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7.0.

Abstract
Self-supervised learning (SSL) is an emerging paradigm that exploits supervisory sig-
nals generated from the data itself, and many recent studies have leveraged SSL to
conduct graph anomaly detection. However, we empirically found that three impor-
tant factors can substantially impact detection performance across datasets: 1) the
specific SSL strategy employed; 2) the tuning of the strategy’s hyperparameters; and 3)
the allocation of combination weights when using multiple strategies. Most SSL-based
graph anomaly detection methods circumvent these issues by arbitrarily or selectively
(i.e., guided by label information) choosing SSL strategies, hyperparameter settings,
and combination weights. While an arbitrary choice may lead to subpar performance,
using label information in an unsupervised setting is label information leakage and
leads to severe overestimation of a method’s performance. Leakage has been criticized
as “one of the top ten data mining mistakes”, yet many recent studies on SSL-based
graph anomaly detection have been using label information to select hyperparameters.
To mitigate this issue, we propose to use an internal evaluation strategy (with theo-
retical analysis) to select hyperparameters in SSL for unsupervised anomaly detection.
We perform extensive experiments using 10 recent SSL-based graph anomaly detection
algorithms on various benchmark datasets, demonstrating both the prior issues with
hyperparameter selection and the effectiveness of our proposed strategy.
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Unsupervised Graph Anomaly Detection

7.1 Introduction
Graph anomaly detection (GAD) refers to the tasks of identifying anomalous graph
objects—such as nodes, edges or sub-graphs—in an individual graph, or identifying
anomalous graphs from a set of graphs [241]. GAD has numerous successful appli-
cations, e.g., in finance fraud detection [271], fake news detection [272], system fault
diagnosis [232], and network intrusion detection [273]. In this paper, we focus on
unsupervised node anomaly detection on static attributed graphs, namely identifying
which nodes in a static attributed graph are anomalous. Recently, Graph Neural Net-
works (GNNs) have become prevalent in detecting node anomalies in graphs and have
shown promising performance [98]. Specifically, GNNs can learn an embedding for
each node by considering both the node attributes and the graph topological informa-
tion, enabling them to capture and exploit complex patterns for anomaly detection.

Like with other neural networks, the high performance of GNNs is typically achieved
at the cost of a substantial volume of labeled data. However, the process of labeling
graphs is often a laborious and time-consuming effort, necessitating domain-specific
expertise. For these reasons, GAD is preferably tackled in an unsupervised man-
ner, without relying on any ground-truth labels. Self-supervised learning (SSL) has
emerged as a promising unsupervised learning technique on graphs [274], and recent
studies have shown its usefulness for node anomaly detection [275, 276, 277, 278, 279,
280, 281, 282].

Graph SSL can be roughly divided into generative, contrastive, and predictive meth-
ods [283]. First, generative methods such as DOMINANT [284], GUIDE [279], and
AnomalyDAE [275] aim to detect graph anomalies by reconstructing (‘generating’)
the adjacency matrix and/or the node attribute matrix. Next, contrastive methods
such as CoLA [278], ANEMONE [277], GRADATE [285], and Sub-CR [286] train a
graph encoder to pull positive pairs closer while pushing negative pairs away in the
embedding space. The nodes with relatively large contrastive loss values are deemed
anomalies. Finally, predictive methods such as SL-GAD [276] try to predict node
properties using its local context (e.g., a subgraph), and nodes with large prediction
errors are considered anomalies.

Contrastive learning is arguably the most successful SSL strategy for graphs [287].
Most contrastive graph learning methods consist of two main modules: 1) a data aug-
mentation module that generates augmented data by operations such as edge dropping,
node attribute masking, node addition, subgraph sampling, and/or graph diffusion.
The augmented view of an instance is generally regarded as a positive pair with the
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7.1. Introduction

original instance; and 2) a contrastive learning module that contrasts positive pairs
(and often involves negative pairs) at different levels, such as node-node contrast,
node-subgraph contrast, and subgraph-subgraph contrast.

Although SSL-based graph anomaly detection has been successful, using it in prac-
tice is often not straightforward. The most important reason for this is that most
methods require a large number of choices to be made, leading to three challenges:

C1. How should we select appropriate data augmentation functions?

C2. How should we choose appropriate values for hyperparameters (HPs) of a given
augmentation function? (e.g., subgraph size in a subgraph sampling function, or
the proportion of edges to drop in an edge dropping function)

C3. How to combine the contrast losses at different levels? (i.e., how to set their
combination weights?)

Further, a recent study [276] shows that combining multiple SSL strategies for GAD
can achieve better performance than using a single SSL strategy. This leads to the
fourth challenge:

C4. How should we combine different SSL strategies?(i.e., how to set the combination
weights of different SSL loss functions?)

Previous work [288, 289, 290] showed that the choice of SSL strategie(s) and hy-
perparameter values can strongly impact performance. In a supervised setting, these
choices can be systematically and rigorously made by using separate labeled data for
validation. In an unsupervised setting such as anomaly detection, however, one should
assume that no labels are available even for hyperparameter tuning. In our extensive
literature study, we found that existing SSL-based GAD methods typically either 1)
arbitrarily choose settings or 2) do use labeled data, corroborating the findings in
[290].

In the former case, practitioners typically heuristically select an augmentation func-
tion (C1) and fix its associated HPs (C2) across all datasets, and set the combination
weights all equal to 1 or other fixed values (for C3 and Q4). Although this approach
is not flawed, it is likely to result in suboptimal detection performance: graphs from
different domains usually have different properties [291], implying that the optimal
SSL strategy is in general data-dependent [288, 289]. Therefore, utilizing a unified
and pre-fixed combination weights and/or HPs in SSL strategies for all graphs can
result in sub-optimal performance.
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In the latter case, practitioners pick the optimal combination weights and other
hyperparameter values following a ‘hyperparameters sensitivity analysis’ using labeled
data. By using ground-truth labels on test data to check model performance with dif-
ferent hyperparameter values and using that to select the best model, however, label
leakage occurs. That is, information about the target of a data mining problem is used
for learning/selecting model, while this information should not be legitimately acces-
sible for learning purposes [292, 293]. Specifically, label information should never be
used (whether implicitly or explicitly) in an unsupervised learning scenario. As shown
in Figure 7.1, label leakage leads to huge overestimation of the model’s performance,
which is also corroborated in [294] by comparing the max and average performance
with different hyperparameter configurations (cf. Appendix 7.8 for more details).
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Figure 7.1: Large performance variations (here measured by AUC) over different hyperpa-
rameter configurations for ANEMONE [277] on various benchmark datasets. Using labeled
data and only reporting the best possible performance leads to severe overestimation of model
performance. For instance, the green squares on Cora, CiteSeer, and PubMed are reported
by [277] (the other datasets were not used). Similar results are observed for other algorithms
(see Appendix 7.8 for details). The red triangles represent the results obtained by our in-
ternal evaluation strategy, showing its potential for automating truly unsupervised anomaly
detection.

The reason that hyperparameter values are often chosen either arbitrarily or using
label information is probably that it is challenging to construct an internal evalua-
tion strategy for anomaly detection without using any labels. There have been some
research efforts aimed at automating graph SSL though. For instance, JOAO [295]
aims to automatically combine several predefined graph augmentations via learning a
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7.2. Related Work

sampling distribution, where the augmentations themselves are not learnable. Mean-
while, AD-GCL [296] uses learnable edge dropping augmentation and AutoGCL [297]
proposes a learnable graph view generator that learns a probability distribution over
node-level augmentations, which can well preserve the semantic labels of graphs for
graph-level tasks. However, all these automated graph augmentation methods are ag-
nostic to the downstream tasks, making the learned graph embeddings sub-optimal for
a specific downstream task, namely anomaly detection in our case. Additionally, these
methods are specifically designed for certain SSL frameworks, and it is non-trivial (if
at all possible) to extend them to the general SSL framework. Moreover, these au-
tomated SSL strategies are computationally expensive, rendering them impractical in
real-world applications.

As an initial step towards mitigating this long-standing but neglected issue, we
propose a lightweight and plug-and-play approach dubbed AutoGAD, to automate
SSL for truly unsupervised graph anomaly detection. Specifically, AutoGAD leverages
a so-called internal evaluation strategy [298], without relying on any ground-truth
labels (whether explicitly or implicitly), to select optimal combination weights and/or
SSL-specific hyperparameter values. Moreover, we theoretically analyze the internal
evaluation strategy to prove why it is effective and empirically demonstrate this.

Overall, our main contributions can be summarized as follows:

• We raise renewed awareness to the label information leakage issue, which is
critical but often overlooked in the unsupervised GAD field;

• Although there exists a plethora of graph SSL methods and GAD approaches,
we are the first to investigate automated SSL specifically for unsupervised GAD;

• We propose a lightweight, plug-and-play approach to automate SSL for truly
unsupervised GAD and provide a theoretical analysis;

• Extensive experiments are conducted using 10 state-of-the-art SSL-based GAD
algorithms on 10 benchmark datasets, demonstrating the effectiveness of our
approach.

7.2 Related Work
Our work is related to node anomaly detection on static attributed graphs, self-
supervised learning for graph anomaly detection, automated self-supervised learning,
and automated anomaly detection.
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7.2.1 Anomaly Detection on Attributed Graphs

Early methods for node anomaly detection in static attributed graphs, such as AMEN
[299], Radar [300], and Anomalous [301], are not based on deep learning. These
methods work well on low-dimensional attributed graphs, but their performance is
limited on complex graphs with high-dimensional node attributes.

Recently, deep learning-based methods, including DOMINANT [284], Anomaly-
DAE [275], and GUIDE [279], have been proposed for GAD. These methods usually
employ graph autoencoders to encode nodes followed by decoders to reconstruct the
adjacency matrix and/or node attributes. As a result, nodes with large reconstruc-
tion errors are considered anomalies. Despite their superior performance to non-deep
learning methods, these reconstruction-based methods still suffer from sub-optimal
performance, as reconstruction is a generic unsupervised learning objective. Besides,
these methods require the full attribute and adjacency matrices as model input, mak-
ing them unsuitable or even impossible for large graphs.

7.2.2 Self-Supervised Learning for Graph Anomaly Detection

Graph SSL aims to learn a model by using supervision signals generated from the
graph itself, without relying on human-annotated labels [274]. It has achieved promis-
ing performance on typical graph mining tasks such as representation learning [302]
and graph classification [303]. [278] first applied SSL to the GAD problem. Their pro-
posed method CoLA performs single scale comparison (node-subgraph) for anomaly
detection. However, ANEMONE [277] argues that modeling the relationships in a sin-
gle contrastive perspective leads to limited capability of capturing complex anomalous
patterns. Hence, they propose additional node-node contrast. Additionally, GRA-
DATE [285] and M-MAG [304] combines various multi-contrast objectives, namely
node-node, node-subgraph, and subgraph-subgraph contrasts for node anomaly detec-
tion. To achieve better performance, SL-GAD [276] combines multi-view contrastive
learning and generative attribute regression, while Sub-CR [286] combines multi-view
contrastive learning and graph autoencoder. Finally, CONAD [280] considers both
contrastive learning and generative reconstruction for better node anomaly detection.

7.2.3 Automated Self-Supervised Learning

Seminal work on automated data augmentation for images [305, 306] was followed
by work improving [306] via faster searching mechanisms [307, 308, 309] or advanced
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optimization methods [310, 311, 312].
In the context of automated data augmentation for graphs, related work exists

on graph representation learning [313, 296, 314, 287, 297, 295], node classification
[315, 316], and graph-level classification [317, 318, 297]. For example, JOAO [295]
learns the sampling distribution of a set of predefined graph augmentations. AD-GCL
[296] designs a learnable edge dropping augmentation and employs adversarial training
strategy, and AutoGCL [297] proposes a learnable graph view generator that learns
a probability distribution over the node-level augmentations. Further, [317] augment
graph data samples, while [318] perturb the representation vector. However, these
methods focus on other typical graph learning tasks and it is unclear how to use them
for unsupervised GAD.

7.2.4 Automated Anomaly Detection

Recent studies [319, 320, 321, 322] pointed out that unsupervised anomaly detection
methods tend to be highly sensitive to the values of their hyperparameters (HPs).
For example, [319] show that a 10x performance difference is observed for LOF [173]
by changing the number of nearest neighbors. Even more, [321] indicate that deep
anomaly detection methods suffer more from such HP sensitivity issues. Concretely,
[322] demonstrate that RAE [323] exhibits a 37x performance difference with different
HPs configurations.

To tackle this issue, automated HP tuning and model selection for unsupervised
anomaly detection has received increasing but insufficient attention; [320] present an
overview. Inspired by [320, 322], we subdivide existing approaches into two main
categories:

• Supervised evaluation methods which require ground-truth labels although anomaly
detection algorithms are unsupervised. Methods include PyODDS [324], TODS
[325], AutoOD [326], and AutoAD [327];

• Unsupervised evaluation methods which do not require ground-truth labels. They
include

– randomly selecting an HP configuration;

– selecting an HP configuration via an internal evaluation strategy [328, 329,
330, 331];

– averaging the outputs of a set of randomly selected HP configurations [332];
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– meta-learning based methods [333, 334, 322].

However, existing automated anomaly detection methods are primarily designed for
non-graph data.

7.3 Problem Statement
We utilize lowercase letters, bold lowercase letters, uppercase letters, and calligraphic
fonts to represent scalars (x), vectors (x), matrices (X), and sets (X ), respectively.

Definition 7.1 (Attributed Graph). We denote an attributed graph as G = {V, E ,X},
where V = {v1, ..., vn} is the set of nodes. Besides, E = {eij}i,j∈{1,...,n} is the set of
edges, where eij = 1 if there exists an edge between vi and vj and eij = 0 otherwise.
Moreover, X ∈ Rn×d represents the node attribute matrix, where the i-th row vector
xi means the node attribute of vi.

Formally, we consider unsupervised node anomaly detection on attributed graphs
(dubbed GAD hereafter), which is defined as follows:

Problem 1 (Node Anomaly Detection on Attributed Graph). Given an attributed
graph as G = {V, E ,X}, we aim to learn an anomaly scoring function f(·) that assigns
an anomaly score s = f(vi) to each node vi, with a higher score representing a higher
degree of being anomalous. Next, the anomaly scores are used to rank the nodes such
that the top-k nodes can be considered as anomalies.

In this paper, we consider the transductive unsupervised anomaly detection setting:
the graph containing both normal and abnormal nodes are given at the training stage.
Node labels are not accessible during the training stage and they are only used for
performance evaluation. Importantly, the labels of nodes are not (and should not be)
used for HP tuning under this unsupervised setting.

Formally, we consider the hyperparameter optimization problem for unsupervised
graph anomaly detection (dubbed HPO for GAD):

Problem 2 (HPO for GAD). Given a graph G without labels and a graph anomaly
detection algorithm f(·) with hyperparameter space Λ, we aim to identify a hyper-
parameter configuration λ ∈ Λ such that the resulting model f(λ) can achieve the
best performance on G. I.e., suppose λ consists of K different hyperparameters
{λ1, ...,λk, ...,λK}, where λk ∈ Λk can be discrete or continuous, we aim to find

argmax
λ1∈Λ1,...,λk∈Λk,...,λK∈ΛK

Metric [f(λ1, ...,λk, ...,λK ;G)] , (7.1)
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Figure 7.2: Self-supervised learning based graph anomaly detection methods can be sub-
divided into generative based methods and contrastive based methods. A generative based
method generally involves graph structure reconstruction and node attributes reconstruction.
A contrastive based method usually consists of a graph augmentation module and a contrastive
learning module.

where Metric[·] is a given performance metric.

7.4 SSL for Unsupervised GAD
In this section, we first revisit existing self-supervised learning methods for “unsuper-
vised” graph anomaly detection, followed by an analysis and experiments to showcase
pitfalls in existing studies.

7.4.1 Existing SSL for “Unsupervised” GAD

Figure 7.2 shows how existing SSL based GAD methods can be divided into generative
methods and contrastive methods.

That is, a generative method usually consists of two individual SSL tasks, namely
1.1) structure reconstruction that aims to reconstruct the adjacency matrix, and 1.2)
attribute reconstruction that aims to reconstruct the node attribute matrix. On this
basis, the attribute reconstruction error and the structure reconstruction error are
combined to obtain an anomaly score, where higher reconstruction error indicates a
higher degree of anomalousness.

Meanwhile, a contrastive method often consists of two modules: 2.1) data augmen-
tation module, and 2.2) contrastive learning module. First, for each target node, the
data augmentation module utilizes one augmentation function f(δ) to produce aug-
mented samples, which usually include positive samples and negative samples. The
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scenario of using multiple augmentation functions can be obtained in a similar way.
Second, three contrastive perspectives can be applied to contrast positive pairs and
negative pairs: 2.2.1) node-node contrast that contrasts node embedding with node
embedding, and 2.2.2) node-subgraph contrast that contrasts node embedding with
subgraph embedding, and 2.2.3) subgraph-subgraph contrast that contrasts subgraph
embedding with subgraph embedding.

7.4.2 Pitfalls in Existing Methods

In this subsection, we revisit existing SSL-based unsupervised GAD methods by check-
ing the following three aspects for each method:

• Which SSL framework does the method employ: generative, contrastive, or both?

• Howmany SSL-specific hyperparameters are involved? (E.g., combination weights
and others.)

• How are values for key SSL hyperparameters chosen? (E.g., the ratio of node
attribute masking or dropping edges, and the combination weights of multiple
loss functions?)

By doing so, we point out that these studies have noticeable pitfalls. More impor-
tantly, we perform experiments to show that the high performance that these methods
claim to achieve is often strongly overestimated due to label leakage issues (cf. Ta-
ble 7.1).

Due to space constraints and to enhance readability, we revisit three representa-
tive SSL-based GAD algorithms in the main paper, including a contrastive method:
ANEMONE [277], a generative method: AnomalyDAE [275], and a combined con-
trastive and generative method: SL-GAD [276].

Revisiting ANEMONE

ANEMONE [277] is a contrastive method for unsupervised GAD.
Graph Augmentation Module. A single graph augmentation operation is used,

namely Random Ego-Nets generation with a fixed size K. Specifically, taking the
target node as the center, they employ RWR [335] to generate two different subgraphs
as ego-nets with a fixed size K. This results in one critical HP, namely K.

Contrast Learning Module. Two contrast perspectives are considered: 1) node-
node contrast between the embedding of a masked target node within the ego-net and
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the embedding of the original node, leading to loss term LNN , and 2) node-subgraph
contrast within each view, leading to loss term LNS . These loss terms are combined
as L = (1 − α)LNN + αLNS , where α ∈ [0, 1] is the trade-off HP, giving one more
critical HP, namely α.

HPs Sensitivity & Tuning. By using ground-truth label information, they
heuristically set α to 0.8, 0.6, 0.8 on Cora, CiterSeer, and PubMed respectively, and
report the corresponding results. The setting of K is not studied, and is set to 4 for
all datasets.

Revisiting AnomalyDAE

AnomalyDAE [275] is a generative method using autoencoders (based on GNNs) for
unsupervised GAD.

Generative Framework. AnomalyDAE consists of two components: 1) an at-
tribute autoencoder to reconstruct the node attributes, where the encoder consists
of two non-linear feature transform layers and the decoder is simply a dot product
operation. This leads to the loss term LA, and LA is associated with a penalty HP
η; and 2) a structure autoencoder to reconstruct the structure, where the encoder is
based on GAT [336] and the decoder is a dot product operation followed by a sigmoid
function. This leads to the loss term LS , and LS is associated with a penalty HP θ.

Their overall optimization objective is then defined as L = αLS+(1−α)LA, where
α ∈ (0, 1) balances the two objectives.

HPs Sensitivity & Tuning. The paper finds that the AUC usually increases
first and then decreases with the increase of α. However, the specific value of α on
each dataset is selected using label information. The HPs (α, η, θ) are heuristically set
as (0.7, 5, 40), (0.9, 8, 90), (0.7, 8, 10) on BlogCatalog, Flickr, and ACM respectively.

Revisiting SL-GAD

SL-GAD [276] is an unsupervised GAD method that combines both contrastive and
generative objectives.

Contrastive Framework—Data Augmentation Module. The method uses
a single graph augmentation operation, namely Random Ego-Nets generation with a
fixed size K. Specifically, taking the target node as the center, RWR [335] is used to
generate two different subgraphs as ego-nets with a fixed size K, where K controls the
radius of the surrounding contexts. This gives one critical HP for graph augmentation,
namely K.
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Contrastive Framework—Contrast Learning Module. The Multi-View Con-
trastive Learning module compares the similarity between a node embedding and the
embedding of sampled sub-graphs in augmented views (namely node-subgraph con-
trast), leading to loss terms Lcon,1 and Lcon,2. Combining those leads to contrastive
objective Lcon = 1

2 (Lcon,1 + Lcon,2).
Generative Framework. The Generative Attribute Regression module recon-

structs node attributes, with the aim to achieve node-level discrimination. Specifically,
they minimize the Mean Square Error between the target node’s original and recon-
structed attributes in augmented views, leading to loss terms Lgen,1 and Lgen,2. Com-
bining those with equal weights leads to generative objective Lgen = 1

2 (Lgen,1+Lgen,2).
The overall optimization objective is then defined as L = αLcon + βLgen, where

α, β ∈ (0, 1] are trade-off HPs to balance the importance of the two SSL objectives.
HPs Sensitivity & Tuning. The authors conducted a sensitive analysis and

found that: 1) the performance first increases and then decreases with the increase
of K. For efficiency considerations, they heuristically set the sampled subgraph size
K = 4 for all datasets; 2) they heuristically fix α = 1 for all datasets as they found that
this achieves good performance on most datasets (with the help of label information);
and 3) the selection of β is highly dependent on the specific dataset. Hence, they
“fine-tune” the value of β for each dataset via selecting β from {0.2, 0.4, 0.6, 0.8, 1.0}
using labels.

Other SSL-based GAD methods

Due to space constraints, the analyses of other SSL-based GAD methods, including
CoLA [278] , GRADATE [285], Sub-CR [286], CONAD [280], DOMINANT [284],
GUIDE [279], and GAAN [337], are given in Appendix 7.8. These methods are all
representatives of recent advancements in using SSL to conduct unsupervised graph
anomaly detection, and have yielded outstanding detection performance. Likewise,
however, these methods also exhibit pitfalls with regard to hyperparameter tuning,
similar to those of ANEMONE [277], AnomalyDAE [275], and SL-GAD [276].

7.4.3 Sensitivity Analysis

After revisiting recent SSL-based unsupervised GAD methods, we now empirically
investigate their sensitivity to SSL-related HPs in a systematic way. More concretely,
we report their performance variations in terms of RUC-AUC values under different
hyperparameter configurations (see Chapter 7.6 for experiment settings).
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Table 7.1: Performance variation, quantified as max(AUC)−min(AUC)
max(AUC)

, under different hyper-
parameter settings on six benchmark datasets. Results are the mean of five independent runs,
each with a unique random seed. OOM means out of memory, while OOR indicates that
runtime exceeded a 7-day limit for a single trial. Cells marked as ‘UNF’ denote persistent
underfitting of algorithms, even after reaching the maximum allowed training epochs (e.g.,
loss values change by less than 10−2 after 400 epochs). ‘NAN’ indicates execution errors
caused by excessive NaN values; these cases are excluded from further analysis. Refer to
Chapter 7.6 for details on the experimental setup.

Cora CiteSeer PubMed ACM Flickr BlogCatalog Amazon Facebook Reddit YelpChi Average
CoLA 1.1% 1.7% 1.6% 4.2% 3.3% 4.7% 18.0% 3.4% 2.9% 31.9% 7.3%
ANEMONE 8.9% 6.6% 6.3% 11.3% 16.9% 16.8% 32.7% 23.9% 8.9% 37.7% 17.0%
GRADATE 6.9% 14.1% OOM OOM OOR OOR 5.9% 22.9% OOR OOR 12.5%
SL-GAD 17.4% 16.2% 19.5% 17.7% 16.3% 23.4% 25.4% 47.8% 21.8% OOR 22.8%
Sub-CR 15.1% 8.3% OOM OOM 9.8% 6.3% 28.6% 20.3% OOM OOM 14.7%
CONAD 5.8% 7.0% 2.3% UNF OOM OOM 17.3% 27.3% 9.7% 40.7% 15.7%
DOMINANT 5.1% 6.0% 1.9% UNF UNF UNF 12.4% 19.1% 8.4% 34.5% 12.5%
A-DAE 19.1% 25.3% 23.8% 20.8% 23.6% 14.3% 48.1% 64.9% NAN NAN 30.0%
GUIDE 4.8% 4.8% 1.8% UNF 8.5% UNF 11.5% 18.6% 8.0% 34.4% 11.6%
GAAN 28.1% 30.0% 30.3% 25.6% 10.1% 7.2% 13.1% 72.6% 11.9% 11.5% 24.0%

As shown in Figure 7.1, for a typical run with different hyperparameter config-
urations, the performance of ANEMONE [277] can vary strongly on each of the ten
datasets. Other SSL-based GAD algorithms exhibit similar behavior; extensive results
and analysis are deferred to Appendix 7.8 for space reasons.

For an in-depth yet compact analysis, Table 7.1 presents average results over five in-
dependent runs when varying SSL-related hyperparameter values. Specifically, CoLA
[278], GUIDE [279], DOMINANT [284], GRADATE [285], and Sub-CR [286] demon-
strate moderate performance variations (namely between 7.3% and 14.7% on aver-
age). Meanwhile, CONAD [280], ANEMONE [277], SL-GAD [276], GAAN [337], and
AnomalyDAE [275] suffer from large performance variations (namely ranging from
15.7% to 30.0% on average). From Chapter 7.4.2 and Appendix 7.8, we see that
the results reported in existing papers are often obtained by manually tuned HPs
(in a post-hoc way with label information), thereby leading to strongly overestimated
performance for real-world applications where labels are not accessible. To mitigate
this severe issue, we propose AutoGAD, a method for automating hyperparameter se-
lection in SSL for GAD and achieving truly unsupervised graph anomaly detection.
Importantly, AutoGAD does not need any ground-truth labels.
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7.5 AutoGAD: Using Internal Evaluation to Auto-
mate SSL for GAD

Our proposed approach, called AutoGAD, consists of two parts: 1) an unsupervised
performance metric, and 2) an effective search method. Importantly, and as mentioned
before, the chosen performance metric—denotedMetric[·] in Equation 7.1—should not
use any ground-truth label information, simply because this is not available in a truly
unsupervised setting. We therefore propose to utilize an internal evaluation strategy,
which will be elucidated later. Next, given the impracticality of evaluating an infinite
number of configurations for continuous hyperparameter domains, another challenge is
the efficient exploration of the search space. Chapter 7.5.2 describes a straightforward
approach using discretization and grid search that works well in practice, as shown in
the next section.

7.5.1 Internal Evaluation Strategy

The intuition behind the internal evaluation strategy that we use is to measure the
similarity of anomaly scores within the same predicted anomaly class and the dissimi-
larity between anomaly scores across different predicted classes (i.e., ‘anomaly’ or ‘no
anomaly’). As we will prove later, optimizing the resulting measure is equivalent to
simultaneously minimizing the false positive rate and the false negative rate. In this
way, we aim to evaluate and optimize the performance of the anomaly detector under
different SSL configurations without having to rely on any ground-truth labels.

Contrast Score Margin

The metric that we use is Contrast Score Margin [338], which was introduced before
but not for graph anomaly detection, and is defined as

T (f) =
µ̂O − µ̂I√
1
k (δ̂

2
O + δ̂2I )

, (7.2)

where µ̂O and δ̂2O denote the average and variance of the anomaly scores of the k
predicted anomalous objects (Ô), respectively. Moreover, µ̂I and δ̂2I represent the
average and variance of the anomaly scores of the k predicted normal objects (Î) with
the highest scores, respectively. Intuitively, the metric focuses on the k predicted
normal objects that are most similar to the k predicted anomalous objects, and aims
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to measure the margin of the anomaly scores between them. It only takes linear time
with respect to n to compute.

Analysis

We now analyze why the internal evaluation metric Contrast Score Margin should
work for our purposes.

Theorem 1 (Minimizing False Positives and Negatives). For an anomaly detector
f(·) on dataset X, assume the anomaly scores of the top k true anomalies (O) have the
expected value µO and variance δ2O, and the anomaly scores of the top k true normal
objects with the highest anomaly scores (I) have the expected value µI and variance δ2I ,
then maximizing T is equal to simultaneously minimizing the false positive rate and
the false negative rate .

Proof. According to Cantelli’s inequality, which makes no assumptions on specific
probability distributions, on the one hand, for x ∈ O we have P (f(x) ≤ µO − α) ≤

δ2O
δ2O+α2 , where α ≥ 0 is a small constant chosen based on a desired bound on the false
negative. By replacing α = aδO, we have P (f(x) ≤ µO − aδO) ≤ 1

1+a2 , which is the
False Negative Bound. In other words, f(x) has a maximum probability of 1

1+a2 to be
less than µO − aδO.

On the other hand, for y ∈ I we have P (f(y) ≥ µI + β) ≤ δ2I
δ2I +β2 , where β ≥ 0 is

a small constant chosen based on a desired bound on the false positive. By replacing
β = bδI, we have P (f(y) ≥ µI + bδI) ≤ 1

1+b2 , which is the False Positive Bound. In
other words, f(y) has a maximum probability of 1

1+b2 to be larger than µI + bδI.
Furthermore, (µO− aδO)− (µI + bδI) = (µO−µI)− (bδI + aδO). Hence, to ensure a

small false positive rate and a small false negative rate, we want µO−µI to be as large
as possible while bδO + aδI as small as possible. In fact, this is equivalent to optimize
the Contrast Score Margin, i.e.,

T (f) =
µO − µI√
1
k (δ

2
O + δ2I )

Note that if an anomaly detector f(·) produces a perfect anomaly detection result,
i.e., for any x ∈ O and any y ∈ X \ O, we have f(x) > f(y), then we will obtain
µO − µI > 0. In another extreme, if f(·) produces a poor anomaly detection result,
i.e., for all x ∈ O and any y ∈ X \ O, we have f(x) < f(y), then we will obtain
µO − µI < 0. Meanwhile, if an anomaly detector f(·) produces a random result, i.e.,
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for some x ∈ O and any y ∈ X\O, we have f(x) < f(y), then we may obtain µO−µI < 0

or µO − µI ≈ 0.

Improvements and Remarks

In practice we observed that Equation 7.2 is not always stable. Possible reasons are
that 1) the proportion of anomalies is usually very small (namely less than 5% in most
datasets); and 2) the exact number of anomalies is generally not known (even for a
dataset with injected anomalies, there may exist some natural samples that exhibit
similar behaviors as anomalies). Therefore, we propose to modify Equation 7.2 as
follows:

T (f) =
µ̂O − µ̃I√
δ̂2O + δ̃2I

, (7.3)

where µ̂O and δ̂2O denote the average and variance of the anomaly scores of the k pre-
dicted anomalous objects, respectively. Importantly, µ̃I and δ̃2I represent the average
and variance of the anomaly scores of the remaining n− k objects, respectively. This
change should lead to more stable performance compared to using anomaly scores
of the top-k predicted normal objects in Equation 7.2. This is because the true la-
bels are not accessible, and thus we utilize the pseudo-labels to identify the top-k
anomalous and the top-k normal objects. However, the pseudo-labels of the top-k
“pseudo-normal” objects may not be reliable due to the two facts stated above.

Moreover, to ensure the effectiveness of this internal evaluation strategy, we have to
make sure that: 1) we use the same algorithm with different hyperparameter configura-
tions; and 2) the scales of the loss values are approximately the same when combining
multiple loss functions in the same algorithm. In other words, we should not directly
use the strategy to select among different heterogeneous anomaly detection algorithms
(please refer to Appendix 7.8 for empirical evidence of this).

7.5.2 Discretization and Grid Search

To find the optimal hyperparameter configuration, we first perform discretization of
the continuous search space and then conduct grid search. The corresponding pseudo-
code is provided in Algorithm 6, with a detailed explanation presented below.

Discretization of Continuous Search Space (Lines 1–2). To make the overall
search process feasible, we discretize the hyperparameter space. Assume we are given
a GAD algorithm f(·) with its set of hyperparameters λ ∈ Λ. Without loss of general-
ity, we assume there are L different hyperparameters and let λ = {λ(1), λ(2), . . . , λ(L)},

187



7.6. Experiments

Algorithm 6 Grid Search for Anomaly Detector Hyperparameter Optimization
Input: Graph anomaly detection algorithm f(·), graph G, hyperparameter domains

Λ = {Λ(1), . . . ,Λ(L)}, internal evaluation function T (·)
Output: Best hyperparameter configuration λbest

1: Discretize each continuous domain Λ(l) into a finite set if necessary
2: Generate hyperparameter search set λsearch = {λ1, . . . ,λM} where M =∏L

l=1 |Λ
(l)|

3: Initialize best score tbest ← −∞ and best configuration λbest ← ∅
4: for each λm ∈ λsearch do
5: Compute anomaly scores sm(G) = f(λm;G)
6: Compute evaluation score tm(G) = T (sm(G))
7: if tm(G) > tbest then
8: Update tbest ← tm(G)
9: Update λbest ← λm

10: end if
11: end for
12: return λbest

where each λ(l) ∈ Λ(l) for l = 1, 2, . . . , L. If a hyperparameter domain Λ(l) is con-
tinuous, we discretize it into a finite set of values (with cardinality |Λ(l)|). This
results in M possible hyperparameter configurations, represented by the set λsearch =

{λ1, . . . ,λm, . . . ,λM}, where λm = {λ(1)m , λ
(2)
m , · · · , λ(L)

m } and M =
∏L

l=1 |Λ(l)|.
Grid Search (Lines 3–11). Once the hyperparameter search space is discretized,

we apply grid search to evaluate each configuration. For each hyperparameter con-
figuration λm ∈ λsearch, we run the GAD algorithm f(λm) on the given graph G to
produce a vector of anomaly scores sm(G) = f(λm;G). These scores are evaluated
using an internal unsupervised performance metric T (·) (with Equation 7.3) to yield
a final score tm(G) = T (sm(G)). The configuration that maximizes T (·) is selected as
the optimal values of hyperparameters.

Note that more advanced strategies than grid search, such as SMBO-based op-
timization [339], could be employed (see Appendix 7.8 for an example). However,
these methods often introduce additional hyperparameters (whose tuning may be non-
trivial), which contradicts our goal of automated anomaly detection.

7.6 Experiments
We aim to answer the following research questions (RQ):

RQ1 How sensitive are existing SSL-based GAD methods to the values of their hy-
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Table 7.2: Summary of datasets: anomalies in Cora, CiteSeer, PubWeb, ACM, BlogCat-
alog, and Flickr are synthetically injected following established methods [277, 278], while
Amazon, Facebook, Reddit, and YelpChi contain real-world anomalies.

Dataset #Nodes #Edges #Attributes #Anomalies
Cora [340] 2708 11060 1433 138(5.1%)

CiteSeer [340] 3327 4732 3703 150(4.5%)
PubMed [340] 19717 44338 500 150(2.5%)
ACM [341] 16484 71980 8337 600(3.6%)

BlogCataLog [342] 5196 171743 8189 300(5.8%)
Flickr [342] 7575 239738 12407 450(5.9%)

Amazon [343] 10244 175608 25 693(6.7%)
Facebook [344] 1081 55104 576 27(2.5%)
Reddit [345] 10984 168016 64 366(3.3%)
YelpChi [346] 24741 49315 32 1217(4.9%)

perparameters?

RQ2 How effective is AutoGAD in tuning SSL-related hyperparameter values for these
methods?

We describe the experiment settings, including the datasets, baselines, evaluation met-
rics, and software and hardware used, which is followed by the experiment results and
their interpretation.

7.6.1 Datasets

We use three popular citation networks, namely Cora, Citeseer, and Pubmed [340] with
injected anomalies, one social network Flickr (less homophily) with injected anoma-
lies, ACM as well as BlogCataLog with injected anomalies. Particularly, we follow the
methods used by ANEMONE [277] and CoLA [278] to inject structure and contextual
anomalies. Note that [294] have slightly modified this injection procedure. Following
[347], we also consider four commonly-used graph datasets with real anomalies: Ama-
zon [343], Facebook [344], Reddit [345], and YelpChi [346]. The resulting datasets are
summarized in Table 7.2.

7.6.2 Baselines

We study the performance of the following SSL-based graph anomaly detection meth-
ods:
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• Generative methods: DOMINANT [284], AnomalyDAE [275], GUIDE [279],
GAAN [337];

• Contrastive methods (and some also generative): CoLA [278], ANEMONE [277],
GRADATE [285], SL-GAD [276], Sub-CR [286], CONAD [280].

Particularly, the SSL-related HPs for each GAD algorithm and their discretized search
spaces are given in Table 7.6 in the Appendix. These GAD methods are further
summarized in Table 7.7 in the Appendix.

7.6.3 Evaluation Metrics

To evaluate the effectiveness of various GAD algorithms, we utilize the ROC-AUC
metric [348] (AUC for short hereinafter), where a value approaching 1 denotes the
best possible performance.

Moreover, to quantify the performance variation of an individual GAD method
under different SSL-related HP configurations, we define the following performance
variation metric:

max(AUC)−min(AUC)
max(AUC) , (7.4)

where max(AUC) and min(AUC) represent the maximum and minimum of achieved
AUC values for the evaluated GAD algorithm with different configurations, respec-
tively. Hence, the smaller this value is, the less sensitive the algorithm is to SSL-related
HPs.

Further, we define the performance gain over minimal AUC as

CSM(AUC)−min(AUC)
min(AUC)

, (7.5)

where CSM(AUC) indicates the AUC value obtained for the evaluated GAD algorithm
when configured with the HPs selected using the Contrast Score Margin. This metric
can quantify the effectiveness of our strategy relative to the worst case hyperparameter
setting. Next, we define performance gain over median AUC as

CSM(AUC)−median(AUC)
median(AUC)

, (7.6)

where median(AUC) represents the median of the obtained AUC values for the GAD
algorithm with different configurations. Thus, if the value of this metric is positive,
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the GAD algorithm configured with our selected HPs can at least outperform its
counterparts configured with 50% of the other sampled hyperparameter values.

Furthermore, we define performance gain over maximal AUC as

CSM(AUC)−max(AUC)

max(AUC) , (7.7)

where max(AUC) represents the maximum of the obtained AUC values for the GAD
algorithm with different configurations. Thus, if the value of this metric is close to
zero, the GAD algorithm configured with our selected HPs can approximately achieve
the best possible performance.

7.6.4 Software and Hardware

All algorithms are implemented in Python 3.8 (using PyTorch [109] and PyTorch
Geometric [110] libraries when applicable) and ran on workstations equipped with
AMD EPYC7453 CPUs (with 64GB RAM) and/or Nvidia RTX4090 GPUs (with 24.0
GB video memory). All code and datasets are available on GitHub1.

7.6.5 Results and Analysis

Table 7.3: Performance gain over minimal AUC defined as CSM(AUC)−min(AUC)
min(AUC)

. Results
are averaged on five independent runs. CSM is contrast score margin defined in Equation 7.3,
while OOM, OOR, UNF, and NAN convey the same meanings as in Table 7.1.

Cora CiteSeer PubMed ACM Flickr BlogCatalog Amazon Facebook Reddit YelpChi Average
CoLA 0.5% 1.2% 1.6% 2.8% 2.2% 4.7% 22% 1.8% 1.5% 2.5% 4.1%
ANEMONE 8.6% 5.9% 6.6% 6.8% 15.8% 19.7% 44.7% 28.1% 4.0% 11.9% 15.2%
GRADATE 4.0% 14.3% OOM OOM OOR OOR 4.3% 29.7% OOR OOR 13.1%
SL-GAD 21.2% 19.1% 23.7% 21.3% 18.2% 30.4% 13.0% 16.3% 15.8% OOR 19.9%
Sub-CR 16.2% 4.3% OOM OOM 4.3% 2.4% 19.2% 25.3% OOM OOM 12.0%
CONAD 5.4% 2.3% 2.1% UNF OOM OOM 6.5% 18.3% 2.4% 24.3% 8.8%
DOMINANT 5.2% 1.3% 1.8% UNF UNF UNF 13.7% 14.9% 0.8% 28.0% 9.4%
A-DAE 11.3% 4.6% 11.9% 5.6% 30.8% 32.2% 67.3% 114.6% NAN NAN 34.8%
GUIDE 5.0% 1.2% 1.8% UNF 0.1% UNF 9.4% 14.3% 3.8% 28.8% 8.1%
GAAN 7.7% 34.1% 43.6% 5.6% 1.3% 6.6% 12.4% 77.9% 0.4% 14.5% 20.4%

We answer the research questions as follows:

RQ1: Sensitivity of SSL-based GAD methods to HPs

The results are summarized in Table 7.1 for five independent runs. Typical runs are
depicted in Figure 7.1 and in Figures 7.5-7.13 in Appendix 7.8. We briefly analyzed the

1https://github.com/ZhongLIFR/AutoGAD2024
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Table 7.4: Performance gain over median AUC defined as CSM(AUC)−median(AUC)
median(AUC)

. Results
are averaged on five independent runs. CSM is contrast score margin defined in Equation 7.3,
while OOM, OOR, UNF, and NAN convey the same meanings as in Table 7.1. For enhanced
readability, cells are color-coded based on their values, as specified in the legend.

Dark Orange Light Orange Light Green Dark Green Grey
(−∞,−5.0%] (−5.0%, 0.0%) [0.0%, 5.0%) [5.0%,+∞) Excluded

Cora CiteSeer PubMed ACM Flickr BlogCatalog Amazon Facebook Reddit YelpChi Average
CoLA -0.1% 0.1% 0.2% -0.7% 0.6% 2.0% 15.4% 0.1% -0.2% -3.3% 1.4%
ANEMONE 0.3% 1.0% 1.5% -0.8% 2.0% 7.2% 26.4% 3.5% -2.4% 1.6% 4.0%
GRADATE -0.6% 4.0% OOM OOM OOR OOR 0.7% 18.3% OOR OOR 5.6%
SL-GAD 3.3% 3.7% 4.8% 4.3% 2.8% 5.0% -1.4% -31.6% -2.0% OOR -1.2%
Sub-CR -1.6% -0.4% OOM OOM -3.2% -2.2% 2.6% 9.8% OOM OOM 0.8%
CONAD 4.0% 1.2% 1.5% UNF OOM OOM -3.7% 2.5% -3.1% 1.5% 0.6%
DOMINANT 3.7% 0.5% 1.3% UNF UNF UNF 4.4% -1.8% -3.0% 4.8% 1.4%
A-DAE 2.9% -3.0% -2.9% -4.1% 0.9% -3.4% 2.6% 0.7% NAN NAN -0.8%
GUIDE 3.8% 0.6% 1.5% UNF -0.3% UNF 2.1% -2.3% 0.2% 5.3% 1.4%
GAAN 2.8% 27.5% 35.6% 3.5% 0.7% 4.7% -2.4% -45.6% -1.3% -0.5% 2.5%

Table 7.5: Performance gain over maximal AUC defined as CSM(AUC)−max(AUC)
max(AUC)

. Results
are averaged on five independent runs. CSM is contrast score margin defined in Equation 7.3,
while OOM, OOR, and NAN convey the same meanings as in Table 7.1.

Cora CiteSeer PubMed ACM Flickr BlogCatalog Amazon Facebook Reddit YelpChi Average
CoLA -0.6% -0.5% -0.1% -1.5% -1.3% -0.3% 0% -1.7% -1.5% -30.2% -3.8%
ANEMONE -1.1% -1.1% -0.2% -5.4% -3.9% -0.4% -2.6% -2.6% -5.3% -30.3% -5.3%
GRADATE -3.2% -1.9% OOM OOM OOR OOR -1.8% 0.0% OOR OOR -1.7%
SL-GAD -0.4% -0.3% -0.4% -0.4% -1.2% -0.2% -15.8% -39.4% -9.4% OOR -7.5%
Sub-CR -3.8% -4.5% OOM OOM -5.9% -4.1% -15.3% -0.2% OOM OOM -5.6%
CONAD -0.8% -4.9% -0.2% UNF OOM OOM -11.9% -14.0% -7.6% -26.3% -9.3%
DOMINANT -0.2% -4.8% -0.1% UNF UNF UNF -0.6% -7.1% -7.8% -16.2% -5.3%
A-DAE -10.0% -21.8% -14.6% -16.4% -0.1% -4.8% -18.5% -26.3% NAN NAN -14.1%
GUIDE 0% -3.6% 0% UNF -8.4% UNF -3.1% -7.1 % -4.6% -15.4% -5.3%
GAAN -22.6% -6.7% 0% -21.6% -8.9% -1.2% -2.6% -53.7% -11.6% -0.9% -13.0%

results in Chapter 7.4.3; more detailed analyses are given in Appendix 7.8. To recall,
five out of ten algorithms show moderate performance variations, while the remaining
five algorithms demonstrate large performance variations when the values of SSL-
related HPs are varied. In other words, SSL-based GAD methods are (sometimes
highly) sensitive to hyperparameter values.

RQ2: Effectiveness of AutoGAD in tuning SSL-related HPs

The results are summarized in Tables 7.3, 7.4 and 7.5 for five independent runs, while
Figure 7.1 and Figures 7.5-7.13 depict typical runs. We have the following main
observations:

1) From Table 7.3, one can see that AutoGAD can result in moderate performance
gain over minimal AUC (namely between 4.1% and 13.1% on average) for CoLA,

192



Chapter 7. Towards Automated Self-Supervised Learning for Truly
Unsupervised Graph Anomaly Detection

GUIDE, CONAD, DOMINANT, Sub-CR, and GRADATE. Recall that five of
these algorithms (including CoLA, GUIDE, DOMINANT, GRADATE, and Sub-
CR) exhibit moderate performance variations, ranging from 7.3% to 14.7% on
average. Moreover, AutoGAD leads to large performance gain over minimal
AUC (namely between 6.8% and 24.1% on average) for the remaining four algo-
rithms, which suffer from large performance variations (namely between 15.1%
and 34.8% on average). Overall, AutoGAD is substantially better than the worst
case, i.e., when one happens to select the HP values that give the smallest AUC
value.

2) From Table 7.4, one can see that AutoGAD can result in positive performance
gain over median AUC in 8 out 10 algorithms (ranging from 0.6% to 5.6% on
average), implying that the HP values selected by AutoGAD are better than at
least 50% of randomly selected HP values. Particularly, the performance gains
over median AUC for GRADATE [285], ANEMONE [277], and GAAN [337] are
5.6%, 4.0%, and 2.5% respectively, which shows that AutoGAD is highly effective
for these methods.

3) From Table 7.5, one can see that AutoGAD can result in performance gain over
max AUC larger than −10% in 8 out 10 algorithms, implying that the HP
values selected by AutoGAD can achieve performances that are comparable to
optimal performances. For instance, the performance gains over max AUC for
GRADATE and SL-GAD are −1.7% and −7.5% respectively, which shows that
AutoGAD is highly effective for these methods while they show moderate or
large performance variations (12.5% and 22.8% respectively).

4) Following the above observations, we check the details in Figure 7.13 for SL-
GAD, Figure 7.11 for GRADATE, and Figure 7.1 for ANEMONE. For SL-GAD
and GRADATE, AutoGAD often selects HP values better than 90% of randomly
selected HPs values on most datasets. For ANEMONE, the HP values selected
by AutoGAD often outperform 75% of randomly selected HP values.

Sensitivity Analysis

Sensitivity to k. The selection of the value of k in our experiments acknowledges
the varying anomaly ratios across different datasets, implying that k should ideally
differ to reflect the unique characteristics of each dataset. We operated under the
assumption that the anomaly ratio within a dataset is approximately known, a premise
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Figure 7.3: Sensitivity analysis of k (for our proposed AutoGAD) on dataset CiteSeer with
all investigated SSL-based GAD algorithms. It can be seen that AutoGAD remains stable
as long as k is not drastically distant from the actual anomaly ratio (namely 4.5%) all for
SSL-based GAD algorithms.
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Figure 7.4: Performance of AutoGAD across different granularity levels of search grids
using ANEMONE on the Cora, ACM, and Facebook datasets. Similar trends were observed
for other anomaly detectors and datasets, which are omitted for brevity.
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that aligns with real-world anomaly detection tasks where some prior knowledge about
the frequency of anomalies is often available.

As shown in Figure 7.3, we conducted a sensitivity analysis on k to assess the
stability of AutoGAD against deviations from the true anomaly ratio. The findings
from this analysis indicate that the effectiveness of AutoGAD remains stable as long
as k is not drastically distant from the actual anomaly ratio, reinforcing the practical
applicability of our approach even when exact anomaly proportions are not precisely
determined.

Sensitivity to the Granularity of the Search Grid. Acknowledging the sig-
nificance of search space granularity in the performance of AutoGAD, we conduct a
sensitivity analysis by varying the granularity levels of the search grids in grid search.
Figure 7.4 presents representative results using ANEMONE [277] on the Cora, ACM,
and Facebook datasets with four levels of search granularity, as follows:

• Granularity Level 1: α ∈ {0, 0.2, 0.4, 0.6, 0.8, 1}, K ∈ {2, 4};

• Granularity Level 2: α ∈ {0, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99,
1}, K = {2, 3, 4, 5};

• Granularity Level 3: α ∈ {0, 0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45,
0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 0.99, 1},K ∈ {2, 3, 4, 5};

• Granularity Level 4: α ∈ {0, 0.01, 0.025, 0.05, 0.075, 0.1, 0.125, 0.15, 0.175, 0.2,
0.225, 0.25, 0.275, 0.3, 0.325, 0.35, 0.375, 0.4, 0.425, 0.45, 0.475, 0.5, 0.525, 0.55,
0.575, 0.6, 0.625, 0.65, 0.675, 0.7, 0.725, 0.75, 0.775, 0.8, 0.825, 0.85, 0.875, 0.9,
0.925, 0.95, 0.975, 0.99, 1},K ∈ {2, 3, 4, 5, 6, 7}.

The results indicate that finer search grids tend to improve the performance of Auto-
GAD. This is expected, as the optimal value achievable in a finer search grid cannot be
worse than that in a coarser grid. Similar observations were made for other anomaly
detection methods and datasets, which are omitted here for brevity.

7.7 Alternative Strategies and Discussion
Internal evaluation strategies aim to assess the quality of a model based solely on
internal information, without relying on external information such as ground-truth
labels. Internal information can typically be derived from two sources: 1) the input
samples, such as feature values of instances in tabular data or node attributes in graph
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data; or 2) the anomaly scores generated by an anomaly detection model. Beyond the
Contrast Score Margin [338] discussed in this paper, additional internal evaluation
strategies exist for unsupervised model selection in anomaly detection. According to
[298], these strategies can be categorized as stand-alone or consensus-based internal
evaluation strategies; we will next discuss each category.

7.7.1 Stand-alone Internal Evaluation Strategies

Stand-alone strategies rely solely on input samples or individual anomaly detection
methods (or models with specific HP configurations in our setting) and their output
anomaly scores. Key methods include:

• IROES [349, 330] quantifies the separability of each input sample, assuming that
a good anomaly detection model assigns high anomaly scores to highly separable
samples. However, separability scores are defined only for tabular data, making
extension to graph data non-trivial. Additionally, computing separability scores
is computationally expensive, posing challenges for large datasets.

• Mass-Volume and Excess-Mass [328] use statistical tools to measure the
quality of an anomaly scoring function. These methods operate on the raw
input samples rather than anomaly scores and assume that anomalies occur in
the distribution’s tail. However, they are restricted to tabular data and are not
applicable to graph data.

• Clustering Validation Metrics [350] assume that an anomaly detector divides
input samples into two clusters: abnormal and normal. Clustering validation
metrics, such as the Xie-Beni index [351], are then used to evaluate performance.
While clustering coefficients on graphs could be analogous [352], these metrics
are computationally expensive, particularly for large datasets.

7.7.2 Consensus-based Internal Evaluation Strategies

Consensus-based strategies assess the agreement among multiple anomaly detection
models (or the same model with varying HP configurations in our setting). Key
methods include:

• UDR [353] assumes that good HP configurations yield consistent results under
different random initializations, while poor configurations do not. [298] repur-
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posed UDR to select among heterogeneous anomaly detectors, assuming that
good detectors produce consistent results across HP configurations.

• Model Centrality [354] hypothesizes that good models are close to the optimal
model and thus to each other.

• Model Centrality by HITS [355] follows a similar hypothesis but employs a
different computation approach.

• Unsupervised Anomaly Detection Ensembling [298] infers pseudo anomaly
labels by aggregating outputs from a predefined subset of good models. How-
ever, this method is less feasible in our setting as there is no such pre-defined
good models.

Two challenges remain when utilizing these strategies in our setting: 1) validat-
ing the underlying assumptions, which often lack theoretical justification, and 2) ad-
dressing their computational expenses, as consensus-based methods require pairwise
comparisons. In contrast, Contrast Score Margin is computationally efficient, as it
operates on anomaly scores rather than on raw data points and it avoids pairwise
comparisons.

7.7.3 Discussion and Future Work

Although [298] demonstrated that many internal evaluation strategies perform subop-
timally for selecting heterogeneous anomaly detectors, we hypothesize that some can
be valuable for hyperparameter tuning within a single anomaly detection model. How-
ever, this is beyond the scope of this paper and is left for future work. The primary
objectives of this paper are twofold:

• We highlight flaws in existing studies on using SSL for unsupervised graph
anomaly detection. Specifically, we:

1. Review these studies, showing that most tune HPs arbitrarily or selectively.

2. Demonstrate empirically, through extensive experiments, that these meth-
ods are highly sensitive to HP settings. Consequently, we argue that these
methods may suffer from label information leakage under unsupervised
learning settings, leading to overstated performance in practical scenarios
where label-based tuning is inaccessible.
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• We propose an initial solution to these issues by utilizing and improving the
Contrast Score Margin. This internal evaluation metric was selected for two
reasons:

1. It operates on anomaly scores rather than on raw data points and avoids
pairwise computations, making it computationally efficient and suitable for
large datasets.

2. Theoretical guarantees for its properties are provided by Theorem 1, which
may not hold for other internal evaluation strategies.

This paper does not aim to provide a perfect solution to the issues mentioned
above. Instead, our goal is to spark interest in the research community to address
these challenges. Unlike [298], we do not aim to conduct a comprehensive review and
evaluation of internal evaluation strategies for SSL-based graph anomaly detection, as
this requires significant computational resources and in-depth analysis. Nevertheless,
we aim to explore this direction in future work by considering and potentially repur-
posing the internal evaluation strategies reviewed in [298]. We have described a more
advanced search strategy than grid search, namely SMBO-based optimization [339],
in Appendix 7.8, without experimental evaluation. This is because this method in-
troduces additional hyperparameters and their tuning is non-trivial, contradicting our
goal of automated anomaly detection. Other advanced hyper-parameter tuning meth-
ods [356, 357, 358] to speed up the search are possible, and we leave their explorations
for future work.

7.8 Conclusions
SSL has received much attention in recent years, and many recent studies have explored
SSL to perform unsupervised GAD. However, we found that most existing studies tune
hyperparameters arbitrarily or selectively (i.e., guided by labels), and our empirical
findings reveal that most methods are highly sensitive to hyperparameter settings.
Using label information to tune hyperparameters in an unsupervised setting, however,
is label information leakage and leads to severe overestimation of model performance.
To mitigate this issue, we introduce AutoGAD, the first automated hyperparameter
selection method for SSL-based unsupervised GAD. Extensive experiments demon-
strate the effectiveness of our proposed strategy. Overall, we aim to raise awareness
to the label information leakage issue in the unsupervised GAD field, and AutoGAD
provides a first step towards achieving truly unsupervised SSL-based GAD.
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Appendix A: Pitfalls in Existing Methods (Full Anal-
ysis)

A.1 CoLA

Particularly, CoLA [278] is the first contrastive-based framework for unsupervised
GAD. The design of its data augmentation module and contrast learning module is as
follows.

Data Augmentation Module They consider one type of data augmentation,
subgraph sampling, to obtain local augmented view for each node. Particularly, they
employ RWR [335] to generate a sub-graph with a fixed size K in subgraph sampling,
resulting in one critical HP in graph augmentation, namely K.

Contrast Learning Module They consider a single contrast aspect, namely
node-subgraph contrast between the embedding of the target node and the aggregated
embedding of its local sug-graph, without resulting in any HPs.

HPs Sensitivity & Tuning They conducted sensitive analysis and found that
the selection of subgraph size K is dependent on the specific dataset. The AUC perfor-
mance usually increases first and then decreases with the increasing ofK. However, for
efficiency and robustness consideration, they heuristically set the sampled subgraph
size K = 4 for all datasets.

A.2 ANEMONE

ANEMONE [277] is a contrastive-based framework for unsupervised GAD. They ar-
gue that modeling the relationships in a single contrastive perspective leads to limited
capability of capturing complex anomalous patterns, and thus propose additional con-
trast perspectives as follows.

Graph Augmentation Module They consider a single graph augmentation op-
eration, namely Random Ego-Nets generation with a fixed size K. Specifically, taking
the target node as the center, they employ RWR [335] to generate two different sub-
graphs as ego-nets with a fixed size K. Overall, they result in one critical HP in graph
augmentation, namely K.

Contrast Learning Module They consider two contrast perspectives: 1) node-
node contrast between the embedding of masked target node within ego-net and the
embedding of the original node, leading to loss term LNN , and 2) node-subgraph
contrast within each view, leading to loss term LNS . On this basis, they combine
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these loss terms as
L = (1− α)LNN + αLNS

where α ∈ [0, 1] is the trade-off HP. Hence, they result in one critical HP in graph
contrast, namely α.

HPs Sensitivity & Tuning In their ablation studies: 1) by using ground-truth la-
bel information, they heuristically set α as 0.8, 0.6, 0.8 on Cora, CiterSeer and PubMed
respectively, and report the corresponding results; and 2) the setting of K was not
studied, and it is set to 4 for all datasets.

A.3 GRADATE

GRADATE [285] is also a contrastive-based framework. They argue that subgraph-
subgraph contrast is also critical in detecting graph anomalies, and design it as follows.

Data Augmentation Module They consider a single graph augmentation oper-
ation, namely Edge Modification that removes edges in the adjacency matrix as well
as add the same number of edges. Concretely, they fix a proportion P , and then
uniformly and randomly sample P ·M

2 edges from a total of M edges to remove. Mean-
while, P ·M

2 edges are added into the adjacency matrix. Overall, they result in one
critical HP in graph augmentation, namely P .

Contrast Learning Module They consider three contrast aspects: 1) node-node
contrast within each view, leading to loss term LNN ), 2) node-subgraph contrast within
each view, leading to loss term LNS , and 3) subgraph-subgraph contrast between
original view and augmented view, leading to loss term LSS . On this basis, they
combine these loss terms as

L = (1− β)LNN + βLNS + γLSS ,

where β, γ ∈ (0, 1) are trade-off HPs. More, LNN = αLNN,1 + (1 − α)LNN,2, and
LNS = αLNS,1 + (1 − α)LNS,2, with LNN,1 and LNN,2 being the loss term in the
first and second views respectively. Overall, they result in three critical HPs in graph
contrast, namely the combination weights α, β, γ.

HPs Sensitivity & Tuning In their ablation studies, 1) they compared four
different graph augmentation strategies, including Gaussian Noise Feature, Feature
Masking, Graph Diffusion, and Edge Modification, and they found that Edge Mod-
ification performs the best across different datasets (with ground-truth labels on
test data to measure the performance); 2) with the help of ground-truth label in-
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formation on test data, they heuristically set (α, β) as (0.9, 0.3), (0.1, 0.7), (0.7, 0.1),

(0.9, 0.3), (0.7, 0.5), (0.5, 0.5) on EAT, WebKB, UAT, Cora, UAI2010, and Citation re-
spectively; 3) similarly, they set γ = 1 for all datasets; and 4) they also heuristically
set P = 0.2 for all datasets.

A.4 SL-GAD

Different from CoLA, ANEMONE and GRADATE, SL-GAD [276] combines the contrastive-
based framework and the generative-based framework for unsupervised GAD.

First, the design of the contrastive-based framework is as follows.
Contrastive Framework—Data Augmentation Module They consider a sin-

gle graph augmentation operation, namely Random Ego-Nets generation with a fixed
size K. Specifically, taking the target node as the center, they employ RWR [335] to
generate two different subgraphs as ego-nets with a fixed size K, where K controls the
radius of the surrounding contexts. Overall, they result in one critical HP in graph
augmentation, namely K. Particularly, they indicate that other augmentation strate-
gies such as attribute masking and edge modification may introduce extra anomalies,
while random ego-nets and graph diffusion can augment data without changing the
underlying graph semantic information.

Contrastive Framework—Contrast Learning Module They introduce a Multi-
View Contrastive Learning module that compare the similarity between node em-
bedding and embedding of sampled sub-graphs in augmented views (namely node-
subgraph contrast), leading to two loss terms Lcon,1 and Lcon,2 corresponding to two
augmented views, respectively. On this basis, they obtain the contrastive objective
Lcon = 1

2 (Lcon,1 + Lcon,2), which combines the two loss terms with equal weights.
Second, the generative-based framework is designed as follows.
Generative Framework They introduce a Generative Attribute Regression mod-

ule that reconstructs node attributes, with the aim to achieve node-level discrimina-
tion, where the encoder is a GCN and the decoder is another GCN. Specifically, they
minimize the Mean Square Error between the target node’s original and reconstructed
attributes in augmented views, leading to two loss terms Lgen,1 and Lgen,2 corre-
sponding to two augmented views, respectively. Then they combine them with equal
weights, leading to the generative objective Lgen = 1

2 (Lgen,1 + Lgen,2).
At last, their final optimization objective is defined as follows:

L = αLcon + βLgen,
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where α, β ∈ (0, 1] are trade-off HPs to balance the importance of two SSL objectives.
HPs Sensitivity & Tuning They conducted sensitive analysis and found that:

1) the performance first increases and then decreases with the increasing of K. For
efficiency consideration, they heuristically set the sampled subgraph size K = 4 for
all datasets; 2) they heuristically fix α = 1 for all datasets as they found that this
achieves good performance on most datasets (with the help of label information); and
3) the selection of β is high dependent on the specific dataset. Hence, they “fine-tune”
the value of β for each dataset via selecting β from {0.2, 0.4, 0.6, 0.8, 1.0} with labels.

A.5 Sub-CR

Similar to SL-GAD, Sub-CR [286] also combines the contrastive-based framework and
the generative-based framework for unsupervised GAD.

First, the design of the contrastive-based framework is as follows.
Contrastive Framework—Contrast Learning Module They consider two

types of data augmentation: 1) subgraph sampling to obtain local augmented views for
each node (so-called local view subgraph), 2) graph diffusion plus subgraph sampling
(in a sequential order) to obtain global augmented views for each node (so-called global
view subgraph). Particularly, they employ RWR [335] to generate a sub-graph with
a fixed size K in subgraph sampling. Besides, they apply Persnonalized PageRank
to power the graph diffusion [359], wherein the teleport probability α needs to be
determined. Overall, they result in two critical HPs in graph augmentation, namely
K and α.

Contrastive Framework—Contrast Learning Module This module consists
of: 1) intra-view contrastive learning that maximizes the agreement between the node
and its sub-graph level representations in the local view (with loss term Lintra,1), and
the agreement between the node and its sub-graph level representations in the global
view (with loss term Lintra,2), where they combine the local view and global view loss
terms with equal weights to obtain the intra-view loss term Lintra = Lintra,1+Lintra,2;
and 2) inter-view contrastive learning that makes closer the discriminative scores of
node-subgraph pairs in local view and global view, leading to the loss term Linter. On
this basis, they combine the intra-view loss term and inter-view loss term with equal
weights to obtain the multi-view contrastive learning loss term Lcon = Lintra +Linter.

Second, the generative-based framework is designed as follows.
Generative Framework They introduce a masked Autoencoder-based Recon-

struction module, where the encoder is a GCN and the decoder is a multilayer per-
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ceptron with PReLU activation function, aiming to reconstruct the attributes of the
target node based on the attributes of neighboring nodes in the local view (with loss
term Lres,1), and in the global view (with loss term Lres,2). Next, they combine the
local view and global view loss terms with equal weights to obtain the overall recon-
struction loss term Lres = Lres,1 + Lres,2 for each node.

At last, their final optimization objective is defined as follows:

L = Lcon + γLres,

where γ ∈ (0, 1] is the trade-off HP to balance the importance of two different SSL
objectives.

HPs Sensitivity & Tuning They conducted sensitive analysis and found that:
1) the selection of K is dependent on the specific dataset. However, for efficiency and
performance consideration, they heuristically set the sampled subgraph size K = 4 for
all datasets; 2) they did not discuss the setting of teleport probability α; and 3) they
claim that most datasets are not sensitive to the value of γ when γ > 0.4. Hence, they
heuristically set γ = 0.6 for Cora, Citeseer, Flickr, and BlogCatalog while γ = 0.4 for
PubMed with the help of label information.

A.6 CONAD

Similar to SL-GAD and Sub-CR, CONAD [280] also combines the contrastive-based
framework and the generative-based framework for unsupervised GAD.

First, the design of the contrastive-based framework is as follows.
Contrastive Framework—Data Augmentation Module They consider four

different types of data augmentations, with each type of data augmentation operation
corresponding to a specific type of node anomaly. They include 1) edge adding aug-
mentation that connects a node with many other non-connected nodes (structure - high
degree), 2) edge removing augmentation that removes most edges of a node (structure
- outlying); 3) attribute replacement augmentation that replaces the target node’s
attributes with another dissimilar node’s attributes (attribute - deviated), and 4) at-
tribute scaling augmentation that scales the target node’s attributes to much larger
or smaller values (attribute - disproportionate); This leads to four HPs p1, p2, p3, p4,
which represent the sampling probability of each augmentation strategy. Moreover,
the rate r of augmented anomalies (namely modified nodes) is also a HP.

Contrastive Framework—Contrast Learning Module They consider two dif-
ferent contrast strategies: 1) Siamese contrast LSC =

∑
i∈NM d(zi, ẑi)+

∑
j∈MM max{0,m−
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d(zj , ẑj)} where d(zi, ẑi) is the distance between embeddings of node i in the original
view and in the augmented view. MM and NM mean the node is modified or non-
modified, respectively; 2) Triplet contrast LTC =

∑
max{0,m− [d(zi, ẑj)− d(zi, zj)]}

where d(zi, zj) is the distance between embeddings of node i and its neighbor j in
the original view, and d(zi, ẑj) is the distance between embeddings of node i in the
original view and its neighbor j in the augmented view. Particularly, the contrastive
loss term LContr = LSC or LContr = LTC . This module contains a HP, namely the
margin m.

Second, the generative-based framework is designed as follows.
Generative Framework This framework consists of two components: 1) an at-

tribute autoencoder to reconstruct the node attributes, where the encoder is a GAT
[336] and the decoder is another GAT. This leads to the loss term LA; and 2) a struc-
ture autoencoder to reconstruct the structure, where the encoder is a GAT and the de-
coder is a dot product operation followed by a sigmoid function (namely sigmoid(ztz)).
This leads to the loss term LS . Combining these two loss terms leads to a loss term
LRecon = λLA+(1−λ)LS , where λ ∈ (0, 1) is a trade-off HP to balance the two recon-
struction errors. Unlike SL-GAD and Sub-CR, CONAD requires the whole adjacency
matrix and node attribute matrix as input, and thus it can reconstruct the graph struc-
ture, making it unsuitable to large graphs. In contrast, SL-GAD and Sub-CR only
require subgraphs as inputs, and thus are unable to perform structure reconstruction
while being scalable.

At last, the final optimization objective is defined as follows:

L = ηLContr + (1− η)LRecon,

where η ∈ (0, 1) is the trade-off HP to balance the importance of two SSL objectives.
HPs Sensitivity & Tuning They did not perform sensitivity analysis over the

HPs. Instead, 1) They heuristically set the ration of augmented anomalies r = 0.1

and r = 0.2 for small and large datasets, respectively; 2) The sampling probability of
each augmentation strategy is set to pi = 0.25 for i ∈ {1, 2, 3, 4}; 3) They heuristically
set the margin m = 0.5 for all datasets; and 4) They heuristically set the trade-off
hyper-parameters λ = 0.9 and η = 0.7 for all datasets

A.7 DOMINANT

DOMINANT [284] is arguably the first work that utilizes generative-based framework
and GNNs to perform unsupervised anomaly detection on attribute graphs.
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Generative Framework They first employ GCN [360] to obtain node embed-
dings. Next, they construct two decoders: 1) an attribute decoder, which consists of
another GCN, to reconstruct the node attributes, leading to the loss term LA, and 2)
a structure decoder, which is a dot product operation followed by a sigmoid function
(namely sigmoid(ztz)), to reconstruct topological structures, leading to the loss term
LS .

At last, their final optimization objective is defined as follows:

L = αLA + (1− α)LS ,

where α ∈ (0, 1) is the trade-off HP to balance the importance of two objectives.
HPs Sensitivity & Tuning Specifically, they found that the AUC performance

usually increases first and then decreases with the increasing of α. However, the
specific value of α on each dataset is heuristically selected with the help of labels. The
HP α is selected from [0.4, 0.7], [0.4, 0.7], [0.5, 0.8] on BlogCatalog, Flickr, and ACM
respectively.

A.8 AnomalyDAE

Similar to DOMINANT, AnomalyDAE [275] leverages generative-based framework and
autoencoders (based on GNNs) to perform unsupervised GAD.

Generative Framework AnomalyDAE consists of two components: 1) an at-
tribute autoencoder to reconstruct the node attributes, where the encoder consists of
two non-linear feature transform layers and the decoder is simply a dot product oper-
ation. This leads to the loss term LA, and LA is associated with a penalty HP η > 1);
and 2) a structure autoencoder to reconstruct the structures, where the encoder is
based GAT [336] and the decoder is a dot product operation followed by a sigmoid
function (namely sigmoid(ztz)). This leads to the loss term LS , and LS is associated
with a penalty HP θ > 1.

At last, their final optimization objective is defined as follows:

L = αLS + (1− α)LA,

where α ∈ (0, 1) is the trade-off HP to balance the importance of two objectives.
HPs Sensitivity & Tuning Specifically, they found that the AUC performance

usually increases first and then decreases with the increasing of α. However, the specific
value of α on each dataset is selected using label information. The HPs (α, η, θ) are
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heuristically set as (0.7, 5, 40), (0.9, 8, 90), (0.7, 8, 10) on BlogCatalog, Flickr, and ACM
respectively.

A.9 GUIDE

Similar to AnomalyDAE, GUIDE [279] leverages generative-based framework and au-
toencoders (based on GNNs) to perform unsupervised GAD. Particularly, they con-
sider reconstructing the high-order structures.

Generative Framework GUIDE consists of two components: 1) an attribute
autoencoder to reconstruct the node attributes, where the encoder is a GCN and the
decoder is another GCN. This leads to the loss term LA; and 2) a structure autoencoder
to reconstruct the high-order structures, where the encoder is a graph node attention
network based on [361] and the decoder is another graph node attention layer. This
leads to the loss term LS . Moreover, structure matrix is composed of node motif
degrees, which leads to a HP, namely the degree of motifs D.

At last, their final optimization objective is defined as follows:

L = αLA + (1− α)LS ,

where α ∈ (0, 1) is the trade-off HP to balance the importance of two SSL objectives.
HPs Sensitivity & Tuning They mention that the HPs are optimized via a

parameter sensitivity analysis experiment for each dataset. Specifically, they found
that: 1) the AUC performance usually increases first and then decreases with the
increasing of α, and most datasets can achieve a good performance when 0.1 < α < 0.3.
However, the specific value of α on each dataset is selected using labels; and 2) they
heuristically set the degree of motifs as D = 4.

A.10 GAAN

GAAN [337] combines the generative-based framework and GAN [362] for unsuper-
vised GAD. Particularly, GAN can be considered as a special case of contrastive-based
framework.

Contrastive Framework—Data Augmentation Module GAAN employs GAN,
which consists of a generator and a discriminator, to generate adversarial samples as
augmented views, without involving any HPs.

Contrastive Framework—Contrastive Learning Module For each target
node, GAAN computes the sum of cross-entropy losses of its 1-hop neighboring nodes
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(where the edge is considered as from real distribution by the discriminator) as anomaly
score, leading to a loss term LD. In particular, this discriminator loss can be regarded
as contrastive loss, and it considers both node attributes and graph structures.

Generative Framework GAAN utilizes the generator to reconstruct the node
attribute, and employs the reconstruction error to compute anomaly score, leading to
a loss term LG.

At last, their final optimization objective is defined as

L = αLG + (1− α)LD,

where α ∈ [0, 1] is the trade-off HP to balance the importance of two objectives
HPs Sensitivity & Tuning Specifically, they found that the AUC performance

usually increases first and then decreases with the increasing of α. However, the
specific value of α on each dataset is selected using label information. The HP α is
heuristically set as 0.2, 0.3, 0.1 on BlogCatalog, Flickr, and ACM respectively.

Appendix B: Performance Variations under Different
HP Settings
In this section, we present a comprehensive analysis of the performance exhibited
by various semi-supervised learning (SSL) based graph anomaly detection techniques.
This evaluation encompasses an extensive array of hyperparameter (HP) configurations
and is conducted across multiple benchmark datasets.

Specifically, the results for GAAN [337] is provided in Figure 7.5, from which we
can see huge performance variations under different HP settings. For example, the
AUC value can vary from 0.474 to 0.747 if one utilizes different HP configurations on
dataset CiteSeer (namely by changing the HP α from 0.5 to 0). Moreover, the results
for CoLA [278] is provided in Figure 7.6. Compared to GAAN, CoLA is less sensitive
to the setting of HPs, while we can still see moderate performance variations on some
datasets (e.g., from 0.693 to 0.733 on Flickr, and from 0.767 to 0.795 on ACM). Besides,
Figure 7.7 shows that DOMINANT is also sensitive to HPs except for the cases where
the algorithm is largely underfitted (i.e., on ACM, Flickr and BlogCatalog the loss
values change only by 10−2 after 400 epochs of training).

Particularly, AnomalyDAE and SL-GAD are very sensitive to HPs as shown in
Figures 7.8 and 7.13. For example, the performance of AnomalyDAE ranges from
0.702 to 0.941 on CiteSeer, and the performance of SL-GAD vary from 0.787 to 0.920.
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Figure 7.5: Performance variations over different HP configurations for GAAN [337] on
different benchmark datasets.

As shown in Figure 7.9, CONAD shows similar behaviors except for the cases where
CONAD is largely underfitted (namely on ACM) or suffers from OOM errors (namely
on Flickr and BlogCatalog). The analysis for GUIDE in Figure 7.10, GRADATE in
Figure 7.11, and Sub-CR in Figure 7.12 is similar and conveys the same issues.

Appendix C: Similar Observations in Other Papers
[294] conduct a comprehensive benchmark for unsupervised graph anomaly detection.
From their results (note that their experiment setting is slightly different from ours),
we can have similar observations as follows by comparing the average AUC vs max
AUC:

• Radar [300] is not sensitive to hyper-parameters (0.65 VS 0.66 on Cora, 0.99
VS 0.99 on Weibo, 0.55 VS 0.57 on Reddit, 0.52 VS 0.52 on Disney, 0.53 VS 0.53
on Books), but it will suffer from OOM errors for large graphs;

• ANOMALOUS [301] is very sensitive to hyper-parameters on some datasets
(0.55 VS 0.68 on Cora, 0.99 VS 0.99 on Weibo, 0.55 VS 0.60 on Reddit, 0.52 VS
0.52 on Disney, 0.53 VS 0.53 on Books), and it will suffer from OOM errors for
large graphs;

• DOMINANT [284] is very sensitive to hyper-parameters on some datasets (0.83
VS 0.84 on Cora, 0.76 VS 0.85 on Flickr, 0.85 VS 0.93 on Weibo, 0.50 VS 0.58
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Figure 7.6: Performance variations over different HP configurations for CoLA [278] on
different benchmark datasets.
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Figure 7.7: Performance variations over different HP configurations for DOMINANT [284]
on different benchmark datasets.
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Figure 7.8: Performance variations over different HP configurations for AnomalyDAE [275]
on different benchmark datasets.
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Figure 7.9: Performance variations over different HP configurations for CONAD [280] on
different benchmark datasets.
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Figure 7.10: Performance variations over different HP configurations for GUIDE [279] on
different benchmark datasets.
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Figure 7.11: Performance variations over different HP configurations for GRADATE [285]
on different benchmark datasets.
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Figure 7.12: Performance variations over different HP configurations for Sub-CR [286] on
different benchmark datasets.
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Figure 7.13: Performance variations over different HP configurations for SL-GAD [276]
on different benchmark datasets.
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on Books, 0.56 VS 0.56 on Reddit, 0.47 VS 0.55 on Disney)

• AnomalyDAE [275] is very sensitive to hyper-parameters on some datasets
(0.83 VS 0.85 on Cora, 0.86 VS 0.91 on Amazon, 0.66 VS 0.70 on Flickr, 0.91
VS 0.93 on Weibo, 0.56 VS 0.56 on Reddit, 0.49 VS 0.55 on Disney, 0.54 VS 0.69
on Books);

• GUIDE [279] is very sensitive to hyper-parameters on some datasets (0.39 VS 0.53
on Disney, 0.52 VS 0.63 on Books, 0.75 VS 0.78 on Cora), and it will suffer from
OOM errors on large graph (including Amazon, Flickr, Weibo, Reddit). It needs
much time and memory for training as it employs a graph motif counting algo-
rithm to extract structural information;

• CONAD [280] is very sensitive to hyper-parameters on some datasets (0.79 VS 0.84
on Cora, 0.81 VS 0.82 on Amazon, 0.65 VS 0.67 on Flickr, 0.85 VS 0.93 onWeibo,
0.56 VS 0.56 on Reddit, 0.48 VS 0.53 on Disney, 0.52 VS 0.63 on Books).

Appendix D: Summary of existing SSL-based graph
anomaly detection methods
Existing SSL-based graph anomaly detection methods are summarized in Table 7.7,
which includes the datasets used to test, the core principles of SSL techniques, the
involved hyper-parameters (only SSL related ones), and their public implementations.

Appendix E: Search Space Approximation based on
SMBO

Performance Surrogate Functions

Although discretization of continuous domains can largely reduce the search space, it
is still computationally prohibitive to search the full discretized HP space when the
number of HPs is large. Therefore, we learn a regressor g(·) which aims to to learn
the mapping from HP settings onto the performance metric (namely the domain of
T (·)). Note that g(·) should be different for different combinations of graph and graph
anomaly detector [G, f(·)], and we call these functions performance surrogate functions.
Gaussian Process (GP) [363] is one popular choice for g(·). Based on these performance
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Table 7.6: SSL-related HPs for different algorithms, where “Range” indicates the tested
values in grid search.

Algo HPs Range
CoLA [278] K {2, 3, 4, 5}

ANEMONE [277] K {2, 3, 4, 5}
α {0, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99, 1}

GRADATE [285]

P {0.20}
α {0.9}
β {0, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99, 1}
γ {0, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99, 1}

SL-GAD [276]
K {2, 3, 4, 5, 6, 7, 8, 9}
α {0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99, 1}
β {0.6}

Sub-CR [286]
K {2, 3, 4, 5, 6, 7, 8, 9}
α {0.01}
γ {0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99, 1}

CONAD [286]

r {0.10}
p1 {0.25}
p2 {0.25}
p3 {0.25}
p4 {0.25}
m {0.5}
λ {0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99, 1}
η {0.01, 0.5, 0.99, 1}

DOMINANT [284] α {0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99, 1}

AnomalyDAE [275]
α {0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99, 1}
η {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
θ {10}

GUIDE [279] D {4}
α {0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99}

GAAN [337] α {0, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99, 1}
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Table 7.7: Summary of existing SSL-based graph anomaly detection methods.

Method Venue Datasets SSL methods Hyperparameters Code

CoLA [278] TNNLS’21 Cora, Citeseer, Pubmed,
BlogCatalog, Flickr,
ACM, ogbn-arxiv

Node-Sub CL Random walk length (K) Github,
Py-
GOD

ANEMONE [277] CIKM’21 Cora, Citeseer, PubMed Node-Node CL,
Node-Sub CL

Ego-Net size (K), Combi-
nation weights

Github

GRADATE [285] AAAI’23 EAT, WebKB, UAT,
Cora, UAI2010, Citation

Node-Node CL,
Node-Sub CL, Sub-
Sub CL

Proportion of modified
edges (P ), Combination
weights

Github

SL-GAD [276] TKDE’21 Cora, Citeseer, PubMed,
ACM, Flickr, BlogCata-
Log

Node-Sub CL,
Attribute Recon

Random walk length (K),
Combination weights

Github

Sub-CR [286] IJCAI’22 Cora, Citeseer, PubMed,
Flickr, BlogCataLog

Node-Sub CL,
Attribute Recon

Random walk length (K),
Teleport probability α,
Combination weights

Github

CONAD [280] PAKDD’22 Amazon, Flickr, Enron,
Facebook, Twitter

Node-Sub CL, At-
tribute Recon, Struc-
ture Recon

Augmentation sampling
probabilities, combina-
tion weights

PyGOD,
Github

DOMINANT
[284]

ICDM’19 ACM, Flickr, BlogCata-
Log

Attribute Recon,
Structure Recon

Combination weight PyGOD

AnomalyDAE
[275]

ICASSP’20 ACM, Flickr, BlogCata-
Log

Attribute Recon,
Structure Recon

Penalty HPs, Combina-
tion weights

PyGOD

GUIDE [279] BigData’21 Cora, Citation, Pubmed,
ACM, DBLP

Attribute Recon,
Structure Recon

Combination weight PyGOD

GAAN [337] CIKM’20 ACM, Flickr, BlogCata-
Log

Attribute Recon,
Discr Loss

Combination weight PyGOD

surrogate functions, we can identify promising HPs without running experiments on
all possible HPs, which will be illustrated in next subsection.

SMBO-based Optimization

Particularly, we leverage Sequential Model-based Optimization (SMBO) [339] to it-
eratively and efficiently identify promising HP configurations to evaluate, and finally
output the optimal one as follows. Similar idea is also explored in [364].

Initialization Specifically, we first randomly sample a small number of HPs
λeval = {λ1,λ2, ...,λJ} with J ≪ M . Second, for each HP, we compute its unsu-
pervised performance metric score t(G), leading to pairs {(λ1, t1(G)), (λ2, t2(G)),...,
(λJ , tJ(G))}. Third, we employ these pairs to train a specific performance surrogate
function g(·).

Iteration For each iteration, we leverage g(·) to predict the performance for a
sampled HP λj , denoted as ηj = g(λj). Moreover, we also utilize g(·) to predict the
uncertainty around the prediction of λj , denoted as σj = σ[g(λl|λl ∈ λsample)]. Note
that λsample is different from λeval, and it is a finite number of HPs that is randomly
sampled from the full HP space before discretization. Next, we utilize a so-called
acquisition function h(·), which can make a trade-off between predicted performance
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and uncertainty, to select the most promising HP to evaluate. Particularly, we lever-
age Expected Improvement (EI) [339] as the acquisition function since it has shown
prominent performances in many studies [322]. Under the mild Gaussian assumption,
the EI value of HP setting λj has the following closed-form expression:

EI(g(λj)) = [ϕ(η̂j) + η̂j · Φ(η̂j)]σj , (7.8)

where η̂j =
ηj−η∗

eval

σj
if σj > 0 and η̂j = 0 otherwise. Moreover, ϕ(·) and Φ(·) denote

the probability density function and the cumulative distribution function of standard
Gaussian distribution, respectively. In addition, η∗eval is the highest prediction perfor-
mance on λeval so far. For each iteration, the most promising HP can be obtained as
follows:

λ∗ = argmax
λj∈λsample

h(g(λj)), (7.9)

where g(·) = g(current)(·) is the surrogate function in the current iteration, which can
output the most promising HP λ∗ to evaluate. On this basis, we apply f(λ∗) on graph
G to obtain a vector of anomaly scores s∗, followed by inputting s∗ into Equation 7.3
to obtain the performance metric score t∗. At last, we update the evaluation HP set as
λeval = λeval ∪λ∗, and retrain g(·) with the updated pairs {(λ1, t1(G)), (λ2, t2(G)),...,
(λJ , tJ(G))}..., (λ∗, t∗)}. Additionally, we update η∗eval using the updated λeval.

Appendix F: AutoGAD for Selecting Heterogeneous
Anomaly Detectors
To evaluate the effectiveness of AutoGAD in selecting heterogeneous anomaly detec-
tors, we compute the Pearson Correlation Coefficient between the highest improved
CSM scores (based on Eq. 7.3) and the corresponding AUC scores for all anomaly
detectors on each individual dataset.

As shown in Figure 7.14, the results reveal that AutoGAD’s CSM score does not
effectively predict the true performance (AUC) of heterogeneous anomaly detectors.
Specifically, on the Cora dataset, the Pearson correlation is very weak (0.070), in-
dicating almost no relationship between the CSM score and AUC. On the Amazon
dataset, the correlation is negative (-0.488), suggesting that higher CSM scores are, in
fact, associated with lower AUC values in many cases. This weak or inverse correlation
demonstrates that AutoGAD’s scoring mechanism may not be suitable for selecting the
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Figure 7.14: Performance of AutoGAD in selecting heterogeneous anomaly detectors on
selected datasets (results on other datasets are similar and thus omitted).

best-performing anomaly detectors, as it fails to consistently align with true detector
performance. Notably, detectors such as SL-GAD, which achieve high AUC, do not
consistently receive high CSM scores, further underscoring the discrepancy. In sum-
mary, these findings suggest that AutoGAD’s current approach to ranking anomaly
detectors is unreliable and may require significant revisions to improve its predictive
accuracy.
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