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Abstract
It is known that the hazard ratio lacks a useful causal interpretation. Even for data from
a randomized controlled trial, the hazard ratio suffers from so-called built-in selection
bias as, over time, the individuals at risk among the exposed and unexposed are no
longer exchangeable. In this paper, we formalize how the expectation of the observed
hazard ratio evolves and deviates from the causal effect of interest in the presence of
heterogeneity of the hazard rate of unexposed individuals (frailty) and heterogeneity
in effect (individual modification). For the case of effect heterogeneity, we define
the causal hazard ratio. We show that the expected observed hazard ratio equals the
ratio of expectations of the latent variables (frailty and modifier) conditionally on
survival in the world with and without exposure, respectively. Examples with gamma,
inverse Gaussian and compound Poisson distributed frailty and categorical (harming,
beneficial or neutral) distributed effect modifiers are presented for illustration. This
set of examples shows that an observed hazard ratio with a particular value can arise
for all values of the causal hazard ratio. Therefore, the hazard ratio cannot be used
as a measure of the causal effect without making untestable assumptions, stressing
the importance of using more appropriate estimands, such as contrasts of the survival
probabilities.
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1 Introduction

When interested in time-to-event outcomes, ideally, one would like to know the hazard
rates of an individual in the worlds with and without exposure. It is then standard prac-
tice to fit the observed hazard rates with a (time-invariant) Cox model (Cox 1972) to
estimate the ratio of the expected hazard rates in both worlds. A decade ago, Hernán
(2010) raised awareness that hazard ratios estimated from a randomized controlled
trial (RCT) are unsuitable for causal inference. Firstly, the average hazard ratio could
be uninformative as there will typically be time-varying hazard ratios. More impor-
tantly, even when period-specific hazard ratios are estimated, these can vary solely
due to the loss of randomization over time by conditioning on survivors. The expo-
sure assignment and risk factors become dependent when conditioning on individuals
that survived t , i.e. survival time T≥t , even if these risk factors are unrelated to the
exposure (Aalen et al. 2015). As a result, effect measures based on hazard rates can
suffer from non-collapsibility (Martinussen and Vansteelandt 2013; Aalen et al. 2015;
Sjölander et al. 2016; Daniel et al. 2021).

In practice, the ratio of (partly) marginalized hazards, is estimated, that by the
non-collapsibility, deviates from the conditional (causal) hazard ratio. This contrast
is referred to as the built-in selection bias of hazard ratios as the bias results from
conditioning on prior survival (Hernán 2010; Aalen et al. 2015; Sjölander et al. 2016;
Stensrud et al. 2018; Young et al. 2020; Martinussen et al. 2020). This bias should
not be confused with confounding bias that is absent when using data from an RCT
(Didelez and Stensrud 2021). For exposure assignment A, and the potential survival
time when the exposure is intervened on to a denoted by T a , the expected observed
hazard ratio from an RCT satisfies

limh→0 h−1
P (T ∈ [t, t + h) | T≥t, A=a)

limh→0 h−1P (T ∈ [t, t + h) | T≥t, A=0)
= limh→0 h−1

P (T a ∈ [t, t + h) | T a≥t)

limh→0 h−1P
(
T 0 ∈ [t, t + h) | T 0≥t

) (1)

(De Neve and Gerds 2020; Martinussen et al. 2020). The expected observed hazard
ratio thus equals the ratio of hazard rates at time t for the potential outcomes of
individuals from different populations; those for which T a≥t and those for which
T 0≥t . As indicated before, these populations will typically not be exchangeable in
other risk factors, implying that an effect found cannot be (solely) assigned to the
exposure. The effect does thus not reflect how the hazard rate of an individual is
affected by exposure. Only for cause-effect relations such that (1) is time-invariant,
the estimand can be interpreted as log(P(T a≥t))

log(P(T 0≥t))
. It has been recommended to use better

interpretable estimands such as contrasts of quantiles, the restricted mean survival or
survival probabilities of the potential outcomes respectively (Hernán 2010; Stensrud
et al. 2018; Bartlett et al. 2020; Young et al. 2020), or the probabilistic index derived
from the latter (De Neve and Gerds 2020). Alternatively, one can avoid interpretation
issues by using accelerated failure time models (Hernán et al. 2005; Hernán 2010) or
additive hazard models (Aalen et al. 2015; Martinussen et al. 2020).

Nevertheless, particularly in medical sciences, observed hazard ratios are still
commonly presented by practitioners. In this paper, we formalize how the expected
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observed hazard ratio deviates from the causal hazard ratio (as defined in Sect. 2), and
thus quantify the built-in selection bias. To do so, we first present a general parameter-
ization of cause-effect relations for time-to-event outcomes using a structural causal
model in Sect. 2 and explain the loss of randomization over time by conditioning on
survivors. We will limit ourselves to systems where the causal effect is appropriately
described by a causal hazard ratio. The quantitative examples in which the hazard
under no exposure varies among individuals, i.e. frailty, as presented in the literature
(Aalen et al. 2015; Stensrud et al. 2017; Balan and Putter 2020) do fit in our frame-
work, and we will formalize results for these examples. Additionally, we will extend
these examples with causal effect heterogeneity, i.e. the causal effect on the hazard rate
might vary between individuals (Stensrud et al. 2017). In Sect. 3, we define the causal
hazard ratio and explain why this estimand is not identifiable from data. Practioners
instead compute the hazard ratio from data, and in Sect. 4 (which comprises the bulk
of this paper) we derive what estimand is estimated: the survivor marginalized causal
hazard ratio. This estimand describes a combination of the causal effect of interest and
the difference in latent frailty- and modifying-features distribution between survivors
in the exposed and unexposed universe. We point out exactly how this estimand devi-
ates from the causal hazard ratio in the presence of frailty and effect heterogeneity. To
develop understanding of how selection of frailty- and modifying-features affect the
value of the estimand, we presented examples for systems in the presence of frailty
(Sect. 4.1), effect heterogeneity (Sect. 4.2) or both (Sect. 4.3). In Sect. 5, we shortly
discuss the implications of our results for the traditional Cox estimand. Finally, we
present some concluding remarks in Sect. 6.

2 Notation

In this paper, probability distributions of factual and counterfactual outcomes are
defined in terms of the potential outcome framework (Neyman 1990; Rubin 1974).
Let Ti and Ai represent the (factual) stochastic outcome and exposure assignment
level of individual i . Let T a

i equal the potential outcome of individual i under an
intervention of level a (counterfactual when Ai �= a). For those more familiar with
the do-calculus, T a is equivalent to T | do(A=a) as e.g. derived in (Pearl 2009,
Equation 40) and (Bongers et al. 2021, Definition 8.6). Throughout this paper, we will
assume causal consistency: if Ai = a, then T a

i = T Ai
i = Ti , implying that potential

outcomes are independent of the assigned exposure levels of other individuals.
The hazard rate of T a can vary among the individuals in the population of interest.

Wewill parameterize this heterogeneity for hazards of T 0 using a random variableU0i
that represents the frailty of individual i (see for example (Aalen et al. 2008, Chapter
6) or Balan and Putter (2020)). There can also be (relative) effect heterogeneity that
we parameterize using the random variable U1i , giving rise to an individual-specific
hazard ratio. The hazard of the potential outcome T a

i can be parameterized with a
function that depends on U0i , U1i and a. We describe cause-effect relations with
a structural causal model (SCM) which is commonly used in the causal graphical
literature, see e.g. (Pearl 2009, Chapter 1.4) and (Peters et al. 2018, Chapter 6), to
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model observations. Instead, we include details on individual effect modifier U1 as
well as the latent common cause of the outcomes U0, to describe all the potential
outcomes of an individual jointly. A SCM as presented in this paper is therefore a
union of the SCM for observations (A=a), and the so-called intervened SCMs for
all possible do(A=a). SCMs have been used before to describe hazards of potential
outcomes (Hernán et al. 2000, 2001, 2005). Formulation of hazard rates of potential
outcomes presented in the literature, e.g. by Aalen et al. (2015) and by Stensrud
et al. (2017), naturally fit in this parameterization. However, as mentioned before, the
dependence of T a and T 0 beyond shared frailty is typically not specified. The SCM
consists of a joint probability distribution of (NA,U0,U1, NT ) and a collection of
structural assignments ( f A, fλ) such that

Ai := f A(NAi ) (2)

λai (t) := fλ(t,U0i ,U1i , a)

T a
i := min{t>0: exp (−Λa

i (t)
)≤NTi },

where∀t : fλ(t,U0i ,U1i , 0) ⊥⊥ U1i | U0i (i.e.whena = 0, fλ does not contain
U1), f A is the inverse cumulative distribution function of A, NAi , NTi ∼
Uni[0, 1], Λa

i (t) = ∫ t
0 λai (s)ds, and U0i ,U1i ⊥⊥ NTi so that λai (t) equals the

hazard rate of the potential outcome given U0 and U1.

Note that the data generating mechanism is described by this SCM as T Ai
i = Ti . If in

SCM (2),
NA �⊥⊥ (U0,U1, NT ), (3)

then there exists confounding as the distributions of (U0,U1, NT ) are not exchange-
able between exposed and non-exposed individuals. However, in this work we focus
on the distribution of data observed from a properly executed RCT, where by the
randomization NA ⊥⊥ (U0,U1, NT ) so that there is no confounding. Note that λai (t)
equals the hazard of the potential outcome of individual i under exposure a, i.e.

λai (t) = lim
h→0

h−1
P

(
T a
i ∈ [t, t + h) | T a

i ≥t,U0i ,U1i
)
, (4)

and is thus a random variable when we consider an arbitrary individual. In this param-
eterization, U0 results in heterogeneity of the hazard under no exposure between
individuals, and the presence ofU1 results in heterogeneity of the effect of the exposure
on the hazard between individuals. The SCM could be re-parameterized by including
more details, e.g. measured risk factors, so that part of the unmeasured heterogeneity
can be explained.

To understand how the so-called built-in selection bias is introduced, realize that
T a
i depends on a and the random variables U0i , U1i , NTi only, i.e. T a

i := min{
t>0: exp

(
− ∫ t

0 fλ(s,U0i ,U1i , a)ds
)

≤NTi

}
= g(U0i ,U1i , NTi , a), for some

function g. In an RCT, NAi ⊥⊥ (U0i ,U1i , NTi ), so

T a
i ⊥⊥ Ai . (5)
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However, this independence might not hold conditionally on survival at time t since
Ti := g(U0i ,U1i , NTi , Ai ), so that Ai |Ti≥t can inform on (U0i ,U1i , NTi ) and thus
on T a

i , then
T a
i �⊥⊥ Ai | Ti≥t . (6)

On the contrary,
T a
i ⊥⊥ Ai | T a

i ≥t, (7)

as T a
i := g(U0i ,U1i , NTi , a), Ai |T a

i ≥t does not inform on (U0i ,U1i , NTi ). In the
literature, the dependence in (6) is often implicitly derived by recognizing that {T≥t}
is a collider that can thus open a back-door path between A and T a (Aalen et al. 2015;
Sjölander et al. 2016). The bias that results fromconditioning on this collider is referred
to as the built-in selection bias of the hazard ratio (Hernán 2010). This complicates
causal inference which requires that the distribution of potential outcomes can be
expressed in terms of the observed distribution.

In SCM (2), we did not restrict the distribution of U0 and U1 and only restricted
fλ and f A to be properly defined hazard and inverse cumulative distribution functions
respectively, so that the structural model is very general. It is important to realize
that a SCM cannot be validated with data as it describes potential outcomes from
different universes. For each individual the outcome can only be observed in one of
the universes, and only the fit of the distribution of the outcomes in the factual world
can be verified. In this work we focus on settings where the causal effect can be
accurately described with a causal hazard ratio, which is defined in the next section.
This will be the case when in SCM (2),

fλ(t,U0i ,U1i , a) = f0(t,U0i ) f1(t,U1i , a) and f1(t,U1i , 0) = 1.

In the remainder of this manuscript we will restrict ourselves to cause-effect relations
that meet this restriction.

3 The causal hazard ratio

If fλ(t,U0i ,U1i , a) = f0(t,U0i ) f1(t,U1i , a) and f1(t,U1i , 0) = 1, then the indi-
vidual causal effect is described by f1(t,U1i , a). The latter equals the ratio at time t
of the hazard of an individual’s potential outcome when exposed to level a and when

not exposed, i.e.
λai (t)

λ0i (t)
. In the case of homogeneous effects, f1(t,U1i , a) = f1(t, a)

is equal for all individuals. In the case of heterogeneity of effects, f1(t,U1i , a) is the
individual multiplicative causal effect. From a public health perspective, the ratio of
the expected hazard rates in the world where everyone is exposed to a and in the world
where all individuals are not exposed is of interest. This causal hazard ratio (CHR) of
interest can be obtained as the ratio of the marginalized (over U0 and U1) conditional
hazard rates in both worlds as presented in Definition 1.
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Definition 1 Causal hazard ratio The causal hazard ratio (CHR) for cause-effect
relations that can be parameterized with SCM 2 equals

E
[
λai (t)

]

E
[
λ0i (t)

] =
∫
limh→0 h−1

P (T a ∈ [t, t + h) | T a≥t,U0,U1) dFU0,U1∫
limh→0 h−1P

(
T 0 ∈ [t, t + h) | T 0≥t,U0

)
dFU0

, (8)

where we abbreviate the Lebesque-Stieltjes integral of a function g with respect to
probability law FX , i.e.

∫
g(x)dFX (x), as

∫
g(X)dFX .

When the parameterization of the cause-effect relations as SCM (2) would be
known, the CHR can be expressed in terms of the distribution of the data generat-
ing mechanism as presented in Theorem 1.

Theorem 1 If the cause-effect relations of interest can be parameterized with SCM
(2), and NA ⊥⊥ U0,U1, NT (no confounding), then

E
[
λai (t)

]

E
[
λ0i (t)

] =
∫
limh→0 h−1

P (T ∈ [t, t + h) | T≥t,U0,U1, A=a) dFU0,U1∫
limh→0 h−1P (T ∈ [t, t + h) | T≥t,U0, A=0) dFU0

.

For an example, consider the commonly used frailty model where effect heterogeneity
is absent, i.e.

λai (t) = U0iλ0(t) f1(t, a).

The CHR equals the multiplicative effect that does not differ among individuals and
equals f1(t, a). By applying Theorem 1, this CHR is indeed derived to equal

∫
limh→0 h−1

P (T ∈ [t, t + h) | T≥t,U0, A=a) dFU0∫
limh→0 h−1P (T ∈ [t, t + h) | T≥t,U0, A=0) dFU0

= λ0(t)E[U0] f1(t, a)

λ0(t)E[U0] .

It is important to note that f1(t, a) deviates from the expected observed hazard ratio
equal to

limh→0 h−1
P (T ∈ [t, t + h) | T≥t, A=a)

limh→0 h−1P (T ∈ [t, t + h) | T≥t, A=0)
= λ0(t)E[U0 | T≥t, A=a] f1(t, a)

λ0(t)E[U0 | T≥t, A=0] ,

as we will elaborate on in Sect. 4.
In summary, it became clear that to derive the CHR from data, inference on the

distribution of the latent frailty U0 and effect modifier U1 must be made. When their
distributions are known, inference can be drawn from observed data, even when the
parameters of the distributions are unknown. Software available to estimate frailty
parameters are described by Balan and Putter (2020), and such methods could also
be adapted to estimate the latent modifier distribution. However, in practice, the dis-
tributions of these latent variables are unknown. Even in the case without causal
effect heterogeneity, it is impossible to distinguish the presence of frailty from a
time-dependent causal effect (Balan and Putter 2020, Section 2.5). More precisely,
different combinations of (varying) effect sizes and frailty distributions give rise to
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the same marginal distribution. The same applies to combinations that also involve
effect modifiers. In the case of clustered survival data (e.g. family data (Valberg et al.
2018)), at least theoretically, the shared frailty could be distinguished from violation
of proportional hazards (Balan and Putter 2020). Reasoning along the same lines,
individual frailty and marginal time-varying effects could only be derived from effect
heterogeneity in the case of recurrent events with stationary distributions.

4 Survivor marginalized causal hazard ratio

In Theorem 1, the actual CHR (see Definition 1) has been expressed in terms of the
distributions of the observed data, and we concluded that these are not identifiable
without making untestable assumptions on the distribution of (U0,U1). Instead, prac-
titioners often compute the hazard ratio from data, which expectation we refer to as
the observed hazard ratio (OHR) and equals

OHR(t) = limh→0 h−1
P (T ∈ [t, t + h) | T≥t, A=a)

limh→0 h−1P (T ∈ [t, t + h) | T≥t, A=0)
. (9)

To be precise, at time t the hazard rate can only be observed for non-censored indi-
viduals at that time (C(t) = 0). However, in this work we will assume independent
censoring, so that P (T | T≥t, A=a) is equal to P (T | T≥t, A=a,C(t)=0).

To compare the OHR to the CHR that quantifies the causal effect of interest, the
OHR should be expressed in terms of potential outcomes. For data from an RCT, by
independence (7) and causal consistency, the OHR equals the survivor marginalized
causal hazard ratio (SMCHR), i.e.

SMCHR(t) = limh→0 h−1
P (T a ∈ [t, t + h) | T a≥t)

limh→0 h−1P
(
T 0 ∈ [t, t + h) | T 0≥t

) . (10)

This SMCHR should not be confused with the ‘marginal causal hazard ratio’ defined
by Martinussen et al. (2020) as

limh→0 h−1
P

(
T a ∈ [t, t + h) | T a≥t, T 0≥t

)

limh→0 h−1P
(
T 0 ∈ [t, t + h) | T 0≥t, T a≥t

) , (11)

that could also be named the cross-world survivor marginalized causal hazard ratio
and is not considered in this work.

We will study how the SMCHR (and thus the OHR from an RCT) differs from the
CHR over time. By the law of total probability, the SMCHR in (10) equals

limh→0
∫
h−1

P (T a ∈ [t, t + h) | T a≥t,U0,U1) dFU0,U1|T a≥t

limh→0
∫
h−1P

(
T 0 ∈ [t, t + h) | T 0≥t,U0

)
dFU0|T 0≥t

. (12)

As the integration in the result of Theorem 1 is with respect to the population distribu-
tion ofU0 andU1, instead of those individuals for which T a≥t or T 0≥t , the SMCHR
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deviates from the CHR, resulting in the built-in selection bias of the hazard (Hernán
2010; Aalen et al. 2015; Stensrud et al. 2018).

The problem induced for estimation of the CHR thus results from inference on a
different estimand; the combined effect of the exposure of interest and the difference
in latent frailty (and effect modification) distribution. To formalize how (10) deviates
from the CHR that equals E[ f0(t,U0) f1(t,U1,a)]

E[ f0(t,U0)]
, we focus on hazard functions that satisfy

Condition 1 and do thus not have an infinite discontinuity.

Condition 1 Hazard without infinite discontinuity

∀t>0: ∃h̃>0 such that ∀h∗ ∈ (0, h̃): E [
f0(t+h∗,U0) f1(t+h∗,U1, a) | T a≥t

]
<∞

The value of the SMCHR at time t is derived in Theorem 2 and can deviate from the
CHR.

Theorem 2 If the cause-effect relations of interest can be parameterized with SCM
(2), where

λai (t) = f0(t,U0i ) f1(t,U1i , a),

and Condition 1 applies, then

limh→0 h−1
P (T a ∈ [t, t + h) | T a≥t)

limh→0 h−1P
(
T 0 ∈ [t, t + h) | T 0≥t

) = E
[
f0(t,U0) f1(t,U1, a) | T a≥t

]

E
[
f0(t,U0) | T 0≥t

] .

From the proof presented in Appendix A.2, it becomes clear that the con-
ditional expectations that determine the value of the SMCHR equal weighted
means of f0(t, u0) f1(t, u1, a) and f0(t, u0) with weights P(T a≥t |U0=u0,U1=u1)

P(T a≥t) and
P(T 0≥t |U0=u0)

P(T a≥t) respectively.
To develop our understanding of the difference between the SMCHR and the CHR,

wewill first continue to study the difference due to frailty and heterogeneity separately
in the next two subsections. In the remainder of the section we present examples for
cause-effect relations with effect heterogeneity in the presence of frailty, both for
independent and dependent U0 and U1. All programming codes used in the examples
presented in this paper can be found online at https://github.com/RAJP93/CHR.

4.1 Causal effect homogeneity

In the case of homogeneousmultiplicative causal effects on thehazard, i.e. f1(t,U1i , a)

= f1(t, a), the ratio of the marginal hazard rates of individuals satisfying T a
i ≥t and

of those T 0
i ≥t equals f1(t, a) multiplied by a factor that depends on the difference in

frailty distributions at time t in those two populations as derived in Corollary 1.

Corollary 1 If the cause-effect relations of interest can be parameterized with SCM
(2), where

λai (t) = f0(t,U0i ) f1(t, a),
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and condition 1 applies then

limh→0 h−1
P (T a ∈ [t, t + h) | T a≥t)

limh→0 h−1P
(
T 0 ∈ [t, t + h) | T 0≥t

) = E
[
f0(t,U0) | T a≥t

]

E
[
f0(t,U0) | T 0≥t

] f1(t, a).

Asstated in theproof inAppendixA.3, the conditional expectationE
[
f0(t,U0) | T a≥t

]

now equals a weighted mean of f0(t, u0). The weights equal
P(T a≥t |U0=u0)

P(T a≥t) and over

time increase for favourable values of U0. If ∀t>0: Λa(u0, t) < Λ0(u0, t), e.g. when

∀t>0: f1(t, a)<1, then the weights P(T a≥t |U0=u0)
P(T a≥t) increase slower than P(T 0≥t |U0=u0)

P(T 0≥t)
for favourable values of u0, so that for all t > 0:

E
[
f0(t,U0) | T a≥t

]

E
[
f0(t,U0) | T 0≥t

] > 1. (13)

Then, the SMCHR is larger than the CHR at all times. On the contrary, when
∀t>0: Λa(u0, t) > Λ0(u0, t), then for all t > 0:

E
[
f0(t,U0) | T a≥t

]

E
[
f0(t,U0) | T 0≥t

] < 1, (14)

and the SMCHR is larger than the CHR. An example of the latter was showcased by
Stensrud et al. (2017), where a model with f1(t, a) = 1.81a , f0(u0, t) = u0λ0(t) and
compound Poisson distributed frailty U0 could well explain the decrease of the effect
of hormone replacement therapy on coronary heart disease in postmenopausal women
over time as observed from an RCT by the Woman Health Initiative. Based on the
same case study, Hernán (2010) explained that even when f1(t, a) is time-invariant
the SMCHR is time-varying, as we have formalized in Corollary 1, so that estimates
can depend on the follow-up time.

For frailty models as presented by Aalen et al. (2015) and Stensrud et al. (2017),
where f0(t,U0i ) = U0iλ0(t), it has been shown by Balan and Putter (2020) that
E [U0 | T≥t, A=a] can be expressed in terms of the Laplace transform of the frailty
U0.Reasoning along the same lines,E

[
U0 | T a≥t

]
is expressed in termsof theLaplace

transform of the U0 in Lemma 1.

Lemma 1 If the cause-effect relations of interest can be parameterized with SCM (2),
where

fλ(t,U0i ,U1i , a) = U0iλ0(t) f1(t, a),

then

E
[
U0 | T a≥t

] = −L′
U0

(
∫ t
0 λ0(s) f1(s, a)ds)

LU0(
∫ t
0 λ0(s) f1(s, a)ds)

, (15)

where LU0(c) = E
[
exp (−cU0)

]
with derivative L′

U0
(c).

As considered by (Balan andPutter 2020, Figure 5),we present exampleswith different
frailty distributions. To illustrate the so-called selection bias, we consider a binary
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Fig. 1 SMCHR over time when λai (t) = U0i
t2
20μa for μ = 3 (green) and μ = 1

3 (orange), when U0
follows a gamma (left), inverse Gaussian (middle) or compound Poisson (right) distribution with variance
0.5 (dotted), 1 (solid) or 2 (dashed) respectively

exposure and let

λai (t) = U0iλ0(t)μ
a,

where λ0(t) = t2
20 , E[U0] = 1 and var(U0) = θ0 with U0 following a Gamma

(Γ (θ−1
0 , θ0)), inverseGaussian (IG(1, θ−1

0 )) or compoundPoisson (CPoi(3θ−1
0 , 1

2 ,
2
3θ0)

distribution respectively. The parameterizations, corresponding Laplace transforms
and expressions forE[U0 | T a≥t] can be found inAppendix B. By applying Lemma 1,
E[U0 | T 1≥t] and E[U0 | T 0≥t] can be derived. The expressions for these quantities
are presented in Table 2 in Appendix C. The SMCHR then follows from Corollary 1
(as the conditional hazard is monotone increasing).

How the SMCHR deviates from the CHR (equal to μ) over time for μ ∈ { 13 , 3},
and θ0 ∈ {0.5, 1, 2} is visualized in Fig. 1.

For both μ = 1
3 and μ = 3 the selection of individuals that survive time t results

in a SMCHR that evolves in the opposite direction of the causal effect, towards 1,
√

μ

and
√

μ−1 respectively. For the case of a compound Poisson frailty, the logarithm of
this latter limit is even opposite to the sign of the logarithm of the CHR due to the
nonsusceptible individuals. For all types of frailty, the higher the variance of U0, the
larger the difference between the SMCHR and the CHR. For comparison we have
also presented the survival curves of T 1 and T 0 in Fig. 9 in Appendix E for the setting
where θ0 = 1. Note that for anRCT, by the independence in (5) and causal consistency,
T a follows the same distribution as the time-to-event for individuals exposed to a

(T a d= T |A=a).
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4.2 Causal effect heterogeneity in the absence of frailty

Beforewe return to the general case presented inTheorem2, let’s consider the presence
of effect heterogeneity in the absence of frailty, i.e.

fλ(t,U0i ,U1i , a) = λ0(t) f1(t,U1i , a).

If the CHR, E[ f1(t,U1i , a)], is equal for all t , the SMCHR is not, as over time the
exposed individuals that ‘benefit’ more are more likely to survive. The effect of this
selection on the SMCHR over time is formalized in Corollary 2.

Corollary 2 If the cause-effect relations of interest can be parameterized with SCM
(2), where

λai (t) = λ0(t) f1(t,U1i , a),

and Condition 1 applies then

limh→0 h−1
P (T a ∈ [t, t + h) | T a≥t)

limh→0 h−1P
(
T 0 ∈ [t, t + h) | T 0≥t

) = E
[
f1(t,U1, a) | T a≥t

]
.

TheSMCHRthus equalsE
[
f1(t,U1, a) | T a≥t

]
,which is smaller thanE [ f1(t,U1, a)]

as more weight is placed on lower values of f1(t, u1, a) that correspond to higher
P(T a≥t | U1 = u1). Besides the selection of frailty factors, the selection of individ-
ual modifiers can thus also lead to selection bias of the estimated hazard ratio. For
this hypothetical setting without frailty but with effect heterogeneity, the CHR at t is
systematically lower (irrespective of whether the exposure is beneficial or harmful on
average) than the SMCHR, so the exposure seems more ‘beneficial’ than it is. For a
harming exposure, the resulting attenuation of the effect has only been explained due
to the presence of frailty and not due to the presence of individual modifiers (Hernán
2010; Stensrud et al. 2017).

Similar to the examples presented in Sect. 4.1, we let λ0 = t2
20 , E[U1] = μ and

var(U1) = θ1 withU1 following a Gamma (Γ (
μ
θ1

, θ1
μ

)), inverse Gaussian (IG(μ,
μ3

θ1
))

or compound Poisson (CPoi(3μ2

θ1
, 1
2 ,

2θ1
3μ )) distribution respectively. By applying

Lemma 1 for a = 1 (since λ1i (t) = U1iλ0(t)), we can derive E[U1 | T 1≥t], which by
Corollary 2 (as the conditional hazard is monotone increasing) equals the SMCHR,
and is presented in Table 3 in Appendix C. Additionally, we derived E[U1 | T 1≥t] for
a setting where the multiplicative hazard effect modifier U1 equals μ1 (≤1, for indi-
viduals that benefit) with probability p1,μ2 (≥1, for individuals that are harmed) with
probability p2 or 1 (for individuals that are not affected). We define this distribution
as the Benefit-Harm-Neutral, BHN(p1, μ1, p2, μ2), distribution.

For E[U1] ∈ { 1
3 , 3

}
, and θ1 ∈ {0.5, 1, 2} the evolution of the conditional expec-

tation is shown in Fig. 2 for all four effect-modifier distributions. For the BHN
distribution, when E[U1] equals 1

3 and 3, we fix p1 = 0.9, μ1 = 0.1 and p1 = 0.05,
μ1 = 0.5 respectively. Expressions for p2 and μ2 such that E[U1] = μ and
var(U1) = θ1 can be found in Appendix B.4.
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Fig. 2 SMCHR over time when λai (t) = t2
20 (U1i )

a when U1 follows a BHN, gamma, inverse Gaussian or

compound Poisson distribution (from left to right) with expectation 3 (blue) or 1
3 (brown) and variance 0.5

(dotted), 1 (solid) or 2 (dashed) respectively

When the exposure is in expectation harming (E[U1] = 3), for all settings con-
sidered, there is a point in time that the SMCHR drops below 1. For the continuous
distributions, the SMCHR won’t stop decreasing. The decreases for the gamma and
compound Poisson settings are very similar, while for the inverse Gaussian setting,
this goes a bit slower. For the discrete setting, the SMCHR converges to μ1 of 0.1 and
0.5, respectively. Again, as in the previous subsection, the higher the variability of the
latent variable, the faster the SMCHR deviates from the CHR. Only for the discrete
effect modifier, the lines cross for the different variances for E[U1 = 3], but this is the
result of different fractions of individuals that are not affected by the exposure (as the
mean and variance are coupled).

4.3 Causal effect heterogeneity in the presence of frailty

In the general case where effect heterogeneity and frailty are present, both het-
erogeneities affect the value of the SMCHR. By Theorem 2, the ratio evolves as
E[ f0(t,U0) f1(t,U1,a)|T a≥t]

E[ f0(t,U0)|T 0≥t] . The numerator depends on the joint distribution of U0 and

U1. For illustration, we again consider a binary exposure and let

fλ(t,U0i ,U1i , a) = U0i (U1i )
aλ0(t) f1(t, a),

such that the SMCHR equals
E

[
U0U1|T 1≥t

]

E[U0|T 0≥t] f1(t, 1) and, by Lemma 1, can be derived

from the Laplace transforms of U0U1 and U0 respectively.

4.3.1 Independent U0 and U1

In the case of independence, the Laplace transform of the product equalsE[LU0 (cU1)],
which generally does not adopt a tractable form. The case with a discrete effect mod-
ifier, introduced in Sect. 4.2, forms an exception. If U1 ∼ BHN(p1, μ1, p2, μ2), then

LU0U1(c) = p1LU0(μ1c) + p2LU0(μ2c) + (1 − p1 − p2)LU0(c). (16)
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Fig. 3 SMCHR over time when λai (t) = U0i (U1i )
a t2
20 for a unit-variance BHN distributed U1 with

E[U1] = 3 (opaque green) and E[U1] = 1
3 (opaque orange) when U0 follows a gamma (left), inverse

Gaussian (middle) or compound Poisson (right) distribution with variance 0.5 (dotted), 1 (solid) or 2
(dashed) respectively. For comparison, the lines presented in Fig. 1 are represented by transparent lines

We present the running example where f1(t, a) = 1 and λ0 = t2
20 . As in Sect. 4.1, U0

follows a Gamma (Γ (θ−1
0 , θ0)), inverse Gaussian (IG(1, θ−1

0 )) or compound Poisson
(CPois(3θ−1

0 , 1
2 ,

2
3θ0)) distribution respectively. Moreover, the latent modifier U1 is

independent of U0 and follows a unit-variance BHN distribution with mean μ. The
expressions for E[U0U1 | T 1≥t] are presented in Table 4 in Appendix C. As the
E[U0 | T 0≥t] are independent of the U1 distribution these expectations are the same
as presented in Table 2 in Appedix C. The SMCHR and its limit can be derived by
applying Theorem 2 (as the conditional hazard is monotone increasing). Interestingly,
for gamma frailty, as in the case without effect heterogeneity, this limit remains 1. For
the inverse Gaussian frailty, selection of the effect modifier drastically changes the
limit from

√
E[U1] to √

μ1, which is always less or equal to 1. Finally, for compound

Poisson frailty the limit changes from
√
E[U1]−1 to p1√

μ1
+ p2√

μ2
+ (1 − p1 − p2).

The evolution of
E

[
U0U1|T 1≥t

]

E[U0|T 0≥t] over time is visualized in Fig. 3 for θ0 ∈ {0.5, 1, 2}
and U1 ∼ BHN(0.9, 0.1, 0.03, 6.0), such that E[U1] = 1

3 and var(U1) = 1, and for
U1 ∼ BHN(0.05, 0.5, 0.82, 3.5), such that E[U1] = 3 and var(U1) = 1.

In the case the CHR is larger than one, the selection of less susceptible individuals
(frailty) that are harmed less (effect modifier) in the exposed world, both cause the
SMCHR to be smaller than the CHR. Then, the SMCHR decreases faster in the pres-
ence of effect heterogeneity. This explains the observation by Stensrud et al. (2017),
“Interestingly, the magnitude of frailty bias is larger when a heterogeneous treatment
effect is included", for a simulation with frailty and random individual hazard ratios
such that E[λ1i (t)] = 1.81 > 1. For the gamma and compound Poisson frailty exam-
ples, this effect is relatively small asE[U1U0 | T 1≥t] is quite similar toE[U0 | T 1≥t]
(presented in Table 4) for the selected p1, μ1, p2 and μ2. However, for inverse Gaus-
sian frailty, the SMCHR deviates much more from the CHR in the presence of effect
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heterogeneity. In Fig. 7 in Appendix D, the evolution of the SMCHR is presented for
a longer timescale, and the limits become apparent.

If the CHR is smaller than one, then the selection of less susceptible individuals
(frailty) in the unexposed world and the selection of individuals that benefit more
(effect modifier) in the exposed world have opposite effects on the SMCHR. For this
case of discrete effect modifiers, the SMCHR first decreases by selecting individuals
with more beneficial modifiers and later increases (above the CHR) when the frailty
selection effect reveals. For the examples presented, the fraction p1 = 0.9 of the
population with μ1 = 0.1 are expected to survive so that over time the SMCHR will
resemble the SMCHR in the absence of effect heterogeneity for this subpopulation
(with the CHR equal to 0.1). The limit for gamma frailty is still one, so the SMCHR
deviates less from the CHR due to the two opposed selection effects. The difference is
strongly reduced for the inverse Gaussian frailty as the limit

√
0.1 is close to the actual

CHR. Finally, for the compound Poisson frailty, the SMCHRwith effect heterogeneity
crosses the SMCHR in the absence of effect heterogeneity as the frailty bias is larger
for a CHR of 0.1 compared to one of 1

3 .
In summary, the bias for the CHR can further increase in the presence of effect het-

erogeneity, stressing the issues regarding the causal interpretation of OHRs (assuming
no confounding). However, for beneficial exposures, the frailty bias can reduce in the
presence of effect heterogeneity (e.g. inverse Gaussian frailty), illustrating that there
might be settings where the SMCHR is close to the CHR.

4.3.2 Dependent U0 and U1

In case themultiplicative effect of the exposure on the hazard of susceptible individuals
is expected to be higher or lower than for less susceptible individuals, the distribution
of U0U1 will be less or more variable than when the latent variables are independent.
Every bivariate joint distribution function, F(U0,U1), can be written using the marginal
distribution functions and a copula C (Sklar 1959). As such,

F(U0,U1)(u0, u1) = C
(
FU0(u0), FU1(u1)

)

and the Kendall’s τ correlation coefficient of U0 and U1 can be written as a function
of the copula (Nelsen 2006). To study how the dependence can affect the SMCHR for
the setting presented in Fig. 3, we use a Gaussian copula

C(x, y) = Φ2,ρ(Φ−1(x),Φ−1(y)),

where Φ and Φ2,ρ are the standard normal and bivariate normal with correlation ρ

cumulative distribution functions, respectively. For ρ ∈ {−1, sin(−π
4 ), 0, sin(π

4 ), 1}
(such that τ ∈ {−1,− 1

2 , 0,
1
2 , 1}) and var(U0) = 1, E

[
U0U1 | T 1≥t

]
is derived

empirically from simulations and are presented in Fig. 8 in Appendix D. The results
were very similar when using a Frank, Clayton or Gumbel copula instead of the
Gaussian copula. The SMCHRs are presented in Fig. 4.
Note that for τ = 0, we recover the independent setting already shown in Fig. 3 that
can be used for comparison. First of all, when U0 and U1 are dependent, the CHR
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Fig. 4 SMCHR over time for λai (t) = U0i (U1i )
a t2
20 , for a unit-variance BHN distributedU1 withE[U1] =

3 (green) or E[U1] = 1
3 (orange), U0 follows a gamma (left), inverse Gaussian (middle) or compound

Poisson (right) distribution and the joint distribution of U0 and U1 follows from a Gaussian copula with
varying Kendall’s τ correlation coefficients (see legend)

Fig. 5 SMCHR over time for λai (t) = U0i (U1i )
a t2
20 , for a unit-variance gamma distributed U1 with

E[U1] = 3 (green) or E[U1] = 1
3 (orange), U0 follows a gamma (left), inverse Gaussian (middle) or

compound Poisson (right) distribution and the joint distribution of U0 and U1 follows from a Gaussian
copula with varying Kendall’s τ correlation coefficients (see legend)

equals E[U1] + cov(U0,U1). For CHRs greater than one, it becomes clear that the
selection effect is more serious for cases with a high positive correlation between U0
and U1. The stronger selection effect is due to the higher variability of U0U1. For
CHRs less than one, this trend is only true at short timescales, after which the frailty
selection effect takes over since, for this example, for a large fraction of the individuals,
p1 = 0.9, the effect is the same (U1 = 0.1).

Whenwe use a continuous gamma distributedU1 instead, the frailty selection effect
is less apparent, as shown in Fig. 5.

So far, for CHRs larger than one, we have observed amonotonic SMCHR.However,
in the case of strong dependence between U0 and U1 (|τ | = 1), for inverse Gaussian
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Table 1 Assuming no confounding, an OHR (at time t) equal to a particular value x can occur for all values
of a constant CHR as a result of selection of the frailty (U0) or modifier (U1) which might be dependent

Cause Presented examples

x>1 CHR>x Frailty or modifier selection Figs. 1, 2 and 3

1<CHR<x Dependence U0 and U1 Inverse Gaussian frailty - τ = 1
(Figs. 4 and 5)

CHR<1 Frailty selection Compound Poisson frailty (Figs. 1
and 3)

x<1 CHR>1 Frailty or modifier selection Compound Poisson frailty (Figs. 1
and 3)

x<CHR<1 Modifier selection Gamma distributed modifier (Fig. 5)

CHR<x Frailty selection Figs. 1 and 3

frailty, E[U0 | T 0≥t] decreases faster than E[U0U1 | T 1≥t] resulting in a non-
monotonic trend for the SMCHR. For a Gamma distributed U1, in the case of inverse
Gaussian distributedU0 with τ = 1, the SMCHR even equals a monotonic increasing
function over time as shown in Fig. 5.

In Sect. 4, we have derived and applied Theorem 1 to several examples to illustrate
the deviation of the SMCHR from the CHR. In summary, even when the CHR is
constant, an OHR from an RCT equal to a particular value x (at time t) can occur for
different CHR values when the (U0,U1) distribution is unknown as summarized in
Table 1.

5 Implications for the Coxmodel

We have demonstrated that in the presence of frailty and effect heterogeneity, even
when the CHR is time-invariant, the SMCHR varies over time. Then, the proportional
hazards assumption will not hold for an observed hazard ratio from an RCT (that is,
with independent censoring, equal to the SMCHR as discussed at the start of Sect. 4).
Despite themany options to deal with non-proportional hazards (see, e.g. (Thernau and
Grambsch 2000, Section 6.5) or Bennett 1983; Hess 1994; Wei and Schaubel 2008),
in the majority of epidemiological time-to-event studies, the misspecified traditional
Cox’s proportional hazard model is fitted. The logarithm of the Cox estimate can be
interpreted as the logarithm of the OHR marginalized over the observed death times
(Schemper et al. 2009), i.e. E[log(OHR(T )) | C = 0] for censoring indicator C . The
logarithm of the Cox estimate obtained from an RCT thus equals a time-weighted
average of the logarithm of the OHR. In the case of non-proportional hazards, even
for independent censoring, the estimate is well-known to be affected by the censoring
distribution. It differs from the average log hazard ratio E

[
log(OHR(T ))

]
(Xu and

O’Quigley 2000; Schemper et al. 2009; Boyd et al. 2012). Therefore, the bias of the
Cox estimate, when the estimand is the CHR, will depend on the joint distribution of
(U0,U1) as well as the censoring distribution. In most cases considered in Sect. 4, the
deviation of the OHR from the CHR increased over time. For independent censoring,
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Fig. 6 Empirically obtained
exp (E[log(OHR(T )) | C = 0])
for an increasing time to
follow-up (solid pink), and cases
with an additional exponentially
distributed censoring time (TC ,
dashed pink), when

λai (t) = U0i (U1i )
a t2
20 ,

U1 ∼ BHN(0.05, 0.5, 0.82, 3.5)
and U0 ∼ Γ (1, 1). The SMCHR
is also presented (green)

the probability of censoring increases over time, so the Cox estimate is closer to
the OHR at short times. In Fig. 6, this is demonstrated for the gamma-frailty case
(var(U0) = 1, forwhich theSMCHRwaspresented inFig. 3) bypresenting empirically
obtained E[log(OHR(T )) | C = 0] (with 1,000,000 replications) based on a varying
follow-up time and loss to follow-up modelled with an exponential censoring-time
distribution with varying means.

A time-varying OHR violates the proportional hazard assumption that can be ver-
ified when fitting a Cox model. When the assumption is not rejected in practice, the
statistical test used is probably underpowered. In the presence of heterogeneity, only
when the actual CHRwould be time-varying, the OHR can be approximately constant
when the selection effect and the change in CHR roughly cancel out (Stensrud et al.
2018; Stensrud and Hernán 2020). The data cannot be used to distinguish the latter
case from the case with a constant CHR but no heterogeneity and, thus, no selection
effect. Similarly, as mentioned at the end of Sect. 3, when the OHR would vary over
time, we can never conclude whether this is the result of a time-varying causal effect
or due to selection. However, the proportional hazard assumption would be violated
in both cases, and a standard Cox model is inappropriate.

6 Discussion

In this paper, we have formalized how heterogeneity leads to deviation of the SMCHR
(see Equation (10)) from the CHR of interest (see Definition 1) due to the selection
of both the individual frailty factor (U0) and the individual effect modifier (U1). This
work generalizes frailty examples presented in the literature (Hernán 2010; Aalen et al.
2015; Stensrud et al. 2017), by considering the possibility of multiplicative effect (on
the hazard) heterogeneity that also results in non-exchangeability of exposed and
unexposed individuals over time. As a result of the individual effect modifier (U1), the
individuals that survive in the exposed groups are expected to benefit more or suffer
less from the exposure. At the same time U0|T 1≥t will have a different distribution
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than U0|T 0≥t . When the CHR is larger than one, and U0 ⊥⊥ U1, the selection effects
act in the same direction. On the other hand, when the CHR is smaller than one and
U0 ⊥⊥ U1, the selection effects can act in opposite directions so that the SMCHRmight
be closer to the CHR than in the case without effect heterogeneity (see Fig. 3).

For data from an RCT, with independent censoring, the expected observed hazard
ratio equals the studied SMCHR so that all results directly relate to this OHR. For
observational data, theOHRdoes not equal the SMCHRdue to confounding.However,
when all confounders L are observed, i.e. T a ⊥⊥ A | L, one can study the conditional
(on L) OHR that in turn is equal to the conditional SMCHR. The presented theorems
are valid while conditioning on L.

The intuition explained by Hernán (2010) suggests that an appropriate estimate of
the SMCHR is expected to underestimate the actual effect size, while the sign of the
logarithms of the SMCHR and the CHR are equal. However, we have shown that in the
presence of effect heterogeneity, an SMCHR equal to a particular value x can occur
both under CHR>1 as well as CHR<1 as summarized in Table 1. Therefore, OHRs
from RCTs are not guaranteed to present a lower bound for the causal effect without
making untestable assumptions on the (U0,U1) distribution. We have derived how the
SMCHR will evolve due to the selection of frailty and effect modifiers in Theorem 1.
However, in practice, only the evolution of the OHR can be found (assuming suffi-
cient data is available). Even after assuming the absence of confounding (e.g. for an
RCT), the CHR is non-identifiable without making (untestable) assumptions on the
(U0,U1) distribution as discussed at the end of Sect. 3. We can thus not distinguish
between a time-varying CHR without selection ofU0 andU1 or a time-invariant CHR
with selection, see e.g. Stensrud and Hernán (2020). Adjusting for other risk factors
can lower the remaining variability of U0 and U1 so that the difference between the
conditional OHR and CHR is reduced. Even for an RCT, it may thus help to focus on
adjusted hazard ratios despite the absence of confounding. Nevertheless, adjusting for
other risk factors will require more data and modelling decisions.

Finally, we want to remark that for cause-effect relations that cannot be described
by SCM (2) with fλ(t,U0i ,U1i , a) = f0(t,U0i ) f1(t,U1i , a), the CHR is not the
appropriate measure to quantify the causal effect. Then, other causal hazard contrasts
can be relevant that may or may not have an observable analog. For example, additive
hazard models (when well-specified) do not suffer from the frailty selection as shown
by Aalen et al. (2015), but these models will still suffer from latent modifier selection
in the presence of effect heterogeneity (E[U1 | T 1≥t]>E[U1]) as demonstrated in our
companion paper (Post et al. 2024).

We hope that the discussed effect heterogeneity and formalization of the built-in
selection bias of the OHR show the need to use more suitable estimands. As suggested
by others, contrasts of the survival probabilities, the median, or the restricted mean
survival time of potential outcomes are proper measures to quantify causal effects
on time-to-event outcomes (Hernán 2010; Stensrud et al. 2018; Bartlett et al. 2020;
Young et al. 2020).Modelling and estimating hazard rates can still be helpful for causal
inference when the hazards are used to derive one of the appropriate causal estimands
(Ryalen et al. 2018).
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A Proofs

A.1 Proof of theorem 1

Proof

E
[
λai (t)

]

E
[
λ0i (t)

] = E [ f0(t,U0i ) f1(a,U1i , t)]

E [ f0(t,U0i )]

=
∫
limh→0 h−1

P (T a ∈ [t, t + h) | T a≥t,U0,U1) dFU0,U1∫
limh→0 h−1P

(
T 0 ∈ [t, t + h) | T 0≥t,U0

)
dFU0

,

By randomization the independence in (7) applies and the CHR is equal to

∫
limh→0 h−1

P (T a ∈ [t, t + h) | T a≥t,U0,U1, A=a) dFU0,U1∫
limh→0 h−1P

(
T 0 ∈ [t, t + h) | T 0≥t,U0, A=0

)
dFU0

.

Finally, by causal consistency,

E
[
λai (t)

]

E
[
λ0i (t)

] =
∫
limh→0 h−1

P (T ∈ [t, t + h) | T≥t,U0,U1, A=a) dFU0,U1∫
limh→0 h−1P (T ∈ [t, t + h) | T≥t,U0, A=0) dFU0

. ��

A.2 Proof of theorem 2
Proof By the law of total probability,

limh→0 h−1
P (T a ∈ [t, t + h) | T a≥t)

limh→0 h−1P
(
T 0 ∈ [t, t + h) | T 0≥t

) =

limh→0
∫
h−1

P (T a ∈ [t, t + h) | T a≥t,U0,U1) dFU0,U1|T a≥t

limh→0
∫
h−1P

(
T 0 ∈ [t, t + h) | T 0≥t,U0

)
dFU0|T 0≥t

First we focus on the integrand,

h−1
P

(
T a ∈ [t, t + h) | T a≥t,U0,U1

)

= h−1P (T a≥t | U0,U1) − P (T a≥t + h | U0,U1)

P (T a≥t | U0,U1)

= h−1
(
1 − P (T a≥t + h | U0,U1)

P (T a≥t | U0,U1)

)
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= h−1

⎛

⎝1 −
exp

(
− ∫ t+h

0 f0(s,U0) f1(s,U1, a)ds
)

exp
(
− ∫ t

0 f0(s,U0) f1(s,U1, a)ds
)

⎞

⎠

= h−1
(
1 − exp

(
−

∫ t+h

t
f0(s,U0) f1(s,U1, a)ds

))

For monotonic (increasing or decreasing) conditional hazard functions if h2<h1, then

h−1
1

(
1 − exp

(
−

∫ t+h1

t
f0(s,U0) f1(s,U1, a)ds

))

≤h−1
2

(
1 − exp

(
−

∫ t+h2

t
f0(s,U0) f1(s,U1, a)ds

))

or

h−1
1

(
1 − exp

(
−

∫ t+h1

t
f0(s,U0) f1(s,U1, a)ds

))

≥h−1
2

(
1 − exp

(
−

∫ t+h2

t
f0(s,U0) f1(s,U1, a)ds

))

as the average integrated conditional hazard over the interval increases (or decreases).
Moreover,

lim
h→0

h−1
P

(
T a ∈ [t, t + h) | T a≥t,U0,U1

) = f0(s,U0) f1(s,U1, a) ≥ 0.

Then, the limit and integral can be interchanged by directly applying the monotone
convergence theorem.

For non-monotone conditional hazard functions, when Condition 1 applies, for
every t , there exist a h̃ so that∀h∗ ∈(0, h̃):E [

f0(t+h∗,U0) f1(t + h∗,U1, a) | T a≥t
]

<∞. Moreover, let t∗= argmaxs∈(t,t+h̃)
f0(s,U0) f1(s,U1, a), so that for h < h̃:

h−1
P

(
T a ∈ [t, t + h) | T a≥t,U0,U1

) ≤ h−1 (
1 − exp

(−h f0(t
∗,U0) f1(t

∗,U1, a)
))

.

Using the power series definition of the exponential function,

h−1
P

(
T a ∈ [t, t + h) | T a≥t,U0,U1

)

≤h−1

(

1 − 1
∑∞

k=0 h
k( f0(t∗,U0) f1(t∗,U1, a))k 1

k!

)

= h−1

∑∞
k=1 h

k( f0(t∗,U0) f1(t∗,U1, a))k 1
k!∑∞

k=0 h
k( f0(t∗,U0) f1(t∗,U1, a))k 1

k!

= f0(t
∗,U0) f1(t

∗,U1, a)

∑∞
k=1 h

k−1( f0(t∗,U0) f1(t∗,U1, a))k−1 1
k!∑∞

k=0 h
k( f0(t∗,U0) f1(t∗,U1, a))k 1

k!
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= f0(t
∗,U0) f1(t

∗,U1, a)

∑∞
k=0 h

k( f0(t∗,U0) f1(t∗,U1, a))k 1
(k+1)!

∑∞
k=0 h

k( f0(t∗,U0) f1(t∗,U1, a))k 1
k!

< f0(t
∗,U0) f1(t

∗,U1, a).

Furthermore, E
[
f0(t∗,U0) f1(t∗,U1, a) | T a≥t

]
<∞ when ∀h∈(0, h̃): E[ f0(t +

h,U0) f1(t + h,U1, a) | T a≥t] < ∞. Then we can change the order of the limit and
integral by application of the dominated convergence theorem and conclude,

limh→0
∫
h−1

P (T a ∈ [t, t + h) | T a≥t,U0,U1) dFU0,U1|T a≥t

limh→0
∫
h−1P

(
T 0 ∈ [t, t + h) | T 0≥t,U0

)
dFU0|T 0≥t

= E
[
f0(t,U0) f1(t,U1, a) | T a≥t

]

E
[
f0(t,U0) | T 0≥t

] .

Applying Bayes rule, we obtain

E
[
f0(t,U0) f1(t,U1, a) | T a≥t

]

=
∫

f0(t,U0) f1(t,U1, a)dF(U0,U1)|T a≥t

=
∫

f0(t,U0) f1(t,U1, a)
P(T a≥t | U0,U1)

P(T a≥t)
dF(U0,U1)

=
∫

f0(t,U0) f1(t,U1, a)
exp

(
− ∫ t

0 f0(s,U0) f1(s,U1, a)ds
)

∫
exp

(
− ∫ t

0 f0(s,U0) f1(s,U1, a)ds
)
dF(U0,U1)

dF(U0,U1).

Furthermore,

E
[
f0(t,U0) | T a≥t

]

=
∫

f0(t,U0)dFU0|T a≥t

=
∫

f0(t,U0)
P(T a≥t | U0)

P(T a≥t)
dFU0

=
∫

f0(t,U0)

∫
exp

(
− ∫ t

0 f0(s,U0) f1(s,U1, a)ds
)
dFU1|U0

∫
exp

(
− ∫ t

0 f0(s,U0) f1(s,U1, a)ds
)
dF(U0,U1)

dFU0 ,

such that for a = 0,

E

[
f0(t,U0) | T 0≥t

]
=

∫
f0(t,U0)

exp
(
− ∫ t

0 f0(s,U0)ds
)

∫
exp

(
− ∫ t

0 f0(s,U0)ds
)
dFU0

dFU0 .

The ratio of both gives us the result. ��
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A.3 Proof of corollary 1

Proof By Theorem 2,

limh→0 h−1
P (T a ∈ [t, t + h) | T a≥t)

limh→0 h−1P
(
T 0 ∈ [t, t + h) | T 0≥t

) = E
[
f0(t,U0) f1(t,U1, a) | T a≥t

]

E
[
f0(t,U0) | T 0≥t

] .

and equals

∫
f0(t,U0) f1(t,U1, a)

exp(−Λa(t,U0,U1))∫
exp(−Λa(t,U0,U1))dF(U0,U1)

dF(U0,U1)

(∫
f0(t,U0)

exp
(−Λ0(t,U0)

)
∫
exp(−Λ0(t,U0))dFU0

dFU0

)−1

,

where Λa(t, u0, u1) = ∫ t
0 f0(s, u0) f1(s, u1, a)ds and thus Λ0(t, u0) = ∫ t

0 f0(s, u0)
ds.
As U1 is degenerate,

∫
f0(t,U0)

exp
(
− ∫ t

0 f0(s,U0) f1(s,a)ds
)

∫
exp

(
− ∫ t

0 f0(s,U0) f1(s,a)ds
)
dFU0

dFU0

(∫
f0(t,U0)

exp
(
− ∫ t

0 f0(s,U0)ds
)

∫
exp

(
− ∫ t

0 f0(s,U0)ds
)
dFU0

dFU0

)−1

f1(t, a)

= E
[
f0(t,U0) | T a≥t

]

E
[
f0(t,U0) | T 0≥t

] f1(t, a).

��

A.4 Proof of lemma 1

Proof By Bayes rule, the probability density of U0 given T a≥t , f (u0|T a≥t) equals

fU0|T a≥t (u0) = P(T a≥t | U0 = u0) f (u0)∫
P(T a≥t | U0)dFU0

=
exp

(
−u0

∫ t
0 λ0(s) f1(s, a)ds

)
f (u0)

∫
exp

(
−U0

∫ t
0 λ0(s) f1(s, a)

)
dFU0

.

So that the Laplace transform of U0|T a≥t can be written as

LU0|T a≥t (c) = E[exp (−U0c) | T a≥t]
=

∫
exp (−U0c) dFU0|T a≥t (u0)
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=
∫

exp (−u0c)
exp

(
−u0

∫ t
0 λ0(s) f1(s, a)ds

)
f (u0)

∫
exp

(
−U0

∫ t
0 λ0(s) f1(s, a)ds

)
dFU0

du0

=
∫ exp

(
−u0(c + ∫ t

0 λ0(s) f1(s, a)ds)
)
f (u0)

∫
exp

(
−U0

∫ t
0 λ0(s) f1(s, a)ds

)
dFU0

du0

=
E

[
exp

(
−U0(c + ∫ t

0 λ0(s) f1(s, a)ds)
)]

E

[
exp

(
−U0

∫ t
0 λ0(s) f1(s, a)ds

)]

= LU0(c + ∫ t
0 λ0(s) f1(s, a)ds)

LU0(
∫ t
0 λ0(s) f1(s, a)ds)

.

Since for a random variable X , E[X ] = −L′
X (0),

E[U0 | T a≥t] = −L′
U0|T a≥t (0) = −

L′
U0

(∫ t
0 λ0(s) f1(s, a)ds

)

LU0

(∫ t
0 λ0(s) f1(s, a)ds

) .

��

A.5 Proof of corollary 2

Proof By Theorem 2,

limh→0 h−1
P (T a ∈ [t, t + h) | T a≥t)

limh→0 h−1P
(
T 0 ∈ [t, t + h) | T 0≥t

) = E
[
f0(t,U0) f1(t,U1) | T a≥t

]

E
[
f0(t,U0) | T 0≥t

] .

and equals

∫
f0(t,U0) f1(t,U1, a)

exp(−Λa(t,U0,U1))∫
exp(−Λa(t,U0,U1))dF(U0,U1)

dF(U0,U1)

(∫
f0(t,U0)

exp
(−Λ0(t,U0)

)
∫
exp(−Λ0(t,U0))dFU0

dFU0

)−1

,

where Λa(t, u0, u1) = ∫ t
0 f0(s, u0) f1(s, u1, a)ds and thus Λ0(t, u0) = ∫ t

0 f0(s, u0)
ds. As now U0 is degenerate,

∫
f1(t,U1, a)

exp(−Λa(t,U1))∫
exp(−Λa(t,U1))dFU1

dFU1 = E
[
f1(t,U1, a) | T a≥t

]
,

where Λa(t, u1) = ∫ t
0 λ0(s) f1(s, u1, a)ds. ��
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B Laplace transforms

B.1 Gamma

If X ∼ Γ (k, θ), then E[X ] = kθ , var[X ] = kθ2,

LX (c) = (1 + θc)−k,

L′
X (c) = − θk

θc + 1
LX (c),

and

L′′
X (c) = θ2k(k + 1)

(θc + 1)2
LX (c).

When fλ(t,U0i ,U1i , a) = U0iλ0(t) f1(t, a) and U0 ∼ Γ (k, θ), by Lemma 1,

E
[
U0 | T a≥t

] = θk

θΛa(t) + 1
, (17)

where Λa(t) = ∫ t
0 λ0(s) f1(s, a)ds. If E[U0] = μ and var(U0) = θ0, then k = μ2

θ0
,

θ = θ0
μ
and as such

E
[
U0 | T a≥t

] = μ
θ0
μ

Λa(t) + 1
. (18)

In particular, when k = θ−1, then E[U0] = 1, var(U0) = θ0 and

E
[
U0 | T a≥t

] = (
θ0Λ

a(t) + 1
)−1

. (19)

B.2 Inverse Gaussian

If X ∼ IG(μ, λ), then E[X ] = μ, var[X ] = μ3

λ
,

LX (c) = exp

⎛

⎝ λ

μ

⎛

⎝1 −
√

1 + 2μ2c

λ

⎞

⎠

⎞

⎠ ,

L′
X (c) = − μ

√
2μ2c

λ
+ 1

LX (c),

and

L′′
X (c) =

⎛

⎝μ2 λ

λ + 2μ2c
+ μ

λ(
2μ2c

λ
+ 1)

3
2

⎞

⎠LX (c).
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When fλ(t,U0i ,U1i , a) = U0iλ0(t) f1(t, a) and U0 ∼ IG(μ, λ), by Lemma 1,

E
[
U0 | T a≥t

] = μ
√
2Λa(t)μ2

λ
+ 1

, (20)

where Λa(t) = ∫ t
0 λ0(s) f1(s, a)ds. If var(U0) = θ0, then λ = μ3

θ0
and as such

E
[
U0 | T a≥t

] = μ
√
2Λa(t) θ0

μ
+ 1

. (21)

In particular when μ = 1 and λ = θ−1
0 , then E[U0] = 1, var(U0) = θ0 and

E
[
U0 | T a≥t

] = (
2θ0Λ

a(t) + 1
)− 1

2 . (22)

B.3 Compound poisson

If X ∼ CPoi(ρ, η, ν), then X = ∑N
i=1 Yi , where N ∼ Poi(ρ), and Y ∼ Γ (η, ν),

E[X ] = ρην, var[X ] = ρην2 + η2ν2ρ,

LX (c) = exp

(

ρ

((
ν−1

ν−1 + c

)η

− 1

))

,

L′
X (c) = −ρην

(
1

cν + 1

)η+1

LX (c),

and

L′′
X (c) = ην2ρ

(
1

cν + 1

)η+2 (
ηρ

(
1

cν + 1

)η

+ η + 1

)
LX (c).

When fλ(t,U0i ,U1i , a) = U0iλ0(t) f1(t, a) and U0 ∼ CPoi(ρ, η, ν), by Lemma 1,

E
[
U0 | T a≥t

] = ρην

(
1

Λa(t)ν + 1

)η+1

, (23)

where Λa(t) = ∫ t
0 λ0(s) f1(s, a)ds. Let E[U0] = μ and var(U0) = θ0, then ρ =

μ2(1+η)
ηθ0

, ν = θ0
μ(1+η)

and as such

E
[
U0 | T a≥t

] = μ

(
1

Λa(t) θ0
μ(1+η)

+ 1

)η+1

. (24)

In particular, when η = 1
2 , ρ = 3θ−1

0 and ν = 2
3θ0, then E[U0] = 1, var(U0) = θ0

and

E
[
U0 | T a≥t

] = (1 + Λa(t) 23θ0)
− 3
2 . (25)
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B.4 Discrete

Let P(X = μi ) = pi for i > 0 and i ≤ k,

LX (c) =
n∑

i=1

pi exp (−cμi ) ,

L′
X (c) =

n∑

i=1

−μi pi exp (−cμi ) ,

and

L′′
X (c) =

n∑

i=1

μ2
i pi exp (−cμi ) .

Furthermore, if Y ∼ F , then

LXY (c) =
n∑

i=1

piLY (cμi ),

L′
XY (c) =

n∑

i=1

piμiL′
Y (cμi ),

and

L′′
XY (c) =

n∑

i=1

piμ
2
i L

′′
Y (cμi ).

Let U1 equal μ1, μ2 or 1 with probability p1, p2 and 1 − p1 − p2 respectively. If

p2 = (μ − μ1 p1 + p1 − 1) 2

μ2 − 2μ − μ2
1 p1 + 2μ1 p1 − p1 + θ1 + 1

,

and

μ2 = μ2 − μ − μ2
1 p1 + μ1 p1 + θ1

μ − μ1 p1 + p1 − 1
,

such that p2 ∈ [0, 1] and μ2≥1, then E[U1] = μ and var(U1) = θ1.
When, fλ(t,U0i ,U1i , a) = λ0(t)(U1i )

a f1(t, a), by Lemma 1, E
[
U1 | T 1≥t

]
equals

μ1 p1 exp
(−Λ1(t)μ1

) + μ2 p2 exp
(−Λ1(t)μ2

) + (1 − p1 − p2) exp
(−Λ1(t)

)

p1 exp
(−Λ1(t)μ1

) + p2 exp
(−Λ1(t)μ2

) + (1 − p1 − p2) exp
(−Λ1(t)

) ,

where Λ1(t) = ∫ t
0 λ0(s) f1(s, 1)ds.
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Furthermore, when fλ(t,U0i ,U1i , a) = U0iλ0(t)(U1i )
a f1(t, a), and U0 and U1

are independent, by Lemma 1, E
[
U0U1 | T 1≥t

]
equals

p1μ1L′
U0

(Λ1(t)μ1) + p2μ2L′
U0

(Λ1(t)μ2) + (1 − p1 − p2)L′
U0

(Λ1(t))

p1LU0(Λ
1(t)μ1) + p2LU0(Λ

1(t)μ2) + (1 − p1 − p2)LU0(Λ
1(t))

.

C Supplementary tables

Table 2 Conditional expectations and resulting SMCHR when the CHR equals μ for different frailty
distributions such that E[U0] = 1 and var(U0) = θ0 (in absence of effect modification)

U0 ∼
Γ (θ−1

0 , θ0) IG(1, θ−1
0 ) CPoi

(
3θ−1

0 , 1
2 , 2

3 θ0

)

E[U0 | T 1≥t] 60
60+μt3θ0

√
30

30+μt3θ0
90

3
2

(
90 + μt3θ0

)− 3
2

E[U0 | T 0≥t] 60
60+t3θ0

√
30

30+t3θ0
90

3
2

(
90 + t3θ0

)− 3
2

limh→0 h
−1

P

(
T 1∈(t,t+h)|T 1≥t

)

limh→0 h−1P
(
T 0∈[t,t+h)|T 0≥t

) 1 + 60(μ−1)
60+μt3θ0

μ

√
30+t3θ0√
30+μt3θ0

μ

(
90+t3θ0
90+μt3θ0

) 3
2
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E

[U
1
]=

μ
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r(
U
0
)
=

θ 1
(i
n

ab
se
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e
of

fr
ai
lty

)

U
1

∼
Γ

(
μ θ 1

,
θ 1 μ

)
IG

(
μ

,
μ
3

θ 1

)
C
Po

i(
3

μ
2

θ 1
,
1 2
,
2θ

1
3μ

)
B
H
N

(
p 1

,
μ
1
,
p 2

,
μ
2
)

E
[U

1
|T

1
≥t

]
60

μ
2

θ 1
t3

+6
0μ

μ
√ 30

μ
√
t3

θ 1
+3

0μ
μ

(
θ 1
t3

90
μ

+
1)

−
3 2

p 1
μ
1
+p

2
μ
2
ex
p(

−t
3
(μ

2
−μ

1
)

60

)
+(

1−
p 1

−p
2
)
ex
p(

−t
3
(1

−μ
1
)

60

)

p 1
+p

2
ex
p(

−t
3
(μ

2
−μ

1
)

60

)
+(

1−
p 1

−p
2
)
ex
p(

−t
3
(1

−μ
1
)

60

)
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H
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(
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,
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)
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tio
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ff
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en
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it-
ex
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ct
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tio
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w
ith

va
r(
U
0
)
=

θ 0
w
hi
le
U
1

⊥⊥
U
0
.H

er
e
p 3

=
1

−
p 1

−
p 2

an
d

μ
3

=
1.

Fo
r
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ri
so
n
E

[U
0

|T
0
≥t

],a
s
sh
ow

n
be
fo
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Ta
bl
e
2,
is
al
so

pr
es
en
te
d

U
0

∼
E

[U
1U

0
|T

1
≥t

]
E

[U
0

|T
0
≥t

]

Γ
(θ

−1 0
,
θ 0

)

∑
3 i=

1
p i

μ
i(

1+
θ 0
t3 60

μ
i)

−(
1+

θ
−1 0

)

∑
3 i=

1
p i

(1
+

θ 0
t3 60

μ
i)

−θ
−1 0

60
60

+t
3
θ 0

=
(θ
0
t3 60

)−
1

+
o

( t−
3
)

IG
(1

,
θ
−1 0

)

∑
3 i=

1
p i

μ
i(

2θ
0
t3 60

μ
i)

−
1 2
ex
p(

θ
−1 0

(

1−
√

1+
θ 0
2
t3 60

μ
i)

)

∑
3 i=

1
p i

ex
p(

θ
−1 0

(

1−
√

1+
θ 0
2
t3 60

μ
i)

)
√

30
30

+t
3
θ 0

=
√ μ

1

√
30 t3
θ 0

+
o

(
t−

3 2

)

C
Po

i( 3θ
−1 0

,
1 2
,
2 3
θ 0

)
∑

3 i=
1
p i

μ
i⎛ ⎝

3

3+
2θ
0
μ
i
t3 60

⎞ ⎠

3 2
ex
p⎛ ⎜ ⎝

3θ
−1 0

√
3

3+
2θ
0
μ
i
t3 60

−1
⎞ ⎟ ⎠

∑
3 i=

1
p i

ex
p⎛ ⎜ ⎝

3θ
−1 0

√
3

3+
2θ
0
μ
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D Supplementary Figures

Fig. 7 SMCHR over time when λai (t) = U0i (U1i )
a t2
20 for a unit-variance BHN distributed U1 with

E[U1] = 3 (opaque green) and E[U1] = 1
3 (opaque orange) when U0 follows a gamma (left), inverse

Gaussian (middle) or compound Poisson (right) distribution with variance 0.5 (dotted), 1 (solid) or 2
(dashed) respectively. For comparison, the lines presented in Fig. 1 as well as the limits of the SMCHRs
are represented by transparent lines

Fig. 8 E[U0U1 | T 1≥t] over time for λai (t) = U0i (U1i )
a t2
20 , for a unit-variance BHN distributed U1

with E[U1] = 3 (green) or E[U1] = 1
3 (orange), U0 follows a gamma (left), inverse Gaussian (middle) or

compoundPoisson (right) distribution and the joint distribution ofU0 andU1 follows fromaGaussian copula
with varying Kendall’s τ correlation coefficients (see legend). Furthermore, the evolution of E[U0 | T 0≥t]
is presented (grey)
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E Survival curves examples

The survival curves of T 0 and T 1 for the examples presented in this paper can be
expressed in terms of theLaplace transforms presented in the previous section as shown
in Table 5, whereΛ0(t) = t3

60 . For the example whereU0 �⊥⊥ U1, the survival curve for

T 1 is obtained empirically from simulation. For data from a RCT, T a d= T | A=a.

Table 5 Survival curves for T 0

and T 1 for different λai (t) where

Λ0(t) = t3
60

λai (t) ST 0 (t) ST 1 (t)

U0i
t2
20μa LU0 (Λ

0(t)) LU0 (μΛ0(t))

t2
20 (U1i )

a exp
(
−Λ0(t)

)
LU1 (Λ

0(t))

U0i
t2
20 (U1i )

a LU0 (Λ
0(t)) LU0U1 (Λ

0(t))

Fig. 9 Survival curves for T 0 (black), and T 1 (coloured) when λai (t) = U0i
t2
20μa for μ = 3 (green) and

μ = 1
3 (orange), whenU0 follows a gamma, inverse Gaussian or compound Poisson distribution (from left

to right) with variance 1. The corresponding SMCHR curves were presented in Fig. 1
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Fig. 10 Survival curves for T 0 (black), and T 1 (coloured) when λai (t) = U0i
t2
20 (U1i )

a , when U1 follows
a BHN, gamma, inverse Gaussian or compound Poisson distribution (from left to right) with expectation 3
(blue) or 1

3 (brown) and variance 1. The corresponding SMCHR curves were presented in Fig. 2

Fig. 11 Survival curves for T 0 (black), and T 1 (coloured) when λai (t) = U0i (U1i )
a t2
20 for a unit-variance

BHN distributed U1 with E[U1] = 3 (green) and E[U1] = 1
3 (orange) when U0 follows a gamma, inverse

Gaussian or compound Poisson distribution (from left to right) with variance 1. The corresponding SMCHR
curves were presented in Fig. 3
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Fig. 12 Survival curves for T 0 (black), and T 1 (coloured) when λai (t) = U0i (U1i )
a t2
20 , for a unit-variance

BHN distributed U1 with E[U1] = 3 (green) or E[U1] = 1
3 (orange), when U0 follows a gamma, inverse

Gaussian or compound Poisson distribution (from left to right) with variance 1 and the joint distribution of
U0 and U1 follows from a Gaussian copula with varying Kendall’s τ . The corresponding SMCHR curves
were presented in Fig. 4

Fig. 13 Survival curves for T 0 (black), and T 1 (coloured) when λai (t) = U0i (U1i )
a t2
20 , for a unit-variance

gamma distributed U1 with E[U1] = 3 (green) or E[U1] = 1
3 (orange) when U0 follows a gamma, inverse

Gaussian or compound Poisson distribution (from left to right) with variance 1. and the joint distribution of
U0 and U1 follows from a Gaussian copula with varying Kendall’s τ . The corresponding SMCHR curves
were presented in Fig. 5
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