&2 Universiteit
4] Leiden
The Netherlands

Bias of the additive hazard model in the presence of

causal effect heterogeneity
Post, R.A.].; Heuvel, E.R. van den; Putter, H.

Citation

Post, R. A. ]., Heuvel, E. R. van den, & Putter, H. (2024). Bias of the
additive hazard model in the presence of causal effect heterogeneity.
Lifetime Data Analysis, 30(2), 383-403.
doi:10.1007/s10985-024-09616-z

Version: Publisher's Version
License: Creative Commons CC BY 4.0 license
Downloaded from: https://hdl.handle.net/1887/4239158

Note: To cite this publication please use the final published version
(if applicable).


https://creativecommons.org/licenses/by/4.0/
https://hdl.handle.net/1887/4239158

Lifetime Data Analysis (2024) 30:383-403
https://doi.org/10.1007/510985-024-09616-z

™

Check for
updates

Bias of the additive hazard model in the presence of causal
effect heterogeneity

Richard A. J. Post' ® - Edwin R. van den Heuvel’ - Hein Putter®3

Received: 29 October 2022 / Accepted: 10 January 2024 / Published online: 11 March 2024
© The Author(s) 2024

Abstract

Hazard ratios are prone to selection bias, compromising their use as causal esti-
mands. On the other hand, if Aalen’s additive hazard model applies, the hazard dif-
ference has been shown to remain unaffected by the selection of frailty factors over
time. Then, in the absence of confounding, observed hazard differences are equal
in expectation to the causal hazard differences. However, in the presence of effect
(on the hazard) heterogeneity, the observed hazard difference is also affected by
selection of survivors. In this work, we formalize how the observed hazard differ-
ence (from a randomized controlled trial) evolves by selecting favourable levels of
effect modifiers in the exposed group and thus deviates from the causal effect of
interest. Such selection may result in a non-linear integrated hazard difference curve
even when the individual causal effects are time-invariant. Therefore, a homogene-
ous time-varying causal additive effect on the hazard cannot be distinguished from
a time-invariant but heterogeneous causal effect. We illustrate this causal issue by
studying the effect of chemotherapy on the survival time of patients suffering from
carcinoma of the oropharynx using data from a clinical trial. The hazard difference
can thus not be used as an appropriate measure of the causal effect without making
untestable assumptions.
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1 Introduction

Hazard ratios, often obtained by fitting a Cox proportional hazards model (Cox
1972), are the most common effect measures when dealing with time-to-event data.
However, the hazard ratio is prone to selection bias due to conditioning on survival
and therefore not suitable for causal inference (Hernan 2010; Aalen et al. 2015;
Stensrud et al. 2017). It has been recommended to use other, better interpretable,
estimands when interested in causal effects (Hernan 2010; Stensrud et al. 2018; Bar-
tlett et al. 2020; Young et al. 2020). Alternatively, using the additive hazard model
can avoid interpretation issues (Aalen et al. 2015; Martinussen et al. 2020). In the
nonparametric model proposed by Aalen (1989), the hazard rate at time ¢ for indi-
vidual i with (possibly time-dependent) covariates x;(f) (of dimension p) is deter-
mined by the values of x; up until time ¢ and equals

M1 {xi9)}<r) = Bo@) + BOx, (1) + ... + B,(1)x,, (D),

where the parameters f,(7) are arbitrary regression functions, allowing time-varying
effects (Aalen et al. 2008). Restricted versions have been proposed by Lin and Ying
(1994) and McKeague and Sasieni (1994), where all or some ﬂj(t) are assumed to

be constant over time. The cumulative regression function, B;(z) = fol B;(s)ds, may
reveal changes in effect over time, see for example Aalen et al. (2008, pp. 160-162).

For cause-effect relations that can be accurately described with Aalen’s additive
hazard model, the hazard difference is a collapsible measure (Martinussen and Van-
steelandt 2013). Then, in the absence of confounding, the hazard difference can be
appropriately used to estimate the causal effect, even in the case of unmeasured risk
factors (Aalen et al. 2015). For this, it is necessary that the exposure effect on the
hazard does not depend on unmeasured individual features (modifiers) and thus is
the same for all individuals. However, due to the fundamental problem of causal
inference, the effect homogeneity assumption is untestable (Holland 1986). In our
companion paper (Post et al. 2024), we showed that next to unmeasured risk factors,
i.e. frailty (Aalen et al. 2008, Chapter 6), effect heterogeneity at the level of the indi-
vidual hazard results in selection bias of observed hazard ratios.

In this work, we extend the additive hazard model studied in Aalen et al. (2015) by
allowing heterogeneity of the effect (on the hazard) and quantify the bias of using the
observed hazard difference when estimating the causal effect. In Sect. 2, we introduce
notation to describe the cause-effect relations using a structural causal model for which
we can define the causal hazard difference. In practice, when appyling an additive haz-
ard model the observed hazard difference is modelled. We show that (in absence of
confounding) the expected value of the observed hazard equals a causal hazard margin-
alized over survivors. The expectation of the observed hazard difference thus equals a
difference between hazards marginalized over survivors in the exposed and unexposed
universe. By selection of individuals with favourable values of the effect modifier, this
difference can deviate from the causal hazard difference as we formalize in Sect. 3. We
present numerical examples to illustrate how this selection can result in a non-linear
integrated hazard difference curve, that can be interpeted as reflecting a time-varying
causal effect, while the actual individual causal effects are time-invariant. To emphasize
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why it is important to be aware of such a difference between the expected observed haz-
ard difference and the causal hazard difference, we reflect on the analysis of the effect
of treatment on survival with carcinoma of the oropharynx from the clinical trial in
Sect. 4. Finally, we present some concluding remarks in Sect. 5.

2 Notation and hazard differences

Probability distributions of factual and counterfactual outcomes are defined in the
potential outcome framework (Neyman 1923; Rubin 1974). Let T; and A, represent
the (factual) stochastic outcome and exposure assignment level of individual i. Let
T? equal the potential outcome of individual i under the intervention of the exposure
to level a (counterfactual when A; # a). For those more familiar with the do-cal-
culus, 7% is equivalent to T | do(A=a) as e.g. derived in Pearl (2009a, Equation 40)
and Bongers et al. (2021, Definition 8.6). Throughout this paper, we will assume
causal consistency, i.e. if A;=a, then T} = T?" = T;,. Causal consistency implies that
potential outcomes are independent of the assigned exposure levels of other indi-
viduals. The hazard rate of the potential outcome can vary among individuals due to
heterogeneity in risk factors U, as also considered by Aalen et al. (2015). The hazard
difference of the potential outcomes with and without (a = 0) exposure might also
vary among individuals due to an effect modifier U,. Therefore, the hazard rate of
individual i at time 7 of the potential outcome under exposure to level a is a function
of Uy; and U,; and thus random and equals

YHOES }lg%h‘IP(Tf Elt.t+h) | T2, Uy, Uy). )

The hazard of the potential outcome 77 can be parameterized with a function that
depends on Uy, U,; and a.

We describe cause-effect relations with a structural causal model (SCM) which
is commonly used in the causal graphical literature, see e.g. Pearl (2009b, Chap-
ter 1.4) and Peters et al. (2018, Chapter 6), to model observations. Instead, we
include details on individual effect modifier U, as well as the latent common cause
of the outcomes U, so that the SCM consists of a joint probability distribution of
(N4, Uy, Uy, Ny) and a collection of structural assignments (for more details, see Post
et al. (2024, Section 2)) such that

A = fa(Nai) (2)
A () = fo(t, Uni) + fi(t, Ui, a)
T7 = min{t > 0: exp (—A¢(t)) < Np;},
where Vit: f1(t,U1;,0) = 0, fa is the inverse cumulative distribution function of A,

N i, Ny ~ Uni[0,1], A¢(t) = f(f X¢(s)ds, and Up;, Ur; L Np; so that A¢(t) equals the
hazard rate of the potential outcome given Uy and Uj.
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386 R.A.J. Post etal.

If in SCM (2), N, LU,, U,, Ny, then there exists confounding as the distribu-
tions of (U, U,;, Ny) are not exchangeable between exposed and non-exposed indi-
viduals. However, in this work we focus on the distribution of data observed from a
properly executed RCT, where by the randomization N, LU, U,, Ny so that there
is no confounding. It is important to realize that a SCM cannot be validated with
data as it describes potential outcomes from different universes. For each individ-
ual the outcome can only be observed in one of the universes, and only the fit of
the distribution of the outcomes in the factual world can be verified. In SCM (2),
we did not restrict the distribution of U, and U, and only restricted f, and f, to be
properly defined hazard and inverse cumulative distribution functions respectively,
so that the structural model is quite general. However, in this work we limit our-
selves to cause-effect relations where the causal effect of the exposure is described
by 24(1) = A1) = f,(t, Uy;, @).

2.1 Hazard differences

If SCM (2) applies and A{(z) — /1?(1‘) = f,(t, a), then the causal effect is equal for each
individual, i.e. effect homogeneity, and Aalen’s additive hazard model applies. Oth-
erwise, when A7(7) — A?(t) =fi(t, U,;,a), the difference differs among individuals
so that [E[Alf‘(t) - /ll.o(t)] will typically be the estimand of interest. The latter contrast
equals the difference between the expected hazard rate in the world where everyone
is exposed to a and the world without exposure, and will therefore be referred to as
the causal hazard difference (CHD) defined in Definition 1.

Definition 1 Causal hazard difference The CHD for cause-effect relations that can
be parameterized with SCM 2 equals

E[4®)] - E[4®)] = Elf,(1, U}, a)]

=/mh—1uﬂ>(rae[t,z+h) | T%>t, Uy, U, )dFy, y,
_ PP | 0 0
/mh P(T° € [t,1+ h) | T21, Uy )dFy,.

Throughout this paper, we abbreviate the Lebesque-Stieltjes integral of a func-
tion g with respect to probability law Fy, [ g(x)dFy(x), as [ g(X)dFy.

The CHD thus equals the difference of hazard rates of the potential out-
comes marginalized over the population distribution of (U, U;). However, the
distribution of (U, U,) among survivors will differ over time (in all worlds),

d

ie. (UyU)) # Uy, Uy | T*>t. In turn, (U,, U,) | T*>t and (Uy, U)) | T°>t can
differ in distribution. As a consequence, the hazard rates for the observed (fac-
tual) outcomes are affected by these conditional distributions of U, and U,, and
the observed hazard difference may reflect both the causal effect of exposure and
a difference in distributions of (U, U;) between exposed and unexposed indi-
viduals. Since practioners are typically interested in the causal effect alone, it
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is important to understand this mixture. Since the focus of this work is on esti-
mands, for readability, we refer to the expected value of the difference of the
observed hazards as the observed hazard difference (OHD) presented in Defini-
tion 2.

Definition 2 Observed hazard difference The OHD at time ¢ equals

lim W'P(T €[t,t+h) | T>t,A=a) — lim W'P(T € [t,t + h) | T>t,A=0)
=lim / h'P(T € [t,1+ h) | T>2t,A=a, Uy, U, )dFy, 4 17514

- lim/h‘l[P’(T € [t,1+h) | T>1,A=0, U, )dF |15, s—o-

h—

To be precise, at time ¢ the hazard rate can only be observed for non-censored
individuals at that time (C(f) = 0). However, in this work we will assume inde-
pendent censoring, so that P(T | T>t, A=a) is equal to P(T | T>t, A=a, C(¢)=0).

To compare the OHD to the CHD of interest, the OHD should be expressed in
terms of potential outcomes. By causal consistency,

P(T € [t,t+ h) | T>t,A=a) = P(T* € [t,t + h) | T*>t,A=aq). 3)

For a randomized controlled trial (RCT), where by design of the trial AT (in
SCM (2) equivalent to N, ILU,, U;, Ny,

P(T* e t,t+h) | T'>t,A=a) = P(T* € [t,t + h) | T*>1). 4)
The OHD at time ¢ is then equal to

. -1 a as0 i -1 0 0>
}leOh P(T¢ € [t,t+h) | T*>1) }leOh P(T° € lt,t+h) | T'>1). 5)

We refer to (5) as the survivor marginalized causal hazard difference (SMCHD) that
is rewritten in Definition 3.

Definition 3 Survivor marginalized causal hazard difference The SMCHD at
time ¢ for cause-effect relations that can be parameterized with SCM 2 equals

}}r%/h—lP(T” € [t,1+ W)|T2t, Uy, U, )dFy, 7 7z
—/h“[P’(TO € [t,t+ W)|T21, Uy)dFyy o5,

As the integration in Definition 1 is with respect to the population distribution
of (Uy, U,) (instead of that of the survivors in the exposed and unexposed universe
respectively), the SMCHD is thus affected by the difference in distribution between
(Uy,U)) and (Uy, U;) | T* > t as well as the actual causal effect. Therefore, the
SMCHD can deviate from the CHD. Nevertheless, Aalen et al. (2015) explained that
UylLA|T >t so that for degenerate U,, the SMCHD is only affected by the causal
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effect and equals the CHD, so that the latter can be unbiasedly estimated from RCT
data. In the next section, we formalize the SMCHD in case of effect heterogeneity
(non-degenerate U;) and show that U, LA|T > ¢, so that then the SMCHD deviates
from the CHD.

3 Results

In the remainder of the paper, we will focus on binary exposures such thata € {0, 1}.
In this section we quantify how the SMCHD describes both the causal effect and the
difference in distribution of (U, U,) between survivors in the exposed and unex-
posed universes.

For cause-effect relations where SCM (2) applies with A?(t) = fo(t, Uy) + f1(t, a),
it is known from Aalen et al. (2015) that for an RCT Uy lLA,|T; > t, so that
U, remains exchangeable between exposed (U, |7T>t,A=1) and nonexposed
(Uy | T>t,A=0) survivors. This independence, causal consistency, and the absence
of confounding in an RCT (7, 1LA) imply

Uy | T>t = Uy | T2t,A=a
d
= U, | T*>t,A=a
d
= Uy | T2t

Thus in absence of effect heterogeneity of the hazard difference, U, is exchangeable
between survivors in the exposed (U, | T'>t) and unexposed universes (U, | T°>1),
so that the OHD from an RCT (that equals the SMCHD) equals the CHD and
describes the causal effect.

However, if heterogeneity exists, there will also be a selection of the modifier
(U,) in the exposed universe, where individuals with more favourable levels of U,
are more likely to survive. As a result of this selection, the SMCHD over time no
longer represents the (population) average effect. For the main result of this paper,
we consider hazard functions that satisfy Condition 1.

Condition 1 Hazard without infinite discontinuity
Vr>0: 3h>0 such that VA* € (0,h): E[fy(r + h*, Uy) + fi(t + h*, Uy, ) | T*21] < o0

In Theorem 1, we show that the SMCHD, for a hazard function that satisfies Con-
dition 1, can be expressed in terms of conditional expectations of f,(¢, U;, 1) and
Jo(t, Uy). In presence of effect heterogeneity, the SMCHD thus deviates from the CHD
equal to E[f;(#, U}, D]

Theorem 1 If the cause-effect relations of interest can be parameterized with SCM
(2), where
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A0 1= o, Up) + 111, Uy, @),
and Condition 1 applies, then the SMCHD at time t equals
Elf,(t, U, 1) | T'>1] + Elfy(t, Uy) | T'>1] — Elfy(t, Up) | TO>1].

To illustrate how the SMCHD can deviate from the CHD we continue by presenting
some examples and apply Theorem 1. All programming codes used for these exam-
ples can be found online at https://github.com/RAJP93/CHD. First, we consider cause-
effect relations for which Uy ILU,.

3.1 IndependentU,and U,

As discussed at the start of this section, Aalen et al. (2015) implicitly showed that

d
Uy | T'>t = Uy | T°>t in absence of effect heterogeneity of the hazard difference.
Based on similar arguments, Lemma 1 states that the additive frailty is also exchange-
able in the presence of effect heterogeneity at the hazard scale that is independent of the
frailty.

Lemma 1 If the cause-effect relations of interest can be parameterized with SCM
(2), where

/1?([) :zf()(t9 U()i) +fl (t’ Uliv a)s
and Uy LU, then,
Elfo(t. Uy | T'21t| = E[fy(r, Up) | TO>1].

Note that while Elfy(t. Uy | T'>1t| = E[fy(r, Uy) | TO>1),
[E[fo(t, Uy) | T“Zt] * [E[fo(t, UO)] as the conditional expectations will decrease over
time representing the survival of less susceptible individuals. If U,1LU,, as for the
case of effect homogeneity, U, is thus exchangeable between survivors in the exposed
(U, | T'>t) and unexposed (U, | T°>t) universes. By Theorem 1 and Lemma 1, the
SMCHD at time ¢ now equals E[f, (¢, U,, 1) | T'>7].

Let us consider cause-effect relations for which SCM (2) applies with

[ Uy, a) = Uyyfi(t,a), 6)

where f,(1,0)= 0, then E[f,(1, U}, 1) | T'>1| = f,(t,@)E[U, | T'>1]. By Definition 1,
the CHD equals f,(¢,)E[U,], so that the difference with the SMCHD varies over
time and equals

fit.a)(ELU,] — E[U, | T'21)). )

For this multiplicative case, the conditional expectation E[U, | T'>f] can be
expressed in terms of the Laplace transform of U, as stated in Lemma 2.
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Lemma 2 If the cause-effect relations of interest can be parameterized with SCM
(2), where

f](t, U]i’ l) = U]ifl(t’ 1)7
and Uy LU y;, then

Ly, (fy fi(s, Dds)

E[U, | T\ = 2077 77
[ 17"21] Ly (i fi(s, Dds)

where [,Ul (c)=E [exp (—CUl )] with derivative E/Ul (c).

We continue to illustrate how effect heterogeneity can affect the integrated hazard
difference when the causal effect is time-invariant for each individual. To do so, we
let the additive hazard effect modifier U, equal y, (<0, for individuals that benefit)
with probability p,, u, (>0, for individuals that are harmed) with probability p, or O
(for individuals that are not affected). We denote this distribution as the Benefit-
Harm-Neutral, BHN(p,, 41, py, ,), distribution. Note that it is necessary that
vt P(fy(t, Uy)<|p;)|) = 0 to guarantee that the hazard rate is always positive for
each individual. By Theorem 1 and Lemma 2 with f;(z, 1) = 1, the SMCHD is equal

1 _ H1D) €Xp (—tﬂl )+M2/’2 exp (—’Hz)
t© [E[Ul ' Zt] — prexp (=t 4y exp (=tp ) +(1-py—py)’
CHD equal to E[U,] = p;u; + p,#,. For an RCT, the OHD equals the SMCHD, so
that the integrated OHD equals

and deviates from the constant

B(t) = / [E[U1 | les]ds = —log (pl(exp (—1/41) — 1)+ p,(exp (—t,uz) -+ 1).
0

Thus, although the CHD is time-invariant, due to the selection (of U,) effect over
time B(f) will not be linear and deviates from the function g(¢) = ¢E[U, ]. Three types
of curves could be observed as shown in Fig. 1 where for illustration, p; = p, = 0.5,
so there exist only two levels for the modifier U,.

First of all, let’s consider the case where the exposure harms some individuals (for
which U}; = 1) while others do not respond to the exposure at all (U,; = 0); see the
orange line in Fig. 1. Initially, B(#) evolves as (E[U,] = 0.5¢. However, the individu-
als harmed by the exposure are less likely to survive over time, so the curve’s deriva-
tive decreases. In the end, only individuals with U,; = 0 are expected to survive so that
B(?) remains constant. Concluding that the exposure initially harms but loses effect over
time is false for this case as the effect is time-invariant for each individual.

Secondly, when some individuals do benefit (U;; = —0.25) while others are not
affected (U,; = 0), the derivative of B(#) evolves from —0.125 to —0.25 at the moment
only those that benefit are expected to survive, as illustrated with the purple line in
Fig. 1. The effect for an individual is again constant and does not become more benefi-
cial over time.

Finally, different individuals in the population might have opposite effects (U,; = 1
or U;; = —0.1), as illustrated with the pink line in Fig. 1. Initially, the integrated haz-
ard differences increase as the expected effect is harmful. However, over time those
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Fig.1 [, E[U, | T'2s|ds, when S
Ui ~ BHN@;, 4y, s, i) (s0lid),
and g(7) = tE[U,] (dashed)
n |
o=l
NN
m o=l
0
3 -
<
' \ \ \ \ \ \
0 1 2 3 4 5
t
individuals with U}; = —0.1 are more likely to survive so that E[U, | T'>1] changes

sign. Finally, only those that benefit are expected to survive, and the curve decreases
with a derivative equal to —0.1. For this example, it would be false to conclude that the
exposure first harms but becomes beneficial over time.

Similar patterns can be observed for a continuous U, distribution, in which case the
E [U LT Zt] will keep decreasing as for example presented in Appendix B.

In summary, if UylLU,, then the SMCHD will be less or equal to the CHD due to
the selection of U,. Therefore, decreasing or constant B(f) curves that at some point
increase again can not be explained by the selection of U, since individuals with less
beneficial values of U, are expected to survive shorter. However, if Uy fLU, such a pat-
tern of the B(¢) curve can still occur when the CHD is time-invariant as we will show
next.

3.2 DependentU,and U,

The bivariate joint distribution function of Uy and U}, F{y ), can be written using the
marginal distribution functions and a copula C (Sklar 1959). As such,

Fu, v, uy) = C(FUO(uO), Fy, (ul))

and the Kendall’s 7 correlation coefficient of U, and U, can be written as a function
of the copula (Nelsen 2006). For the next example, we consider cause-effect rela-
tions for which SCM (2) applies with

fot.Up) = € + Uy, (®)

and again

LUy a) = Uya, 9)

@ Springer



392 R.A.J. Post etal.

while Uy; ~T'(1,1) and (U}; +¢) ~I'(1,1), so that the hazard is nonnegative for
each individual. To illustrate how the dependence can affect the integrated SMCHD
for the settings presented in Fig. 5 in Appendix B, we use a Gaussian copula

C(x,y) = @, (@' (x), @' (),

where @ and @, , are the standard normal and standard bivariate normal with
correlation p cumulative distribution functions, respectively. In Fig. 2, for
p € {—1,sin(-0.257),0, sin(0.257),1}  (such that 7€ {-1,-0.5,0,0.5,1})
and 7 € {0,0.5,1}, we present the integrated SMCHD at time ¢ that equals
fot (E[U, | T'>s] + E[Uys? | T'2s] — E[Uys* | T%>s])ds by Theorem 1. The con-
ditional expectations are derived empirically from simulations (n=10,000), and the
integral is approximated by taking discrete steps of size 0.1. For completeness, the
survival curves of the potential outcomes can be found in Fig. 6 in Appendix C.

The difference between the integrated OHD and SMCHD increases when 7 > 0
(compared to 7 = 0). On the other hand, for 7 < 0, the difference is smaller most of
the time than for 7 = 0 since favourable U, are expected to occur with unfavourable
levels of U,. Moreover, for 7 = —1, at larger ¢, we observe that the difference can
even change sign. For 7 # 0, the SMCHD might thus be larger than the CHD, so
the SMCHD is not a theoretical lower bound for the CHD. Note that if Uy LU, the
integrated SMCHD depends on the functional form of f,. In Fig. 7 in Appendix C,

2
the results for f,(¢, Uy,) =€ + UO,»;—O are presented where the effect of the depend-
ence is limited and the corresponding survival curves of the potential outcomes are
presented in Fig. 8.

4 Case study: the Radiation Therapy Oncology Group trial
With the findings of the previous section we will reflect on a data analysis of an

actual case study to illustrate why it is important for a practioner to be aware of the
possible difference between the SMCHD and CHD. We consider a large clinical trial

B(t)

B(t)

B(t)
2

Fig.2 Integrated hazard difference, B(f), when fy(t, Uy,) = € + Uyt?, Uy; ~T(1, 1), (U; +£) ~T(1,1)
for £ equal to 0 (left), % (middle) and 1 (right) and different Kendall’s = for U,; and U,;. The lines for

7 = 0 were already presented in Fig. 5 in Appendix B. Furthermore, g(¢) = tE[U, ] are presented as gray
lines

@ Springer



Bias of the additive hazard model in the presence of causal effect... 393

carried out by the Radiation Therapy Oncology Group as described by Kalbfleisch
and Prentice (2002, Section 1.1.2 and Appendix A) and also presented by Aalen
(1989). From the patients with squamous cell carcinoma (a form of skin cancer) of
15 sites in the mouth and throat from 16 participating institutions, our focus is only
on two sites (faucial arch and pharyngeal tongue) and patients from the six largest
institutions. All participants were randomly assigned to radiation therapy alone or
combined with a chemotherapeutic agent. So, we are interested in the causal effect
of the chemotherapeutic agent in addition to radiation therapy on survival. If the
causal mechanism can be parameterized with SCM (2) without effect heterogeneity,
ie.

A1) = folt, Ugy) + £ (1, @),

and the randomization was properly executed, implying N,;ILU,;, then, by Theo-
rem 1, the OHD equals the CHD. Moreover, the CHD can be unbiasedly estimated
by fitting Aalen’s additive hazard model. We did so by using the aalen () func-
tion from the package t imereg in R. The estimated cumulative regression function
(and a corresponding 95% confidence interval) of treatment combined with a chemo-
therapeutic agent is presented by the black lines in Fig. 3.

In the absence of effect heterogeneity (ignoring the statistical uncertainty), one
could now conclude that initially adding the chemotherapy is expected to harm
a patient as B(f) takes on positive values and that the exposure loses its harmful
effect over time as the derivative of B(f) decreases over time. Following a similar
reasoning, Aalen et al. (2008, pp. 160-161) discuss a conclusion on the effect
of N-stage (an index of lymph node metastasis) on survival that may be drawn
by practitioners based on the same dataset (while also including patients with a
tumour located at the tonsillar fossa): “The regression plot shows that this [non-
significant P-value for a zero-effect of N-stage from a Cox analysis] is due to a
strong initial positive effect being “watered down" by a lack of, or even a slightly
negative effect after one year. Hence, not taking into consideration the change in
effect over time may lead to missing significant effects.”. However, if in reality

Fig.3 Estimated B(f) and corre- <
sponding 95% confidence inter-
val (black). Furthermore, the
expected evolution of B(r) when w |
AH0) = fo(t, Up) + Uya and <
U,; ~BHN(0.5,-0.1,0.5,0.4) is
presented (green) =
~ O
RN oS
[in]
S
2 |
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A(l](t) :fo(t, UOI) +f1(l, Uli’ a),

where fi(t,U,;,0) =0, the observed time-varying effect can also result from
the modifier U,; selection. For example, when A%(1) = fy(s, Uy) + Uy;a, and
U,; ~ BHN(0.5,-0.1,0.5,0.4), by Theorem 1, this pattern is expected (see the green
line in Fig. 3) while the actual causal effect is time-invariant for each individual.
The CHD equals 0.15 at each time point, but over time individuals that are harmed
by the chemotherapy (U,; = 0.4) are less likely to survive so that the SMCHD con-
verges towards —0.1 (the effect for individuals that benefit from the chemotherapy).
When we perform a stratified analysis by site in the oropharynx (where randomi-
zation remains), we observe that the effect of chemotherapy might have opposite
effects for tumours located in the faucial arch and on the pharyngeal tongue, see
Fig. 4. The tumour location could thus be the individual modifier underlying the
BHN distribution. For this case study, we cannot be sure whether the effect of chem-
otherapy depends on the tumour location due to statistical uncertainty. However, it
became clear that when statistical uncertainty is not the issue, it will be impossi-
ble to distinguish between a time-varying causal effect and a selection effect (of an
unmeasured modifier) from data. Both phenomena can give rise to the same B(?).

5 Discussion

The additive hazard model gives better interpretable estimates of causal effects
than the proportional hazard model (Aalen et al. 2015). As discussed by Aalen
et al. (2015), the model assumes that the additive part of the hazard involving the
exposure (or treatment) is not affected by any other individual feature. Otherwise, if
such effect heterogeneity at the hazard scale exists, we have shown that the SMCHD
deviates from the CHD of interest. For an RCT, and independent censoring, a time-
varying observed hazard difference can be the result of either an actual time-vary-
ing causal effect or of the selection of favourable effect-modifier levels over time.

0.5

1

1
0.0

|

B(t)
B(t)
-0.5

-1.0

-1.5

Fig.4 Estimated B(r) and corresponding 95% confidence interval (black) for patients with tumours
located at the faucial arch (left) and pharyngeal tongue (right), respectively. Furthermore, the B(f) for a
homogeneous population is presented (green) equal to 0.4¢ (left) and —0.17 (right) for comparison
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Therefore, it is impossible to distinguish these scenarios based on data without mak-
ing untestable assumptions. It is important to remark that for cause-effect relations
that can be parameterized with SCM (2) where U, is degenerate (in which case the
OHD equals the CHD), contrary to the individual hazard differences, the difference
of the potential survival times, 7' — 70 can be heterogeneous. So, heterogeneous
effects can still exist under Aalen’s additive hazard model.

In the presented examples and the case study, we have illustrated that one should
be very careful when concluding that the effect decreases over time based on the
cumulative regression function, as this might result from the selection. The size of
the bias depends on how much the distribution F; 15, changes over time. If the U;
is low in variability, the bias will be small. When analyzing data from an RCT with
an additive hazard model, it can thus be helpful to adjust for potential effect modi-
fiers to reduce the remaining variability of unmeasured effect modifiers. We want
to remark that for cause-effect relations that cannot be described by SCM (2), the
CHD is not the appropriate estimand to quantify the causal effect, which is then a
more serious concern than that the complicated causal interpretation of the observed
hazard difference.

Even in the absence of confounding, the hazard difference and the hazard ratio
(as discussed in Post et al. (2024)) have a difficult causal interpretation. Instead,
contrasts of the survival probabilities, the median, or the restricted mean survival
time, have clear causal interpretations and should thus be used to quantify the causal
effect on time-to-event outcomes as suggested by others (Hernan 2010; Stensrud
et al. 2018; Bartlett et al. 2020; Young et al. 2020). Nevertheless, (additive) hazard
models can still be used for causal inference to derive these appropriate estimands
(Ryalen et al. 2018).

Appendix A: Proofs
Appendix A.1: Proof of Theorem 1

Proof By causal consistency (Hernan and Robins 2020),

11111% W 'P(T € [t,t+h) | T>t,A=a) = }111% W 'P(T € [t,t + h) | T>t,A=q)

As N, 1LU,, U, Ny, there is no confounding and 74 ) 4, so that

lim W 'P(T € [t,t +h) | T>t,A=a) = lim W 'P(T € [t,t+ h) | TO>1,).

By the law of total probability,

}lirr(l) W'P(T € [t,t + h) | T*>1)

- }11—>m0 h_lﬂ])(T“ elnt+h | Tzt UO’ Ul)dFU()sUHT“Zl‘
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First, we focus on the integrand,
W'P(T €lt,t+h) | T*21,U,, U))
L P(T21| Uy, Uy) = P(T21 + b | Uy, Uy )
P(Te>t | Uy, U,)

h—1<1 P(T>t +h | Uy, U1)>

P(Te>t | Uy, U,)

exp (_ /()tho(S, Uy + fi(s, Uy, a)ds)

exp (= Jy fo(s: Up) +£i(s. Uy, a)ds )

=n'l1-

t+h
=hp! (1 — exp (— Jo(s, Uy) + £ (s, Ul,a)ds>>

For monotonic conditional hazard functions, if 4, < h,, then
t+h,
hy! <1 —exp <— fols, Ug) +£,(s, Uy, a)ds>>
t

t+h,
< h;l <1 — exp (— Jols, Up) +f1(s, Uy, a)ds))

or
t+h
hl_l <1 —exp <— Jols, Uy) +£1(s, Uy, a)ds>>

t+h,
> h;(l — exp <— Jo(s, Ug) + £ (s, Ul,a)ds>>
t

as the average integrated conditional hazard over the interval increases (or
decreases). Moreover,

lim h'P(T € [t,t+ h) | T>1, Uy, U, ) = fy(s, Uy) + fy(s, Uy, a) > 0.

Then, the limit and integral can be interchanged by directly applying the monotone
convergence theorem.

For non-monotone conditional hazard functions, when Condition 1
applies, for every t, there exist a h SO that
Vh* € (0,h): E[fy(t+ h*,Uy) + fy(t + h*,Uy,a) | T°>t] < 0.  Moreover, let
t*= argmaxfy(s, Uy) +f,(s, U, a), so that for i < h:

sE(t,t+h)
W'P(T €[t t+h) | T2, Uy, Uy) < b7 (1 —exp (—h(fy(t*, Up) +£,(t*, Uy, a@))) ).

Using the power series definition of the exponential function,
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h'P(T €[t t+h) | T*21,U,, U,)

<h! <1 - 1 )
Yo (ot Up) + £, Uy, )+
L I G U+, U @)l
Yo (o, Ug) + /@, Uy, @)

Yo HN o, Ug) + 1, Uy ) 2
T2 0 Gt Ug) + £, Uy, )&
T Mo, Ug) + /0, U ) s
2o Mo, Up) + 17, Ul,a))k%

= (", Up) +/,(t*, Uy, @))

= (fi)(t*’ UO) +fl (t*9 Ulv Ll))

<fot", Uy) + f1(t", U}, a).

Moreover, [E[fo(t*, Uy + £, Uy, a) | T“Zt] < o0 when
Elfp¢+h, Uy +fi(t+h,U,a) | T*>t] < oo for all h € (0, h). By application of the
dominated convergence theorem, we can change the order of the limit and integral
and conclude,

lim h'P(T € [t,t+h) | T*21) = E[fy(t, Uy) + f,(t, Uy, @) | T*21].
IfUylLU,, by Lemma 1,
Elfy(t, Up) + f1(t, Uy, 1) | T 201 = Elfy(t, Uy) | T2 = E[f,(t, Uy, 1) | T'>1],
and
lim W 'P(T € [t,t+ h) | T>t,A=1) — lim W 'P(T € [t,t + h) | T>t,A=0)

=E[f,(, U, D | T'>1].
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Appendix A.2: Proof of Lemma 1

Proof

E[fo(t, Up) | T*>1]
=/fo(’s Uo)dF g rax, (o)

P(T">t | Uy=uty)
/fo(f U)—— P(Tv>1) dFy, (1)

! exp( i fols, Upds + Jil fis, U,,a)ds))dFUlWO:uO(u,)
/ Jolt- U I/ exp = /0’ Folkg$)ds + f; fl(kl,a,s)ds))dFU]WO:kO(k,)dFUO(kO)

exp (= o fols. Uo)ds ) (/ exp (= f i, Uy @)ds ) dFy iy @)
/ o UO)/ exp (= o fotkor ) ) (/ exp (= Jy ik, s 9)ds ) i () )y, ()

dFU0 (ug)

dFy, ().

Moreover, if UylLU,, then
E[fo(t, Up) | T*>1]
/fo(t o exp (= o fols: Uo)ds ) (/ exp (= Jy fi(s, Uy ds )dFy ) )
Jexp (= fy fotkor5)ds ) (f exp (= fy £k, a,9)ds ) dFy, () )dFy, ()
/f(t o exp( S oGs, Uo)ds)(/ exp (—/O'f](s, Ul,a)ds)dFUl (ul))
olt: o) [exp f(;ﬁ](ko,s)ds>dFU0(k0))(f exp (—/O’fl (kl,a,s)ds>dFU1 (kl)>

dFUU (o)

dF y, ()

exp( S s, Uo)ds>
/ Fot. Uy)

, dFy, ()
Jexo (- fo(ko,s)ds>dFU0 (k)

= E[fy(t. Up) | T*>1].

Appendix A.3: Proof of Lemma 2

Proof If U,\LU,, by Bayes rule, the probability density of U, given T'>1,
f(u,|T'>1), equals
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fuy |T'>1)
_ P(T'>t | Uy=u,)f (uy)
JP(T'>1 | Uy = up)dFy (uy)

S exp (= (Jo fo(s: Up) + i@ s)ds ) Py, up)f )
. exp (= (o ok ) + kifi(a,)ds ) )dFy, (k)dFy, ()
exp (= wfi @ s)ds ) [ exp (= o fols. Uods )dFy, (ug)f wy)
B J exp (=kyfy (@, 5)ds)dFy, (k;) [ exp (— S folks, s)ds)dFUO (ko)

exp (—fotulfl(a, s)ds)f(ul)
[ exp (=kyfi(a. s)ds)dFy (k)

So that the Laplace transform of f(u,|T"'>f) can be written as

Ly, i115,(c) = Elexp (=Ujc) | T'21]

B /CXP (—ui€)dFy, iz (ny)

exp (—/O’ulfl(s, 1)ds>
=/exp(—u

1 exp (=kyfy (s, Dds)dFy, (kl)d
[ exp <—ul(c+/0’fl(s, 1)ds)>
" T exp (—kify(s. Dds)dFy, (k)
E [exp (—Ul (c+ [l Ails, 1)ds))]
Elexp (=U,fi(s. 1)ds)]
Ly, (c+ [y fi(s, Dds)
T Ly fis sy

FUI(MI)

dFy, (uy)
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Since for a random variable X, E[X] = —C;((O),

ELU | T' 20 = =Ly 1 (

Appendix B: Continuous U, distribution (U, 1LU,)

z:’Ul (Jy f1(s, Dds)

Ly (i fils Dds)

Let us consider cause-effect relations for which SCM (2) applies with

L@t Uy, a) = Uya,

(10)

and U,lLU,. Moreover, let (U, +7¢) ~TI'(k,6), then EUIM(C) =(1+86c)*. By

lemma 2,

and

E[U, | T'>t] =

or+1

0k

B(t) = klog(6t+ 1) — /1.

3

The B(¢) are presented over time in Fig. 5 for = k = land £ € {0, i, % 1}

Fig.5 [y E[U, | T'>s]ds (thick
lines), when U, + ¢ ~I'(1, 1)
and g(¢) = tE[U,] (transparent
lines)
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Appendix C: Figures dependent U, and U,

The additional figures for f,(z, Uy) = € + Uol'%

10
10
10

08
0.8

0.8

—_0

0.6
0.6
0.6

P(T* > t)
0.4
P(T > 1)
0.4
P(T > 1)
0.4

0.2
0.2

02

0.0
L
0.0

0.0

Fig.6 Survival curves for Y! and Y when f(t, Uy,) = £ + Uy;t>, Uy, ~T(1,1), (Uy; +€) ~T(1,1) for £

equal to O (left), % (middle) and 1 (right) and different Kendall’s = for U; and U ;

B(t)

B(t)

B(t)
2

Fig.7 B(1), when f,(t,Uy) = ¢ + UOI-%, Uy ~T(, 1D, (U, +¢) ~T(1,1) for £ equal to 0 (left), % (mid-
dle) and 1 (right) and different Kendall’s = for U and U,;. The lines for 7 = 0.5 and 7 = 1 do overlap,

and the lines for 7 = 0 were already presented in Fig. 5. Furthermore, g(¢) = tE[U, ] are presented as gray
lines

0.8 1.0

0.6

P > 1)

0.4

B(T® > 1)

0.0
0.0

0.2
L
0.2
0.2

0.0

Fig.8 Survival curves for ¥Y! and Y when f(t, Uy,) = ¢ + UO,»;—;, Uy ~T(L, 1), (Uy; +¢)~T(1, 1) for £
equal to O (left), % (middle) and 1 (right) and different Kendall’s 7 for U, and U;
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article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
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