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Genome-wide association analyses identify 
95 risk loci and provide insights into the 
neurobiology of post-traumatic stress 
disorder

Post-traumatic stress disorder (PTSD) genetics are characterized by lower 
discoverability than most other psychiatric disorders. The contribution 
to biological understanding from previous genetic studies has thus been 
limited. We performed a multi-ancestry meta-analysis of genome-wide 
association studies across 1,222,882 individuals of European ancestry 
(137,136 cases) and 58,051 admixed individuals with African and Native 
American ancestry (13,624 cases). We identified 95 genome-wide 
significant loci (80 new). Convergent multi-omic approaches identified 
43 potential causal genes, broadly classified as neurotransmitter and ion 
channel synaptic modulators (for example, GRIA1, GRM8 and CACNA1E), 
developmental, axon guidance and transcription factors (for example, 
FOXP2, EFNA5 and DCC), synaptic structure and function genes (for 
example, PCLO, NCAM1 and PDE4B) and endocrine or immune regulators 
(for example, ESR1, TRAF3 and TANK). Additional top genes influence stress, 
immune, fear and threat-related processes, previously hypothesized to 
underlie PTSD neurobiology. These findings strengthen our understanding 
of neurobiological systems relevant to PTSD pathophysiology, while also 
opening new areas for investigation.

Post-traumatic stress disorder (PTSD) is characterized by intrusive 
thoughts, hyperarousal, avoidance and negative alterations in cogni-
tion and mood that can become persistent for some individuals after 
traumatic event exposure. Approximately 5.6% of trauma-exposed 
adults worldwide have PTSD during their lifetimes, and rates are higher 
in those with high levels and certain types of trauma exposure such 
as combat survivors and assault victims1. PTSD is a chronic condition 
for many, posing a substantial quality-of-life and economic burden to 
individuals and society2.

Substantial advances are being made in the understanding of PTSD 
biology through preclinical studies3, many of which are focused on fear 
systems in the brain, and some of which are being translated to human 

studies of PTSD4. Human neuroimaging studies highlight probable 
dysfunction in brain fear circuitry that includes deficits in top–down 
modulation of the amygdala by regulatory regions such as the ante-
rior cingulate and ventromedial prefrontal cortex5,6. Neuroendocrine 
studies have identified abnormalities in the hypothalamic–pituitary–
adrenal axis and glucocorticoid-induced gene expression in the devel-
opment and maintenance of PTSD7,8. However, many questions remain 
about the pathophysiology of PTSD, and new targets are needed for 
prevention and treatment.

While twin and genetic studies demonstrated that the risk of 
developing PTSD conditional on trauma exposure is partly driven 
by genetic factors9,10, the specific characterization of the genetic 
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of the X chromosome. We follow up on GWAS findings to examine 
global and local heritability, infer the involvement of brain regions 
and neuronal systems using transcriptomic data, describe shared 
genetic effects with comorbid conditions and use multi-omic data to 
prioritize a set of 43 putatively causal genes (Fig. 1). Finally, we use this 
information to identify potential candidate pathways for future PTSD 
treatment studies. Together, these findings mark significant progress 
toward discovering the pathophysiology of trauma- and stress-related 
disorders and inform future intervention approaches for PTSD and 
related conditions.

Results
Data collection and GWAS
The PGC-PTSD21 Freeze 3 data collection includes 1,307,247 individu-
als from 88 studies (Supplementary Table 1). Data in this freeze were 
assembled from the following three primary sources (Fig. 1a): PTSD 
studies based on clinician-administered or self-reported instruments 
(Freeze 2.5 (refs. 11,12) plus subsequently collected studies), MVP 
release 3 GWAS using the Post-traumatic Stress Disorder Checklist 
(PCL for DSM-IV)13 and ten biobank studies with electronic health 
record (EHR)-derived PTSD status. We included 95 GWAS, including 
EA (n = 1,222,882; effective sample size (neff) = 641,533), AA (n = 51,034; 
neff = 42,804) and LAT (n = 7,017; neff = 6,530) participants (Supplemen-
tary Table 2).

EA PTSD GWAS
Population, screening and case ascertainment differences between 
datasets led to the assumption that there would be substantial 
cross-dataset variation in PTSD genetic signal. We investigated this pos-
sibility using the software MiXeR22,23. Overall, we found no evidence for 
subset-specific genetic causal variation (see Supplementary Note, Sup-
plementary Tables 3 and 4 and Extended Data Fig. 1 for further details). 
Given the similarities of the PTSD subsets, we performed a sample-size 
weighted fixed-effects meta-analysis of GWAS. For the EA meta-analysis 

architecture of PTSD is just emerging as very large meta-analyses of 
genome-wide association studies (GWAS) become available. Recent 
research by our workgroup—the Psychiatric Genomic Consortium 
for PTSD (PGC-PTSD)11,12 and the VA Million Veteran Program (MVP)13—
contributed to an increased appreciation for the genetic complexity 
of PTSD as a highly polygenic disorder. Despite sample sizes of over 
200,000 individuals, these studies identified at most 16 PTSD risk loci, 
which were not consistent across datasets, indicating the necessity of 
still larger sample sizes. In addition, these studies did not examine the 
X chromosome, which comprises 5% of the human genome, and may 
be particularly important given sex differences in PTSD prevalence.

Furthermore, GWAS to date have had limited power to identify 
credible treatment candidates. PTSD is also known frequently to be 
comorbid and genetically correlated with other mental (for example, 
major depressive disorder (MDD) and attention deficit hyperactiv-
ity disorder)14 and physical health conditions (for example, cardio-
vascular disease and obesity)15–17, but studies to date are limited in 
their ability to parse shared and disorder-specific loci and link them 
to underlying biological systems. Importantly, previous GWAS are 
severely limited in generalizing their findings to non-European ances-
tries. Recent work on polygenic risk scores (PRS) in PTSD shows the 
potential utility of these measures in research16–18, but also, vexingly, 
limited cross-population transferability. Without expansion to other 
ancestries, there is a risk that recent advances in PTSD genetics will 
result in the widening of research and treatment disparities. This ineq-
uity is particularly troubling in the US given the disproportionately 
high burden of trauma and PTSD faced by populations of African, 
Native and Latin American origin19,20.

In the present analysis, we synthesize data from 88 studies to 
perform a multi-ancestry meta-analysis of GWAS data from European 
ancestry (EA; n = 137,136 cases and n = 1,085,746 controls), African 
ancestry (AA; n = 11,560 cases and n = 39,474 controls) and Native 
American ancestry (including individuals from Latin America (LAT); 
n = 2,064 cases and n = 4,953 controls) samples, including analyses 

Fine-mapping
Polyfun + SUSIE

Gene-based analysis

TWAS
GTEx 13 brain tissues 
Pituitary

pQTL SMR
1,209 blood proteins

eQTL SMR
GTEx 13 
brain tissues 

FUMA gene mapping
Position
Brain eQTL
Chromatin interactions

Functional annotation
pLI
CADD 
RDB

Genetic characterization

a b

Genetic architecture
Heritability, polygenicity, 
discoverability
Sex di�erences
Partitioned heritability

Psychiatric disorders
Genetic correlations
Polygenic overlap
Local correlations

With phenotypes
Genetic correlations
Causal inference

PRS

Gene prioritization

Gene sets
MsigDB (n = 15,483 sets)

Drug targeting

Gene tissues
53 GTEx tissue types
3 brain cell sources

PGC 2.5 (77 studies)
Clinician administered or self-

reported instruments
(90% quantitative)

MVP
PCL DSM-IV

(100% quantitative)

EHR (10 studies)
ICD-9/ICD-10 codes
(100% case/control)

EA
AA
LAT

11,560 cases
39,474 controls

Data sources

137,136 cases
1,085,746 controls

Applications

2,064 cases
4,953 controls

Ancestry-stratified meta-analysis

Multi-
ancestry

meta-analysis

eQTL SMR
dlPFC
cell types

150,793 cases
1,130,197 controls

Fig. 1 | Data sources and analyses in PTSD Freeze 3. a, Data sources of GWAS 
included in PGC-PTSD Freeze 3. Collections of contributing studies are pictured 
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(n = 137,136 cases and n = 1,085,746 controls), the genomic control 
(GC)-λ was 1.55, the linkage disequilibrium score regression (LDSC)24 
intercept was 1.0524 (s.e. = 0.0097; Supplementary Table 5) and the 
attenuation ratio was 0.0729 (s.e. = 0.0134), indicating that 92.7% of 
the observed inflation in test statistics was due to polygenic signal; 
thus, artifacts produced only minimal inflation.

The EA meta-analysis identified 81 independent genome-wide 
significant (GWS) loci, including 5 GWS loci on the X chromosome 
(Extended Data Fig. 2, Supplementary Figs. 1 and 2, Supplementary 
Table 6, regional association plots in Supplementary Data 1, forest 
plots in Supplementary Data 2 and Supplementary Note). Relative 
to recent previous PTSD GWAS, 67 loci are new11–13 (Supplementary 
Table 7). No region exhibited significant effect size heterogeneity 
(Supplementary Fig. 3).

We next sought to gain insights into whether loci harbor multiple 
independent variants. While FUMA25 annotations reported independ-
ent lead SNPs within risk loci based on pair-wise linkage disequilibrium 
(LD; Supplementary Table 8), COJO26 analysis of each locus condi-
tional on the leading variants suggested that only one locus carried a 
conditionally independent GWS SNP (rs3132388 on chromosome 6, 
P = 2.86 × 10−9). This locus, however, is in the major histocompatibility 
complex (MHC) region, whose complicated LD structure27 may not be 
accurately captured by reference panels.

AA and LAT PTSD GWAS meta-analyses
The AA meta-analysis included 51,034 predominantly admixed indi-
viduals (n = 11,560 cases and n = 39,474 controls). There was minimal 
inflation of test statistics, with GC-λ = 1.031. No GWS loci were identified 
(Supplementary Fig. 4). The LAT meta-analysis was performed in 7,017 
individuals (n = 2,064 cases and n = 4,953 controls). There was minimal 
inflation of test statistics (GC-λ = 0.993), and no GWS loci were identi-
fied (Supplementary Fig. 5).

Multi-ancestry GWAS meta-analysis
A multi-ancestry fixed-effects meta-analysis of EA, AA and LAT GWAS 
(n = 150,793 cases and n = 1,130,197 controls) identified 85 GWS loci. 
Compared to the EA meta-analysis, 10 loci lost GWS, while 14 previ-
ously suggestive loci (P < 5 × 10−7) became GWS (Fig. 2). In total, the 
present study identified 95 unique GWS PTSD loci between the EA 
and multi-ancestry meta-analyses (Table 1). Due to the complex local 

ancestry structure in AA and LAT individuals, which complicates LD 
modeling, we focused subsequent fine-mapping analyses (Fig. 1b) on 
data from the EA GWAS.

Gene mapping
To link GWS SNPs to relevant protein-coding genes, we applied the 
following three gene-mapping approaches implemented in FUMA: 
positional mapping, expression quantitative trait loci (eQTL) and chro-
matin interaction mapping (Supplementary Table 9). GWS SNPs within 
the 81 EA loci mapped to 415 protein-coding genes under at least one 
mapping strategy. A total of 230 (55%) genes were mapped by two or 
more strategies, and 85 (20%) genes were mapped by all three strategies 
(Supplementary Fig. 6). Notably, some genes were implicated across 
independent risk loci by chromatin interactions/eQTL mapping, includ-
ing EFNA5, GRIA1, FOXP2, MDFIC, WSB2, VSIG10, PEBP1 and C17orf58. 
Chromatin interaction plots are shown in Supplementary Data 3.

Functional annotation and fine-mapping of risk loci
Functional annotations were used to gain insights into the functional 
role of SNPs within the 81 risk loci (Supplementary Table 10)—72 loci 
contained at least one SNP with combined annotation-dependent 
depletion (CADD)28 scores suggestive of deleteriousness to gene func-
tion (≥12.37), 43 loci contained GWS SNPs with RegulomeDB (RDB)29 
scores likely to affect binding and 23 loci contained at least one SNP 
in the exon region of a gene.

To narrow the credible window of risk loci and identify poten-
tially causal SNPs, we fine-mapped loci using PolyFun+SUSIE30, which 
identified a credible set for 67 loci. Credible set window lengths were 
on average 62% of the original set lengths (Supplementary Table 11) 
and contained a median of 23 credible SNPs (range 1–252). Only one 
contained an SNP with posterior inclusion probability >0.95, a mis-
sense SNP in the exon of ANAPC4 (rs34811474, R(CGA)>Q(CAA); Sup-
plementary Table 12).

Gene-based, gene-set and gene-tissue analyses
As an alternative approach to SNP-based association analysis, we tested 
the joint association of markers within genes using a gene-based asso-
ciation analysis in MAGMA31, which is a two-stage method that first 
maps SNPs to genes and then tests whether a gene is significantly asso-
ciated with PTSD. The gene-based analysis identified 175 GWS genes 
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(Supplementary Table 13 and Supplementary Fig. 7). Of these, 52 were 
distinct from the genes implicated by the gene mapping of individual 
SNPs within GWS loci. These notably include DRD2, which has been 
thoroughly investigated in the context of psychiatric disorders and is 
a significant GWAS locus for multiple psychiatric disorders including 
schizophrenia (SCZ)32 (see Supplementary Note and Supplementary 
Table 14 for further investigation of conditionally independent SNPs 
within these 52 genes).

MAGMA gene-set analysis of 15,483 pathways and gene ontology 
(GO) terms from Molecular Signatures Database (MSigDB)33 identified 
12 significant GO terms. Significant terms were related to the develop-
ment and differentiation of neurons (for example, go_central_nervous_ 
system_development, P = 2.0 × 10−7), the synaptic membrane (for exam-
ple, go_postsynaptic_membrane, P = 6.9 × 10−7), gene regulation (for 
example, go_positive_regulation_of_gene_expression, P = 1.0 × 10−6) 
and nucleic acid binding (P = 1.52 × 10−6; Extended Data Fig. 3 and  
Supplementary Table 15).

MAGMA gene-tissue analysis of 54 tissue types showed PTSD gene 
enrichment in the brain (most notably in cerebellum, but also cortex, 
hypothalamus, hippocampus and amygdala) and in the pituitary, with 
enrichment found across all 13 examined brain regions (Extended Data 
Fig. 4). Cell-type analysis conducted in midbrain tissue data34 identified 
GABAergic neurons, GABA neuroblasts and mediolateral neuroblast 
type 5 cell types as having enriched associations above other brain cell 
types tested (P < 0.05/268; Extended Data Fig. 5). GABAergic neurons 
remained significant (P = 4.4 × 10−5) after stepwise conditional analysis 
of other significant cell types.

Multi-omic investigation of PTSD
To gain insights into which particular genes in enriched brain tis-
sues were contributing to PTSD, we conducted a combination of a 
transcriptome-wide association study (TWAS)35 and summary-based 
Mendelian randomization (SMR) analyses36 using GTEx brain tissue data 
based on the EA GWAS summary data. TWAS identified 25 genes within 
9 loci with Bonferroni-significantly different genetically regulated 
expression levels between PTSD cases and controls (P < 0.05/14,935 

unique genes tested; Fig. 3a, Supplementary Fig. 8 and Supplementary 
Table 16). SMR identified 26 genes within four loci whose expression 
levels were putatively causally associated with PTSD (P < 0.05/9,003 
unique genes tested; Fig. 3b and Supplementary Table 17). Many of these 
genes have been previously implicated in PTSD37 and other psychiatric 
disorders (for example, CACNA1E, CRHR1, FOXP2, MAPT and WNT3). 
Notably, the 3p21.31 (including RBM6, RNF123, MST1R, GMPPB and 
INKA1), 6p22.1 (including ZCAN9 and HCG17) and 17q21.31 (including 
ARHGAP27, ARL17A, CRHR1, MAPT, FAM215B, LRRC37A2, PLEKHM1 and 
SPPL2C) regions contained >10 putative causal genes each.

Among the GTEx tissues with the most TWAS and SMR signals 
was the dorsolateral prefrontal cortex (dlPFC). To gain insight into 
cell-type resolution, we conducted MAGMA for cell-type-specific mark-
ers of dlPFC and cell-type-specific SMR. MAGMA showed significant 
enrichment of dlPFC inhibitory and excitatory neurons, but also of 
oligodendrocytes and oligodendrocyte precursor cells (Supplemen-
tary Table 18), while the SMR analyses identified cell-type-specific 
signals for eight genes (KANSL1, ARL17B, LINC02210-CRHR1, LRRC37A2, 
ENSG00000262633, MAPT, ENSG00000273919 and PLEKHM1) over 
three loci (six of eight from 17q21.31) and all cell types (P < 0.05/1,885 
unique genes tested) whose expression levels were potentially causally 
associated with PTSD (Supplementary Table 19). The top gene, KANSL1, 
was significant in all cell types.

Given previously reported associations between blood-based 
protein levels and PTSD38,39, we performed protein quantitative trait 
loci (pQTL) SMR36 analysis for PTSD using data from the UK Biobank 
(UKB) Pharma Proteomics Project40 (n = 54,306 samples and n = 1,209 
proteins). We identified 16 genes within 9 loci whose protein levels were 
significantly associated with PTSD (P < 0.05/1,209 and PHEIDI > 0.05; 
Fig. 3c and Supplementary Table 20), including members of the tumor 
necrosis factor (TNF) superfamily (for example, CD40 and TNFRSF13C), 
implicating TNF-related immune activation in PTSD.

Gene prioritization
One research objective was to identify the genes with the greatest 
evidence of being responsible for the associations observed at each 
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identified PTSD locus. Following recent research methods41, we prior-
itized genes based on weighted sum of evidence scores taken across the 
functional annotation and post-GWAS analyses (Fig. 1b). Based on the 

absolute and relative scores of genes within risk loci, we ranked genes 
into tier 1 (greater likelihood of being the causal risk gene) and tier 2 
(prioritized over other GWAS-implicated genes, but lower likelihood 
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Fig. 4 | Gene prioritization in PTSD loci. Summary of evidence categories 
of prioritized genes (tier 1 or tier 2) for the top 20% of PTSD loci (as ranked by 
leading SNP P value). Locus number, prioritized genes within the locus, gene 
locations (in terms of cytogenic band) and gene tier ranks (tier 1, orange; tier 2, 
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than tier 1 of being the causal gene). In total, 75% of loci contained pri-
oritized genes (tier 1 or tier 2); the remaining loci did not contain any 
genes over the minimum threshold of evidence (score ≥4) to suggest 
prioritization. The prioritized genes for the top 20% of loci (ranked by 
locus P value) are shown in Fig. 4. A complete list of scores and rank-
ings for all 415 protein-coding genes mapped to risk loci is available in 
Supplementary Data 4.

We performed pathway enrichment analysis of the tier 1 genes in 
SynGO. From tier 1, 11 genes mapped to the set of SynGO annotated 
genes (CACNA1E, DCC, EFNA5, GRIA1, GRM8, LRFN5, MDGA2, NCAM1, 
OLFM1, PCLO and SORCS3). Relative to other brain-expressed genes, tier 
1 genes were significantly overrepresented in the synapse (P = 0.0009, 
qFDR = 0.003), presynapse and postsynapse (P = 0.0086, qFDR = 0.0086 
and P = 0.003, qFDR = 0.004, respectively) and four subcategories 
(Extended Data Fig. 6). By contrast, there was no significant over-
representation of genes when we applied this test to the entire set of 
415 protein-coding genes. Other notable tier 1 genes included PDE4B 
related to synaptic function and TNF-related immune-regulatory genes, 
including TANK and TRAF3.

Genetic architecture of PTSD
SNP-based heritability (h2

SNP) estimated by LDSC was 0.053 (s.e. = 0.002, 
P = 6.8 × 10−156). Although previous reports suggested sex-specific dif-
ferences in PTSD11, no significant differences were found (P = 0.13), 
and rg between male and female subsets was high (rg = 0.98, s.e. = 0.05, 
P = 1.2 × 10−98; Supplementary Table 5). MiXeR estimated 10,863 
(s.e. = 377) influential variants and discoverability of 7.4 × 10−6 
(s.e. = 2.2 × 10−7; Supplementary Table 3), indicating a genetic archi-
tecture comparable to other psychiatric disorders42.

Partitioned heritability across 28 functional categories identi-
fied enrichment in histone markers (H3K9ac peaks: 6.3-fold enrich-
ment, s.e. = 1.12, P = 3.11 × 10−6; H3K4me1: 1.5-fold enrichment, 
s.e. = 0.14, P = 3.3 × 10−4; Supplementary Table 21) and in evolution-
ary constrained regions across 29 Eutherians (18.37-fold enrichment, 
s.e. = 1.18, P = 1.29 × 10−17). This is consistent with findings for multiple 

other psychiatric disorders but has not been previously identified 
in PTSD42.

Contextualization of PTSD among psychiatric disorders
We measured the genetic overlap between PTSD and other psychiatric 
disorders using the most recent available datasets32,43–52. We observed 
moderate to high positive rg between PTSD and other psychiatric dis-
orders (Extended Data Fig. 7a). To gain further insights into this over-
lap, we used MiXeR to quantify the genetic overlap in causal variation 
between PTSD and bipolar disorder (BPD), MDD and SCZ (Extended 
Data Fig. 7b). The strong majority (79–99%) of the variation influencing 
PTSD risk also influenced these disorders (Extended Data Fig. 7b and 
Supplementary Tables 22 and 23). Similar to rg, PTSD had the highest 
fraction of concordant effect directions with MDD (among the shared 
variation; 87% concordant, s.e. = 2%), significantly higher than the direc-
tional concordance with BPD (67%, s.e. = 1%) and SCZ (65%, s.e. = 0.5%).

While our results indicate an overall strong rg between PTSD and 
MDD (rg = 0.85, s.e. = 0.008, P < 2 × 10−16), the correlation between 
PTSD and MDD varied significantly across PTSD subsets, with the most 
homogeneously assessed subset, MVP, showing the lowest correlation, 
and the biobank subset being most strongly associated (Supplemen-
tary Table 24). Furthermore, to evaluate if specific genetic regions 
differ substantially from genome-wide estimates, we used LAVA53 to 
estimate the local h2

SNP and rg of PTSD and MDD across the genome, 
as partitioned into 2,495 approximately independent regions (Sup-
plementary Table 25). Local h2

SNP was significant (P < 0.05/2,495) for 
both PTSD and MDD in 141 regions. Of these, local rg was significant 
(P < 0.05/141) in 40 regions, all in the positive effect direction, where 
the mean local rg was 0.57 (s.d. = 0.24). In addition, we assessed the local 
rg between PTSD and MDD specifically for the 76 autosomal GWS EA 
loci (Supplementary Table 26). While LAVA identified 20 significantly 
correlated loci (rg < 6.58 × 10−4), there was also evidence for PTSD loci 
lacking evidence for correlation with MDD (Supplementary Figs. 9 and 
10 showcase 6 selected loci with low and high rg).

Contextualization of PTSD across other phenotype domains
Considering all 1,114 traits with SNP-based heritability z > 6 available 
from the Pan-UKB54 analysis, we observed Bonferroni-significant rg 
of PTSD with 73% of them (Supplementary Table 27). Examining the 
extremes of estimates observed, the top positive rg was with sertra-
line prescription (rg = 0.88, P = 3.25 × 10−20), a medication frequently 
prescribed for PTSD and other internalizing disorders55. Other leading 
associations included medication poisonings (for example, ‘poisoning 
by psychotropic agents’ rg = 0.88, P = 3.92 × 10−20), which could support 
a link with accidental poisonings or self-harm behaviors56,57. Converg-
ing with epidemiologic studies, there were correlations with gastro-
intestinal symptoms58 (for example, ‘nausea and vomiting’ rg = 0.80, 
P = 2.39 × 10−16), mental health comorbidities59 (for example, ‘probable 
recurrent major depression (severe)’ rg = 0.87, P = 1.18 × 10−18; ‘recent 
restlessness’ rg = 0.86, P = 4.21 × 10−54), chronic pain60 (multisite chronic 
pain rg = 0.63, P = 7.5 × 10−301) and reduced longevity61–63 (‘mother’s age 
at death’ rg = −0.51, P = 7.6 × 10−27).

Drug target and class analysis
We extended the MAGMA gene-set analysis to investigate 1,530 gene 
sets comprising known drug targets (Supplementary Table 28). We 
identified one drug (stanozolol, an anabolic steroid) significantly 
enriched for targets associated with PTSD (P = 1.62 × 10−5). However, 
stanozolol has only two target genes in our analyses (ESR1 and JUN) and 
likely reflects the strong association of ESR1 with PTSD in gene-level 
analyses (P = 8.94 × 10−12).

We further examined whether high-ranking drug targets were 
enriched for 159 drug classes defined by Anatomical Therapeutic 
Chemical (ATC) codes. We identified two broad classes where drugs 
were significantly enriched for association in drug target analyses 
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(Supplementary Table 29). These were opioid drugs (ATC code N02A, 
P = 2.75 × 10−4) and psycholeptics (ATC code N05, P = 3.62 × 10−5), par-
ticularly antipsychotics (ATC code N05A, P = 3.55 × 10−7). However, 
sensitivity analyses limited to drugs with ten or more targets identified 
no significant drug target sets or drug classes.

Polygenic predictive scoring
We evaluated the predictive accuracy of PRS based on PTSD Freeze 3 in 
a set of MVP holdout samples (Fig. 5). In EA holdouts, risk was signifi-
cantly different across the range of PTSD PRS. For example, individuals 
in the highest quintile of PTSD PRS had 2.4 times the relative risk of PTSD 
(log relative risk s.e. = 0.032; 95% confidence interval (CI) = (2.25, 2.56); 
P = 1.16 × 10−167) than individuals in the lowest quintile. PRS explained 
6.6% of the phenotypic variation in PTSD (Nagelkerke’s R2 transformed 
to the liability scale at 15% population and sample prevalence), repre-
senting a major improvement over PRS based on Freeze 2. In contrast, 
among AA holdout samples, PRS explained only 0.9% (liability scale) of 
the variation in PTSD, consistent with previous work suggesting that 
AA PRS based on EA data lag behind in prediction64.

Discussion
In the largest PTSD GWAS to date, we analyzed data from over 1 million 
individuals and identified a total of 95 independent risk loci across 
analyses, a fivefold increase over the most recent PTSD GWAS11–13. 
Compared to previous PTSD GWAS, we confirmed 14 of 24 loci and 
identified 80 new PTSD loci. Variant discovery in psychiatric GWAS 
follows a sigmoid curve, rapidly increasing once sample size passes 
a given threshold. This analysis passes that inflection point in PTSD65, 
thus representing a major milestone in PTSD genetics. Moreover, by 
leveraging complementary research methodologies, our findings 
provide new functional insights and a deeper characterization of the 
genetic architecture of PTSD.

Tissue and cell-type enrichments revealed the involvement of 
cerebellum, in addition to other traditionally PTSD-associated brain 
regions, and interneurons in PTSD risk. Structural alterations in the 
cerebellum are associated with PTSD66, and large postmortem tran-
scriptomic studies of PTSD consistently reveal differential expression 
of interneuron markers in prefrontal cortical tissue and amygdala 
nuclei67–69. We used a combination of TWAS and SMR to probe the 
causal genes operating within the enriched tissues and cell types with 
brain transcriptomic data. The identified signals were concentrated 
in some GWAS loci like 17q21.31 whose inversion region is associated 
with a range of psychiatric phenotypes and linked to changes in brain 
structure and function. KANSL1, ARL17B, LINC02210-CRHR1 (encoding 
a fusion protein with CRHR1) and LRRC37A2 were the top causal genes 
in both neuronal and nonneuronal cell types. KANSL1 has a critical role 
in brain development. Furthermore, the first single-cell transcriptomic 
study of PTSD confirmed neuronal, excitatory and inhibitory altera-
tions in 17q21.31, with top alterations in ARL17B, LINC02210-CRHR1 
and LRRC37A2, while also emphasizing the involvement of immune 
and glucocorticoid response in neurons70.

Notably, although PTSD risk in epidemiological studies is higher 
in women than men71, here we found no sex differences in heritabil-
ity. Five loci on the X chromosome are associated with the disorder. 
Our finding that the estrogen receptor (ESR1) gene was identified 
in GWAS, as well as observations of differential effects of estrogen 
levels on a variety of PTSD symptoms72,73, suggests the importance 
of further analyses of ESR1 as a potential mediator of observed sex 
differences.

Our analyses prioritized 43 genes as tier 1 (likely causal) based on 
weighted sum of evidence scores taken across the functional annotation 
and post-GWAS analyses. These genes can broadly be classified as neu-
rotransmitter and ion channel synaptic plasticity modulators (for exam-
ple, GRIA1, GRM8 and CACNA1E), developmental, axon guidance and 
transcription factors (for example, FOXP2, EFNA5 and DCC), synaptic 

structure and function genes (for example, PCLO, NCAM1 and PDE4B) 
and endocrine and immune regulators (for example, ESR1, TRAF3 and 
TANK). Furthermore, many additional genes with known function in 
related pathways were GWS and met tier 2 prioritization criteria (for 
example, GABBR1, CACNA2D2, SLC12A5, CAMKV, SEMA3F, CTNND1 and 
CD40). Together, these top genes show a remarkable convergence 
with neural networks, synaptic plasticity and immune processes impli-
cated in psychiatric disease. Furthermore, CRHR1 (refs. 70,74), WNT3  
(refs. 75,76) and FOXP2 (refs. 77,78), among other genes, are impli-
cated in preclinical and clinical work related to stress, fear and 
threat-processing brain regions thought to underlie the neurobiol-
ogy of PTSD. These findings largely support existing mechanistic 
hypotheses, and it will be important to examine how these genes and 
pathways function in already identified stress-related neural circuits 
and biological systems. Furthermore, while some of the prioritized 
genes are largely within pathways currently indicated in PTSD, many 
of the specific genes and encoded proteins were not previously estab-
lished and warrant further investigation. Additionally, many genes and 
noncoding RNAs were not previously identified in any psychiatric or 
stress-related disorder and offer an important road map for determin-
ing the next steps in understanding new mechanisms of vulnerability 
for post-traumatic psychopathology. Future mechanistic research in 
preclinical models should examine whether targeting combinations 
of these genes, for example, via polygenic targeting, epigenetic or 
knockdown approaches, would have increased power in regulating 
stress, fear, cognitive dysfunction or other symptoms and behaviors 
seen in PTSD.

We observed highly shared polygenicity between PTSD and other 
psychiatric disorders, albeit with effect discordance across the shared 
variation. In particular, in some cases, we found that the genetic cor-
relation of PTSD with MDD is as high or higher than genetic correlations 
between different cohorts, with different measures, of PTSD. Thus, 
our findings corroborate the hypothesis that psychiatric disorders 
share a substantial amount of risk variation but are differentiated by 
disorder-specific effect sizes43. Across the disorders we assessed, the 
correlation between PTSD and MDD was highest, in agreement with 
existing genetic multifactor models of psychopathology that consist-
ently cluster these disorders together42,79 and concordant with their 
epidemiologic comorbidity80. Evaluation of local patterns of herit-
ability and genetic correlation however indicates disorder-specific 
risk variation, which will serve as targets for follow up in cross-disorder 
investigations. We note that as GWAS of psychiatric traits grow in size 
and power, the field is seeing relatively strong genetic correlations 
among these traits, as well as with other behavioral and medical traits. 
This likely reflects, in part, the reality that there is substantial shared 
genetic variance among these traits, while not excluding the consistent 
observations that (1) these traits do vary considerably in the magnitude 
of their genetic correlations, and (2) local genetic correlations reveal 
even greater genetic heterogeneity among these traits than global 
genetic correlations alone would lead us to believe. Finally, while PTSD 
is the most well-understood psychiatric outcome of trauma exposure, 
it is well-documented that trauma is a risk factor for many different 
psychiatric disorders, with perhaps depression as the highest risk. 
Thus, these shared areas of overlap may represent general trauma 
vulnerability as well.

Despite the high level of overall correlation between PTSD and 
depression, we also note certain areas of clear distinction. When we 
examined local genetic correlations between PTSD and depression 
within all significant loci from the EA PTSD GWAS, we found that there 
were some regions with significant local heritability for PTSD but not 
depression, suggestive of PTSD-specific signals. In contrast, we also 
find other regions with clear shared signals showing local correlation 
across depression and PTSD, indicating that we have the power to 
detect shared and distinct local heritability. Together these findings 
suggest several PTSD-specific loci worthy of further investigation.
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Further identification of PTSD genetic loci will provide therapeutic 
insights81. We explored whether genes targeted by specific drugs (and 
drug classes) were enriched for GWAS signal. These analyses provided 
tentative support for antipsychotics and opioid drugs—known psy-
chiatric drug classes—and were driven by gene-wise associations with 
DRD2 (antipsychotics) and CYP2D6 (opioids). Atypical antipsychotics 
may have efficacy in treating severe PTSD, but otherwise, their use is 
not supported82. Similarly, although some observational studies find 
that chronic opioid use worsens PTSD outcomes83, there is preclinical 
work motivating the further study of opioid subtype-specific targeting 
(for example, partial μ-type opioid receptor (MOR1) agonism, κ-type 
opioid receptor (KOR1) antagonism) in the treatment of comorbid 
PTSD and opioid use disorders84. Analyses in better-powered data-
sets may identify drug repositioning opportunities and could use the 
predicted effect of associated variants on gene expression to indicate 
whether drug candidates would be beneficial or contraindicated in 
people with PTSD.

In summary, we report 81 loci associated with PTSD in EA 
meta-analysis and 85 loci when expanding to cross-ancestry analyses. 
While these results represent a milestone in PTSD genetics and point to 
exciting potential target genes, further investment into data collection 
from underrepresented populations of diverse ancestries is needed for 
the identification of additional risk variants and to generate equitable 
and more robust PRS.
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Methods
Participants and studies
PTSD assessment and DNA collection for GWAS analysis were per-
formed by each study following their protocols. A description of the 
studies included and the phenotypic and genotyping methods for each 
study are provided in Supplementary Note and Supplementary Table 1. 
We complied with relevant ethical regulations for human research. 
All participants provided written informed consent, and studies were 
approved by the relevant institutional review boards and the UCSD 
IRB (protocol 16097×).

EHR studies
A total of ten EHR-based cohorts (not including the MVP, which also 
contributed data) provided GWAS summary statistics. These cohorts 
consisted of four US-based sites (Vanderbilt University Medical Cent-
er’s BioVu, the Mass General Brigham Biobank, Mount Sinai’s BioMe 
and Mayo Clinic’s MayoGC) and six non-US sites (iPSYCH from Den-
mark, FinnGen, HUNT Study from Norway, STR-STAGE from Sweden, 
UKB and Estonia Biobank). More details on procedures at each site 
are provided in Supplementary Note. At each site, a broad definition 
of PTSD cases was defined based on patients having at least one PTSD 
or other stress disorder code (see Supplementary Note for the list of 
corresponding International Classification of Diseases (ICD)-9 and 
ICD-10 codes). All other patients without such a code were defined 
as controls. From a total of 817,181 participants across all cohorts, 
this case definition resulted in 78,687 (9.6%) cases based on the  
broad definition.

Data assimilation
Participants were genotyped on Illumina (n = 84 studies) or Affymetrix 
genotyping arrays (n = 5 studies; Supplementary Table 1). Studies that 
provided direct access to prequality control genotype data (n = 64 
studies) were deposited on the LISA server for central processing and 
analysis by the PGC-PTSD analyst. Studies with data-sharing restric-
tions (n = 24 studies) were processed and analyzed following their own 
site-specific protocols (Supplementary Table 28) and shared GWAS 
summary statistics for inclusion in meta-analysis.

Genotype quality control and imputation
Genotype data were processed separately by study. For genotype data 
processed by the PGC-PTSD analyst, quality control was performed 
using a uniform set of criteria, as implemented in the RICOPILI85 pipe-
line version 2019_Oct_15.001. Modifications were made to the pipeline 
to allow for ancestrally diverse data and are noted where applicable. 
For quality control, SNPs with call rates >95%, samples were excluded 
with call rates <98%, deviation from expected inbreeding coefficient 
(fhet < −0.2 or >0.2) or a sex discrepancy between reported and esti-
mated sex based on inbreeding coefficients calculated from SNPs 
on X chromosomes. SNPs were excluded for call rates <98%, a >2% 
difference in missing genotypes between cases and controls or being 
monomorphic. Hardy–Weinberg equilibrium was calculated within 
only in the largest homogenous ancestry group found in the data. 
SNPs with a Hardy–Weinberg equilibrium P < 1 × 10−6 in controls  
were excluded.

After quality control, datasets were lifted over to the GRCh37/
hg19 human genome reference build. SNP name inconsistencies were 
corrected, and genotypes were aligned to the strand of the imputation 
reference panel. Markers with nonmatching allele codes or with exces-
sive minor allele frequency (MAF) difference (>0.15) with the selected 
corresponding population in the reference data were removed. The 
pipeline was modified so that only the largest homogenous ancestry 
group in the data was used for the calculation of MAF. For ambiguous 
markers, the strand was matched by comparing allele frequencies—if 
a strand flip resulted in a lower MAF difference between the study 
and the reference data, the strand was flipped. Ambiguous markers 

with high MAF (>0.4) were removed. The genome was broken into 
132 approximately equal-sized chunks. For each chunk, genotypes 
were phased using Eagle v2.3.5, and phased genotypes were imputed 
into the Haplotype Reference Consortium panel86 using minimac3. 
Imputed datasets were deposited with the PGC DAC and are available 
for approved requests.

Studies with data-sharing restrictions followed similar criteria 
for quality control, as detailed in Supplementary Table 28 and in the 
references in Supplementary Note. Studies were imputed to either the 
1000G phase 3, HRC, SISu panel or a composite panel. GWAS summary 
data were lifted to the GRCh37 reference build where required. As 
differences in the imputation panels and genome reference build can 
result in SNP-level discrepancies between datasets, each set of sum-
mary data was examined for correspondence to the centrally imputed 
data. Multi-allelic SNPs and SNPs with nonmatching allele codes were 
excluded. Strand ambiguous SNPs with high MAF difference (>20%) 
from the average frequency calculated in the PGC-PTSD data were 
flagged and examined for strand correspondence.

Ancestry determination
For studies where the PGC analyst had genotype data access, ancestry 
was determined using a global reference panel11 using SNPweights87. 
The ancestry pipeline was shared with external sites to be used where 
possible. Participants were placed into the three following large 
groupings: European ancestry (EA; individuals with ≥90% Euro-
pean ancestry), African ancestry (AA; individuals with ≥5% African 
ancestry, <90% European ancestry, <5% East Asian, Native American, 
Oceanian and Central-South Asian ancestry; and individuals with 
≥50% African ancestry, <5% Native American, Oceanian and <1% Asian 
ancestry) and Native American ancestry, including individuals from 
Latin America (LAT; individuals with ≥5% Native American ancestry, 
<90% European, <5% African, East Asian, Oceanian and Central-South 
Asian ancestry). Native Americans (individuals with ≥60% Native 
American ancestry, <20% East Asian, <15% Central-South Asian and 
<5% African and Oceanian ancestry) were included in LAT. All other 
individuals were excluded from the current analyses. For the MVP 
cohort, ancestry was determined using a standard principal compo-
nents analysis approach where MVP samples were projected onto a 
principal component (PC) space made from 1000 Genomes Phase 
3 (KGP3) samples with known population origins (European (EUR), 
African (AFR), East Asian (EAS), South Asian (SAS) and American 
(AMR) populations). EHR cohorts followed their own site-specific 
ancestry classification protocols.

GWAS
GWAS was performed with stratification by ancestry group and study. 
Strata were only analyzed if they had a minimum of 50 cases and 50 
controls, or alternatively 200 participants total. Where noted (Sup-
plementary Table 2), small studies of similar composition were jointly 
genotyped so they could be analyzed together as a single unit. For 
GWAS, the association between each SNP and PTSD was tested under 
an additive genetic model, using a regression model appropriate 
to the data structure. The statistical model, covariates and analysis 
software used to analyze each study are detailed in Supplementary 
Table 30. In brief, studies of unrelated individuals with continuous 
(case/control) measures of PTSD were analyzed using PLINK 1.9 (ref. 
88) using a linear (logistic) regression model that included five PCs 
as covariates. For studies that retained related individuals, analyses 
were performed using methods that account for relatedness. QIMR 
was analyzed using GEMMA89 v0.96, including the first five PCs as 
covariates. RCOG was analyzed using the generalized disequilibrium 
test90. UKBB was analyzed using BOLT-LMM91 including six PCs, and 
batch and center indicator variables as covariates. VETS was analyzed 
using BOLT-LMM including five PCs as covariates. EHR-based studies 
that included related individuals were analyzed using saddle point 
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approximation methods to account for case/control imbalances. 
AGDS and QIM2 were analyzed using SAIGE92 including four PCs and 
study-specific covariates. BIOV was analyzed using SAIGE including 
ten PCs and age of record. ESBB, FING, HUNT and SWED were analyzed 
using SAIGE including five PCs. UKB2 was analyzed using REGENIE93 
including six PCs, assessment center and genotyping batch covariates. 
GWAS was additionally performed stratified by sex. For the X chromo-
some analysis, sex was added as a covariate.

Meta-analysis
Sample-size weighted fixed-effects meta-analysis was performed 
with METAL94. Within each dataset and ancestry group, summary sta-
tistics were filtered to MAF ≥1% and imputation information score 
≥0.6. Meta-analyses were performed within the EA, AA and LAT 
ancestry groups. A multi-ancestry meta-analysis was performed 
as the meta-analysis of the three meta-analyses. GWS was declared 
at P < 5 × 10−8. Heterogeneity between datasets was tested with the 
Cochran test. Markers with summary statistics in less than 80% of the 
total effective sample size were removed from meta-analyses. LDSC24 
intercept was used to estimate the inflation of test statistics related 
to artifacts rather than genetic signals. The proportion of inflation 
of test statistics due to the actual polygenic signal (rather than other 
causes such as population stratification) was estimated as 1 − (LDSC 
intercept − 1)/(mean observed chi-square − 1).

Regional association plots
Regional association plots were generated using LocusZoom95 with 
1.5-Mb windows around the index variant (unless the locus region was 
wider than 1.5 Mb, in which case it was the locus region plotted plus an 
additional buffer to include data up to the recombination region). The 
LD patterns plotted were based on the 1000 Genomes Phase 3 reference 
data96, where a sample ancestry-appropriate subpopulation (EUR, AFR 
or AMR) was used.

Conditional analysis of significant loci
To determine if there were independent significant SNPs within risk 
loci, GCTA Conditional and Joint Analysis26 was performed. Stepwise 
selection was performed using the --cojo-slct option and default 
parameters, where UKBB European genotype data were used to model  
LD structure.

SNP heritability
The h2

SNP of PTSD was estimated using LDSC. LD scores calculated 
within KGP3 European populations (https://data.broadinstitute.org/ 
alkesgroup/LDSCORE/) were used for the input. Analyses were limited 
to HapMap 3 SNPs, with the MHC region excluded (chr6: 26–34 million 
base pairs). SNP-based heritability was also calculated as partitioned 
across 28 functional annotation categories (https://data.broadinstitute. 
org/alkesgroup/LDSCORE/) using stratified LDSC97.

Comparisons of genetic architecture
We used univariate MiXeR (version 1.3)22,23 to contrast the genetic 
architecture of phenotypes. MiXeR estimates SNP-based heritability 
and two components that are proportional to heritability—the propor-
tion of nonnull SNPs (polygenicity) and the variance of effect sizes of 
nonnull SNPs (discoverability). MiXeR was applied to GWAS summary 
statistics under the default settings with the supplied EA LD reference 
panel. The results reported for the number of influential variants reflect 
the number of SNPs necessary to explain 90% of SNP-based heritability. 
Bivariate MiXeR was used to estimate phenotype-specific polygenic-
ity and the shared polygenicity between phenotypes. Goodness of fit 
of the MiXeR model relative to simpler models of polygenic overlap 
was assessed using Akaike information criterion values. Heritability, 
polygenicity and discoverability estimates were contrasted between 
datasets using the z test.

Local genetic correlation analyses
Local h2

SNP and rg between PTSD and MDD50 were estimated using 
LAVA53. KGP3 European data were used as the LD reference. Local h2

SNP 
and rg were evaluated across the genome, as partitioned into 2,495 
approximately equal-sized LD blocks. Local rg was only evaluated for 
loci where local heritability was significant (P < 0.05/2,495) in both 
phenotypes. Significance of local rg was based on Bonferroni adjust-
ment for the number of rg evaluated.

PRS
PRS were calculated in ancestry-stratified MVP holdout samples, 
based on the EA Freeze 3 PTSD GWAS. GWAS summary statistics were 
filtered to common (MAF >1%), well-imputed variants (INFO >0.8). 
Indels and ambiguous SNPs were removed. PRS–continuous shrink-
age98 was used to infer posterior effect sizes of SNPs, using the KGP3 
EUR-based LD reference panel supplied with the program, with the 
global shrinkage parameter set to 0.01, 1,000 MCMC iterations with 
500 burn-in iterations and the Markov chain thinning factor set to 5. 
PRS were calculated using the --score option in PLINK 1.9, using the 
best-guess genotype data of target samples, where for each SNP the 
risk score was estimated as the posterior effect size multiplied by the 
number of copies of the risk allele. PRS were estimated as the sum of 
risk scores over all SNPs. PRS were used to predict PTSD status under 
logistic regression, adjusting for five PCs. The proportion of variance 
explained by PRS for each study was estimated as the difference in 
Nagelkerke’s R2 between a model containing PRS plus covariates and 
a model with only covariates.

Functional mapping and annotation
We used the SNP2GENE module in FUMA25 v1.4.1 (https://fuma.ctglab.
nl) to annotate and visualize GWAS results. The complete set of param-
eters used for FUMA analysis are shown in Supplementary Note. Inde-
pendent genomic risk loci were identified (r2 < 0.6, calculated using 
ancestry-appropriate KGP3 reference genotypes). SNPs within risk 
loci were mapped to protein-coding genes using positional mapping 
(10-kb window), eQTL mapping (GTEx v8 brain tissue99, BRAINEAC100 
and CommonMind101 data sources) and chromatin interaction mapping 
(PsychENCODE102 and HiC103,104 of brain tissue types) methods. Chro-
matin interactions and eQTLs were plotted in circos plots. SNPs were 
annotated to functional annotation databases including ANNOVAR105, 
CADD28 and RDB29.

Newness of risk loci
The start and stop positions of independent risk loci were assessed for 
positional overlap with existing PTSD loci11–13. Loci were declared new 
if their boundaries did not overlap with a variant reported significant 
in prior GWAS.

MAGMA gene-based and gene-set analyses
Gene-based association analyses were conducted using MAGMA31 v1.08. 
SNPs were positionally mapped (0-kb window) to 19,106 protein-coding 
genes. The SNP-wide mean model was used to derive gene-level P val-
ues, and an ancestry-appropriate KGP3 reference panel was used to 
model LD. Significance was declared based on Bonferroni adjustment 
for the number of genes tested. Gene-based association statistics were 
used in MAGMA for gene-set and gene-property analyses. Gene-set 
analysis used the MsigDB33 version 7.0 including 15,483 curated gene 
sets and GO terms. Gene-property analysis of tissues and tissue sub-
types was performed using GTEx v8 expression data, with adjustment 
for the average expression of all tissues in the dataset. To evaluate 
cell-type-specific enrichment, the FUMA cell-type module was used, 
selecting 12 datasets related to the brain (see full list in Supplementary 
Note). Finally, MAGMA was used to estimate the enrichment of dlPFC 
cell types in PTSD risk based on the DER21 marker gene list from Psy-
chEncode Consortium Phase 1 resource release102.
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GWAS fine-mapping
Polygenic functionally informed fine-mapping (PolyFun)30 software 
was used to annotate our results data with per-SNP heritabilities, 
as derived from a meta-analysis of 15 UKB traits. PTSD risk loci were 
fine-mapped using SUSIE106, with these per-SNP heritabilities used 
as priors, precomputed UKB-based summary LD information used as 
the LD reference and locus start and end positions as determined by 
FUMA. The SUSIE model assumed a maximum of two causal variants.

eQTL and blood pQTL analyses
To test for a joint association between GWAS summary statistics SNPs 
and eQTL, the SMR method36, a Mendelian randomization approach, 
was used. SMR software (version 1.03) was run using the default set-
tings. The European samples of the 1000G were used as a reference 
panel. Bonferroni multiple-testing correction was applied on SMR  
P value (PSMR). Moreover, a postfiltering step was applied by conduct-
ing heterogeneity in dependent instruments (HEIDI) test. The HEIDI 
test distinguishes the causality and pleiotropy models from the link-
age model by considering the pattern of associations using all SNPs 
significantly associated with gene expression in the cis-eQTL region. 
The null hypothesis is that a single variant is associated with both 
trait and gene expression, while the alternative hypothesis is that 
trait and gene expression are associated with two distinct variants. 
Finally, gene–trait associations based on SMR–HEIDΙ were defined 
as the ones for which PSMR met the Bonferroni significance threshold 
and had PHEIDI > 0.05. We conducted a combination of SMR and HEIDI 
based on the GTEx project’s latest (version 8) multitissue cis-eQTL 
databases99 from 13 brain regions and pituitary tissue that showed 
significant enrichment in MAGMA/FUMA analyses (see above). We 
also used cell-type-specific eQTLs in dlPFC for SMR analyses107. Finally, 
we used a blood UKB pQTLs database of 1,463 plasma proteins40 
relying on a very large population (54,306) for SMR/HEIDI analysis 
to evaluate biomarker potential.

Brain focused TWAS
JEPEGMIX2-P108 software with default settings was used to conduct 
TWAS on 13 brain regions and pituitary tissue that showed signifi-
cant enrichment in MAGMA/FUMA analyses using our PEC-DLPFC 
GReX model. JEPEGMIX2-P was applied on GWAS summary statis-
tics to estimate gene–trait associations. This method was preferable 
because it relied on a covariance matrix based on 33k samples com-
pared to other TWAS methods, which use less than 3k samples109. To 
determine significance, a Bonferroni correction threshold for the 
unique number of genes tested was applied (P < 0.05/14,935). As a 
less conservative approach, we also applied FDR at a q value threshold  
of 0.05.

Gene prioritization
Genes within risk loci were prioritized following the general approach 
previously described41. Genes were given prioritization scores based 
on the weighted sum of evidence across all evidence categories–FUMA 
positional, eQTL and chromatin interaction mapping; variant and 
gene annotation scores (CADD, predicted loss of impact (pLI) and RDB 
scores); positional overlap in fine-mapping; significance in gene-based 
analyses; brain tissue TWAS, eQTL SMR and pQTL SMR. Weights for 
each evidence category are provided in Supplementary Table 31. Within 
a given locus, the evidence scores were compared across genes to 
identify the most likely causal gene. Genes with scores ≥4 were ranked 
as either tier 1 (greater likelihood of being the causal risk gene) or tier 2 
(lower likelihood of being the causal risk gene) and genes with scores 
<4 were left unranked. The ranking algorithm is as follows. For a given 
locus, if there was a gene whose evidence score ≥4 and this gene’s score 
was >20% higher than all other genes in the locus, it was ranked as a tier 
1 gene (greater likelihood of being the causal risk gene). Within a locus 
with a tier 1 gene, other genes with scores between 20% and 50% lower 

than the tier 1 gene were labeled as tier 2. For loci without a tier 1 gene, 
all genes with scores ≥4 that were within 50% of the leading gene were 
ranked as tier 2.

SynGO
PTSD-related genes were tested for overrepresentation among genes 
related to synaptic terms in the SynGO110 web interface (https://www.
syngoportal.org/). Brain-expressed genes were selected as the back-
ground list for the overrepresentation tests. SynGO terms with FDR 
q < 0.05 were considered to be overrepresented.

Drug targeting analyses
Following a previously described approach111, we analyzed the enrich-
ment of gene-level associations with PTSD in genes targeted by indi-
vidual drugs. We then examined the enrichment of specific drug classes 
among these drug–target associations. We obtained gene-level asso-
ciations using MAGMA31 v1.08. Variant-level associations were con-
verted to gene-level associations using the ‘multi=snp-wise’ model, 
which aggregates z scores derived from the lowest and the mean 
variant-level P value within the gene boundary. We set gene boundaries 
35 kb upstream and 10 kb downstream of the transcribed regions from 
build 37 reference data (National Center for Biotechnology Informa-
tion, available at https://ctg.cncr.nl/software/magma).

We performed drug target analysis using competitive gene-set 
tests implemented in MAGMA. Drug target sets were defined as the 
targets of each drug from the Drug–Gene Interaction database DGIdb 
v.4.2.0 (ref. 112), the Psychoactive Drug Screening Database Ki DB113, 
ChEMBL v27 (ref. 114), the Target Central Resource Database v6.7.0 
(ref. 115) and DSigDB v1.0 (ref. 116), all downloaded in October 2020. 
We additionally used the drug target sets to identify targets of drugs 
of interest from gene-based analyses.

We grouped drugs according to the ATC class of the drug111. Results 
from the drug target analysis were ranked, and the enrichment of each 
class in the drug target analysis was assessed with enrichment curves. 
We calculated the area under the enrichment curve and compared 
the ranks of drugs within the class to those outside the class using the 
Wilcoxon Mann–Whitney test. Multiple testing was controlled using a 
Bonferroni-corrected significance threshold of P < 3.27 × 10−5 for drug 
target analysis and P < 4.42 × 10−4 for drug class analysis, accounting for 
1,530 drug sets and 113 drug classes tested.

We initially limited drug target analyses to drugs with two or more 
targets. However, results suggested this low limit may lead to false posi-
tive findings. As a sensitivity analysis, we further limited these analyses 
to drugs with ten or more targets. Multiple testing was controlled using 
a Bonferroni-corrected significance threshold of P < 5.42 × 10−5 for drug 
target analysis and P < 7.94 × 10−4 for drug class analysis, accounting for 
923 drug sets and 63 drug classes tested.

Genetic correlations with other phenotypes
Using LDSC, we assessed the rg of PTSD derived from the PGC meta- 
analysis conducted in EUR cohorts with traits available from the 
Pan-UKB analysis conducted in EUR samples. Details regarding the 
Pan-UKB analysis are available at https://pan.ukbb.broadinstitute.org/. 
Briefly, Pan-UKB genome-wide association statistics were generated 
using the SAIGE and included a kinship matrix as a random effect and 
covariates as fixed effects. The covariates included age, sex, age × sex, 
age2, age2 × sex and the top ten within-ancestry principal components. 
We limited our analysis to data derived from UKB participants of Euro-
pean descent (n = 420,531) because of the limited sample size available 
in the other ancestry groups. Initially, we calculated the SNP-based 
heritability of phenotypes available from Pan-UKB, retaining only 
those with SNP-based heritability z > 6 (Supplementary Table 25) as 
recommended by the developers of LDSC117. To define traits genetically 
correlated with PTSD, we applied a Bonferroni correction accounting 
for the number of tests performed.
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Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Summary statistics for PGC-PTSD Freeze 3 will be made available upon 
publication under the accession ID ptsd2024 via the PGC website 
(https://pgc.unc.edu/for-researchers/download-results/). Access to 
study-level summary statistics and genotype data can be applied by 
using the PGC data access portal (https://pgc.unc.edu/for-researchers/ 
data-access-committee/data-access-portal/).

Code availability
Analysis code is made available at GitHub (https://github.com/ 
nievergeltlab/freeze3_gwas) and Zenodo (https://doi.org/10.5281/ 
zenodo.10182702)118.
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Extended Data Fig. 1 | Comparison of the genetic architecture of PTSD in 
the three main data sources. Quantification of polygenicity and polygenic 
overlap in the three main data subsets based on (1) symptom scores in clinical 
studies and cohorts assessed on a variety of instruments in Freeze 2.5 (yellow; 
26,080 cases and 192,966 controls), (2) PCL (for DSM-IV) based symptom scores 
in the MVP (red; 32,372 cases and 154,317 controls) and (3) ICD9/10 codes in 
EHR studies (blue; 78,684 cases and 738,463 controls) indicate a similar genetic 
architecture. The circles on the top half of the plot depict univariate MiXeR 
estimates of the total polygenicity for each data subset. Numbers within circles 
indicate polygenicity values, expressed as the number of variants (in thousands, 

with s.e. in parenthesis) necessary to explain 90% of SNP-based heritability 
(h2

SNP). h2
SNP estimates are written in the boxes at the bottom of the circles. The 

Euler diagrams on the bottom half of the plot depict bivariate MiXeR estimates 
of the polygenic overlap between data subsets. Values in the overlapping part 
of the Euler diagrams denote shared polygenicity and values on the non-
overlapping parts note dataset-specific polygenicity. Genetic correlations (rg) 
between dataset pairs are noted in the boxes below the Euler diagrams. Arrowed 
lines are drawn between univariate and bivariate results to indicate which 
dataset pairs are being evaluated.
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Extended Data Fig. 2 | Manhattan plot of the PTSD GWAS meta-analysis in 
individuals of European ancestry (EA). Results of the EA GWAS meta-analysis 
(137,136 PTSD cases, 1,085,746 controls) identifying 81 genome-wide significant 
PTSD loci. The y-axis refers to the −log10 P value from two-sided z-tests for effect 

estimates for a meta-analysis using a sample size weighted fixed-effects model. 
Circle colors alternate between chromosomes: even chromosomes are colored 
blue and odd chromosomes are colored black. The horizontal red bar indicates 
genome-wide significant associations (P < 5 × 10−8).

http://www.nature.com/naturegenetics
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Extended Data Fig. 3 | Significant PTSD gene sets. MAGMA gene-set analysis 
using the Molecular Signatures Database (MSigDB) identifies 12 significant 
gene sets. The dotted line indicates significance adjusted for the number of 
comparisons (P < 0.05/15,483 gene sets). Bars depict −log10 P values from one-

sided t-tests for enrichment. Corresponding gene-set names are indicated to the 
left of bars. Terms are clustered and colored according to their Gene Ontology 
term category (biological processes, yellow; molecular function, blue; cellular 
component, red).

http://www.nature.com/naturegenetics
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Extended Data Fig. 4 | MAGMA tissue enrichment analysis. MAGMA gene-
property analysis in 53 specific tissue types from GTEx v8 shows enrichment of 
PTSD-related genes in 13 brain tissue types and in the pituitary. Bars depict −log10 
P values from one-sided t-tests for enrichment. Corresponding tissue names are 

indicated below bars. The dotted horizontal line indicates statistical significance 
adjusted for the number of comparisons (P < 0.05/53). Significant tissues are 
colored red.
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Extended Data Fig. 5 | MAGMA cell-type enrichment analysis in midbrain. 
MAGMA gene-property analysis of 25 midbrain cell types (GSE76381) indicates 
enrichment of GABAergic neurons, GABAergic neuroblasts and mediolateral 
neuroblasts. Vertical bars depict −log10 P values from one-sided t-tests for 
enrichment. Significant cell types are colored blue and gray if not. The dotted 
horizontal line indicates statistical significance adjusted for the number of 
comparisons (P < 0.05/25). The asterisk (*) indicates that GABAergic neurons 
remained significant in stepwise conditional analysis of the other significant cell 

types. Abbreviations: Gaba, GABAergic neurons; NbGaba, neuroblast gabaergic; 
NbML1-5, mediolateral neuroblasts; DA0-2, dopaminergic neurons; Sert, 
serotonergic neurons; RN, red nucleus; Rgl 1-3, radial glia-like cells; NbM, medial 
neuroblasts; OPC, oligodendrocyte precursor cells; ProgFPL, progenitor lateral 
floorplate; OMTN, oculomotor and trochlear nucleus; Endo, endothelial cells; 
ProgM, progenitor midline; NProg, neuronal progenitor; ProgBP, progenitor 
basal plate; Mgl, microglia; ProgFPM, progenitor medial floorplate; Peric, 
pericytes.
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Extended Data Fig. 6 | PTSD genes in SynGO. Sunburst plots show enrichment 
of PTSD-related genes in SynGO cellular components. The synapse is at the 
center ring, pre- and post-synaptic locations are at the first rings, and child 
terms are in subsequent outer rings. a, Enrichment test results for all 415 genes 
mapped to PTSD GWAS loci by FUMA from one of three gene-mapping strategies 

(positional, expression quantitative trait loci and chromatin interaction 
mapping). b, Enrichment test results for 43 genes prioritized into tier 1 using a 
gene prioritization strategy. Plots are colored by −log10 Q-value (see color code 
in the bar at left) from enrichment of PTSD genes relative to a brain-expressed 
background set.
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Extended Data Fig. 7 | Genetic correlations and polygenic overlap between 
PTSD and other psychiatric disorders. a, Genetic correlations (rg) with 
standard error between PTSD and 11 other psychiatric disorders are indicated by 
circles that are drawn along the x-axis. Red dots indicate SNP-based heritability 
(h2

SNP) z-score >6 in the psychiatric disorder GWAS and colored gray to indicate 
z-score <6 (rg estimates may be unreliable). The first author and publication year 
of source summary data are noted in parenthesis following the disorder name. 
b, Quantification of the polygenic overlap between PTSD and other psychiatric 
disorders. Euler diagrams depict Bivariate MiXeR analysis of PTSD (blue circles) 

and bipolar disorder (BIP), major depression (MDD) and schizophrenia (SCZ) 
(red circles). Values in the overlapping part of the Euler diagrams denote shared 
polygenicity (expressed as the number of influential variants, in thousands, with 
s.e. in parenthesis), and values in the non-overlapping part indicate dataset-
specific variation. rg between dataset pairs are noted in the boxes below the 
Euler plots. Abbreviations: ADHD, attention deficit hyperactive disorder; Alc. 
dep., alcohol dependence; BIP, bipolar disorder; MDD, major depression; OCD, 
obsessive compulsive disorder; SCZ, schizophrenia.

http://www.nature.com/naturegenetics
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