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Using the Empirical Attainment Function for
Analyzing Single-objective Black-box Optimization

Algorithms
Manuel López-Ibáñez , Senior Member, IEEE, Diederick Vermetten , Johann Dreo , Carola Doerr

Abstract—A widely accepted way to assess the performance
of iterative black-box optimizers is to analyze their empirical
cumulative distribution function (ECDF) of pre-defined quality
targets achieved not later than a given runtime. In this work,
we consider an alternative approach, based on the empirical
attainment function (EAF) and we show that the target-based
ECDF is an approximation of the EAF. We argue that the EAF
has several advantages over the target-based ECDF. In particular,
it does not require defining a priori quality targets per function,
captures performance differences more precisely, and enables the
use of additional summary statistics that enrich the analysis. We
also show that the average area over the convergence curves
is a simpler-to-calculate, but equivalent, measure of anytime
performance. To facilitate the accessibility of the EAF, we
integrate a module to compute it into the IOHanalyzer platform.
Finally, we illustrate the use of the EAF via synthetic examples
and via the data available for the BBOB suite.

Index Terms—Performance assessment, evolutionary computa-
tion, empirical attainment function, empirical cumulative distri-
bution function

I. INTRODUCTION

IN the context of benchmarking sampling-based single-
objective optimization algorithms, one of the most common

ways to illustrate the performance on a single problem instance
is to plot the objective value of a best-so-far solution as a
function of the number of solutions that have been evaluated.
There are different options for the aggregation of such conver-
gence curves over different problem instances. In evolutionary
computation, one of the most popular ways to aggregate per-
formance data over several problems is based on the so-called
empirical cumulative distribution function (ECDF) of the
number of targets attained at a given runtime. This alternative
was notably promoted by the COCO platform [1]. To define
an ECDF curve, one fixes a set of target values and counts,
as a function of the solutions evaluated, how many of these
targets have been achieved by the algorithm. These numbers
are then normalized across all runs of the algorithm on each
problem instance and then across all problem instances. The
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area under the target-based ECDF curve (AUC) can be seen as
a measure of the anytime performance of the algorithm [2].1

This target-based ECDF generalizes the concept of time-
to-target [3] or runtime distribution of a Las Vegas algorithm
for a decision problem [4] to multiple targets.

One may argue that the choice of the target values for
the definition of the target-based ECDF is somewhat ar-
bitrary. We therefore consider in this paper an alternative
that directly works with the probabilities that an algorithm
achieves a certain quality within a given budget of function
evaluations. We approximate this probability by the observed
performance data, in the form of an empirical attainment
function (EAF) [5]. The EAF was originally proposed for
the analysis and visualization of multi-objective stochastic
optimizers [6, 7]. In this multi-objective optimization context,
the EAF estimates the probability that a single run of an
algorithm attains a certain vector of objective values within
a fixed runtime.

Our contribution: In this paper we investigate the use of
EAFs for the analysis of single-objective optimizers, previ-
ously considered in [8, Sec. 3.2.4], [9, Chap. 3], [10]. We first
observe that the target-based ECDF is the average value of the
EAF at the pre-defined targets. We also show that the target-
based ECDF with an increasing number of well-spread targets
converges in the limit to an EAF-based ECDF computed as the
area under the EAF across the quality dimension divided by a
scaling constant. As a result, we claim that the EAF captures
more information than the target-based ECDF and therefore
conclude that the EAF-based ECDF has all the benefits of
the target-based approach [2] without the disadvantage of
requiring an a priori set of targets.

We also show that the AUC of the EAF-based ECDF
is equivalent to the AUC of the EAF. In fact, they both
measure the expected area over the convergence curve (when
minimizing quality) of a single run. Thus, any of these AUC
values can be seen as a measure of anytime performance
without requiring pre-defined targets.

The main drawback of the EAF is its higher computa-
tion and storage costs compared to the target-based ECDF.
However, there are efficient algorithms for computing the
EAF in this context and even more efficient approximations
are possible. Therefore, we argue that employing the EAF
in benchmarking single-objective black-box optimizers brings

1The COCO platform [1] minimizes area over the ECDF curve, which
is equivalent to the maximum runtime minus the AUC, because the former
approximates the geometric average runtime.
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significant benefits with only a moderate overhead over the
target-based ECDF.

To facilitate the use of EAFs for the analysis of single-
objective black-box optimization algorithms, we provide with
this work an integration of the eaf package [7] into the
IOHanalyzer platform [11]. We illustrate the use of this
module by analyzing performance data from the well-known
Black-Box Optimization Benchmark (BBOB) collection [12].
In particular, we investigate the differences between the target-
based ECDF and the EAF-based ECDF in dependence of
the number of targets, and analyze how the relative ranking
between algorithms may change when replacing the ECDF
with the EAF as the ranking criterion.

Outline of the paper: The relationship between the target-
based ECDF and the EAF as well as the equivalence of various
AUC metrics is discussed in Section II. In Section III, we argue
that the EAF and the EAF-based ECDF can be efficiently
computed in this single-objective context and we discuss
their integration into IOHanalyzer. In Section IV, we present
the results from the analysis of the BBOB data. Section V
discusses additional statistical measures derived from the EAF
and its application to the analysis single-objective optimizers.
We conclude in Section VI with a summary of our arguments
and perspectives for the future.

II. RELATIONSHIP BETWEEN THE ECDF AND THE EAF
We recall the key definitions of the target-based ECDF

in Section II-A and those of the EAF in Section II-B. In
Section II-C we discuss the relationship between the two
notions, and in Section II-D we treat the area under the target-
based ECDF and that of the EAF-based ECDF.

A. Target-based Empirical Cumulative Distribution Function

In the following, we consider the minimization of objective
functions f : RD → R, D ∈ N+, by means of an optimization
algorithm A. Each run of algorithm A on a problem instance f
returns a trajectory {(x(j), f(x(j))) | j = 1, . . . , tmax}, with
x(j) denoting the j-th point evaluated by A, ties broken
arbitrarily in case of parallel evaluations, and tmax denoting
the maximal number of function evaluations (the “budget”).
The algorithm A may be stochastic, such that different runs
on the same problem instance may return different trajectories.

We focus in this work on the quality of the best-so-far solu-
tion. To this end, we denote by V (A, f, t, i) := min{f(x(j)) |
1 ≤ j ≤ t}, the function value of the best among the first t
evaluated solution candidates in run i.

Assuming that we have run algorithm A on f for r
independent runs, the target-based ECDF for a finite set
Z ⊆ [zmin, zmax] ⊂ R of target values at a given budget t
is defined as the fraction of (run, target) pairs (i, z) for which
the algorithm has found, within time t, a solution at least as
good as z in the i-th run [2, 13]. Formally,

F̂Z(t) =
1

r

r∑
i=1

1

|Z|
∑
z∈Z

1 (V (A, f, t, i) ≤ z) , (1)

where 1(C) denotes the indicator function that is 1 when the
condition C is satisfied and 0 otherwise.

Other definitions of ECDF may be found in the literature.
For example, the target-based ECDF defined above is not the
same as the classical multivariate ECDF [14].

B. Empirical Attainment Function

In the context of benchmarking the anytime performance of
single-objective optimizers, given a pair (t, z) of budget and
function value, respectively, we say that run i of algorithm
A attains (t, z) if and only if algorithm A solving problem
f obtains an objective function value not worse than z not
later than t, that is, if and only if V (A, f, t, i) ≤ z. We can
formulate the EAF in this context as the fraction of r runs of
algorithm A on function f that attain an objective value z at
budget t:

α̂(t, z) =
1

r

r∑
i=1

1 (V (A, f, t, i) ≤ z) . (2)

The above matches the original formulation of the EAF [5],
if we consider that each run i produces a set Si ⊂ R2 of points
(t, V (A, f, t, i)), i.e., Si = {(t, V (A, f, t, i)) | 1 ≤ t ≤ tmax}.
In this original formulation, a set Si ⊂ Rd attains the point
y = (y1, . . . , yd) ∈ Rd iff there exists at least one point
s = (s1, . . . , sd) ∈ Si such that, for all 1 ≤ j ≤ d, it holds
that sj ≤ yj . In this case, the value of the EAF of a set of
sets {S1, . . . , Sn} at a given point y ∈ Rd is defined as the
fraction of sets Si, i = 1, . . . , n, that attain that point y. See
Figure 1 for an illustrative example of the EAF for three sets,
corresponding to three runs of an algorithm.

C. Comparison of the target-based ECDF and the EAF

If we have a finite number of targets |Z| ∈ N+, the target-
based ECDF value for a given budget t (1) equals the average
EAF value in these targets for time t, as the following simple
swap of summands shows.

1

|Z|
∑
z∈Z

α̂(t, z)

=
1

|Z|
∑
z∈Z

(
1

r

r∑
i=1

1 (V (A, f, t, i) ≤ z)

)

=
1

r

r∑
i=1

1

|Z|
∑
z∈Z

1 (V (A, f, t, i) ≤ z) = F̂Z(t) .

(3)

With the above equality at hand, it is easy to show that the
target-based ECDF of a given t, evaluated for increasingly
finer, well-spread partitions of [zmin, zmax] converges to the
following partial integral

Fα̂(t) :=
1

zmax − zmin

∫ zmax

zmin

α̂(t, z) dz (4)

of the EAF over the quality dimension z in this interval,
evaluated for the same budget t. That is, the target-based
ECDF with infinite number of well-spread targets is the area
under the EAF at a fixed value of t divided by a scaling
constant. Thus, the integral Fα̂(t) defines an EAF-based ECDF
that serves the same purpose as the target-based ECDF and
does not require predefined targets.
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Formally, let Z = {z1, . . . , z|Z|} ⊂ [zmin, zmax] with
zi < zi+1 for all 1 ≤ i ≤ |Z| − 1, and let δ(Z) :=
max {z1 − zmin, max1≤i≤|Z|−1{zi+1 − zi}, zmax − z|Z|

}
be

the largest “gap” between any two neighboring target values
in the set Z ∪ {zmin, zmax}. Then, one can show that

Fα̂(t) = lim
δ(Z)→0

F̂Z(t) (5)

in the same way as the Riemann sum of a function converges
to the integral of the function:

lim
δ(Z)→0

F̂Z(t)

=
1

r

r∑
i=1

1

zmax − zmin

∫ zmax

zmin

1 (V (A, f, t, i) ≤ z) dz

=
1

zmax − zmin

∫ zmax

zmin

1

r

r∑
i=1

1 (V (A, f, t, i) ≤ z) dz

=
1

zmax − zmin

∫ zmax

zmin

α̂(t, z) dz = Fα̂(t) .

(6)

Figure 2 shows the target-based ECDF and the EAF-based
ECDF corresponding to the example runs shown in Figure 1.
This example illustrates that the target-based ECDF with a
small number of targets may either over-estimate or under-
estimate the EAF-based ECDF, an observation that will be
further discussed in Section IV-A.

D. Area under the EAF as a measure of anytime performance

The area under the curve (AUC) of the target-based ECDF
has been used in the literature as a measure of the anytime
performance of single-objective optimizers [2, 15]. As shown
above, the target-based ECDF is an approximation to the EAF-
based ECDF (4). Thus, the AUC of the EAF-based ECDF
would be a more precise measure of anytime performance.
The example in Fig. 2 already shows that the AUC values of
the two curves are not equivalent.

The AUC of the EAF-based ECDF is given by:

AUC (Fα̂(t)) =
1

zmax − zmin

∫ tmax

1

dt

∫ zmax

zmin

α̂(t, z) dz . (7)

By definition, the double integral in the AUC of the EAF-
based ECDF (7) is equivalent to the area under the EAF given
by the following Lebesgue integral:

AUC (α̂(t, z)) =

∫ (tmax,zmax)

(1,−∞)

α̂(t, z) dtdz , (8)

which is equivalent to computing the well-known hypervol-
ume metric in multi-objective optimization [16] of the three-
dimensional points {(t, z, 1 − α̂(t, z)) | t ∈ [1, tmax], z ∈
[−∞, zmax]} with reference point (tmax, zmax, 1). This compu-
tation only requires Θ(n log n) [17], where n is the number
of points.

The only differences between (7) and (8) are the normal-
ization constant 1/(zmax − zmin) and the presence of finite
zmin in the integral. If we wish to define zmin in (8), e.g.,
for normalization purposes, we only have to clip V (A, f, t, i)
so that its minimum is never lower than zmin. Evidently, if

Figure 1. Visualization of the EAF corresponding to three runs (red circles,
orange diamonds, and blue squares) of an hypothetical single-objective
optimizer. For each run, we record as a point, the runtime t (x-axis) at which
a new best-so-far objective function value z (y-axis) was found (assuming
minimization). The value of the EAF α̂ at point (t, z) is given by the shade
of gray specified in the legend. We mark 5 quality targets in the y-axis
{z1, z2, . . . , z5} for computing the target-based ECDF in Figure 2.

Figure 2. Target-based ECDF (solid red line) and EAF-based ECDF (blue
dashed line) corresponding to the runs shown in Figure 1. The target-based
ECDF uses the quality targets {z1, z2, . . . , z5} defined in Figure 1. For the
EAF-based ECDF, we only need zmin = z1 and zmax = z5.

V (A, f, t, i) is never lower than zmin—e.g., because zmin is
the optimal value of f or better—then zmin has no effect in
the AUC values, except for the normalization constant. With
this in mind, the presence of a finite zmin is not necessary for
calculating the AUC of the EAF (8), thus we use −∞ for
generality.

Another measure of anytime performance proposed in the
literature [18] is the area over the convergence curve (AOCC),
Si = {(t, V (A, f, t, i)) | 1 ≤ t ≤ tmax}, which can be
calculated by summing up the areas of the rectangles formed
by the points (t, V (A, f, t, i)) and (t+ 1, zmax) as follows:

AOCC(Si) =

tmax−1∑
t=1

max{0, zmax − V (A, f, t, i)} . (9)

We can see that Eq. (8) is equivalent to the mean AOCC
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value of the multiple runs if we expand the former as follows:∫ tmax

1

dt

∫ zmax

−∞
α̂(t, z) dz

=

∫ tmax

1

dt

∫ zmax

−∞

1

r

r∑
i=1

1 (V (A, f, t, i) ≤ z) dz

=
1

r

r∑
i=1

∫ tmax

1

dt

∫ zmax

−∞
1 (V (A, f, t, i) ≤ z) dz .

(10)

For a fixed V (A, f, t, i), the indicator function
1 (V (A, f, t, i) ≤ z) is 1 from z = V (A, f, t, i) up to ∞, and
0 otherwise. Thus, its integral over z bounded by (−∞, zmax]
is zmax − V (A, f, t, i) when zmax ≥ V (A, f, t, i) and zero
otherwise. Therefore,

1

r

r∑
i=1

∫ tmax

1

dt

∫ zmax

−∞
1 (V (A, f, t, i) ≤ z) dz

=
1

r

r∑
i=1

tmax−1∑
t=1

max{0, zmax − V (A, f, t, i)}

=
1

r

r∑
i=1

AOCC(Si) .

(11)

In other words, not only the AUC of the EAF-based
ECDF is equivalent to the AUC of the EAF (multiplied by
a normalization constant), but also both are equivalent to the
mean AOCC of the runs used to compute the EAF. A more
general proof of the relationship between the expected value of
a generalized hypervolume indicator (i.e., where the AOCC is
multiplied by a weight function) and the first-order attainment
function (i.e., the EAF when the number of runs goes to
infinity) is provided by [19]. The simpler proof in Eq. (10)–
(11) does not consider the weighted variant of the hypervolume
indicator, but it applies to a finite number of empirical samples.

There are situations in which we are only interested in
the AUC value, for example, for benchmarking purposes or
when using the AUC as the metric that guides the tuning
of parameters. In those situations, instead of storing the data
for all runs to compute the target-based ECDF or the EAF
and their AUC value, it is much more convenient to compute
the AOCC of each run as soon as it finishes and only store
the AOCC values. Moreover, recomputing the mean AOCC
after performing additional runs is trivial, whereas updating
the EAF or the ECDF is less so. The use of the mean AOCC
to guide the tuning of parameters was already demonstrated
in the literature [18], but the connection with the AUC of the
target-based ECDF was not known at the time.

III. COMPUTATION OF THE EAF

A. Efficiency of computation

In the formulation of the EAF discussed here for
benchmarking single-objective black-box optimization algo-
rithms (2), points are pairs (t, z) of runtime and objective
function value. The EAF of an algorithm at this point is the
probability that the algorithm has found, within the first t
function evaluations, a solution that is at least as good as z.
In this two-dimensional context, the computation of the EAF

requires Θ(n log n+rn) time/steps [20], where r is the number
of runs and n ≤ rtmax is the total number of points, i.e.,
objective value improvements recorded across all runs.

The number of points required to fully represent the EAF is
Θ(rn) [20]. Reducing n by merging points representing very
quick or very small improvements in succession is an easy
way to speed-up the computation of the EAF and reduce its
size. Therefore, we argue that computing or storing the EAF
is feasible for a reasonable number of runs and points.

The computation of the EAF-based ECDF (4) may seem
more complicated than the target-based ECDF (1). However,
given that α̂(t, z) for a fixed t is a step function monotonically
increasing with respect to z, the integral Fα̂(t) can be seen
as the Lebesgue integral over z for each t, which is easy to
calculate as a sum of rectangles. Moreover, we need zmin to
show the exact equivalence between the target-based and EAF-
based ECDFs, however, the computation of the EAF does not
require defining zmin.

B. Integration into IOHanalyzer

For practical usage of the EAF with various types of
benchmarking data, we have integrated several ways of using
EAF-based analysis into IOHanalyzer [11], which is a part of
the IOHprofiler benchmarking platform. For this purpose, the
computations of the EAF are calculated by version 2.4.1 of the
eaf R package [7].2 Through this integration, several ways
of computing, visualizing and comparing EAF-based statistics,
are available directly in the web-interface of IOHanalyzer
(and the corresponding R package). Benchmarking data from
platforms such as COCO [1], Nevergrad [21], and IOHexper-
imenter [22] can also be analyzed using these methods.

To speed up computations when creating visualizations, we
make use of a subsampling approach when calculating the
EAF, ECDF, and AUC values. This subsampling is done on the
runtime-axis, where we select a set of 50 log-spaced runtimes
at which we calculate the fraction of targets hit for the target-
based ECDF or at which we take the function values to pass to
the EAF calculation. Given this subsampling, the computation
of the EAF and the EAF-based ECDF took just 432 seconds
in a single CPU for all datasets considered in the next section
(1295 datasets in total), which is a reasonable time for the
analysis of an experiment of this scale.

IV. USE IN PRACTICE

We illustrate the use of the EAF for benchmarking single-
objective black-box optimizers by analyzing data from two
commonly used optimization algorithms: BFGS [23–26] (from
the scipy package [27]) and CMA-ES [28] (from the pyCMA
package [29]). Both these algorithms are run on the 24
functions from the BBOB suite. All functions allow specifying
the dimension of the decision space D. Each algorithm is run
15 times on each function with different random seeds, each
time using a different instance (i.e., rotation and translation) of
the function. Each individual run is stopped after tmax = 104·D
function evaluations.

2https://mlopez-ibanez.github.io/eaf/
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Figure 3. EAF of BFGS over the 24 10-dimensional BBOB functions. The
color of a point gives the fraction of runs that reach a given value of f(x)
not later than a given number of function evaluations. The black lines delimit
the regions with a value (from bottom to top) ≤ 0.25, ≤ 0.5 and ≤ 0.75.
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Figure 4. EAF of CMA-ES over the 24 10-dimensional BBOB functions.
See the caption of Figure 3 for more details.

For computing the EAF-based ECDF (4) and its AUC on the
BBOB functions, we follow the convention set by COCO [1]
and define zmin = 10−8 and zmax = 102. To match the logarith-
mic scale of the targets used by COCO, we use a logarithmic
scaling of the interval [zmin, zmax] (effectively taking the log-
precision as our function values throughout any EAF-based
ECDF calculations). Figures 3 and 4 show the resulting EAF of
the BFGS and CMA-ES algorithms, respectively, aggregated
over all 24 BBOB functions in dimension 10. Darker colors
indicate a higher probability of attaining a certain objective
function value within the number of function evaluations given
by the x-axis. From these figures, we see a clear trend in the
optimization behavior, where BFGS converges faster at the
beginning of the search (darker colors on the lower left of the
colored region), but quickly stagnates (small contrasts going
from left to right). We highlight specific levels of the EAFs
(0.25, 0.5, 0.75) as black lines, which suggest that the results
of CMA-ES are more robust because the 0.5 and 0.75 lines of
CMA-ES almost completely dominate the corresponding ones
of BFGS.

In addition to the individual EAF plots, we can also perform
a comparative analysis by plotting the differences between two
EAFs. This is illustrated in Figure 5, where the differences
between CMA-ES and BFGS on a single BBOB function are

1 10 100 1e+3 1e+4 1e+5
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Figure 5. Differences in the EAFs of CMA-ES and BFGS on BBOB function
14, in 10 dimensions. Blue colors indicate regions where the algorithm in the
plot title outperforms the other algorithm.

shown. In this example, BFGS outperforms CMA-ES between
50 and 1e+3.5 (approx. 3162) evaluations, whereas CMA-ES
wins after that, managing to converge to f(x) = 10−8 more
reliably. This analysis can additionally be extended to highlight
the difference between an algorithm and a portfolio, by taking
the upper envelope of the portfolio’s EAF. This portfolio-based
comparison is illustrated in Figure 6, where a set of four
algorithms are compared on benchmark function F11. The
selected portfolio consists of CMA-ES, BFGS, Differential
Evolution [30] (DE) and Cobyla [31], and their performance
data is taken from the COCO data repository. From this figure,
we see that in three stages of the search, Cobyla, BFGS,
and CMA-ES, respectively, outperform every other considered
algorithm, whereas there is no pair (t, z) with t > 10 in which
the EAF of DE dominates the maximum of the EAF values
of the other three algorithms.

A. Sensitivity of the ECDF wrt Target Values

In this subsection, we study the sensitivity of the target-
based ECDF to the number of pre-defined target values. That
is, we empirically evaluate the convergence speed of the
limit in (4). Following COCO, we use a logarithmic scale
by selecting equally spaced targets that are powers of 10
between 10−8 and 102. In addition to the default of COCO
with 51 targets, we also consider 5, 10, and 25 targets. For
each of these values and each algorithm under comparison,
we compute the target-based ECDF (1) and its difference in
value to the EAF-based ECDF (4). To increase the amount of
algorithms being compared, we now make use of the data from
the BBOB repository that matches the setup from the previous
section: 1 run on each of 15 different instances. For the 10-
dimensional functions, this leads to a set of 211 algorithms.3

In Figure 7, we illustrate the impact of changing the number
of targets for the BFGS and CMA-ES. As can be seen from
this figure, the ECDF based on a limited number of targets
consistently overestimates the EAF-based ECDF.

3For readers familiar with the COCO platform, we note that we do not apply
the bootstrapping approach suggested in [1] to simulate restarts. Instead, we
compute the EAF from the available trajectories.
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Figure 8 shows the mean and standard deviation of these dif-
ferences over all 211 algorithms and for the different numbers
of targets. As expected, the differences decrease rapidly with
increasing number of targets. For the data in this experiment
and with 51 targets, differences are larger for higher runtime.
In addition, we clearly see that the overestimation of the target-
based ECDF was not an artifact of the selected algorithms
in Figure 7, but a consistent phenomenon. The differences
between the target-based and EAF-based ECDF values are
a combination of two distinct effects. The first and more
important effect is inherent in the approximation induced by
the choice of targets: any objective value attained between
two successive targets will result in the same value of the
target-based ECDF, whereas any objective value improvement
increases the value of the EAF-based ECDF. For a single run,
the size of the differences caused by this effect is at most

1/|Z|, where |Z| is the number of targets.
A secondary effect is due to the difference between zmax and

the first target. If zmax equals the first target, then the ECDF
value when attaining zmax differs between the two approaches.
For simplicity, let us consider a single run that exactly attains
zmax at some t. In the target-based ECDF, this run has a value
of 1/|Z|, while this same run has value 0 in the EAF-based
ECDF, at time t. This initial difference causes the target-based
ECDF to consistently overestimate the EAF-based ECDF, as
seen in Figure 8. We could remove this initial difference
by increasing zmax relative to the first target by a factor of
(zmax − zmin)/(|Z| − 1) before computing the EAF. However,
this adjustment would actually cause under-estimation due to
the first effect mentioned above. Moreover, a run that attains
an objective value strictly between the adjusted zmax and the
first target will result in a positive value of the EAF-based
ECDF, but a value of 0 of the target-based ECDF, thus also
leading to under-estimation. In other words, if zmax is larger
than the first target, then the target-based ECDF may initially
under-estimate the EAF-based ECDF. In summary, due to the
unavoidable first effect, adjusting zmax to remove the secondary
effect does not eliminate the differences, it just shifts them
from consistent over-estimation to primarily under-estimation.
In addition, applying this adjustment would require computing
an EAF-based ECDF for each set of targets, which greatly
complicates the comparison between target-based and EAF-
based ECDFs. Thus, we have decided to define zmax as the
first target in all our experiments.

In Figure 9, we can see that the differences observed
earlier also translate into differences in AUC. We can again
observe that the differences between the AUCs of the target-
based ECDF and EAF-based ECDF decrease quickly with the
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Figure 9. Distribution of differences between the AUC of the EAF-based
ECDF and the AUC of the target-based ECDF, for different number of targets.
Each data point is the mean AUC difference for a single algorithm averaged
over 15 runs on the 24 BBOB problems of the dimension given in the x-
axis and the box plots summarize the data distribution of all 211 processed
algorithms from the COCO repository

number of targets. At the same time, the effect of the number
of targets is stronger for problems in higher dimensions.
We can also observe that going from 25 to 51 targets does
not help much in reducing the differences below 1%. The
relatively large variances of the boxplots indicate that the low
variance observed in Figure 8 does not translate into consistent
differences across algorithms. In other words, the estimation
error of the target-based ECDF is larger for some algorithms.

B. Changes in ranking when using ECDF vs EAF

Finally, we may question whether these small differences
matter at all when ranking algorithms according to the AUC
values. To answer this question, we rank all 211 algorithms
according to different AUC values, i.e., of the EAF-based
ECDF as well as the target-based ECDFs with 5, 10, 25 and
51 targets. We highlight the rank-differences between the 51
target and EAF setting in Figure 10. We additionally calculate
the rank differences between two rankings by summing the ab-
solute difference between ranks and dividing by two, because
each rank change contributes twice when taking the absolute
value. In the case of the 2-dimensional BBOB problems, the

rank differences between the target-based ECDFs and the
EAF-based ECDFs are: 298 (5 targets), 174 (10), 118 (25) and
101 (51). In the case of the 10-dimensional BBOB problems,
the rank differences between the target-based ECDFs and the
EAF-based ECDFs are: 163 (5 targets), 81 (10), 49 (25), and
65 (51). These numbers show that, although the differences in
ranks quickly go down with increasing number of targets, a
high number of rank differences remain even with 51 targets.
Moreover, the last result shows that increasing the number of
targets does not always guarantee a more precise AUC value,
since the precision depends on the particular targets not only
on their number.

V. EAF-BASED STATISTICS

Several summary statistics can be computed starting from
the EAF. In particular, the level sets of the EAF are quantile-
like functions that can be represented as convergence curves.
For example, the boundary region in the time versus objective
value space where the EAF has a value less than or equal
to 0.5 is a synthetic convergence curve that represents the
median convergence curve (50% percentile), such that any
combination of time and objective function value on or above
this curve will be attained in 50% of the runs of an algorithm,
but not necessarily all of them simultaneously in any single
run. Similarly, the 100% percentile is the boundary that is
attained by all runs of an algorithm and represents the worst-
case performance, whereas the lowest available percentile
represents the best-case performance. Examples of such per-
centiles are shown in Figures 3 and 4.

Similarly, considering the level sets of the EAF as quantile-
like functions, Binois et al. [32] suggest the Vorob’ev expec-
tation as a useful definition of the expected value of a random
set [33, chap. 2]. In a nutshell, the Vorob’ev expectation is
the quantile of the EAF with the closest AOCC value to the
expected value of the AOCC of a single run of the algorithm.
In other words, the Vorob’ev expectation is the synthetic
convergence curve that corresponds to a particular quantile of
the EAF whose AOCC value matches the mean AOCC of the
actual runs of an algorithm. From a benchmarking perspective,
the Vorob’ev expectation is the “mean” convergence curve
and it can be used to summarize a large number of runs for
visualization and comparison purposes. In addition, dispersion
statistics may be computed as the probability of a single run
deviating from this mean convergence curve [32].

In addition to the above, the second-order EAF [34] mea-
sures the probability of attaining an objective function value
z not later than t if the algorithm has already obtained an
objective value z′ not later than t′. From a benchmarking per-
spective, such information is useful to diagnose convergence
issues, particularly, for algorithms that switch behavior after a
number of steps or evaluations.

Statistical measures and visualization techniques [35] that
can be applied to the target-based ECDF are also applicable
to the EAF-based ECDF. Some techniques may be directly
applicable to the EAF. For example, it is possible to compute
bootstrapped confidence bands [35] around the EAF that
estimate the uncertainty. However, applying other techniques
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ECDF with 51 targets. Lines crossing denote discrepancies in ranking. The sum of absolute rank differences (divided by two because each rank change
contributes twice when taking the absolute value) is 65.

directly to the EAF may require additional research effort
to handle the challenge of samples being sets of (runtime,
quality) points rather than scalar numerical values.

VI. CONCLUSIONS

In this paper, we have argued that the EAF, and statistics
derived from it, have significant benefits for the analysis and
benchmarking of single-objective optimizers. In particular, we
have shown how the widely-used target-based ECDF is just
an approximation to the EAF-based ECDF and that the former
eventually converges to the latter with increasing number of
well-spread target values. We obtain a similar conclusion when
considering the AUC of the target-based ECDF, which has
been proposed as a measure of anytime performance. In this
case, not only we argue that the AUC of the target-based
ECDF is just an approximation of the AUC of the EAF-
based ECDF, which is actually equal to the AUC of the EAF
itself; but also we show that the latter is equivalent to the
mean area over (or under in the case of maximization) the
convergence curves (AOCC) of the individual runs. Therefore,
we conclude that recording the mean AOCC value is sufficient
for measuring anytime performance in situations where we
are only interested in the AUC values, e.g., for benchmarking
purposes or when guiding the tuning of parameters [18].

In addition to the theoretical benefits of replacing the
target-based ECDF with the EAF, we also demonstrate its
practical use by means of integrating the eaf package into
the IOHanalyzer platform. In particular, we argue that the
visualization of EAF differences provides clear information
about differences in anytime performance between optimizers.
We also show that the theoretical differences between the
target-based ECDF and the EAF-based ECDF are measurable
in real benchmarking data. Moreover, although the differences
in value are small for the choice of targets recommended
by the COCO platform, they still produce rank differences
when comparing optimizers. Finally, the application of the
EAF for analyzing single-objective optimizers opens the door
to various EAF-based statistics that have not been explored in
the benchmarking literature.

We have focused here on single-objective black-box algo-
rithms for continuous optimization problems because that is
the context where the target-based ECDF has gained popular-
ity. However, our conclusions apply to benchmarking anytime

algorithms in general, including gradient-based optimizers and
optimizers for combinatorial optimization problems. Our con-
clusions also naturally extend to benchmarking multi-objective
algorithms according to their anytime performance [36, 37],
where quality targets are given as vectors of objective values.
However, the visualization [38] of the EAF in three dimensions
(i.e., 2 objectives plus runtime) and its computation in more
than three dimensions [20] are still challenging.
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