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Abstract
A science map of topics is a visualization that shows topics identified algorithmically based 
on the bibliographic metadata of scientific publications. In practice not all topics are well 
represented in a science map. We analyzed how effectively different topics are represented 
in science maps created by clustering biomedical publications. To achieve this, we investi-
gated which topic categories, obtained from MeSH terms, are better represented in science 
maps based on citation or text similarity networks. To evaluate the clustering effectiveness 
of topics, we determined the extent to which documents belonging to the same topic are 
grouped together in the same cluster. We found that the best and worst represented topic 
categories are the same for citation and text similarity networks. The best represented topic 
categories are diseases, psychology, anatomy, organisms and the techniques and equipment 
used for diagnostics and therapy, while the worst represented topic categories are natural 
science fields, geographical entities, information sciences and health care and occupations. 
Furthermore, for the diseases and organisms topic categories and for science maps with 
smaller clusters, we found that topics tend to be better represented in citation similarity 
networks than in text similarity networks.

Keywords Citation-based clustering · Text-based clustering · Evaluation · Topics · MeSH 
terms

Introduction

Science maps (Chen, 2017) are visualizations that provide an overview of the con-
tent of collections of scientific publications. The goal of science mapping is to find 
meaningful structures in the bibliographic metadata of publications (e.g, in the refer-
ences, the titles and abstracts, or the authors). These structures can then be used for 
literature analysis or information retrieval (Cobo et al., 2011; van Eck, 2011). Some of 
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the uses of science maps are field delimitation (Zitt, 2015), research policy (Sullivan 
et  al., 2007), and enhanced document browsing (Bascur et  al., 2023). A well estab-
lished practice to create science maps is to cluster similar publications, and then to 
summarize the content of the resulting clusters. Our focus in this paper is on science 
maps created in this way.

When using science maps, it is important to be aware that scientific publications 
usually have more than a single topic (e.g., a document about the topic lung cancer 
is, implicitly, also about both lungs and cancer), but in a science map they typically 
can be assigned to only one cluster, where the cluster is intended to represent a single 
cohesive topic. Because in reality, publications can have more than one topic, losing 
information when creating science maps is unavoidable, but it does raise the question 
of which of the topics addressed in a collection of publications a clustering will be 
based on. This is not an idle question, as there can be significant disagreement between 
expert-identified and cluster-identified topics (Held et al., 2021), indicating that expert-
identified topics are poorly represented by the clusters in a science map. More specifi-
cally, an expert with an interest in a particular topic may find that publications related 
to this topic are scattered over many different clusters, with most of the publications 
in these clusters being unrelated to the expert’s topic of interest. By providing a better 
understanding of the types of topics that are well or less well represented in science 
maps, we hope our research will contribute to a more effective use of these maps.

In this paper, we use the Medical Subject Headings (MeSH) terms to investigate 
clustering for biomedical topics. Our focus is on clustering solutions based on either 
citation or text similarity networks, which are the most common document similar-
ity metrics for creating science maps. We aim to find out which MeSH terms are well 
represented by the clusters in a science map, a phenomenon that we will refer to as 
clustering effectiveness. Our approach is to group topics, represented by MeSH terms, 
into topic categories, represented by branches of the MeSH tree, and to then evaluate 
clustering effectiveness at the level of these topic categories.

Our research questions are as follows:

• Which topic categories have the highest and lowest clustering effectiveness in cita-
tion and text similarity networks?

• Which topic categories have higher clustering effectiveness in citation similarity 
networks than in text similarity networks, and vice versa?

In the remainder of this paper, we will discuss background literature, describe our 
data, define our metrics, report our analyses and discuss our results.

Background

This section has the following structure: In Subsection  2.1 we explain how science 
maps are usually evaluated, in Subsection we explore the criticism of science maps 
that originates from one particular evaluation method, and in Subsection we explain 
the challenges of understanding the meaning of the clusters in a science map.
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Evaluation of science maps

In the current paper we evaluate the quality of science map only from the perspective of 
its field delimitation function. However, it is important to keep in mind that science maps 
are richer tools, with various features that can be interpreted beyond the extend to which 
clusters correspond to topics. For example, it can be evaluated on the extend to which the 
labels of the clusters and the distance between clusters provide useful visual information, 
or on how cross-cluster topics inform on the structure of the topics. The most common 
method to evaluate the quality of the field delimitation function a science map is to ask 
experts if the science map reflects their knowledge of the field of interest. The utility of this 
evaluation method has recently been called into question because it usually gives an incon-
clusive result: The experts tend to agree with most of the science map but identify caveats 
about certain details (Gläser, 2020). Additionally, there are several issues intrinsic to the 
expert evaluation method: The evaluation criteria may differ between experts; seeing the 
map may affect the expert’s understanding of a field; the expert may be biased towards the 
subfields of their interest; and the expert may have limited competence in some subfields 
(Gläser, 2020).

An alternative method to evaluate the quality of a science map is to consider the intrin-
sic properties of the clustering process used to create science maps. Commonly used intrin-
sic properties are desirable characteristics such as homogeneous cluster sizes, few small 
clusters, stable clustering solutions between different runs of the cluster algorithm, and a 
short computing time to create the clusters (Šubelj et  al., 2016). An intrinsic properties 
evaluation method was developed by Waltman et  al. (2020). Their method assumes that 
there exists an ideal map and then assesses how closely a clustering solution matches this 
map. It evaluates the quality of a clustering solution based on one metric using another 
unrelated baseline metric (e.g., a clustering solution based on citation similarity can be 
evaluated using text similarity). Ahlgren et al. (2020), who created the clustering solutions 
that we use in our current work, used this method with MeSH terms similarity as their 
baseline metric.

A third approach to evaluate the quality of a science map is to define a ground truth 
made of documents that correspond to a given topic, and evaluate the overlap between the 
clustering solution and the ground truth: either the extent to which all documents of each 
field are contained in a single cluster (Held et al., 2021, 2020), or the extent to which each 
cluster contains only documents of a single field (Rossetti et al., 2016; Held et al., 2021; 
Held & Velden, 2022; Haunschild et  al., 2018). Some studies obtained the ground truth 
from the references of review articles (Klavans & Boyack, 2017; Sjögårde & Ahlgren, 
2018), but most studies obtained the ground truth using expert knowledge. To our knowl-
edge, MeSH terms have not been used as ground truths, although Sjögårde, Sjögårde et al. 
(2021) used MeSH terms to label clusters in science maps. It is worth mentioning that our 
work has a different goal than evaluating a science map based on a ground truth. Instead 
of evaluating the quality of a science map based on a set of topics, we evaluate which topic 
categories are most accurately represented in a science map.

Criticism of science maps based on ground truth evaluations

Evaluations that use expert knowledge ground truths have recently questioned the qual-
ity of science maps by challenging their ability to identify fields of science (Haunschild 
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et  al., 2018; Held et  al., 2021, 2020; Held & Velden, 2022). For example, Held and 
Velden (2022) found that science maps provide clusters about organisms rather than 
clusters about the field of invasive biology. One explanation for these negative results is 
that a document can belong to several fields or topics but only to a single cluster (Held 
et al., 2021; Held & Velden, 2022) (although some maps allow documents to belong to 
multiple clusters (Xu et al., 2018; Havemann et al., 2017)). Another explanation is that 
the choice of a clustering algorithm can have a significant influence on the quality of a 
science map, and it is impossible to know beforehand which clustering algorithm will 
give the best result for a given map (Held, 2022; Rossetti et al., 2016).

Similar negative findings have also emerged in areas beyond science mapping. For 
example, the field of complex systems has developed algorithms to clusters the ele-
ments that share a given property (i.e., the cluster matches the ground truth), but these 
algorithms fail in practical applications. On the other hand, this field has succeeded in 
practical applications of algorithms that infer the properties of an element based on 
the properties of the other elements in a cluster (e.g., fraud in telecommunications net-
works, function in biological networks) Fortunato (2010); Hric et al. (2014); Peel et al. 
(2017).

Meaning of the clusters

The negative findings discussed in the previous subsection suggest that science maps, and 
clustering in general, offer poor representations of certain ground truths. However, this 
does not mean that science maps are not useful. As mentioned in Subsection 2.1, experts 
tend to agree that science maps reflect their knowledge of a field. Also, in the field of com-
plex systems, Newman and Clauset (2016) argued that, even if clusters do not reflect the 
ground truth, they can still describe meaningful structures in the data. Our work tries to 
find out what kinds of structures are described by the clusters in a science map.

In this direction, Seitz et al. (2021) found that the epistemic functions of citations (i.e., 
what kind of knowledge is a citation contributing to in a document) within a cluster are dif-
ferent from the epistemic functions of citations between clusters. This suggests that clusters 
tend to represent certain epistemic functions more than others. Also, the type of similarity 
network might have an effect on the meaning of clusters. For example, Ding (2011) found 
significant differences between clusters emerging from co-authorship networks of docu-
ments and clusters emerging from topic modeling of documents. On the other hand, Velden 
et al. (2017) found that there is a substantial similarity between the topics found in science 
maps built from citation and text similarity networks, although science maps built from 
citation networks are better at distinguishing topics when words related to the topics have 
multiple meanings.

Methods

This section has the following structure: In Subsection 3.1, we define how we selected our 
data. In Subsection 3.2, we explain how we modified our data so to better fit our experi-
mental design. In Subsection 3.3, we explain how we evaluate the clustering effectiveness 
of topic categories.
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Data selection

Documents

The collection of documents that we use in our work comes from the work by Ahlgren 
et al. (2020). This is a collection of 2,941,119 PubMed documents published between 
2013 and 2017.

Clustering solutions

The clustering solutions that we use are the ones generated by Ahlgren et al. They cre-
ated several clustering solutions for the above mentioned documents using different 
similarity metrics and granularities. They used the Leiden algorithm Traag et al. (2019) 
for clustering, where the parameter Resolution controls the granularity of the clustering 
solution (a higher Resolution value generates smaller clusters). We select two similarity 
metrics, one for citation and one for text, based on which pair of metrics produce simi-
lar cluster sizes at the same Resolution. The citation metric is Extended direct citation, 
which is calculated using direct citations between documents plus the citations to docu-
ments outside the document collection (Waltman et al., 2020). The text metric is BM25 
(Robertson & Zaragoza, 2009), which uses the noun phrases in the titles and abstracts 
of the documents, and weights them inversely to their frequency in the document collec-
tion (Waltman et al., 2020). For each metric we selected the three clustering solutions 
that use the Resolution values 2 ∗ 10−6 , 2 ∗ 10−5 or 2 ∗ 10−4 , enabling us to evaluate 
different cluster sizes. We selected these Resolution values because the first and second 
value yield cluster sizes similar to those in the algorithmic mapping of science (Walt-
man & Van Eck, 2012) used in the CWTS Leiden Ranking (CWTS, 2023), while the 
third value enables us to evaluate clusters of smaller size.

Topics

Our topics are the MeSH terms, a controlled vocabulary thesaurus from the National 
Library of Medicine (NLM) used for indexing PubMed. MeSH terms are semi-auto-
matically annotated to documents by the NLM National Institutes of Health (2023). We 
obtained the MeSH terms annotated for each document in our document collection, plus 
the metadata of the MeSH terms themselves, from the PubMed and MeSH databases 
(version from 2023) available in the database system of the Centre for Science and 
Technology Studies (CWTS) at Leiden University.

Topic categories

Our topic categories are the 16 nodes at the first level of the MeSH hierarchical tree of 
topics (National Institutes of Health, 2023), also known as the branches of the MeSH 
tree. We use branches because they group the MeSH terms in epistemological catego-
ries (e.g., organisms), which are the categories sometimes used for topical analysis of 
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clusters (Held et al., 2021; Seitz et al., 2021). A single MeSH term can have instances in 
different branches of the MeSH tree. We will address this in Subsection .

Data prepossessing

Clustering solution cleaning

We cleaned the clustering solutions by removing the clusters with fewer than 10 docu-
ments because these clusters usually had documents that were disconnected from the larg-
est connected component of the similarity network. Removing these clusters removed only 
a minor fraction of the total number of documents. The statistics of each clustering solution 
after this process can be seen in Table 1. In this table, the variable S is the smallest set of 
clusters that together cover at least half of the documents in the dataset. This means that S 
contains the biggest clusters in the clustering solution. We report statistics for S to provide 
some insight into the distribution of cluster sizes.

MeSH term expansion

We would like a MeSH term to be annotated on all documents related to the topic of the 
MeSH term, but NLM typically only annotates up to 15 MeSH terms per document, which 
means that more generic MeSH terms are not annotated. To fix this, we expanded the num-
ber of MeSH terms annotated to a document by annotating, for each NLM MeSH term, 
all MeSH terms that are upstream in the MeSH tree, or in other words, all ancestors of the 
NLM MeSH term in the MeSH tree.

For example, if a document has the NLM MeSH term Abdominal Pain, we also annotated 
the upstream MeSH term Pain. While the former MeSH term belongs to the branch Dis-
eases [C], the latter one belongs not only to the branch Diseases [C], but also to the branches 

Table 1  Statistics of the clustering solutions

S is the smallest set of clusters that together cover at least half of the documents in the dataset
The size of the cluster is the number of documents it contains

Metric Resolution Citation similarly Text silmiarity

2
∗
10

−6 297 277

Number of clusters 2
∗
10

−5 2,469 2,475

2
∗
10

−4 21,659 20,603

Number of clusters in S 2∗10 −6 59 65
2∗10−5 496 514
2∗10−4 4,017 3,554

Median size of clusters 2∗10
−6 7,615 9,373

2∗10−5 878 891
2∗10−4 88 86

Size of the smallest cluster in S 2∗10−6 16,936 15,358
2∗10−5 1,954 1,885
2∗10−4 228 252



1187Scientometrics (2025) 130:1181–1199 

Psychiatry and Psychology [F] and Phenomena and Processes [G]. We annotated the MeSH 
term Pain paired with the branch Diseases [C], and not with the other two branches. On the 
other hand, if a document has the NLM MeSH term Pain, then we would annotate three ver-
sions of it, one for each branch. For simplicity, in the rest of this paper we will refer to MeSH 
terms paired with a specific branch simply as MeSH terms. Also, we will refer to the docu-
ments that have a given MeSH term as the MeSH term documents and to the number of these 
documents as the MeSH term size.

MeSH term removal

We removed some MeSH terms to improve the quality of our experiments. Our first removal 
criterion is size. We removed MeSH terms with size greater than 300,000 (i.e., 10% of the 
document set) because these MeSH term documents can saturate the clusters just by ran-
dom chance, distorting our analysis. We also removed the MeSH terms with size 500 or less, 
because we want the smallest MeSH terms to be close but smaller than the median size of the 
clusters for resolution 2 ∗ 10−5.

Our second removal criterion is redundancy. Due to the MeSH term expansion process, 
some MeSH terms had almost the same documents as their ancestor in the MeSH tree, like 
Dogs and its ancestor Canidae. This redundancy could distort our results. We therefore 
decided to remove the redundant MeSH terms by grouping together MeSH terms that share 
many documents and retaining only the smallest MeSH term from the group, which in our 
experience tends to be the term that best represents the group. The extent to which MeSH 
terms share documents was measured using Jaccard similarity, the grouping algorithm was 
agglomerate hierarchical clustering with the Complete Linkage method (SAS Institute Inc, 
2009), and the criterion for forming MeSH term groups was for MeSH terms to have a Jac-
card similarity of at least 0.9. In cases where a group had more than one smallest MeSH term, 
we selected the one at the lowest level in the MeSH tree or the one with the largest number of 
instances in the MeSH tree.

Branch removal

To make our results more robust, we removed the branches with fewer than 100 MeSH terms. 
We ended up with the 14 branches shown in Table .

Size bins of MeSH terms

The size of a MeSH term can be expected to have an effect on its clustering effectiveness. We 
therefore grouped the MeSH terms according to their size. We refer to these groups as Size 
bins. To ensure the robustness of our results, we only considered Size bins that had at least 10 
MeSH terms per branch. This resulted in five Size bins: 501-1,000, 1,001–2,000, 2,001–4,000, 
4,001–8,000, and 8,001–16,000. The number of MeSH terms per Size bin can be seen in 
Table 2.
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Table 2  Number of MeSH terms per branch and Size bin

A Size bin is a range of topic sizes
A topic size is the number of documents in the topic

Branch Size bin
501–1,000 1,001−2,000 2,001−4,000 4,001−8,000 8,001−16,000 Total

Anatomy [A] 209 201 161 102 76 749

Organisms 
[B]

247 168 98 75 44 632

Diseases [C] 472 391 272 194 114 1,443
Chemicals 

and drugs 
[D]

1,033 785 568 357 264 3,007

Analytical, 
diagnos-
tic and 
therapeutic 
techniques, 
and equip-
ment [E]

324 298 253 189 150 1,214

Psychiatry 
and psy-
chology [F]

109 113 95 65 38 420

Phenomena 
and pro-
cesses [G]

264 244 221 179 143 1,051

Disciplines 
and occupa-
tions [H]

50 28 31 23 15 147

Anthropology, 
education, 
sociology, 
and social 
phenomena 
[1]

57 56 40 29 24 206

Technology, 
industry, 
and agricul-
ture [J]

76 70 68 24 26 264

Information 
science [L]

31 35 28 20 18 132

Named 
groups [M]

21 34 20 11 14 100

Health care 
[N]

182 150 134 110 87 663

Geographicals 
[Z]

51 39 36 16 21 163

Total 3,126 2,612 2,025 1,394 1,034 10,191
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Clustering effectiveness

Selection of clusters

To find out which MeSH terms are well represented by the clusters in a science map, we 
introduce the notion of clustering effectiveness. Measuring the clustering effectiveness 
of a MeSH term starts by selecting a subset of clusters. Our cluster selection criterion 
is to select the clusters with the largest number of MeSH term documents while making 
sure that the selected clusters cover at least a given share of all MeSH term documents. 
We call this share Coverage. We consider three Coverage values: 0.25, 0.50 and 0.75. 
Our cluster selection criterion minimizes the number of selected clusters for a given 
Coverage value. It is inspired by cluster quality metrics of Yuan et al. (2022). We expect 
our cluster selection criterion to reflect the clusters a user of a science map is likely to 
select while exploring the map.

Clustering effectiveness metrics

Once we have the selected clusters for a given MeSH term, we measure clustering effec-
tiveness using two metrics:

• Purity: Purity represents the extent to which the selected clusters are composed of MeSH 
term documents. It is the fraction of documents in the selected clusters that are MeSH 
term documents. In mathematical terms, Purity is defined as: 

 here N denotes the number of selected clusters, Di denotes the documents in selected 
cluster i and DM denotes the MeSH term documents. The higher Purity, the more effec-
tive the clustering. Purity is bounded between zero and one.

• Inverse count of clusters (ICC): ICC represents the extent to which the MeSH term 
documents are contained in a small number of clusters. ICC is defined as one divided 
by the number of selected clusters. In mathematical terms, ICC is defined as: 

 The higher ICC, the more effective the clustering. Like Purity, ICC is bounded between 
zero and one.

We use two metrics instead of one to control for MeSH term size and cluster size: If there 
are few MeSH term documents, or if they are in big clusters, then ICC will be high but Purity 
will be low, and vice versa.

The Purity and ICC of a MeSH term are calculated for a given Coverage value, Resolution 
value and similarity network. We use C-Purity and C-ICC to refer to Purity and ICC calcu-
lated for a citation network, and T-Purity and T-ICC to refer to Purity and ICC calculated for 
a text network.

(1)Purity =

∑N

i=1
�Di ∩ DM�

∑N

i=1
�Di�

(2)ICC =
1

N
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We also provide metrics for the difference in Purity and ICC between citation and text net-
works for a given MeSH term. These metrics, referred to as rPurity (Ratio Purity) and rICC 
(Ratio ICC), are calculated as the logarithm base 2 of C-Purity or C-ICC divided by T-Purity 
or T-ICC. The purpose of the logarithm is to facilitate the interpretation of the results (e.g. 
for rPurity vale −1, T-Purity is double C-Purity, and for +1 is the opposite). In mathematical 
terms, rPurity and rICC are defined as:

(3)rPurity = log2

(
C − Purity

T − Purity

)

Table 3  Number of times each branch appears in each ranking position, using either C-Purity (top) or 
T-Purity (bottom) as ranking criterion
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Positive values indicate that a citation network yields a higher clustering effectiveness than 
a text network, and vice versa.

Results

Which topic categories have the highest and lowest clustering effectiveness 
in citation and text similarity networks?

To answer our first research question, we consider the C-Purity and T-Purity rankings of 
the 14 branches for each of the 45 combinations of parameter values (i.e., three Resolu-
tion values combined with three Coverage values combined with five Size bin values). 
Table 3 shows the number of times each branch appears in each position in the C-Purity 
and T-Purity rankings. The order of the branches in the table was determined manually 
so that the branches that frequently occupy higher ranking positions are above of the 
ones that occupy lower ranking positions. We found that the ICC rankings are strongly 
correlated with the Purity rankings, so we do not show them.

From Table 3 we make the following observations:

• Most of the branches occupy between one and four adjacent positions, which shows 
that the position of the branches tends to be stable for different parameter values.

(4)rICC = log2

(
C − ICC

T − ICC

)

Fig. 1  Box plots showing the distribution of C-Purity, C-ICC, T-Purity and T-ICC over the 45 combinations 
of parameter values. The median values of each box plot are reported along the right Y axis. The branches 
are sorted as in Table 3
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• For both C-Purity and T-Purity, the top five branches are almost always in positions 1 
to 7, and the bottom four branches are almost always in positions 8 to 14. We therefore 
consider the top five and bottom four branches as the the ones with, respectively, the 
highest and lowest clustering effectiveness.

• The top five and bottom four branches are the same for C-Purity and T-Purity, showing 
that in this respect citation and text networks yield very similar outcomes.

• The top five branches are Diseases [C], Organisms [B], Anatomy [A], Analytical, Diag-
nostic and Therapeutic Techniques, and Equipment [E] and Psychiatry and Psychology 
[F].

Fig. 2  Box plots showing the distribution of rPurity and rICC for each value of Size bin, Resolution and 
Coverage

Fig. 3  Box plots showing the distribution of rPurity and rICC for each branch
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• The bottom four branches are Health Care [N], Disciplines and Occupations [H], Infor-
mation Science [L] and Geographicals [Z].

Figure  1 shows the distribution of the Purity and ICC values of each branch for the 45 
combinations of parameter values. The box plots for the different branches heavily overlap 
with each other due to the effect of the parameter values on Purity and ICC. From Fig. 1 we 
observe that C-Purity, T-Purity, C-ICC and T-ICC are substantially higher for the branch 
Diseases [C] than for the other branches, while they are substantially lower for the branch 
Geographicals [Z]. This also explains why in Table 3 these branches almost always appear 
in position 1 and 14, respectively.

Which topic categories have higher clustering effectiveness in citation similarity 
networks than in text similarity networks, and vice versa?

To address our second research question, we first evaluate how the ratio metrics rPurity 
and rICC correlate with the Size bin, Resolution and Coverage parameters. The box plots 
in Fig. 2 show the distribution of the rPurity and rICC values for each value of the Size bin, 
Resolution and Coverage parameters. Here we see that higher Resolution and Coverage are 
correlated with higher rPurity and rICC. Also, higher Size bin is correlated with lower rPu-
rity and rICC, but this is a weak correlation.

The answer to our second research question depends on whether the rPurity and rICC 
values of a branch are positive or negative. Positive values indicate that the clustering 
effectiveness is higher in citation networks, while negative values indicate that the cluster-
ing effectiveness is higher in text networks. The box plots in Fig. 3 show the distribution 
of the rPurity and rICC values of each branch for the 45 combinations of parameter values. 
For each branch, the rPurity and rICC distributions include both positive and negative val-
ues. This reflects the dependence of the rPurity and rICC values on the values of the Size 
bin, Resolution and Coverage parameters, as was shown in Fig. 2.

Because for each branch the rPurity and rICC distributions include both positive and 
negative values, it is not possible to unequivocally conclude that a branch has a higher 
clustering effectiveness in either citation networks or text networks. Nevertheless, it is clear 
that the branches Diseases [C] and Organisms [B] tend to have a higher clustering effec-
tiveness in citation networks than in text networks. rPurity and rICC are almost always pos-
itive for these branches. In contrast, the branches Geographicals [Z], Information Science 
[L], Named Groups [M], Analytical, Diagnostic and Therapeutic Techniques, and Equip-
ment [E] and Phenomena and Processes [G] tend to have a higher clustering effectiveness 
in text networks than in citation networks. However, the results for these branches are less 
stable, so we need to be cautious in drawing strong conclusions.

Discussion

This section has the following structure: We discuss what we have learned for our first 
research question in Subsection , for our second research question in Subsection , and for 
the strengths and weaknesses of our work in Subsection 5.3.
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Which topic categories have the highest and lowest clustering effectiveness 
in citation and text similarity networks?

Our results show that the MeSH branches with the highest and lowest clustering effective-
ness are the same for citation and text similarity networks. Despite the different purposes 
of writing and citing (Leydesdorff, 1998), the way scientists write and the way they cite 
yield similar rankings of MeSH branches in terms of clustering effectiveness. It would be 
interesting to see if the top and bottom branches are also the same in other similarity net-
works, like co-tweeting (Costas et al., 2021), co-authorship (Newman, 2004), and patent 
co-citation (Lai & Wu, 2005).

The branch Disciplines and Occupations [H], which contains the MeSH terms for natu-
ral science fields, is among the branches with the lowest clustering effectiveness. This sug-
gests that how scientists cite each other is only weakly related to how they define scientific 
fields, which suggest the need for alternative approaches to defining scientific fields, for 
instance based on science map clusters. However, it is unclear to which extent this branch 
is a good representative of the natural science fields (e.g. the branch also includes MeSH 
terms about health occupations, and documents with NLM MeSH terms about natural sci-
ence fields tend to be about meta-science). Therefore, a deeper analysis is required to sup-
port the suggestion, but this goes beyond the scope of the current paper.

Held and Velden (2022) reported that a given science map was poor at showing the field 
of invasive biology, and instead placed documents related to the field in clusters about spe-
cies. Our results are in line with this, because invasive biology belongs to Disciplines and 
Occupations [H], one of the bottom four branches in our results, while species belongs to 
Organisms [B], one of the top five branches.

Which topic categories have higher clustering effectiveness in citation similarity 
networks than in text similarity networks, and vice versa?

Our results show that which networks yield a higher clustering effectiveness depends 
strongly on the Resolution and Coverage values, with higher Resolution and higher Cover-
age increasing the clustering effectiveness for citation networks relative to text networks. 
Importantly, this does not mean that higher Resolution and higher Coverage increase the 
clustering effectiveness for citation networks in an absolute sense. It means that higher 
Resolution and higher Coverage increase the ratio between the clustering effectiveness for 
citation networks and the clustering effectiveness for text networks.

Ahlgren et al. (2020) developed a method to measure the accuracy of the clusters in a 
science map. Using their data and visualization method, we found that the accuracy of cita-
tion networks relative to text networks increases as the Resolution value increases. This is 
in line with our results. Unfortunately, we do not know the mechanism behind this depend-
ency. Our findings for Resolution could be useful for users of science maps: It tells them 
that, if they have two science maps, one based on citations and another based on text, then 
decreasing the size of the clusters will make the citation one more effective relative to the 
text one, and vice versa.

In the context of field delimitation tasks, where a user of a science map identifies the 
clusters that contain the documents of a field, Coverage is analog to the completeness of 
the field delimitation. Our findings for Coverage suggest that citation networks are better 
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for exhaustive field delimitation, while text networks are better for less exhaustive field 
delimitation.

Our results also indicate that, omitting the effect of Resolution and Coverage, the 
branches Diseases [C] and Organisms [B] tend to have higher clustering effectiveness in 
citation networks than in text networks. To exemplify what this means for users, we con-
sider the use case of Held and Velden (2022) discussed above: They would like to have a 
clustering of the field of invasive biology, but in their science map invasive biology docu-
ments are spread over clusters about organisms. If instead of a citation network a text net-
work is used, the organisms will probably be clustered less effectively, which may give the 
opportunity for invasive biology documents to form their own clusters instead of being part 
of clusters about organisms.

Strengths and weaknesses

We see the use of MeSH terms as an important strength of our work. An alternative 
approach could be to ask experts to assign documents to topics, but this cannot be done 
at the scale at which MeSH terms provide document-topic links. Also, MeSH terms link 
documents to topics at a scale that no other classification scheme, like the Mathematics 
Subject Classification, the ACM Computing Classification System, or the Physics Subject 
Headings, is able to provide.

We also improved the utility of the MeSH terms by using Coverage, MeSH term 
expansion, MeSH term removal and MeSH branches in our experimental design. Cover-
age diminished the effect of mislabeled documents (e.g., the document with DOI 10.1007/
s12603-020–1457-6 is incorrectly labeled with the MeSH term Alcohol Drinking) by 
ignoring a certain share of the documents with a particular MeSH term. MeSH term expan-
sion allowed us to have a collection of documents for each MeSH term that represent the 
topic of the MeSH term more accurately. MeSH term removal allowed us to ensure that 
our results are not affected by redundant MeSH terms. Using the MeSH branches as topic 
categories allowed us to use a curated scheme of topic categories. However, some topic 
categories may be absent from the MeSH tree (e.g., topics linking diseases with their medi-
cines) and some lower levels of the MeSH tree may be more informative as topic catego-
ries (e.g., the children of the branch Disciplines and Occupations [H] are Natural Science 
Disciplines and Health Occupations, which may be more informative as topic categories 
than the branch itself). It is worth mentioning that MeSH terms have an attribute (MeSH 
Major Topic) that indicates if the MeSH term is one of the major topics of the document. 
We did not use this attribute because only half of our documents had any MeSH term with 
this attribute.

Another strength of our work is that we evaluated clustering effectiveness per MeSH 
term, while other studies, like Waltman et al. (2020), evaluated a clustering solution as a 
whole. Our method is also insensitive to the effect of size differences between MeSH terms 
and clusters (e.g., if clusters are much bigger than MeSH terms, it is impossible to have 
maximum Purity, and if they are much smaller, it is impossible to have maximum ICC) 
because our focus is on comparing the clustering effectiveness of different topic categories 
instead of achieving optimal clustering effectiveness.

A weakness of our work is that we used only one clustering algorithm, the Leiden algo-
rithm, an algorithm that is commonly used by the science mapping community. Other stud-
ies used multiple algorithms: Held, Held et al. (2021, 2020) analyzed clusters created by 
the Leiden algorithm and the Infomap algorithm. Held Held (2022) assessed the suitability 
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of the Leiden, Louvian, OSLM and Infomap algorithms for creating clusters. Beyond sci-
ence maps, Rossetti et  al. (2016) showed that different clustering algorithms (Louvain, 
Infohiermap, cFinder, Demon, iLCD and Ego-Network) have differential performance for 
different types of networks (DBLP co-authorship network, Amazon co-purchase network, 
YouTube users network, and LiveJournal users network).

Another weakness of our work is that we used only one citation similarity metric 
(extended direct citation) and only one text similarity metric (BM25). Future work should 
ideally evaluate multiple citation and text similarity metrics, because different citation met-
rics and different text metrics may yield different results.

A final weakness of our research is that our findings might be valid only for the current 
document set. Using document sets from other time periods or other fields (MeSH terms 
specialize in Biomedical fields) could have different results due to changes in the writing 
style and the epistemic functions of citations.

Conclusion

In this paper we explored science maps of mostly biomedical topics, analyzing the cluster-
ing effectiveness for different topic categories. We hope our work will contribute to a more 
effective use of science maps. We addressed the following research questions:

Which topic categories have the highest and lowest clustering effectiveness 
in citation and text similarity networks?

We found that the answer is the same for citation and text similarity networks. Para-
phrasing the topic category names, the topic categories with the highest clustering 
effectiveness are diseases, psychology, anatomy, organisms and the techniques and 
equipment used for diagnostics and therapy, while the topic categories with the lowest 
clustering effectiveness are natural science fields, geographical entities, information sci-
ences and health care and occupations. Also, the diseases category has a substantially 
higher clustering effectiveness than all other categories, while the geographical entities 
category has a substantially lower clustering effectiveness.

Which topic categories have higher clustering effectiveness in citation similarity net-
works than in text similarity networks, and vice versa?

Which topic categories have higher clustering effectiveness in citation similarity 
networks than in text similarity networks, and vice versa?

We found that there are two factors that can make any topic category have higher clus-
tering effectiveness in either network. The first factor is the size of the clusters gener-
ated by the clustering process (i.e., the Resolution parameter). The smaller the size, the 
higher the clustering effectiveness in citation networks relative to text networks. The 
second factor, specific to our experimental setting, is the percentage of all topic docu-
ments that must be covered by the selected clusters (i.e., the Coverage parameter). The 
higher this percentage, the higher the clustering effectiveness in citation networks rela-
tive to text networks. Regardless of these two factors, we found that the diseases and 
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organisms topic categories tend to have higher clustering effectiveness in citation net-
works than in text networks.

Our work has shown that there is a strong tendency for clusters in science maps to rep-
resent some topics better than others. Further research could explore how to control which 
topics are clustered better, so that users of science maps can adjust the maps to their needs.

Data availibility The code used to run the experiments and the data needed to replicate the results are avail-
able in Bascur (June 2024).
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