
The Ithildin library for efficient numerical solution of anisotropic
reaction-diffusion problems in excitable media
Kabus, D.; Cloet, M.; Zemlin, C.; Bernus, O.; Dierckx, H.

Citation
Kabus, D., Cloet, M., Zemlin, C., Bernus, O., & Dierckx, H. (2024). The Ithildin library for
efficient numerical solution of anisotropic reaction-diffusion problems in excitable media. Plos
One, 19(9). doi:10.1371/journal.pone.0303674

Version: Publisher's Version
License: Creative Commons CC BY 4.0 license
Downloaded from: https://hdl.handle.net/1887/4246785

Note: To cite this publication please use the final published version (if applicable).

https://creativecommons.org/licenses/by/4.0/
https://hdl.handle.net/1887/4246785

RESEARCH ARTICLE

The Ithildin library for efficient numerical

solution of anisotropic reaction-diffusion

problems in excitable media

Desmond KabusID
1,2, Marie CloetID

1, Christian ZemlinID
3, Olivier Bernus4, Hans Dierckx1*

1 Department of Mathematics, KU Leuven Campus Kortrijk (KULAK), Kortrijk, Belgium, 2 Laboratory of

Experimental Cardiology, Leiden University Medical Center (LUMC), Leiden, The Netherlands, 3 Division of

Cardiothoracic Surgery, Department of Surgery, University of Washington School of Medicine, St Louis, MO,

United States of America, 4 Univ. Bordeaux, Inserm, Centre de Recherche Cardio-Thoracique de Bordeaux

U1045, IHU Liryc, Hôpital Xavier Arnozan, Pessac, France

* h.dierckx@kuleuven.be

Abstract

Ithildin is an open-source library and framework for efficient parallelized simulations of excit-

able media, written in the C++ programming language. It uses parallelization on multiple

CPU processors via the message passing interface (MPI). We demonstrate the library’s ver-

satility through a series of simulations in the context of the monodomain description of car-

diac electrophysiology, including the S1S2 protocol, spiral break-up, and spiral waves in

ventricular geometry. Our work demonstrates the power of Ithildin as a tool for studying

complex wave patterns in cardiac tissue and its potential to inform future experimental and

theoretical studies. We publish our full code with this paper in the name of open science.

1 Introduction

With the Ithildin framework, we want to open up new gateways in the numerical simulation of

reaction-diffusion systems, such as the electrical activation patterns in the heart. (In this way,

it is similar to its namesake in the Lord of the Rings, where Ithildin is an Elven substance that

reveals a hidden gateway to another realm after a spell is cast [1]).

Our motivation to write a reaction-diffusion solver comes from the numerical study of elec-

trical patterns inside the heart [2]. These patterns, which are incompletely understood, are a

main cause of death and even as a chronic disease, they complicate people’s lives. In the past

decades, computer models of arrhythmia have allowed mechanistic insight in the origin and

control of arrhythmias [3]. On the longer term, it is thought that digitized versions of patients’

hearts could help offer better diagnostics and planning of procedures; such personalized heart

models are called cardiac digital twins [4–7]. In view of open science, we have decided to share

the code that has been steadily developed in our group since 2007 with the scientific

community.

A flowchart outlining the functionality of Ithildin can be found in Fig 1. Ithildin is designed

to comply with the 2011 version of the ISO-C++ standard [8], but it compiles with all newer

versions, including the current 2023 ISO-C++ standard [9–12]. The software facilitates

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0303674 September 19, 2024 1 / 26

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Kabus D, Cloet M, Zemlin C, Bernus O,

Dierckx H (2024) The Ithildin library for efficient

numerical solution of anisotropic reaction-diffusion

problems in excitable media. PLoS ONE 19(9):

e0303674. https://doi.org/10.1371/journal.

pone.0303674

Editor: Rafael Sachetto Oliveira, Universidade

Federal de Sao Joao del-Rei, BRAZIL

Received: April 29, 2024

Accepted: September 3, 2024

Published: September 19, 2024

Copyright: © 2024 Kabus et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The source code of

version 3.5.1 of the Ithildin software implemented

for this paper is publicly available at https://gitlab.

com/heartkor/ithildin and has been archived on

Zenodo (DOI: 10.5281/zenodo.12799245). This

archive also contains the data generated by the

simulations used throughout this paper.

Documentation of the code is publicly available at

https://heartkor.gitlab.io/ithildin/.

Funding: DK is supported by KU Leuven grant

GPUL/20/012. MC is supported by KU Leuven

https://orcid.org/0000-0002-6965-5211
https://orcid.org/0000-0002-8974-6401
https://orcid.org/0000-0001-5834-5544
https://doi.org/10.1371/journal.pone.0303674
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0303674&domain=pdf&date_stamp=2024-09-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0303674&domain=pdf&date_stamp=2024-09-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0303674&domain=pdf&date_stamp=2024-09-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0303674&domain=pdf&date_stamp=2024-09-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0303674&domain=pdf&date_stamp=2024-09-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0303674&domain=pdf&date_stamp=2024-09-19
https://doi.org/10.1371/journal.pone.0303674
https://doi.org/10.1371/journal.pone.0303674
http://creativecommons.org/licenses/by/4.0/
https://gitlab.com/heartkor/ithildin
https://gitlab.com/heartkor/ithildin
https://doi.org/10.5281/zenodo.12799245
https://heartkor.gitlab.io/ithildin/

forward Euler and Runge-Kutta finite-difference solutions for reaction-diffusion systems in N-

dimensional space, such as the monodomain equation for cardiac electrophysiology, with

specified boundary conditions [2].

The framework offers quick computation through CPU parallelization using OpenMPI

[13]. It also boasts decent documentation of available features, made accessible through

Doxygen [14]. Ithildin writes easy-to-parse YAML log files to document simulation setups

[15]. Additionally, it allows convenient output of frames of recorded variables at regular inter-

vals in the form of NumPy NPY files [16]. The software supports easy and powerful post-pro-

cessing with the Python module for Ithildin [17], including integration with Scientific Python

[18], 2D visualization with Matplotlib [19], and 3D visualization with ParaView [20].

Ithildin also allows the recording of pseudo-electrograms (EGMs) and state variables at full

numerical time resolution, as well as the tracking of filaments, which represent the instanta-

neous rotation axes of rotors. The software features a flexible setup for in-silico experiments,

also called simulations, through a simple class-based C++ interface.

Various types of geometries are implemented, ranging from a simple 1D cable and spirals

in 2D tissue to whole-heart geometry and even 4D hyperspace. The space can be partitioned to

use multiple cell models in the same experiment via Model_multi. Realistic stimulation

protocols can be added as Stimulus objects and may be started by a Trigger. Ithildin also

includes a logging system with minimal impact on computation speed and various levels of

verbosity.

In this paper, we provide an overview of this framework, guiding the reader through its

components. Results from several in-silico experiments are presented as the main components

Fig 1. Ithildin can be used to solve reaction-diffusion problems in excitable media. Required inputs for the software are: the diffusion tensor and

geometry of a medium—such as the heart muscle, a reaction term—the so-called model, and source terms—typically a stimulation protocol. Ithildin can

then calculate the evolution of the model variables in the medium over time. During calculation, Ithildin records relevant spatio-temporal data and

metadata, as well as detecting rotor cores as filaments. The data visualized here are taken from several simulations which will be discussed below.

https://doi.org/10.1371/journal.pone.0303674.g001

PLOS ONE The Ithildin anisotropic reaction-diffusion solver

PLOS ONE | https://doi.org/10.1371/journal.pone.0303674 September 19, 2024 2 / 26

grant STG/19/007 and FWO-Flanders fellowship,

grant 11PMS24N. HD is supported by KU Leuven

grant STG/19/007. OB is supported by Agence

Nationale de la Recherche grant ANR-IHUA-04.

Competing interests: The authors have declared

that no competing interests exist.

https://www.open-mpi.org/
https://doxygen.nl/
https://numpy.org/doc/stable/reference/generated/numpy.lib.format.html
https://gitlab.com/heartkor/py_ithildin/
https://scipy.org/
https://matplotlib.org/
https://www.paraview.org/
https://doi.org/10.1371/journal.pone.0303674.g001
https://doi.org/10.1371/journal.pone.0303674

of Ithildin are introduced. The details of these so-called simulations are outlined towards the

end of this paper in section 5, along with a tabular overview in Table 4.

2 Essential numerical methods

2.1 Reaction-diffusion system

The diffusion of electrical signals in cardiac tissue can be modelled as a reaction-diffusion sys-

tem, where the diffusion tensor D represents the anisotropic properties of the medium. This

tensor encapsulates the spatial orientation of fibers in the medium and the effects of inhomo-

geneities on signal propagation. With the local unit vectors along the fibers ef, normal to fibers

in the sheet plane es, and normal to both of these e× = ef × es, forming a orthonormal basis, the

fiber orientation is encoded using diffusivities Df,s,×(x) in each of these directions [2]:

D ¼ Dfefef T þ DsesesT þ D�e�e�T ð1Þ

The core equation governing the evolution of the state variable vector u is the reaction-dif-

fusion equation:

@tu ¼ Pr � Dru þ r ðuÞ ð2Þ

or in index notation:

@tumðt; xÞ¼
P

m0Pmm0
P

n@n

P
n0Dnn0 ðxÞ @n0um0 ðt; xÞ þ rmðu ; xÞ ð3Þ

for m, m0 2 {1, . . ., M} with the number of state variables M, and n, n0 2 {1, . . ., N} with the

number of spatial dimensions N, using the notation @n ¼ @xn
for the spatial partial derivatives.

Here, u is the state variable vector and r ðuÞ accounts for the reaction term and is called the

model. We refer to the first component of u as u, which for electrophysiological models is the

transmembrane voltage Vm or a rescaled version of it, see also section 4.2. For two-variable

models, the second component of u is often referred to as the restitution or recovery variable

v. In the term representing diffusion, D is determined by the geometry of the medium and the

presence of inhomogeneities, see section 4.1. The projection matrix P is typically a diagonal

matrix describing whether or not a variable is diffused. For instance, only the first variable of

the AP96 model [21] is diffused, such that P ¼ diagð1; 0Þ.
Different notation is used to distinguish between vectors x and matrices D in physical space

in bold font, and underlined vectors u and matrices P with respect to state variables. We use

lowercase letters for vectors and uppercase for matrices. An overview of the most relevant

quantities in Ithildin is given in Table 1.

Table 1. Quantities in the reaction-diffusion problem.

symbol dimension unit name

N 2 N 1 number of spatial dimensions

M 2 N 1 number of state variables

t 2 Rþ ms time

x 2 O � RN mm space

u ðt; xÞ 2 RM ? (various units) state variables

r ðx; u Þ 2 RM ?/ms reaction term, model function

D(x) 2 RN�N mm2/ms diffusion tensor

P 2 RM�M 1 projectionmatrix

https://doi.org/10.1371/journal.pone.0303674.t001

PLOS ONE The Ithildin anisotropic reaction-diffusion solver

PLOS ONE | https://doi.org/10.1371/journal.pone.0303674 September 19, 2024 3 / 26

https://doi.org/10.1371/journal.pone.0303674.t001
https://doi.org/10.1371/journal.pone.0303674

Ithildin obtains approximate solutions of the reaction-diffusion equation (Eq 2) via a finite-

differences approach: Time t and space x are discretized on a grid and values uðt; xÞ are associ-

ated with the vertices of this grid. We choose a fixed temporal resolution, the time step Δt, and

constant spatial grid spacing Δx. The values uðt þ Dt; xÞ at a subsequent time-step are com-

puted based on the previous ones, according to discretized versions of the governing equa-

tions, i.e., the reaction-diffusion equation (Eq 2), together with boundary and initial

conditions.

2.2 Time integration

Starting from an initial state, the state variable vector u is integrated over time using a so-called

time stepping scheme leading to an approximate solution of the reaction-diffusion system

using finite differences. Ithildin implements two main stepping schemes to choose from: for-

ward Euler and the classic Runge-Kutta method (RK4) [22, 23].

Defining f as the right hand side of the reaction-diffusion equation (Eq 2), the forward

Euler method takes the form [23]:

uðt þ Dt; xÞ ¼ uðt; xÞ þ Dt f ðt; x; uÞ þ OðDt2Þ ð4Þ

This method is the default time integration scheme in Ithildin. Despite its numerical error

being of order O(Δt2), with a sufficiently small time step, the accuracy of the Euler method is

adequate for our use cases.

Due to the Courant-Friedrichs-Lewy condition (CFL), a stability criterion for the integra-

tion of the reaction-diffusion equation, Δt needs to be chosen sufficiently small [24]. Ithildin

automatically chooses an appropriate time step based on the CFL condition for the different

supported geometries, cf. section 4.1. For example, for the most simple implemented geometry

contained in Ithildin, i.e., isotropic diffusion (see Geometry_Iso in section 4.1 and

Table 2), the CFL condition is enforced by setting [25]:

Dt < 2 max P
XN

n¼1

Dnn

Dx2
n

" #� 1

ð5Þ

where Dnn are the diagonal components of D and max P is the maximum value of P .

Table 2. Overview of tissue geometries supported by Ithildin.

class description dim N points in stencil

Geometry_Iso isotropic diffusion 1‥3 2N + 1

↳ Geometry_ND isotropic diffusion in higher dimensions [31] N 2 N 2N + 1

Geometry_OrtAniso orthotropic diffusion 2‥3
(

9 N ¼ 2

19 N ¼ 3

Surface 2D domain with extrinsic curvature 2 9

QuadricSurface quadric surface with rotated parallel fibers 2 9

↳ Ellipsoid ellipsoidalsurface with rotated parallel fibers 2 9

↳ Hyperboloid hyperboloidalsurface with rotated parallel fibers 2 9

↳ Paraboloid paraboloidalsurface with rotated parallel fibers [32] 2 9

https://doi.org/10.1371/journal.pone.0303674.t002

PLOS ONE The Ithildin anisotropic reaction-diffusion solver

PLOS ONE | https://doi.org/10.1371/journal.pone.0303674 September 19, 2024 4 / 26

https://doi.org/10.1371/journal.pone.0303674.t002
https://doi.org/10.1371/journal.pone.0303674

Higher accuracy at the cost of more computations per time step, can be achieved with the

RK4 method [23]:

uðt þ Dt; xÞ ¼ u t; xð Þ þ
1

6
Du

1
þ

1

3
Du

2
þ

1

3
Du

3
þ

1

6
Du

4
þ O Dt5ð Þ ð6Þ

Du
1

:¼ Dt f ðt; x; uÞ ð7Þ

Du
2

:¼ Dt f t þ
1

2
Dt; x; u þ

1

2
Du

1

� �

ð8Þ

Du
3

:¼ Dt f t þ
1

2
Dt; x; u þ

1

2
Du

2

� �

ð9Þ

Du
4

:¼ Dt f ðt þ Dt; x; u þ Du
3
Þ ð10Þ

Note that f needs to be evaluated four times for the RK4 method and only once for the Euler

method. While RK4 is still an explicit method subject to instability at too large Δt, a larger Δt
value than for the Euler method can typically be used.

The stepping scheme to be used can be chosen in Ithildin on a per-variable level via

Model::steppings.

2.3 Numerical spatial derivatives

For the numerical solution of the reaction-diffusion equation (Eq 2), the spatial derivative in

its right hand side must be computed, i.e., the diffusion operator Pr � Dru . This is imple-

mented as weighted sums of the value of u at neighboring vertices on the grid of the discretized

domain. The weights for the calculation of the stencil depend on the chosen type of diffusion

(section 4.1). The two main types in this software are a first order stencil, including only the

nearest neighbors, and a second order stencil, including also the next to nearest neighbors.

In the simplest case (see Geometry_Iso in section 4.1 and Table 2), we consider isotro-

pic and homogeneous diffusivity. The diffusion operator can then be computed via the Lapla-

cian operatorr2. This is done with a 5-point stencil for the 2D case, a 7-point stencil for the

3D case, etc., see also Fig 2, panel (a). Consequently, the weights are calculated as:

wn ¼
1

Dxn
for 1 � n � 2N ð11Þ

w0 ¼ �
X2N

n¼1

wn ð12Þ

where N is the number of dimensions and Δxn is the grid resolution in the direction of the

neighbor corresponding to weight wi, e.g., Δx5 = Δz. Note that the indices correspond to those

displayed in Fig 2.

For the more general orthotropic diffusion, the stencil for numerical differentiation

includes the nearest and diagonal neighbors of a grid point, see Fig 2, panel (b). The weights

for orthotropic diffusion are obtained by a combination of central differences approximations

to derivatives and linear interpolation of values between two grid points. For more details, the

reader is referred to the documentation of Geometry_OrtAniso.

PLOS ONE The Ithildin anisotropic reaction-diffusion solver

PLOS ONE | https://doi.org/10.1371/journal.pone.0303674 September 19, 2024 5 / 26

https://doi.org/10.1371/journal.pone.0303674

3 Implementation

The source code of Ithildin is written in the C++ programming language, following the 2011

version of the ISO-C++ standard [8]. This was chosen to facilitate programming at a level rela-

tively close to the hardware, but also using some of the useful data-structures that are con-

tained in the standard template library (STL).

Ithildin is designed to run in parallel on multiple CPU cores using MPI, specifically Open-

MPI [13]. Using the mpirun command, multiple instances, also known as processes, of the

same compiled executable are started that run across different processor cores. The processes

are then coordinated such that there is one so-called manager process, that manages a bunch

of so-called worker processes. The manager does an equal share of the computational work,

just like a worker. The only difference is that the manager distributes and directs information

to be exchanged from one process to another. In Ithildin, the memory is not shared across pro-

cesses, instead each process works on its share of the computational domain. We split the

domain in the x-direction, such that each process is responsible for computations on a roughly

equal share of vertices inside the to-be-simulated medium. Even when some parts of the

domain are classified as exterior points, i.e., points on which no calculations need to be per-

formed, they are taken into account when splitting the domain between processes. This split-

ting is possible because the reaction-diffusion systems to be studied with Ithildin are local,

meaning that the temporal evolution at each time t and each point x in space depends only on

the current state vector uðt; xÞ at that position and its spatial derivatives (Eq 2). Internally, a

layer of so-called ghost points is added around each process’ part of the domain such that the

spatial derivatives can still be calculated in the same way as for any other point in the domain

(section 2.3). The values u on these ghost points are exchanged with the neighboring pro-

cesses, as coordinated by the manager process. Additional ghost points are also used to enforce

Neumann boundary conditions, which is done by setting the weights for the calculation of the

numerical spatial derivatives accordingly.

To run a simulation in Ithildin, the user needs to define a main() function that is to be

called by all subprocesses. This is usually done using a C++ file calling the required compo-

nents of the Ithildin library defining the main() function, a so-called main file. Ithildin can

be installed as a shared library on Unix-based systems that is required by executables obtained

from compiling main files. Alternatively, it is also possible to statically compile the Ithildin

library with a main file into a stand-alone executable.

Besides the necessary preparations for using MPI, running a simulation using Ithildin’s

Sim class requires three main components, which are instances of three classes:

1. Model: the reaction term r ðuÞ, typically a cell model,

Fig 2. Stencils for isotropic diffusion (a) and orthotropic diffusion (b) with numbering of the involved grid

points.

https://doi.org/10.1371/journal.pone.0303674.g002

PLOS ONE The Ithildin anisotropic reaction-diffusion solver

PLOS ONE | https://doi.org/10.1371/journal.pone.0303674 September 19, 2024 6 / 26

https://doi.org/10.1371/journal.pone.0303674.g002
https://doi.org/10.1371/journal.pone.0303674

2. Geometry: the discretized diffusion term Pr � Dru for a chosen geometry of the

medium, and

3. Source: the stimulus protocol to use as well as inhomogeneities in the medium.

In the following section 4, an overview is given for each of these classes and their derived

classes. Combining all of the components, an illustrative, minimal main file can be obtained,

in which a planar wave crosses the medium in positive x-direction:
1 #include “ithildin.h”
2
3 int main(int argc, char** argv){
4 // 0. initialize MPI
5 Mpiclass mpi(argc, argv);
6
7 // 1. select reaction term
8 Model_SmooKa model;
9
10 // 2. select diffusion term
11 vector<int> size{30, 30, 1};
12 vector<float> dx{1., 1., 1.};
13 Geometry_Iso geom{&mpi, size, dx, &model};
14
15 // (set up simulation)
16 Sim sim{1., 10, &mpi, &model, &geom, “example”};
17
18 // 3. define stimulus protocol
19 Source sour{&model, &geom, &mpi, &sim};
20 sour.stimulate({{0}, {1.}, Shape::Rect({0, 0}, {5, 0})});
21
22 // (run simulation)
23 return sim.run(&sour);
24 }

More detailed examples for main files can be found in the S1 Appendix, where we set up

the numerical examples used throughout this paper.

We consider the geometry, the model and the source to be the inputs of Ithildin, see also

Fig 1. Upon running the simulation, Ithildin produces a variety of outputs, as files in easy-to-

parse standardized data formats. The names of these files all begin with the so-called stem, con-

sisting of a descriptive series name and a serial number, which defaults to a time-stamp. In the

following, an overview of the usual output files of Ithildin by suffix appended to the stem is

provided:

• _log.yaml: The log file contains metadata describing the setup of the simulation, as well

as metadata about the conditions under which the simulation was run. This file is always

output by Ithildin and is considered the central file of the results, as it points to the relevant

other files that are only conditionally written during the simulation. While earlier versions of

Ithildin used a non-standard format for the log files, in current versions, the YAML format

is used, making it easy to parse by both: humans and machines [15].

• _main.cpp: A copy of the C++ code in the main file may be included in the results for

reproducibility.

• _git.diff: If run in a Git-repository with changes since the last commit, a patch file of

these changes will be included in the results.

PLOS ONE The Ithildin anisotropic reaction-diffusion solver

PLOS ONE | https://doi.org/10.1371/journal.pone.0303674 September 19, 2024 7 / 26

https://doi.org/10.1371/journal.pone.0303674

• _*.txyz.npy: For each of the state variables u , a so-called var file in the NumPy NPY for-

mat will be written [16]. These files contain the N+ 1-dimensional floating-point number

array of the evolution of a state variable u in the whole computational grid over time. Note

that the order of indices is (t, x, y, z), meaning that time is the slowest varying index and the

x-axis the second slowest varying index. This order was chosen because the domain is split

across processes along the x-axis, such that the processors can open and write to these files

sequentially. For 2-dimensional simulations, the third spatial dimension, the z-axis, is one

vertex thick, such that each var file still has four dimensions. For higher-dimensional simula-

tions, more axes are added, leading to more dimensions in the var files.

• _inhom.txyz.npy: The inhom field, see details in section 4.3, is also stored in the NPY

format, but with integer values, and only for the initial time-step. This file hence has the

shape (1, Nx, Ny, Nz) with Nn denoting the number of vertices in each of the spatial

dimensions.

• _hist*.csv: Comma-separated value (CSV) files describing the temporal evolution of

uðt; xsÞ at a chosen sensor position xs 2 O � R
N , see details in section 4.5.

• _egm*.csv: CSV files containing the recorded pseudo-EGM F(t, xe) at a chosen electrode

location xe 2 R
N

, see details in section 4.6.

• _tipdata.yaml: This YAML file is written if filament-tracking is turned on, see also sec-

tion 4.7, and contains the detected phase singularities in regular time intervals.

While we have selected these file formats to be easy to read using a wide variety of software,

we have also developed the Python module for Ithildin to facilitate interacting with the results

of an Ithildin simulation and converting them to a variety of file formats, for instance writing

files in the extensible data model and format (XDMF) that can be used to view simulation

results in ParaView [17, 20, 26, 27]. The Python module also offers post-processing and analy-

sis methods, for instance the computation of action potential duration (APD), conduction

velocity (CV), various phases, phase defect detection, functions acting on filaments and fila-

ment trajectories, and several plotting functions [17, 26].

4 Application-focused numerical methods

4.1 Diffusion term

The diffusion term in the reaction-diffusion equation (Eq 2) is stated as Pr � Dru . The con-

duction in cardiac tissue and hence the diffusion is stronger along the fiber direction than nor-

mal to the fibers [2]. This is encoded in the diffusion matrix D.

As an example, in Fig 3, the fiber direction is drawn on the surface of the ventricular geome-

try used in Sim 4. The fibers are additionally colored by their fiber helix angle [28]. The voxel-

based representation of this geometry was obtained by cutting a human heart into 1 mm-thin

slices, digitizing and stacking them [29, 30].

While the projection matrix P is managed by the Model class, see section 4.2, the diffusion

matrix D and the handling of the spatial derivatives is implemented in the Geometry class.

The most important things the Geometry class takes care of, are:

• Initialization of the computational grid, along with the strides and pointers, which are

important for efficient computing;

• Computation of the entries of the diffusion tensor, based on the main directions of diffusion

and the respective diffusion values;

PLOS ONE The Ithildin anisotropic reaction-diffusion solver

PLOS ONE | https://doi.org/10.1371/journal.pone.0303674 September 19, 2024 8 / 26

https://doi.org/10.1371/journal.pone.0303674

• Computation and storage of the weights for the stencils of the numerical spatial derivatives

(section 2.3) respecting the Neumann boundary conditions; and

• Handling the upper bound for the time step due to the CFL condition (section 2.2).

The Geometry class is a base class and should not be used directly to construct a computa-

tional domain. Instead, there are several subclasses, each representing a different type of diffu-

sion or extrinsic shape. An overview of the Geometry subclasses is given in Table 2.

The Geometry_ND class is a subclass of Geometry_Iso and the Ellipsoid,

Hyperboloid, and Paraboloid classes are subclasses of QuadricSurface.

Fig 3. Ventricle geometry with fiber direction, colored by thefiber helix angle.

https://doi.org/10.1371/journal.pone.0303674.g003

PLOS ONE The Ithildin anisotropic reaction-diffusion solver

PLOS ONE | https://doi.org/10.1371/journal.pone.0303674 September 19, 2024 9 / 26

https://doi.org/10.1371/journal.pone.0303674.g003
https://doi.org/10.1371/journal.pone.0303674

The details on how the extrinsic and intrinsic curvature affect the diffusion tensor and

hence the weights for the discretized differential operator, are discussed in the documentation

of the code. There, the different ways to initialize the available domain types are given as well.

Note that some additional features are implemented in the Geometry class, that do not

have a direct link with the diffusion term, such as inhomogeneities (section 4.3) and filament

detection (section 4.7).

4.2 Reaction term

The Model class serves as the base class for all cardiac electrophysiology models in the Ithildin

framework. It encapsulates common functions and variables used across different models. Key

features of the Model class include:

• Implementation of the reaction term r ðuÞ in the reaction-diffusion equation.

• Storage of model-specific metadata such as relevant citations.

• Handling of variable-related information, including their names, indices, and resting values.

• Management of the values of the projection matrix P .

Derived classes extend the Model class to implement specific cardiac electrophysiology

models in the reactionterm function.

An overview of the cell models that are currently included in the source code of this project

is provided in Table 3. More models may be added as additional classes.

The Ithildin framework also introduces several ModelWrapper classes that provide addi-

tional functionality and allow for the combination of models. These wrappers enable the record-

ing of diffusion terms, reaction terms, local activation times (LAT), and local deactivation times

(LDT) as additional state variables. This is done by adding code to the reaction term calculations

of the underlying model. The wrappers inherit from the base ModelWrapper class, which is a

wrapper that leaves the model unchanged. The primary ModelWrapper classes are:

• ModelWrapper_RecordDiffusion records diffusion terms of selected variables as

additional variables.

Table 3. Overview of cell models included in Ithildin.

class description #vars references

Model_1VarPoly one-variable polynomial model 1

Model_AP Aliev-Panfilov, continuous epsilon 2 [21]

Model_AP2 Aliev-Panfilov, discontinuous epsilon 2 [21]

Model_AP3 Aliev-Panfilov, discontinuous epsilon, simple recovery 2 [21, 33, 34]

Model_AP4 Aliev-Panfilov, smoothened epsilon, simple recovery 2 [21, 33, 34]

Model_BO Bueno-Orovio 2008 4 var 4 [35]

Model_Ba Barkley 2 [36]

Model_FHNa FitzHugh-Nagumo (a), 2 var 2 [37, 38]

Model_FHNb FitzHugh-Nagumo (b), 2 var 2 [37, 38]

Model_FHNc FitzHugh-Nagumo (c), 2 var 2 [37, 38]

Model_FK Fenton-Karma 3 var 3 [3]

Model_Kaz Kazantsev PRE 2003 spiking neuron 2 [39]

Model_LRI Luo-Rudy Phase I 8 [40]

Model_MS Mitchell Schaeffer 2 [41]

Model_SmooKa Smooth Karma by Marcotte 2017 2 [42–45]

Model_TP06 Ten Tusscher & Panfilov 2006 19 [4, 46]

https://doi.org/10.1371/journal.pone.0303674.t003

PLOS ONE The Ithildin anisotropic reaction-diffusion solver

PLOS ONE | https://doi.org/10.1371/journal.pone.0303674 September 19, 2024 10 / 26

https://doi.org/10.1371/journal.pone.0303674.t003
https://doi.org/10.1371/journal.pone.0303674

• ModelWrapper_RecordReaction records reaction terms of selected variables as addi-

tional variables.

• ModelWrapper_RecordActivationTime records LAT for selected variables.

• ModelWrapper_RecordDeactivationTime records LDT for selected variables.

• ModelWrapper_RescaleTimeSpace linearly rescales the wrapped model in time and

space.

• ModelWrapper_RescaleVars linearly rescales selected state variables of the wrapped

model.

The Model_multi class enables the combination of multiple submodels into a single

model. The behavior of the combined model may vary depending on the location x and is

determined by one of its submodels. Which model is to be used depends on the integer value of

the inhom field, which is used to describe spatial inhomogeneities, such as obstacles. Inhomo-

geneities will be further explained in the following, cf. section 4.3. This class is particularly use-

ful for simulating scenarios where different regions of cardiac tissue exhibit distinct behaviors.

The Ithildin C++ framework provides a structured and modular approach to modeling car-

diac electrophysiology. The Model class serves as the base for different models, while various

ModelWrapper classes and the Model_multi class offer extended functionalities for

recording and combining different model aspects.

4.3 Inhomogeneities

In simulations of cardiac electrophysiology, accurately modeling the spatial properties of the

cardiac tissue is essential. Inhomogeneities represent variations in the tissue’s characteristics,

such as its electrical conductivity or cellular properties, that influence the propagation of elec-

trical signals.

An inhomogeneity in the Ithildin framework is a distinct region within the simulation

domain with different properties compared to its surroundings. In the context of cardiac

electrophysiology, these properties could correspond to variations in the electrical conductivi-

ties of cells, cellular properties, or even the absence of excitable cells altogether. Inhomogenei-

ties are defined by an integer field called inhom associated with each point in the domain.

Grid points with a non-zero inhom value are considered interior points, indicating that the

reaction-diffusion equation needs to be solved on these points. If the selected reaction term is

a Model_multi (see also section 4.2), for an inhom value of n, the nth submodel will be

used for this point. For example, in Fig 4, the inhom field for Sim 1 is visualized. Two different

cell models are used for the values 1 and 2. The points where inhom has the value 0, are con-

sidered exterior points. The set of all interior points is the physical domain O. At the boundary

of the physical domain, Neumann boundary conditions are applied.

To incorporate inhomogeneities into the simulation, the framework provides methods to

add them to the domain. These methods allow specifying the shape, location, and properties of

each inhomogeneity. For example, a rectangular inhomogeneity could be added by specifying

its width, height and location.

4.4 Stimulation protocols

Ithildin provides a flexible way to define stimulation protocols using the Stimulus and

Trigger classes, as well as the scheduling functionality of the Source class.

The Stimulus class enables the specification of temporal and spatial characteristics of

voltage-based or current-based stimuli. It allows defining which state variables should be

PLOS ONE The Ithildin anisotropic reaction-diffusion solver

PLOS ONE | https://doi.org/10.1371/journal.pone.0303674 September 19, 2024 11 / 26

https://doi.org/10.1371/journal.pone.0303674

affected directly, the associated values, and whether the stimulus sets the variable directly or

whether it is additive and hence behaving like a current source. Temporal modulation of stim-

ulus strength is achieved through the amplitude function, while spatial constraints are

managed by the shape function, an instance of the Shape class.

The Shape class describes a geometric shape via its characteristic function which can be

used to define regions of interest in a simulation domain. The core principle is that the func-

tion evaluates a given position vector and returns a value: 1 if the position is inside the defined

shape, and 0 if it is outside. However, values in the range [0, 1] may also be used to create a

smooth transition. A smoothly varying characteristic function may be useful to create more-

realistic stimuli that deposit current in a smooth profile. This simple yet powerful concept

forms the basis for constructing intricate spatial configurations.

The Shape class provides several pre-defined shape functions, though additional shapes

can easily be added by defining a characteristic function:

• Ellipsoid: Defined by radii, a center and optionally the Euler angles, this shape represents a

general three-dimensional ellipsoid with the specified orientation.

• Sphere: A special case of an ellipsoid where all radii are equal, forming a three-dimensional

sphere.

• Ellipse in xy-plane: This two-dimensional shape resembles an ellipse lying on the xy-plane,

defined by radii and a center.

• Cylinder along z-axis: Representing a three-dimensional cylinder centered along the z-axis,

this shape is defined by a radius and a center. In 2D, it defines a disk.

Fig 4. Inhomogeneities in Sim 1. The field inhom describes where unexcitable obstacles or exterior points are located with the value inhom = 0 and

which cell model is to be used inside if inhom > 0. This figure also visualizes the filament trajectories colored by time, cf. section 4.7. Birth of a tip is

denoted by stars, their deaths by crosses, and tips that are still around at the end of the simulation by points. The three trajectories with the longest lifetime

are numbered by indices 0 through 2.

https://doi.org/10.1371/journal.pone.0303674.g004

PLOS ONE The Ithildin anisotropic reaction-diffusion solver

PLOS ONE | https://doi.org/10.1371/journal.pone.0303674 September 19, 2024 12 / 26

https://doi.org/10.1371/journal.pone.0303674.g004
https://doi.org/10.1371/journal.pone.0303674

• Rectangular cuboid: Defining a three-dimensional region, this shape is specified by two

opposing corner points, creating a cuboid. In 2D, it defines a rectangle.

• Half plane: A plane defined by an origin and an outward normal vector splits the three-

dimensional space into a half-space. In 2D, a straight line splits the plane in a similar way.

Characteristic functions can also be loaded from files in the NPY format [16]. This feature

facilitates the incorporation of custom shapes derived from external data sources.

The scheduling functionality via Source::schedule offers the ability to execute

functions at specified points in time during the simulations. This feature greatly enhances

experimental flexibility by allowing the execution of arbitrary code snippets at chosen

moments during simulations. The scheduler is especially useful for introducing dynamic

changes to the simulation environment, such as modifying stimuli or conditions mid-

simulation.

The Trigger class provides a means to orchestrate actions based on specific conditions.

Triggers encapsulate the decision-making process of when to execute a particular action, influ-

enced by condition checks and coordination modes. Different coordination modes allow for

the synchronization of trigger actions across multiple processes, facilitating complex simula-

tions of activation waves. These modes are to trigger on each process individually once the

condition is met, once the condition is met in a specific process, once the condition is met in

any process, or once it is true in all processes.

Within the framework of cardiac electrophysiology, triggers are essential for defining stim-

ulation protocols, e.g. for the S1S2 protocol, which is illustrated in Fig 5: After a first excitation

wave passes a sensor position, a second wave is triggered behind a part of the first waveback to

stimulate spiral waves.

4.5 Recording temporal evolution of variables at sensor positions

Besides the sensors for triggering stimuli, sensors in the context of this simulation framework

are components that monitor and record the state variables of the simulated system at chosen

positions during the simulation. We call this the history at a given sensor position.

These sensors are used to gather data about the behavior of the system at particular time

intervals, regulated by the sensorlag parameter. This parameter controls the frequency at

which sensor data is collected, allowing for flexibility in recording intervals. Notably, the

recording frequency set by sensorlag need not align with the simulation’s time step or the

duration between frames. The data will be recorded at the first time step after the specified

sensorlag duration. This high-resolution temporal data can be used to study individual

points in the medium in detail.

The recorded data are then written to designated comma separated value (CSV) output files

associated with each sensor. These files are used to store the collected data over the course of

the simulation.

The first four panels of Fig 6 contain time traces of the transmembrane voltage u, the resti-

tution variable v, the recorded value of the diffusion term, and the LAT at a given sensor posi-

tion for Sim 1. The times of the three stimuli are indicated by the black vertical lines. The other

panels will be explained in the subsequent sections.

4.6 Pseudo-EGMs

The EGM is a measurement of the potential generated by the charge distribution in cardiac tis-

sue over time at a point in space, outside the tissue. In theory, this is a measurement of the

extracellular potential Fe. However, since Ithildin is a monodomain solver, the extracellular

PLOS ONE The Ithildin anisotropic reaction-diffusion solver

PLOS ONE | https://doi.org/10.1371/journal.pone.0303674 September 19, 2024 13 / 26

https://doi.org/10.1371/journal.pone.0303674

potential is not part of the model equations [2]. The code therefore calculates an approxima-

tion of the extracellular potential at points outside the mesh using the Egm class. To obtain this

approximation, the pseudo-bidomain theory is used [48]. The approximation, referred to as a

pseudo-EGM, uses the simplifications that the intracellular and extracellular conductivities are

proportional, such that there is an explicit formula to calculate the extracellular potential, and

that the bath conductivity is homogeneous.

Fig 5. The S1S2 protocol illustrated for Sim 2. The first and third row display the transmembrane voltage u at selected frames in time, and the second and

fourth row the state space phase [17, 47]. The first stimulus is applied in the first frame in the hatched region at the left edge. The sensor location is marked

with a cross. Right after the third frame, the sensor triggers the second stimulus in the hatched region at the bottom edge. A spiral wave forms. The phase

singularity at the center of the spiral is tracked as the white curve, which is dotted for the entire trajectory of the phase singularity, and solid for its trajectory

since the previous frame.

https://doi.org/10.1371/journal.pone.0303674.g005

PLOS ONE The Ithildin anisotropic reaction-diffusion solver

PLOS ONE | https://doi.org/10.1371/journal.pone.0303674 September 19, 2024 14 / 26

https://doi.org/10.1371/journal.pone.0303674.g005
https://doi.org/10.1371/journal.pone.0303674

The extracellular potential Fe at position xe over time is then calculated as:

Fe xe; tð Þ ¼
te
4p

Z

O

dx
r � Druðx; tÞ
kxe � xk

ð13Þ

where O denotes the computational domain, i.e., the simulated heart muscle tissue, u is a

Fig 6. Extracted time traces of Sim 1. The first two panels (a, b) contain the model variables u and v, followed by data computed by model wrappers,

namely the diffusion termr �Dru (c) and the LAT (d), at an interior point, cf. section 4.5. Panel (e) contains the pseudo-EGM at an exterior point, next to

the 2D domain, cf. section 4.6. The last panel (f) contains the number of rotors detected via phase singularities, cf. section 4.7. The black vertical lines

indicate times at which a stimulus was applied.

https://doi.org/10.1371/journal.pone.0303674.g006

PLOS ONE The Ithildin anisotropic reaction-diffusion solver

PLOS ONE | https://doi.org/10.1371/journal.pone.0303674 September 19, 2024 15 / 26

https://doi.org/10.1371/journal.pone.0303674.g006
https://doi.org/10.1371/journal.pone.0303674

state variable of the model representing the transmembrane potential, which is usually

encoded as the first variable in the state vector u . Furthermore, D is the diffusion matrix

from the reaction-diffusion equation (Eq 2), and τe is a proportionality factor with units

ms.

Essentially, the used approximation for the EGM is a convolution of the diffusion termr �

Dru for the first variable with a kernel kxe − xk−1. Depending on the choice of the diffusion

tensor, made by the user in the Geometry class (section 4.1), a different prefactor of the inte-

gral is required. Hence, the prefactor
te
4p

is user-defined and can be changed using the function

set_prefactor.

The integral in Eq 13 is discretized and its calculation is implemented such that the

additional amount of storage and number of calculations is limited as much as possible.

For instance, as the required diffusion termr �DrVm is already computed during the for-

ward stepping of the reaction-diffusion equation, it can be stored as an additional state var-

iable using a ModelWrapper_RecordDiffusion and subsequently used in the

pseudo-EGM calculation. This model wrapper is essential for the functioning of the Egm
class and hence is a requirement when setting up a simulation with pseudo-EGM

calculation.

The result is a CSV file with the pseudo-EGM data for each electrode that is defined by the

user. The computed pseudo-EGM at a given position for Sim 1 is displayed in the fifth panel of

Fig 6.

4.7 Filaments

Formally, filaments can be understood as a line of wave break, i.e., a line where an activation

and recovery surface come together [49, 50]. The activation surface can be seen as the wave-

front, while the recovery surface can be seen as the waveback. When considering an excitable

system in 2D, filaments become tips, being the point of intersection between the activation

and recovery curve. Since a point cannot be excited and recovering at the same time, points on

a filament are also called phase singularities.
Using this definition of filament points, detection algorithms have been designed. Our

code relies on the one described by Fenton et al. [3]. Additionally, this algorithm has been

extended to grids in any dimension, where the generalization of filaments are called superfi-
laments [31].

The filament point detection algorithm is included in the Geometry class. Its goal is to

compute the points where the wavefront and waveback meet. While looping over all coordi-

nate planes and grid points, it is checked whether there is an intersection of isolines in the

adjacent voxel faces of a grid point. The location of the filament point is then estimated by bi-

linear interpolation. An illustrative sketch of this method is given in Fig 7.

The last panel in Fig 6 displays the number of rotors over time for Sim 1, which are found

via filament detection. It can be seen that at the S2 stimulus, a single rotor is formed, and sub-

sequently pairs of rotors as figure-of-eight spiral pairs.

More details of this process can be seen in Fig 4 which shows the trajectories of these fila-

ments in Sim 1 tracked using the Python module for Ithildin. The trajectories are colored by

time and the formation of a new tip is denoted by stars and their decay by crosses. Tips that

still persist at the final frame of the simulation are indicated by points. The tip trajectory

denoted with index 0 is formed by the S1S2 protocol and meanders around the medium. It

persists until the end of the simulation. The figure-of-eight spiral wave pair denoted by indices

1 and 2 is formed by a conduction block breaking up. The spiral tip with index 2 runs into the

boundary to disintegrate there.

PLOS ONE The Ithildin anisotropic reaction-diffusion solver

PLOS ONE | https://doi.org/10.1371/journal.pone.0303674 September 19, 2024 16 / 26

https://doi.org/10.1371/journal.pone.0303674

4.8 Phase defects

While a phase singularity can be seen as points where all phases meet—in mathematics called a

pole, a phase defect is a point at which there is a discrete jump from one phase value to another

in an otherwise continuously varying phase. While phase defects are well known in physics,

they were only recently identified in excitable media, within linear-core rotors and conduction

block regions [47, 51]. Phase defects are lines in 2D and surfaces in 3D.

In Ithildin, the phase defect detection is done with its Python module. For instance, during

simulation, Ithildin can record the local activation times (LAT) which can then be used to

compute the activation time phase in post-processing [17, 47]. A variety of methods exist to

then localize the phase defect [17, 51].

Two examples for phase defect detection in Sim 1 are given in Figs 8 and 9. Both display

four frames over time of the transmembrane voltage Vm, the activation time phase φ, and the

phase defect % computed via the cosine method [17, 51]. In Fig 8, the phase defect of a single

spiral wave is tracked. It can be seen that the phase defect extends due to conduction block

such that the spiral wave moves across the domain. In Fig 9, the break-up of a conduction

block line into a figure-of-eight spiral wave pair can be seen. The conduction block line is a

phase defect of zero topological charge [52–54] which, in this case, reaches a critical length

breaking apart into two oppositely charged spiral waves with much shorter phase defect

lines.

In Fig 10, we present the final frame of Sim 4 in ventricular geometry, visualized with Para-

View [20]. It is colored by the normalized transmembrane voltage. Both, the classical tip and

the phase defect surface are visualized. The spiral waves revolve around the phase defect

surfaces.

4.9 Further documentation

More complete documentation of Ithildin can be generated with Doxygen [14] and can be also

found online, see the data availability statement for details. The documentation contains

detailed information on how to get started installing and working with Ithildin.

Fig 7. Illustration of the filament point tracking algorithm. Each coordinate plane adjacent to a grid point (i, j, k) is

checked for an intersection of two surfaces (purple and orange lines) which are usually isosurfaces of state variables in

u . In this example, a filament point (white dot) will be found in the yz-face.

https://doi.org/10.1371/journal.pone.0303674.g007

PLOS ONE The Ithildin anisotropic reaction-diffusion solver

PLOS ONE | https://doi.org/10.1371/journal.pone.0303674 September 19, 2024 17 / 26

https://doi.org/10.1371/journal.pone.0303674.g007
https://doi.org/10.1371/journal.pone.0303674

5 Results

Ithildin is used for numerical experiments in various use cases. For instance, it was used to

study the structure of the core of rotors emerging in in-silico cardiac-electrophysiology cell

models, leading to the description of phase defect lines [17, 47, 54, 55]. Also, higher-dimen-

sional rotors waves were simulated and the emerging super-filaments were detected using

Ithildin [31]. In the creation of novel data-driven cell models using state space expansion, Ithil-

din was used to generate synthetic training data sets [26].

Five simulations were conducted for this paper to illustrate the features of Ithildin. An over-

view of the simulations is given in Table 4, along with references to the figures that were gener-

ated with these data sets while details on their simulation setup can be found in their C++ code

in the S1 Appendix.

5.1 Cardiac electrophysiology benchmark

Niederer et al. proposed a benchmark problem that is now used by the in-silico modelling

community to validate and compare cardiac electrophysiology solvers [56, 57]. Ithildin passes

the benchmark as implemented in Sim 5. In the benchmark problem an excitation wave travels

through a cuboid-shaped medium following the cell model by Ten Tusscher and Panfilov

(2006) [46]. In Fig 11, we present the results from the benchmark in a similar way as in the

original publication introducing the benchmark [56]: Point P1 = [0, 0, 0]T is the corner of the

cuboid where the stimulus is applied and P8 = [20, 7, 3]T mm the furthest-away opposite

Fig 8. Phase defect detection for a single meandering spiral in Sim 1. By recording the activation times of the transmembrane voltage Vm (top row), the

activation time phase φ [17, 51] can be computed (middle row). Where this phase is discontinuous, a phase defect is localized. This is visualized as the phase

defect density % (bottom row). In these four frames, a single rotor is tracked shortly after its formation. Due to conduction block, which can be seen as an

extended phase defect line, the spiral moves through the medium. Afterwards, the spiral remains mostly stationary, leading to a shorter phase defect line.

https://doi.org/10.1371/journal.pone.0303674.g008

PLOS ONE The Ithildin anisotropic reaction-diffusion solver

PLOS ONE | https://doi.org/10.1371/journal.pone.0303674 September 19, 2024 18 / 26

https://doi.org/10.1371/journal.pone.0303674.g008
https://doi.org/10.1371/journal.pone.0303674

corner. Consider the plane going through P1 and P8 as well as P10 = [0, 7, 1.5]T mm. We call

the distance along the long axis of the plane slicing through the cubioid ξ1 and the short axis

ξ2. In the panels (a), the LAT on this plane is shown for the benchmark simulation at high and

low resolution in space, Δx = 0.1 mm and Δx = 0.5 mm respectively, at the same temporal reso-

lution Δt = 0.005 ms. Panel (b) also shows the LAT on the line from P1 to P8 for the different

spatial resolutions Δx 2 {0.1 mm, 0.2 mm, 0.5 mm} at the same temporal resolution. In panel

(c), the LAT value at P8 is compared across all the combinations of spatial and temporal resolu-

tion. Just like for most other solvers which are compared in the benchmark paper, it can be

seen that at the coarsest spatial resolution, the excitation wave is slowed down significantly in

the transversal direction [56]. Similarly to the other finite-difference solvers, the simulation

fails at Δt = 0.05 mm and Δx = 0.1 mm [56], due to numerical instability. When a check of the

CFL condition is enabled (Eq 5), Ithildin suggests to lower Δt to 0.03 ms given this spatial reso-

lution, leading to a simulation at which no instability is observed.

Panel (d) of Fig 11 shows the speed-up in computation time from parallelization by com-

paring the computation time for Sim 5 at Δx = 0.2 mm and Δt = 0.01 ms on an 8-core Intel i7–

10875H processor using 1, 2, 4, and 8 processes. In the double-logarithmic plot, it can be seen

with linear regression that the computational speed increases almost linearly going from one

to four processes, tsim / N � pproc with p� 1. Going to eight processes leads to diminishing returns,

resulting in a smaller speed-up in computational time, as the overhead due to the boundary-

exchange between processes grows. On this system using eight processes, at Δx = 0.2 mm and

Δt = 0.01 ms, solving the benchmark problem takes 65.733 s of computation time in Ithildin,

while it takes 611.231 s in cbcbeat [58]. For both codes, we have turned off output to the disk

and included the initial setup of the problem, such as compilation and memory allocation.

Fig 9. Phase defect detection during figure-of-eight spiral wave pair creation in Sim 1. Visualization in the same style as Fig 8. A long conduction block

line breaks apart into two rotors.

https://doi.org/10.1371/journal.pone.0303674.g009

PLOS ONE The Ithildin anisotropic reaction-diffusion solver

PLOS ONE | https://doi.org/10.1371/journal.pone.0303674 September 19, 2024 19 / 26

https://doi.org/10.1371/journal.pone.0303674.g009
https://doi.org/10.1371/journal.pone.0303674

6 Discussion

The Ithildin framework is a tool for the simulation of cardiac electrophysiology. The code

offers a number of assets that allow for simulations targeting a variety of phenomena. For

example, there are many instances available to set the local anisotropy of the myocardium via

the Geometry class. Please refer to the example presented in section 4.1 for further details.

The Geometry class also allows for the simulation and filament tracking in a domain with an

arbitrary number of spatial dimensions [17, 31, 47, 54, 55].

These include the ability to define inhomogeneities, which can be used to model domains

of any shape and with any kind of obstacles. This is used in Sim 1 and Sim 4. Furthermore, the

Fig 10. Final frame of Sim 4 of the BOCF model in ventricle geometry. The classical filament is plotted as the purple lines. The phase defect

surface is contained in the gray contour.

https://doi.org/10.1371/journal.pone.0303674.g010

PLOS ONE The Ithildin anisotropic reaction-diffusion solver

PLOS ONE | https://doi.org/10.1371/journal.pone.0303674 September 19, 2024 20 / 26

https://doi.org/10.1371/journal.pone.0303674.g010
https://doi.org/10.1371/journal.pone.0303674

user can define a variety of stimulation protocols, of which some are showcased in the example

simulations. We also note the following options: EGM calculation, the possibility of recording

the temporal evolution of variables at sensor positions, and the Python module for post-pro-

cessing and analysis.

It is evident that Ithildin represents but one instance of software designed for the simulation

of cardiac electrophysiology. Another finite-differences solver is BeatBox [59], which also relies

on domain splitting. A non-exhaustive list of examples of established simulation software

based on the finite element method (FEM) are Chaste [60], openCARP [61], lifex-ep [62],

cbcbeat [58], GEMS [63], CEPS [64], and simcardems [65]. Besides the methods of finite dif-

ferences, elements, and volumes, approaches from computational fluid dynamics such as the

lattice Boltzmann method may be used [57]. Several of these packages have more advanced

features than our software. In addition, some have broader applications than cardiac electro-

physiology. More software can be found in [56].

Limitations of our software are the fact that, in the context of cardiac electrophysiology,

Ithildin only supports the monodomain model as it is a reaction-diffusion problem conform-

ing with Eq 2, and the fact that the domain decomposition happens solely in one coordinate

direction. Further limitations are that Ithildin is fundamentally voxel-based and hence does

not support tetrahedral meshes, and that only Neumann boundary conditions are imple-

mented. Additionally, it is only maintained by a small research team. This paper serves to

enhance the visibility of the software and to invite fellow cardiac modelers to use and contrib-

ute to the project. We believe that the GitLab environment is an effective medium for facilitat-

ing interaction between users, identifying issues and suggesting improvements.

Our work with Ithildin has demonstrated its ability to study complex wave patterns in car-

diac tissue [17, 26, 31, 47, 54, 55], but it is important to acknowledge the limitations of the fully

explicit numerical scheme used: High resolution in time and space may be required for numer-

ical stability. Nevertheless, there are use cases where Ithildin is practical in the context of clini-

cal applications. For example, it can be used to study rotor waves and their implications for

cardiac function, which have important implications for diagnosing and treating cardiac dis-

eases. Additionally, Ithildin can be used to develop new models or simulations that are tailored

to specific experimental conditions or clinical scenarios.

Table 4. Overview of the numerical simulations used in this paper.

simulation Sim 1 Sim 2 Sim 3 Sim 4 Sim 5

cell model SmooKa AP BO BO TP06

parameter set default default EPI EPI EPI

references [42–45] [21] [35] [35] [4, 46]

dimensions 2 2 2 3 3

anisotropy type isotropic isotropic isotropic orthotropic orthotropic

diffusivity Puu 0.031 1.6 0.12 0.12 0.1

ratio Dk/D? 1.0 1.0 1.0 4.0 7.6

inhomogeneities sphere, rectangle, waves none none biventricular geometry none

grid size 100×70 120×120 450×450 168×208×231 various

spacing [mm] 0.2, 0.2 1, 1 0.3, 0.3 0.43, 0.43, 0.5 various

time step [ms] 0.1 0.1 0.1 0.1 various

stim. times [ms] 0, 600, 921 0, 426 0, 394.1 0 0

duration [ms] 2000.1 838.6 680.1 600.1 150.0

used in Figs 1, 4, 6, 8 and 9 Fig 5 Sim 4 Figs 1, 3 and 10 Fig 11

https://doi.org/10.1371/journal.pone.0303674.t004

PLOS ONE The Ithildin anisotropic reaction-diffusion solver

PLOS ONE | https://doi.org/10.1371/journal.pone.0303674 September 19, 2024 21 / 26

https://doi.org/10.1371/journal.pone.0303674.t004
https://doi.org/10.1371/journal.pone.0303674

7 Conclusion

In this work, we introduced Ithildin, an open-source library that allows for numerical simula-

tion and analysis of rotor waves. We demonstrated the versatility of Ithildin through a series of

simulations, including spiral break-up in the Smooth-Karma model, the S1S2 protocol in the

AP96 model, and 2D and 3D spiral waves in the BOCF model in ventricular geometry.

Our simulations highlighted several key features of Ithildin, such as the different imple-

mented geometries and reaction terms, inhomogeneities, and stimuli, as well as recording data

such as the pseudo-EGM or filament trajectories. These findings contribute to the growing

Fig 11. Results of the cardiac electrophysiology benchmark. The benchmark was proposed by Niederer et al. (2011) [56] and is implemented in Sim 5. To

ease comparisons with the paper introducing the benchmark, we present our results in a similar style. In panels (a)-(c), we present the LAT in the medium

at different spatial and temporal resolutions. Coloring according to LAT is consistent across these panels. In panel (d), we measure the computational speed

of Ithildin at different number of used processes. A linear fit is shown in the double-logarithmic plot which excludes the data point at Nproc = 8.

https://doi.org/10.1371/journal.pone.0303674.g011

PLOS ONE The Ithildin anisotropic reaction-diffusion solver

PLOS ONE | https://doi.org/10.1371/journal.pone.0303674 September 19, 2024 22 / 26

https://doi.org/10.1371/journal.pone.0303674.g011
https://doi.org/10.1371/journal.pone.0303674

understanding of rotor waves in cardiac electrophysiology and have the potential to inform

future experimental and theoretical studies.

Overall, our work demonstrates the power of Ithildin as a tool for studying complex wave

patterns in cardiac tissue. We hope that this library will be useful to researchers seeking to bet-

ter understand the dynamics of rotor waves and their implications for cardiac function.

Supporting information

S1 Appendix.

(PDF)

Acknowledgments

We are grateful to Daniël A. Pijnappels, Antoine A.F. de Vries and our other collaborators at

the LUMC, as well as Louise Arno, Lore Leenknegt, and Nathan Dermul at KU Leuven in

Kortrijk for useful feedback and discussions.

While no generative AI has been used to write the Ithildin source code, generative AI has

been used by the authors to aid in the writing of the text, specifically the Large Language

Model (LLM) implementations GitHub Copilot, ChatGPT using GPT-3.5 and GPT-4o, as well

as Mistral 0.2 via the Ollama software. The authors confirm that they have followed the current

ethical publishing practices of PLOS One.

Author Contributions

Conceptualization: Desmond Kabus, Hans Dierckx.

Data curation: Desmond Kabus, Marie Cloet.

Formal analysis: Desmond Kabus, Marie Cloet.

Funding acquisition: Hans Dierckx.

Investigation: Desmond Kabus, Marie Cloet.

Methodology: Desmond Kabus, Marie Cloet.

Project administration: Desmond Kabus, Hans Dierckx.

Resources: Hans Dierckx.

Software: Desmond Kabus, Marie Cloet, Christian Zemlin, Olivier Bernus, Hans Dierckx.

Supervision: Hans Dierckx.

Validation: Desmond Kabus, Marie Cloet.

Visualization: Desmond Kabus, Marie Cloet.

Writing – original draft: Desmond Kabus, Marie Cloet.

Writing – review & editing: Desmond Kabus, Marie Cloet, Hans Dierckx.

References

1. Tolkien JRR. The Lord of the Rings: The Fellowship of the Ring. Allen & Unwin; 1954.

2. Clayton RH, Bernus O, Cherry EM, Dierckx H, Fenton FH, Mirabella L, et al. Models of cardiac tissue

electrophysiology: Progress, challenges and open questions. Progress in Biophysics and Molecular

Biology. 2011; 104(1-3):22–48. https://doi.org/10.1016/j.pbiomolbio.2010.05.008 PMID: 20553746

PLOS ONE The Ithildin anisotropic reaction-diffusion solver

PLOS ONE | https://doi.org/10.1371/journal.pone.0303674 September 19, 2024 23 / 26

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0303674.s001
https://copilot.github.com
https://chat.openai.com/
https://ollama.com/library/mistral
https://ollama.com/
https://journals.plos.org/plosone/s/ethical-publishing-practice
https://doi.org/10.1016/j.pbiomolbio.2010.05.008
http://www.ncbi.nlm.nih.gov/pubmed/20553746
https://doi.org/10.1371/journal.pone.0303674

3. Fenton F, Karma A. Vortex dynamics in three-dimensional continuous myocardium with fiber rotation:

Filament instability and fibrillation. Chaos: An Interdisciplinary Journal of Nonlinear Science. 1998; 8

(1):20–47. https://doi.org/10.1063/1.166311

4. Niederer SA, Lumens J, Trayanova NA. Computational models in cardiology. Nature Reviews Cardiol-

ogy. 2019; 16(2):100–111. https://doi.org/10.1038/s41569-018-0104-y PMID: 30361497

5. Gillette K, Gsell MAF, Prassl AJ, Karabelas E, Reiter U, Reiter G, et al. A Framework for the generation

of digital twins of cardiac electrophysiology from clinical 12-leads ECGs. Medical Image Analysis. 2021;

71:102080. https://doi.org/10.1016/j.media.2021.102080 PMID: 33975097

6. Trayanova Natalia A, Doshi Ashish N, Prakosa Adityo. How personalized heart modeling can help treat-

ment of lethal arrhythmias: A focus on ventricular tachycardia ablation strategies in post-infarction

patients. WIREs Systems Biology and Medicine. 2020; 12(3). https://doi.org/10.1002/wsbm.1477

PMID: 31917524

7. Koopsen T, Gerrits W, van Osta N, van Loon T, Wouters P, Prinzen FW, et al. Virtual pacing of a

patient’s digital twin to predict left ventricular reverse remodelling after cardiac resynchronization ther-

apy. Europace. 2024; 26(1):euae009. https://doi.org/10.1093/europace/euae009

8. ISO. ISO/IEC 14882:2011: Information technology—Programming languages—C++. 3rd ed. Geneva,

Switzerland: International Organization for Standardization; 2011.

9. ISO. ISO/IEC 14882:2014: Information technology—Programming languages—C++. 4th ed. Geneva,

Switzerland: International Organization for Standardization; 2014.

10. ISO. ISO/IEC 14882:2017: Programming languages—C++. 5th ed. Geneva, Switzerland: International

Organization for Standardization; 2017.

11. ISO. ISO/IEC 14882:2020: Programming languages—C++. Sixth ed. Geneva, Switzerland: Interna-

tional Organization for Standardization; 2020.

12. ISO. ISO/IEC 14882:2023: Programming languages—C++. Seventh ed. Geneva, Switzerland: Interna-

tional Organization for Standardization; 2023.

13. Graham RL, Shipman GM, Barrett BW, Castain RH, Bosilca G, Lumsdaine A. Open MPI: A high-perfor-

mance, heterogeneous MPI. In: 2006 IEEE International Conference on Cluster Computing. IEEE;

2006. p. 1–9. Available from: https://doi.org/10.1109/CLUSTR.2006.311904.

14. van Heesch D. Doxygen 1.9.7; 2023. Available from: https://www.doxygen.nl.

15. döt Net I, Müller T, Antoniou P, Aro E, Smith T, Evans CC, et al. YAML Ain’t Markup Language, Revision

1.2.2; 2023. Available from: https://yaml.org/spec/1.2.2/.

16. Harris CR, Millman KJ, van der Walt SJ, Gommers R, Virtanen P, Cournapeau D, et al. Array program-

ming with NumPy. Nature. 2020; 585(7825):357–362. https://doi.org/10.1038/s41586-020-2649-2

PMID: 32939066

17. Kabus D, Arno L, Leenknegt L, Panfilov AV, Dierckx H. Numerical methods for the detection of phase

defect structures in excitable media. PLOS ONE. 2022; 17(7):1–31. https://doi.org/10.1371/journal.

pone.0271351 PMID: 35819963

18. Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, et al. SciPy 1.0: Funda-

mental Algorithms for Scientific Computing in Python. Nature Methods. 2020; 17:261–272. https://doi.

org/10.1038/s41592-019-0686-2 PMID: 32015543

19. Hunter JD. Matplotlib: A 2D graphics environment. Computing in Science & Engineering. 2007; 9

(3):90–95. https://doi.org/10.1109/MCSE.2007.55

20. Ahrens J, Geveci B, Law C, Hansen C, Johnson C. 36-paraview: An end-user tool for large-data visuali-

zation. The visualization handbook. 2005; 717:50038–1. https://doi.org/10.1016/b978-012387582-2/

50038-1

21. Aliev RR, Panfilov AV. A simple two-variable model of cardiac excitation. Chaos, Solitons & Fractals.

1996; 7(3):293–301. https://doi.org/10.1016/0960-0779(95)00089-5

22. Euler L. Institutiones calculi integralis. vol. 4. Academia Imperialis Scientiarum; 1794.

23. Press WH. Numerical recipes 3rd edition: The art of scientific computing. Cambridge university press;

2007.

24. Courant R, Friedrichs K, Lewy H. Über die partiellen Differenzengleichungen der mathematischen Phy-

sik. Mathematische Annalen. 1928; 100(1):32–74. https://doi.org/10.1007/BF01448839

25. Li N, Steiner J, Tang S. Convergence and stability analysis of an explicit finite difference method for 2-

dimensional reaction-diffusion equations. The Journal of the Australian Mathematical Society Series B

Applied Mathematics. 1994; 36(2):234–241. https://doi.org/10.1017/S0334270000010377

26. Kabus D, De Coster T, de Vries AA, Pijnappels DA, Dierckx H. Fast creation of data-driven low-order

predictive cardiac tissue excitation models from recorded activation patterns. Computers in Biology and

Medicine. 2024; p. 107949. https://doi.org/10.1016/j.compbiomed.2024.107949 PMID: 38199206

PLOS ONE The Ithildin anisotropic reaction-diffusion solver

PLOS ONE | https://doi.org/10.1371/journal.pone.0303674 September 19, 2024 24 / 26

https://doi.org/10.1063/1.166311
https://doi.org/10.1038/s41569-018-0104-y
http://www.ncbi.nlm.nih.gov/pubmed/30361497
https://doi.org/10.1016/j.media.2021.102080
http://www.ncbi.nlm.nih.gov/pubmed/33975097
https://doi.org/10.1002/wsbm.1477
http://www.ncbi.nlm.nih.gov/pubmed/31917524
https://doi.org/10.1093/europace/euae009
https://doi.org/10.1109/CLUSTR.2006.311904
https://www.doxygen.nl
https://yaml.org/spec/1.2.2/
https://doi.org/10.1038/s41586-020-2649-2
http://www.ncbi.nlm.nih.gov/pubmed/32939066
https://doi.org/10.1371/journal.pone.0271351
https://doi.org/10.1371/journal.pone.0271351
http://www.ncbi.nlm.nih.gov/pubmed/35819963
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
http://www.ncbi.nlm.nih.gov/pubmed/32015543
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1016/b978-012387582-2/50038-1
https://doi.org/10.1016/b978-012387582-2/50038-1
https://doi.org/10.1016/0960-0779(95)00089-5
https://doi.org/10.1007/BF01448839
https://doi.org/10.1017/S0334270000010377
https://doi.org/10.1016/j.compbiomed.2024.107949
http://www.ncbi.nlm.nih.gov/pubmed/38199206
https://doi.org/10.1371/journal.pone.0303674

27. Mark E, et al. Enhancements to the extensible data model and format (XDMF). In: 2007 DoD High Per-

formance Computing Modernization Program Users Group Conference. IEEE; 2007. p. 322–327. Avail-

able from: https://doi.org/10.1109/HPCMP-UGC.2007.30.

28. Streeter DD, Spotnitz HM, Patel DP, Ross J, Sonnenblick EH. Fiber Orientation in the Canine Left Ven-

tricle during Diastole and Systole. Circulation Research. 1969; 24(3):339–347. https://doi.org/10.1161/

01.RES.24.3.339 PMID: 5766515

29. Hren R. A realistic model of the human ventricular myocardium: Application to the study of ectopic acti-

vation [PhD thesis]. Dalhousie University; 1996. Available from: https://dalspace.library.dal.ca/handle/

10222/55139.

30. Ten Tusscher KHWJ, Hren R, Panfilov AV. Organization of Ventricular Fibrillation in the Human Heart. Cir-

culation Research. 2007; 100(12). https://doi.org/10.1161/CIRCRESAHA.107.150730 PMID: 17540975

31. Cloet M, Arno L, Kabus D, Van der Veken J, Panfilov AV, Dierckx H. Scroll Waves and Filaments in

excitable Media of higher spatial Dimension. Physical Review Letters. 2023; 131(20):208401. https://

doi.org/10.1103/PhysRevLett.131.208401 PMID: 38039450

32. Dierckx H, Brisard E, Verschelde H, Panfilov AV. Drift Laws for Spiral Waves on Curved Anisotropic

Surfaces. Physical Review E. 2013; 88(1):012908. https://doi.org/10.1103/PhysRevE.88.012908

PMID: 23944539

33. Pravdin S, Dierckx H, Markhasin VS, Panfilov AV. Drift of scroll wave filaments in an anisotropic model

of the left ventricle of the human heart. BioMed research international. 2015; 2015. https://doi.org/10.

1155/2015/389830 PMID: 26539486

34. Dierckx H, Arens S, Li BW, Weise LD, Panfilov AV. A theory for spiral wave drift in reaction-diffusion-

mechanics systems. New Journal of Physics. 2015; 17(4):043055. https://doi.org/10.1088/1367-2630/

17/4/043055

35. Bueno-Orovio A, Cherry EM, Fenton FH. Minimal model for human ventricular action potentials in tis-

sue. Journal of theoretical biology. 2008; 253(3):544–560. https://doi.org/10.1016/j.jtbi.2008.03.029

PMID: 18495166

36. Barkley D. A model for fast computer simulation of waves in excitable media. Physica D: Nonlinear Phe-

nomena. 1991; 49(1-2):61–70. https://doi.org/10.1016/0167-2789(91)90194-E

37. FitzHugh R. Impulses and physiological states in theoretical models of nerve membrane. Biophysical

journal. 1961; 1(6):445–466. https://doi.org/10.1016/s0006-3495(61)86902-6 PMID: 19431309

38. Nagumo J, Arimoto S, Yoshizawa S. An active pulse transmission line simulating nerve axon. Proceed-

ings of the IRE. 1962; 50(10):2061–2070. https://doi.org/10.1109/JRPROC.1962.288235

39. Kazantsev V, Nekorkin V, Binczak S, Bilbault J. Spiking patterns emerging from wave instabilities in a

one-dimensional neural lattice. Physical Review E. 2003; 68(1):017201. https://doi.org/10.1103/

PhysRevE.68.017201

40. Luo Ch, Rudy Y. A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic cur-

rents and concentration changes. Circulation research. 1994; 74(6):1071–1096. https://doi.org/10.

1161/01.RES.74.6.1071 PMID: 7514509

41. Mitchell C. A Two-Current Model for the Dynamics of Cardiac Membrane. Bulletin of Mathematical Biol-

ogy. 2003; 65(5):767–793. https://doi.org/10.1016/S0092-8240(03)00041-7 PMID: 12909250

42. Marcotte CD, Grigoriev RO. Dynamical mechanism of atrial fibrillation: A topological approach. Chaos:

An Interdisciplinary Journal of Nonlinear Science. 2017; 27(9):093936. https://doi.org/10.1063/1.

5003259 PMID: 28964130

43. Byrne G, Marcotte CD, Grigoriev RO. Exact coherent structures and chaotic dynamics in a model of car-

diac tissue. Chaos: An Interdisciplinary Journal of Nonlinear Science. 2015; 25(3):033108. https://doi.

org/10.1063/1.4915143

44. Karma A. Spiral breakup in model equations of action potential propagation in cardiac tissue. Physical

review letters. 1993; 71(7):1103. https://doi.org/10.1103/PhysRevLett.71.1103 PMID: 10055449

45. Karma A. Electrical alternans and spiral wave breakup in cardiac tissue. Chaos: An Interdisciplinary

Journal of Nonlinear Science. 1994; 4(3):461–472. https://doi.org/10.1063/1.166024 PMID: 12780121

46. Ten Tusscher KH, Panfilov AV. Alternans and spiral breakup in a human ventricular tissue model.

American Journal of Physiology-Heart and Circulatory Physiology. 2006; 291(3):H1088–H1100. https://

doi.org/10.1152/ajpheart.00109.2006 PMID: 16565318

47. Arno L, Quan J, Nguyen NT, Vanmarcke M, Tolkacheva EG, Dierckx H. A Phase Defect Framework for

the Analysis of Cardiac Arrhythmia Patterns. Frontiers in Physiology. 2021; 12. https://doi.org/10.3389/

fphys.2021.690453 PMID: 34630135

48. Bishop MJ, Plank G. Bidomain ECG Simulations Using an Augmented Monodomain Model for the Car-

diac Source. IEEE transactions on bio-medical engineering. 2011; 58(8). https://doi.org/10.1109/

TBME.2011.2148718 PMID: 21536529

PLOS ONE The Ithildin anisotropic reaction-diffusion solver

PLOS ONE | https://doi.org/10.1371/journal.pone.0303674 September 19, 2024 25 / 26

https://doi.org/10.1109/HPCMP-UGC.2007.30
https://doi.org/10.1161/01.RES.24.3.339
https://doi.org/10.1161/01.RES.24.3.339
http://www.ncbi.nlm.nih.gov/pubmed/5766515
https://dalspace.library.dal.ca/handle/10222/55139
https://dalspace.library.dal.ca/handle/10222/55139
https://doi.org/10.1161/CIRCRESAHA.107.150730
http://www.ncbi.nlm.nih.gov/pubmed/17540975
https://doi.org/10.1103/PhysRevLett.131.208401
https://doi.org/10.1103/PhysRevLett.131.208401
http://www.ncbi.nlm.nih.gov/pubmed/38039450
https://doi.org/10.1103/PhysRevE.88.012908
http://www.ncbi.nlm.nih.gov/pubmed/23944539
https://doi.org/10.1155/2015/389830
https://doi.org/10.1155/2015/389830
http://www.ncbi.nlm.nih.gov/pubmed/26539486
https://doi.org/10.1088/1367-2630/17/4/043055
https://doi.org/10.1088/1367-2630/17/4/043055
https://doi.org/10.1016/j.jtbi.2008.03.029
http://www.ncbi.nlm.nih.gov/pubmed/18495166
https://doi.org/10.1016/0167-2789(91)90194-E
https://doi.org/10.1016/s0006-3495(61)86902-6
http://www.ncbi.nlm.nih.gov/pubmed/19431309
https://doi.org/10.1109/JRPROC.1962.288235
https://doi.org/10.1103/PhysRevE.68.017201
https://doi.org/10.1103/PhysRevE.68.017201
https://doi.org/10.1161/01.RES.74.6.1071
https://doi.org/10.1161/01.RES.74.6.1071
http://www.ncbi.nlm.nih.gov/pubmed/7514509
https://doi.org/10.1016/S0092-8240(03)00041-7
http://www.ncbi.nlm.nih.gov/pubmed/12909250
https://doi.org/10.1063/1.5003259
https://doi.org/10.1063/1.5003259
http://www.ncbi.nlm.nih.gov/pubmed/28964130
https://doi.org/10.1063/1.4915143
https://doi.org/10.1063/1.4915143
https://doi.org/10.1103/PhysRevLett.71.1103
http://www.ncbi.nlm.nih.gov/pubmed/10055449
https://doi.org/10.1063/1.166024
http://www.ncbi.nlm.nih.gov/pubmed/12780121
https://doi.org/10.1152/ajpheart.00109.2006
https://doi.org/10.1152/ajpheart.00109.2006
http://www.ncbi.nlm.nih.gov/pubmed/16565318
https://doi.org/10.3389/fphys.2021.690453
https://doi.org/10.3389/fphys.2021.690453
http://www.ncbi.nlm.nih.gov/pubmed/34630135
https://doi.org/10.1109/TBME.2011.2148718
https://doi.org/10.1109/TBME.2011.2148718
http://www.ncbi.nlm.nih.gov/pubmed/21536529
https://doi.org/10.1371/journal.pone.0303674

49. Winfree AT. Electrical turbulence in three-dimensional heart muscle. Science. 1994; 266:1003–1006.

https://doi.org/10.1126/science.7973648 PMID: 7973648

50. Clayton R, Zhuchkova E, Panfilov A. Phase singularities and filaments: Simplifying complexity in

computational models of ventricular fibrillation. Prog Biophys Mol Biol. 2006; 90(1-3):378–398. https://

doi.org/10.1016/j.pbiomolbio.2005.06.011 PMID: 16098568

51. Tomii N, Yamazaki M, Ashihara T, Nakazawa K, Shibata N, Honjo H, et al. Spatial phase discontinuity

at the center of moving cardiac spiral waves. Computers in Biology and Medicine. 2021; 130:104217.

https://doi.org/10.1016/j.compbiomed.2021.104217 PMID: 33516959

52. Goryachev A, Kapral R. Spiral Waves in Chaotic Systems. Physical Review Letters. 1996; 76

(10):1619–1622. https://doi.org/10.1103/PhysRevLett.76.1619 PMID: 10060475

53. Mermin ND. The topological theory of defects in ordered media. Reviews of Modern Physics. 1979; 51

(3):591–648. https://doi.org/10.1103/RevModPhys.51.591

54. Arno L, Kabus D, Dierckx H. Analysis of cardiac arrhythmia sources using Feynman diagrams; 2023.

Available from: https://doi.org/10.48550/arXiv.2307.01508.

55. Arno L, Kabus D, Dierckx H. Strings, branes and twistons: topological analysis of phase defects in excit-

able media such as the heart; 2024. Available from: https://doi.org/10.48550/arXiv.2401.02571.

56. Niederer SA, Kerfoot E, Benson AP, Bernabeu MO, Bernus O, Bradley C, et al. Verification of Cardiac

Tissue Electrophysiology Simulators Using an N-version Benchmark. Philosophical Transactions of the

Royal Society A: Mathematical, Physical and Engineering Sciences. 2011; 369(1954):4331–4351.

https://doi.org/10.1098/rsta.2011.0139 PMID: 21969679

57. Campos JO, Oliveira RS, dos Santos RW, Rocha BM. Lattice Boltzmann method for parallel simula-

tions of cardiac electrophysiology using GPUs. Journal of Computational and Applied Mathematics.

2016; 295:70–82. https://doi.org/10.1016/j.cam.2015.02.008

58. Rognes M E, Farrell P E, Funke S W, Hake J E, Maleckar M M C. Cbcbeat: An Adjoint-Enabled Frame-

work for Computational Cardiac Electrophysiology. The Journal of Open Source Software. 2017; 2

(13):224. https://doi.org/10.21105/joss.00224

59. Antonioletti M, Biktashev VN, Jackson A, Kharche SR, Stary T, Biktasheva IV. BeatBox—HPC Simula-

tion Environment for Biophysically and Anatomically Realistic Cardiac Electrophysiology. PLOS ONE.

2017; 12(5):e0172292. https://doi.org/10.1371/journal.pone.0172292 PMID: 28467407

60. Cooper FR, Baker RE, Bernabeu MO, Bordas R, Bowler L, Bueno-Orovio A, et al. Chaste: Cancer,

Heart and Soft Tissue Environment. Journal of Open Source Software. 2020; 5(47):1848. https://doi.

org/10.21105/joss.01848 PMID: 37192932

61. Plank G, Loewe A, Neic A, Augustin C, Huang YL, Gsell MAF, et al. The openCARP Simulation Environ-

ment for Cardiac Electrophysiology. Computer Methods and Programs in Biomedicine. 2021;

208:106223. https://doi.org/10.1016/j.cmpb.2021.106223 PMID: 34171774

62. Africa PC, Piersanti R, Regazzoni F, Bucelli M, Salvador M, Fedele M, et al. Lifex-Ep: A Robust and Effi-

cient Software for Cardiac Electrophysiology Simulations. BMC Bioinformatics. 2023; 24(1):389. https://

doi.org/10.1186/s12859-023-05513-8 PMID: 37828428

63. Arens S, Dierckx H, Panfilov AV. GEMS: A Fully Integrated PETSc-Based Solver for Coupled Cardiac

Electromechanics and Bidomain Simulations. Frontiers in Physiology. 2018; 9:1431. https://doi.org/10.

3389/fphys.2018.01431 PMID: 30386252

64. CARMEN. Cardiac ElectroPhysiology Simulator (CEPS);. IHU Liryc, Inria.

65. Finsberg HNT, van Herck IGM, Daversin-Catty C, Arevalo H, Wall S. simcardems: A FEniCS-based

cardiac electro-mechanics solver. Journal of Open Source Software. 2023; 8(81):4753. https://doi.org/

10.21105/joss.04753

PLOS ONE The Ithildin anisotropic reaction-diffusion solver

PLOS ONE | https://doi.org/10.1371/journal.pone.0303674 September 19, 2024 26 / 26

https://doi.org/10.1126/science.7973648
http://www.ncbi.nlm.nih.gov/pubmed/7973648
https://doi.org/10.1016/j.pbiomolbio.2005.06.011
https://doi.org/10.1016/j.pbiomolbio.2005.06.011
http://www.ncbi.nlm.nih.gov/pubmed/16098568
https://doi.org/10.1016/j.compbiomed.2021.104217
http://www.ncbi.nlm.nih.gov/pubmed/33516959
https://doi.org/10.1103/PhysRevLett.76.1619
http://www.ncbi.nlm.nih.gov/pubmed/10060475
https://doi.org/10.1103/RevModPhys.51.591
https://doi.org/10.48550/arXiv.2307.01508
https://doi.org/10.48550/arXiv.2401.02571
https://doi.org/10.1098/rsta.2011.0139
http://www.ncbi.nlm.nih.gov/pubmed/21969679
https://doi.org/10.1016/j.cam.2015.02.008
https://doi.org/10.21105/joss.00224
https://doi.org/10.1371/journal.pone.0172292
http://www.ncbi.nlm.nih.gov/pubmed/28467407
https://doi.org/10.21105/joss.01848
https://doi.org/10.21105/joss.01848
http://www.ncbi.nlm.nih.gov/pubmed/37192932
https://doi.org/10.1016/j.cmpb.2021.106223
http://www.ncbi.nlm.nih.gov/pubmed/34171774
https://doi.org/10.1186/s12859-023-05513-8
https://doi.org/10.1186/s12859-023-05513-8
http://www.ncbi.nlm.nih.gov/pubmed/37828428
https://doi.org/10.3389/fphys.2018.01431
https://doi.org/10.3389/fphys.2018.01431
http://www.ncbi.nlm.nih.gov/pubmed/30386252
https://doi.org/10.21105/joss.04753
https://doi.org/10.21105/joss.04753
https://doi.org/10.1371/journal.pone.0303674

