Table 4).
TABLE 4 Relationship of AI-QCPHA Features With Short-Term and Lo

Time-to-Event of

Adjusted ORa (95%

DFFRCT, per 0.1 increase 1.75 (1.44-2.11

Plaque burden, per 10% increase 1.60 (1.31-1.95

TPV, per 100-mm3 increase 1.73 (1.44-2.08

LAPV, per 10-mm3 increase 2.09 (1.40-3.11

Averaged percent total MBF, per 10% increase 1.31 (1.16-1.48

The definitions of HRP and AI-QCPHA features are the same as in Table 3. aAdjusted for

Abbreviations as in Tables 1 to 3.
Figure 4 represents the time-dependent receiver-
operating characteristic curve analysis according to 6-
month intervals. When the predictabilities of the
reference model (ie, CAD-RADS and HRP) and the new
prediction model (ie, CAD-RADS, HRP, and AI-QCPHA
features) were examined at different timepoints, the
new prediction model consistently had a higher pre-
dictability than the reference model, regardless of the
time to event, even though the overall predictability
of both models tended to decrease in predicting long-
term events. This result was consistent when the
analysis was performed by the quartile of time in-
tervals (Supplemental Figure 6).

INDIVIDUALIZED EXPLANATIONS OF THE RISK

MODEL. The discriminatory gain of individual com-
ponents of the new prediction model was assessed in
SHAP (SHapley Additive exPlanations) waterfall plots
(Supplemental Figure 7). Figure 5 depicts the repre-
sentative case illustrating how each component of the
new prediction model contributed to the classifier
output when classifying a lesion as being a culprit or
ng-Term ACS Risk

>1 Year (n ¼ 1,298) Time-to-Event of £1 Year (n ¼ 1,153)

CI) P Value Adjusted ORa (95% CI) P Value

) <0.001 1.79 (1.46-2.19) <0.001

) <0.001 2.20 (1.70-2.83) <0.001

) <0.001 1.47 (1.20-1.80) <0.001

) <0.001 2.24 (1.12-4.48) 0.023

) <0.001 1.30 (1.12-1.50) <0.001

CAD-RADS and HRP.
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FIGURE 4 AUC Comparison According to the Time From Coronary CTA to ACS Events
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nonculprit lesion. In the culprit lesion of the pre-
sented case, DFFRCT provided the highest increment
in classification output in the assessment of the lesion
being an ACS culprit lesion (Figure 5A). When the
event probability was plotted over time, the predicted
time to event for a probability of $20%, which was
the optimal threshold in predicting culprit lesions
according to the Youden index (Supplemental
Figure 8), was 384 days for this case, and the actual
event time was 300 days.

DISCUSSION

The current study investigated the best predictors
among AI-enabled coronary CTA–derived quantita-
tive plaque and hemodynamic features in the pre-
diction of ACS culprit lesions and their incremental
prognostic value to the conventional coronary CTA
analysis. The main findings were as follows. First, the
probability of ACS culprit lesions increased with
higher CAD-RADS and the presence of HRP, which is
routinely used for coronary CTA reporting. Second,
the best AI-QCPHA features were DFFRCT, plaque
burden, TPV, LAPV, and averaged percent total MBF,
and they provided the additive predictive values for
ACS culprit lesions over CAD-RADS and HRP in both
the derivation and validation cohorts. The model
with only AI-QCPHA features showed a similar per-
formance to the new prediction model in both the
derivation and validation cohorts. Third, the model
with CAD-RADS, HRP, and AI-QCPHA showed higher
predictability than the model with CAD-RAD and
HRP, regardless of the time to event. Fourth, the
explainable machine learning model identified
DFFRCT as the most impactful feature in the risk
prediction model (Central Illustration).

RISK ASSESSMENT FOR ACS BASED ON CONVENTIONAL

CORONARY CTA ANALYSIS. Coronary CTA is increas-
ingly accepted as the first-line diagnostic modality for
the assessment of CAD.20 Using coronary CTA, it is
possible to identify anatomic stenosis severity and
plaque characteristics that correlate with coronary
event risk,20 and the ESC and ACC/AHA guideline
recommends the use of coronary CTA for risk strati-
fication in patients with CAD.8,9 In the current study,
we used CAD-RADS 2.011 assessed by independent
radiologists as a reference model and found that
stenosis severity and HRP based on visual estimation
were associated with a higher risk of ACS; the prev-
alence of culprit lesions serially increased with higher
CAD-RADS, and the presence of HRP further
discriminated ACS culprit lesions within CAD-RADS
of #2 and CAD-RADS of $3. This finding is in line
with prior publications showing the relationship of
CAD-RADS with short-term and long-term cardiovas-
cular outcomes, including all-cause mortality or
MI,21,22 and the independent prognostic value of APC
analysis on coronary CTA,23 supporting the advantage
of conventional coronary CTA analysis based on ste-
nosis and plaque. In addition to visual analysis of
coronary CTA, recent studies have suggested that
additional coronary CTA parameters could further
enhance the predictability for ACS risk. In ICONIC
(Incident COroNary Syndromes Identified by
Computed Tomography), quantitative fibrofatty or
necrotic core volume was higher in ACS patients than
in risk factor–matched control individuals,4 and in
the post hoc analysis of SCOT-HEART (Scottish
COmputed Tomography of the HEART Trial), low-
attenuation plaque burden of >4% was associated
with more than 4-fold greater MI risk.24 Similarly, in
CAPIRE (Coronary Atherosclerosis in outlier subjects:
Protective and novel Individual Risk factors Evalua-
tion), LAPV, NCPV, and TPV provided additional
predictive value for ACS events over clinical risk
factors.25 In the earlier EMERALD-I, the synergistic
impact between local hemodynamic parameters and
APCs on the risk for ACS development was reported.14

The current evidence is consistent in showing the
benefit of quantitative plaque analysis and

https://doi.org/10.1016/j.jcmg.2024.03.015
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FIGURE 5 Individual Risk Prediction With the Best AI-QCPHA Features
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same as in Figure 3. Abbreviations as in Figures 1 to 4.
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CENTRAL ILLUSTRATION Identification of AI-QCPHA Features and Their Additive Value for
Predicting ACS
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hemodynamic assessment on coronary CTA for the
prediction of future ACS, and the relative and com-
bined prognostic value of these features, which have
separately been proposed in prior studies, should be
comprehensively validated in a reproducible manner.
In this regard, EMERALD-II was designed to identify
the best quantitative plaque and hemodynamic
characteristics to predict ACS culprit lesions and to
determine their prognostic values when added to the
conventional coronary CTA analysis.

AI-ENABLED QUANTITATIVE CORONARY PLAQUE AND

HEMODYNAMIC ASSESSMENT. Prior studies showing
the potential benefits of plaque quantification and
hemodynamic assessment on coronary CTA for risk
stratification have mostly used semiautomated
methods that need manual correction by experienced
analyzers. Consequently, their routine clinical appli-
cation is limited because of the additional required
time and labor and variability among practi-
tioners.4,14,15,24-26 AI-based approaches for coronary
CTA analysis are being used to resolve unmet needs
for the clinical applicability of quantitative coronary
CTA analysis.17,27,28 In the current study, AI-QCPHA
was developed to derive quantitative plaque and
hemodynamic characteristics for generalizability, and
data-driven feature selection methods were used to
define the AI-QCPHA features to minimize the po-
tential bias by analyzers.18 Another strength of the
current study is the prespecified derivation and vali-
dation cohorts at the upfront stage of the study, and
AI-QCPHA for each cohort was independently per-
formed, totally blinded to the information from the
other cohort. Throughout this strict and thorough
approach, 5 AI-QCPHA features were identified in the
derivation cohort and demonstrated to significantly
enhance the predictability for ACS risk of CAD-RADS
and HRP in the validation cohort. This additive
value was consistent even on top of CAD-RADS, HRP,
and FFRCT. An interesting finding is that the pre-
dictability was not different between the new
LUSTRATION Continued
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features. Although this comparison should be
further extrapolated in a large-scale study across
various CAD severities, our findings indicate the po-
tential benefit of AI-based coronary CTA quantitative
analysis that can provide additional prognostic
information.
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territory, our findings support the pathophysiology of
ACS events13,29 and demonstrate the incremental
prognostic value of integrating each coronary CTA–
defined attribute proven in prior studies.4,14,15,24,25
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two-thirds of the study population, tends to exhibit a
higher incidence of ST-segment elevation MI.30,31 Of
note, the incremental predictability of 5 AI-QCPHA
features was maintained across different timepoints
from coronary CTA, and the explainable machine
learning models implied that DFFRCT provided the
highest impact on the increment in ACS risk among
the model components. Therefore, in addition to the
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PERSPECTIVES

COMPETENCY IN PATIENT CARE AND PROCEDURAL

SKILLS: With the use of AI-QCPHA on coronary CTA, quantita-

tive and qualitative plaque characteristics, local hemodynamics,

and myocardial territory were comprehensively assessed, and 5

AI-QCPHA features provided incremental predictability for ACS

risk over the conventional coronary CTA analysis.

TRANSLATIONAL OUTLOOK: Future studies are needed to

investigate the efficacy of prevention strategies based on

AI-QCPHA.
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prior published reports, EMERALD-II further high-
lights the importance of incorporating a broader
domain of CAD, including physiologic and myocar-
dial territory assessments as well as quantitative
plaque features, in defining the ACS risk. This study
also showed the clinical applicability of integrative
AI-QCPHA that could enable physicians to define
target lesions at greater risk of ACS events and
might overcome the limitations of low positive
predictive value solely based on anatomic or plaque
features.12,32 Further investigation is required to
assess the effectiveness of prevention strategies
with optimal medical therapy or percutaneous cor-
onary intervention for high-risk lesions based on
our risk model.

STUDY LIMITATIONS. The current study has several
limitations. First, the data were collected in a retro-
spective way among ACS patients. Nonetheless, the
sample size was based on the prespecified assump-
tion, with each derivation and validation cohort
meeting the criteria set forth in the sample size
calculation. The primary hypothesis was met with an
appropriate study population. Second, the control
group was set as internal controls, which were non-
culprit lesions within patients. The risk model should
be validated by comparing culprit lesions with
external controls of patients without ACS in future
studies. Third, although the risk model derived from
the derivation cohort was validated in the indepen-
dent validation cohort, there was no external cohort,
which warrants extrapolation of the current results in
other populations. Fourth, the patient-level factors
between coronary CTA and ACS events, including
glucose and lipid profiles, lifestyle modification, and
medication history, were not included in the study.
However, the study design using internal controls
might have reduced the effect of the patient-level
factors on the current results. Fifth, the current
analysis was not tested according to CT technology
and needs to be validated across various CT
technologies.

CONCLUSIONS

AI-QCPHA has the potential to enhance the prediction
of lesion-specific ACS risk when added to conven-
tional coronary CTA analysis. The use and integration
of such algorithms in clinical practice can provide an
improved risk stratification with the aim of
preventing ACS and for the optimization of treatment
strategy for patients with CAD.
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