
Trustworthy anomaly detection for smart manufacturing
Li, Z.

Citation
Li, Z. (2025, May 1). Trustworthy anomaly detection for smart manufacturing.
SIKS Dissertation Series. Retrieved from https://hdl.handle.net/1887/4239055

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis
in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/4239055

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/4239055

Chapter 6

Cross-Domain Graph Level
Anomaly Detection

Authors: Zhong Li, Sheng Liang, Jiayang Shi, Matthijs van Leeuwen
Published in IEEE Transactions on Knowledge and Data Engineering, 36(12),

7839–7850.

145

6.0.

Abstract
Existing graph level anomaly detection methods are predominantly unsupervised due
to high costs for obtaining labels, yielding sub-optimal detection accuracy when com-
pared to supervised methods. Moreover, they heavily rely on the assumption that the
training data exclusively consists of normal graphs. Hence, even the presence of a few
anomalous graphs can lead to substantial performance degradation. To alleviate these
problems, we propose a cross-domain graph level anomaly detection method, aiming
to identify anomalous graphs from a set of unlabeled graphs (target domain) by using
easily accessible normal graphs from a different but related domain (source domain).
Our method consists of four components: a feature extractor that preserves seman-
tic and topological information of individual graphs while incorporating the distance
between different graphs; an adversarial domain classifier to make graph level repre-
sentations domain-invariant; a one-class classifier to exploit label information in the
source domain; and a class aligner to align classes from both domains based on pseu-
dolabels. Experiments on seven benchmark datasets show that the proposed method
largely outperforms state-of-the-art methods.

146

Chapter 6. Cross-Domain Graph Level Anomaly Detection

6.1 Introduction
Graph-structured data is ubiquitous, as it can represent relations between objects using
edges and semantic characteristics of objects using node attributes. As a result, graph
level anomaly detection has a wide range of potential applications, such as criminal
detection in financial network [82], error detection in system logs [232], identifying
specific molecules in drug discovery [233], and detecting unhealthy brain structures
[234].

Graph neural networks (GNNs) are capable of learning discriminative feature rep-
resentations for graphs and have significantly advanced benchmark results for graph
level anomaly detection [79]. Similar to other types of neural networks, the impressive
performance of graph neural networks (GNNs) is often attained by using a substantial
amount of labeled data. However, the process of manually annotating graph data
is laborious and thus often impractical. To circumvent this challenge, recent studies
have turned to unsupervised (or semi-supervised) learning instead. These methods,
however, strongly rely on the assumption that the training data exclusively consists of
normal graphs. Our experiments demonstrate that even a minor presence of anoma-
lous graphs in the training data can lead to substantial performance degradation for
these methods (c.f. Table 6.3).

In practice, labeled data may be accessible or relatively cheap to obtain in some
domains. Hence, in situations where a certain ‘target’ domain of interest suffers from a
dearth of labeled data (or its purity cannot be guaranteed), there is a strong motivation
to construct learners that can exploit abundant labeled data from a different but
related domain.

Recent work on graph level anomaly detection [78, 79, 81, 82] is mostly unsu-
pervised (or semi-supervised), and has been limited to detecting anomalies within a
single domain. That is, the potential benefits of incorporating labeled information
from a related domain has not yet been researched. In this paper we investigate how
to transfer ‘anomaly knowledge’ from a source to a target graph database.

Unsupervised domain adaptation (UDA) is an attractive approach to achieve this:
it adapts models learned from a source domain with plenty labeled data to a target
domain without labels, and has demonstrated remarkable performance in computer
vision and natural language processing [235, 236]. Although a few studies have ex-
plored UDA for cross-domain node classification, there has been no prior research on
cross-domain graph level anomaly detection. Two challenges need to be overcome.
First, most existing UDA methods are developed for vector-based data, such as im-

147

6.1. Introduction

age and text data, for which a distance in a Euclidean space can be defined, while
for graph-structured data distance is typically defined in a non-Euclidean space due
to graph isomorphism. This makes directly applying off-the-shelf UDA methods to
graphs impractical. Second, graph level anomaly detection is inherently more chal-
lenging than node level anomaly detection, as anomalies at the graph level may involve
global patterns and interactions that cannot be easily discerned by examining individ-
ual nodes.

To fill this gap, being motivated and supported by domain adaptation theory [237],
we propose an unsupervised domain adaptation based graph level anomaly detection
method called ARMET. It addresses the following cross-domain graph level anomaly
detection problem: given a target graph database with fully unlabeled graphs and a
different but related source graph database that contains only normal graphs, learn a
one-class classifier that identifies anomalous graphs from the target graph database.

To achieve this, ARMET leverages an adversarial learning approach consisting of
four main components. First, to learn graph level representations, it utilizes a two-
part feature extractor: a semantic feature extractor to jointly preserve the semantic
and topological information of each graph, and a structure feature extractor to ex-
tract the structure of each graph domain. Second, a domain classifier is learned to
make graph level representations domain-invariant, thereby reducing the domain dis-
crepancy. Third, a one-class classifier is trained using normal source graphs, aiming
to make the learned graph level representations label-discriminative. Finally, a class
aligner is trained to align normal graphs in both domains while separating anomalous
graphs and normal graphs in the target domain. As a result, in an end-to-end manner,
ARMET can learn both domain-invariant and label-discriminative graph level repre-
sentations, and thus effectively identify anomalous graphs from the target domain.

Our contributions can be summarized as follows:

• We introduce the cross-domain graph level anomaly detection problem, and de-
velop ARMET, an effective approach to address this problem;

• ARMET is the first attempt to combine graph neural networks and adversar-
ial domain adaptation techniques for performing graph level anomaly detection
tasks;

• Experiments demonstrate its improved performance for graph level anomaly de-
tection when compared to state-of-the-art unsupervised graph level anomaly
detectors.

148

Chapter 6. Cross-Domain Graph Level Anomaly Detection

The rest of this work is organized as follows. Chapter 6.2 reviews related literature.
Chapter 6.3 introduces relevant notations and formulates the research problem. Chap-
ter 6.4 presents the framework of our method ARMET. Chapter 6.5 and 6.6 describe
the design details of ARMET. Chapter 6.7 provides experimental setup, and Chapter
6.8 presents results and corresponding analysis. Chapter 6.10 concludes this work.

6.2 Related Work
We review work that is most closely related; readers are referred to the following
surveys for more on transfer learning [238, 239], graph representation learning [188],
and graph anomaly detection [240, 241].

Graph Level Anomaly Detection Unsupervised/semi-supervised methods in-
clude OCGIN [78], GLAM [79], GLocalKD [81], OCGTL [82] and CODEtect [84].
Unlike ARMET, CODEtect can only handle unattributed graphs. Meanwhile, OC-
GIN, GLAM, GLocalKD, and OCGTL can handle attributed graphs, but they heavily
depend on the assumption that the training data exclusively contains normal graphs.
This assumption is impractical or expensive in real-world applications. As we will
show later, the presence of anomalies in the training data may largely decrease the
performance of these methods (c.f. Table 6.3). Moreover, the supervised method
iGAD requires fully labeled training data, which is expensive or sometimes impossible
to obtain. In contrast, ARMET only requires that the source domain data exclusively
contains normal graphs, while imposing no additional assumptions on the target do-
main data. Further, it is the first graph level anomaly detection method that leverages
labeled data from a different but related domain.

Traditional Unsupervised Domain Adaptation Traditional UDA techniques,
such as DeepCoral [242], DANN [243], ADDA [244], and CDAN [245], are primarily
designed for addressing multi-class classification problems in computer vision and nat-
ural language processing. Consequently, these methods fail to account for the unique
characteristics of graph-structured data, as well as the highly imbalanced nature of
anomaly detection problems. Moreover, these methods assume that the source domain
contains all classes and is fully labeled. As a result, their effectiveness diminishes when
the source domain contains only partial classes (e.g., only the normal class in anomaly
detection), and this will be shown later in Table 6.6.

Domain Adaptation on Graphs Most existing domain adaptation methods
on graphs, such as SDA-DAGL [246], DANE [247], UDA-GCN [248], DASGA [249],
ACDNE [250], CDNE [251], DANE [252], COMMANDER [253], AdaGCN [254], DGL

149

6.3. Problem Statement

Unlabelled Target Graphs

Normal Source Graphs

Graph Level Feature Extractor

Graph Level Representations

Graph Level Representations

Graph Database Structure Extractor

Graph Level Representations

Graph Level Representations

Concatenate

Graph Level Representations

Graph Level Representations

One-Class ClassifierDomain Classifier Class Aligner

Concatenate

Input

Hidden

Output

Source or Target?

With true labels

With pseudo labels

①

①

②

②

③

③

④ ⑤ ⑥KNN Graph
Construction GNNs Training

Input Graph GNNs Training Readout

Figure 6.1: An overview of ARMET. Graphs and their learned representations are framed
in oval rectangles, where the target domain is highlighted in green and the source domain
in orange. Meanwhile, the semantic feature extractor, structure feature extractor, and other
learners including one-class classifier, domain classifier, and class aligner are depicted in blue
rectangles.

[255], AdaGIn [256] and CD-GAD [257], only consider domain adaptation from an
individual graph to another graph.

Only a few works, including DGDA [258], CDA [259], and [260], consider domain
adaptation from a set of graphs to another set of graphs. However, they focus on the
multi-class graph classification problem, while ARMET is the first to consider cross-
domain graph level anomaly detection, which is more challenging due to the extreme
class imbalance. Moreover, unlike ARMET, these methods require the source domain
data to contain all classes and be fully labeled.

6.3 Problem Statement
Following the notation commonly used in transfer learning [238], a domain D consists
of two components, namely a feature space X and its marginal probability distribution
P(X). Meanwhile, a task contains two components, that is, a label space Y and a
predictive function h(·) that can be expressed as P(Y|X). Moreover, we consider an
attributed and undirected graph G = (V, E), where the node set V is associated with
a node feature matrix X ∈ R|V|×C and the the edge set E is associated with the
adjacency matrix A ∈ R|V|×|V|. In the following sections, we use the superscripts (·)s

and (·)t to denote concepts in the source and target domains (also tasks), respectively.

150

Chapter 6. Cross-Domain Graph Level Anomaly Detection

Traditional Unsupervised Domain Adaptation on Graphs Traditional un-
supervised domain adaptation (UDA) assumes that there is a set of labeled source
graphs Gs = {Gs

n, Y
s
n }

Ns
n=1 that are i.i.d drawn from P(X s,Ys), and another set of

unlabeled target graphs Gt = {Gs
n}

Nt
n=1 that are i.i.d drawn from P(X t). More-

over, UDA usually imposes the covariate shift assumption, i.e., Ps(X s) ̸= Pt(X t)

but Ps(Ys|X s) = Pt(Yt|X t). In other words, it assumes that the source and the tar-
get are different (in the sense that Ps(X s) ̸= Pt(X t)) but related (in the sense that
X s = X t and Ps(Ys|X s) = Pt(Yt|X t)). On this basis, UDA aims to learn a classifier
h : X t → Yt by using fully labeled source graphs and unlabeled target graphs.

For simplicity, we assume that the node feature matrices of the source (i.e., Xs)
and target graphs (i.e., Xt) have the same dimensionality and their columns share
the same semantic meanings. Otherwise, we can construct a unified node feature set
X = X s ∪X t by following the practice in [254, 256]. This assumption is important for
utilizing parameters-shared graph embedding models and fulfilling the covariate shift
assumption in UDA.

Cross-Domain Graph Level Anomaly Detection The anomaly detection
problem can be considered as a binary classification problem. Hence, we have Ys =

Yt = {0, 1}, where 0 and 1 represent normal and abnormal graphs, respectively. To
further relax the dependency on fully labeled source data, we assume that Gs only
contains normal graphs. Specifically, given Gs = {Gs

n, Y
s
n }

Ns
n=1 ∈ X s×Ys with Y s

n = 0

for n ∈ 1, ..., Ns, and Gt = {Gt
n}

Nt
n=1 ∈ X t, Cross-Domain Graph Level Anomaly De-

tection (CD-GLAD) aims to learn a binary classifier g : X t → Yt that accurately
predicts anomaly labels for graphs in the target domain, with the assistance of both
normal graphs from the source domain and unlabeled graphs from the target domain.
Hence, the CD-GLAD problem is more practical but entails greater challenges than
traditional UDA.

6.4 Proposed Method: ARMET
Motivation According to domain adaptation theory [237], given the source domain
Ds = {X s,P(X s)} and the target domain Dt = {X t,P(X t)}, given any binary classifier
h drawn from a hypothesis class H, for any δ ∈ (0, 1), with the probability at least of
1− δ, we have

ϵt(h) ≤ ϵs(h) + 1

2
dH∆H(Ds,Dt) + [ϵs(h∗) + ϵt(h∗)] + ω, (6.1)

151

6.4. Proposed Method: ARMET

where ϵt(h) and ϵs(h) indicate the expected error of classifier h on the target domain
and source domain, respectively. Moreover, dH∆H(Ds,Dt) represents the domain dis-
crepancy. Importantly, [ϵsh∗) + ϵs(h∗)] means the combined error of the ideal joint
classifier h∗ on both domains, where h∗ =: argmin

h∈H
[ϵs(h) + ϵt(h)]. Besides, ω is the

item associated with the model complexity and the sample sizes.
In this work, we aim to learn a classifier h that has the minimal expected error on

the target domain. Therefore, the sum of terms on the right side of (6.1) should be
minimized. This sheds key insights into the design of our algorithm, which considers
the following overall objective:

L(X s,Ys,X t) = λ1LSC(X s,Ys)− λ2LDA(X s,X t) + λ3LCA(X s,Ys,X t), (6.2)

where L(X s,Ys,X t) corresponds to the upper bound of ϵt(h), LSC(X s,Ys) is the
source classifier loss corresponding to ϵs(h), LDA(X s,X t) is the domain classifier loss
that approximates d(Ds,Dt) (larger loss indicates smaller discrepancy), and LCA(X s,Ys,X t)

is the class alignment loss that corresponds to [ϵs(h∗) + ϵs(h∗)]. Further, the balance
parameters λ1 > 0, λ2 > 0 and λ3 > 0.

Approach Figure 6.1 depicts the architecture of our proposed method, dubbed
ARMET (adversarial cross domain graph level anomaly detection). Specifically, ARMET
adapts an adversarial learning framework to perform cross-domain graph level anomaly
detection. It involves the four following main components:

• Parameters-Shared Feature Extractor hFE : takes a source graph database Gs

consisting of exclusively normal graphs and an unlabeled target graph database
Gt as inputs, and aims to learn a representation vector hFE(Gi) for each graph
Gi ∈ Gs ∪ Gt such that similar graphs (in terms of semantic and structure
properties) from both domains have similar embeddings;

• One-Class Classifier hs: takes the representation of each graph hFE(Gi) from
the source domain as input, and learns a hypersphere to include embeddings of
normal graphs while excluding those of anomalous graphs. This classifier can be
directly used to predict labels for graphs in the target domain and corresponds
to LSC ;

• Domain Classifier hd: takes the representation of each graph hFE(Gi) as input,
and attempts to discriminate whether it is drawn from the source domain or the
target domain such that the distributions of embeddings of both domains are
aligned. And it corresponds to LDA;

152

Chapter 6. Cross-Domain Graph Level Anomaly Detection

• Class Aligner: takes {Gs
n, Y

s
n }

Ns
n=1 and {Gt

n, Ŷ
t
n}

Nt
n=1 as inputs, further making

normal graphs from both domains have close embeddings, while normal graphs
and anomalous graphs in the target domain have distant embeddings. Particu-
larly, we apply the One-Class Classifier hs to obtain pseudo-labels Ŷ t

n for graphs
in the target domain while using the true labels Y s

n for graphs in the source
domain; This component corresponds to LCA.

For better organization, we divide these components into two modules, as shown
in Figure 6.1: the graph feature extraction module that contains the feature extractor
(steps ¬,, ®), and the cross-domain anomaly detection module that includes the do-
main classifier (step ¯), the one-class classifier (step °), and the class aligner (step ±).
Importantly, the two modules are trained jointly in an end-to-end manner, although
they are introduced separately in the following.

6.5 Module 1: Graph Feature Extraction
The graph feature extraction module consists of a feature extractor dubbed hFE(·)
with trainable parameters ΘFE , aiming to extract graph level representations for
graphs from source domain and target domain. This component is further decom-
posed to three sub-components: a semantic feature extractor (step ¬) and a structure
feature extractor (step), followed by a feature concatenation operator (step ®).

Semantic Feature Extractor We denote the semantic feature extractor as hSE(·)
with trainable parameters ΘSE , which learns a graph level representation for each
input graph. Specifically, we adapt aK-layer GIN model [73] followed by a READOUT
function to obtain graph level representations due to the superior performance of
GIN compared to other competing methods [261]. Concretely, GIN updates node
representations as

f (k+1)
v = MLP

((
1 + α(k)

)
f (k)v +

∑
u∈N (v)

f (k)u

)
, (6.3)

where f (k)v denotes the representation of node v learned at the k-th layer, N (v) indi-
cates the neighbor set for node v, α(k) is a trainable parameter while MLP represents
a multilayer perceptron. Next, we obtain the graph level representation by leveraging
READOUT

(
f
(k)
v |k = 1, ...,K

)
, which can be a simple permutation-invariant function

such as the maximum, sum or mean. Using this, we can preserve the semantic and
topological information of each graph.

153

6.6. Module 2: Cross-Domain Graph Level Anomaly Detection

Structure Feature Extractor We denote the structure extractor as hST (·) with
parametersΘST . We assume that Gs = {Gs

1, ..., G
s
j , ..., G

s
N} and Gt = {Gt

1, ..., G
t
j , ..., G

t
M}

exhibit some inherent data structures such as clusters in X s and X t, respectively. In-
spired by [262], for each graph database, we construct a k-nearest neighbors graph
(KNN graph) in the latent space to model its data structure, aiming to capture the
neighborhood information between different graphs. Without loss of generality, we
use Gs to demonstrate the construction of a KNN graph.

The KNN graph of Gs contains N nodes, with each node representing a source
graph and its node attribute indicating the corresponding graph level representation
vector learned by hST (·). Next, to generate edges, we can construct the adjacency
matrix as

Aij =

1, if Gi ∈ Nk(Gj) or Gj ∈ Nk(Gi)

0, otherwise
(6.4)

where Nk(Gj) represents the k-nearest neighbors set of graph Gj based on the Eu-
clidean distance between graph level embeddings. After constructing the KNN graph,
we can leverage another GIN model (without READOUT function) to learn the node
representations, wherein a node represents a source graph instance.

Feature Concatenation Operator We utilize a concatenation operator that di-
rectly appends the structure feature for each graph to its semantic feature. Hence, this
operator has no parameters. Overall, given a graph Gi, its final extracted feature can
be expressed as hFE(Gi) = hSE(Gi) ∥ hST (Gi). As a result, the corresponding train-
able parameter ΘFE = (ΘSE ,ΘST). Importantly, these parameters are shared when
learning representations for graphs from the source domain and the target domain,
respectively.

6.6 Module 2: Cross-Domain Graph Level Anomaly
Detection

This module contains three components: the one-class classifier, the domain classifier,
and the class aligner. We first elucidate the rationale and design of each component,
followed by introducing the theory of adversarial training.

One-Class Classifier: We use hs(·) to represent the source classifier, which has
no additional parameters beyond the feature extraction parameters ΘFE . We train a
one-class classifier on the source domain by minimizing the following One-Class Deep

154

Chapter 6. Cross-Domain Graph Level Anomaly Detection

SVDD objective [99]:

LSC(X s,Ys; ΘFE) =:
1

Ns

Ns∑
m=1

∥hFE(Gm)− o∥22, (6.5)

where hFE(Gm) is the final extracted feature of graph Gm (from the source domain),
and o is the learned center that represents the normality defined in the source domain.
Minimizing this SVDD loss ensures the model learns the label information from the
source domain.

Domain Classifier: We denote the domain classifier as hd(·), with trainable
parameters Θd in addition to parameters ΘFE . We maximize the binary cross-entropy
loss to learn domain-invariant features:

LDA(X s,X t; Θd,ΘFE) =:

[
1

Ns +Nt

Ns+Nt∑
i=1

[
di log(

1

d̂i
) + (1− di) log(

1

1− d̂i
)

]]
,

(6.6)

where di denotes the binary ground-truth domain label for graph Gi. Specifically, di
is 0 for graphs from the source domain and 1 for graphs from the target domain. Addi-
tionally, d̂i represents the predicted probability that Gi belongs to the target domain,
as determined by hd(·). More precisely, the prediction d̂i is given by d̂i = hd(hFE(Gi)),
where hFE(·) is the final feature extractor and hd(·) is the domain classifier. In loss
term (6.6), we consider the negative log-probability, expressed as − log(d̂i). This can
be rewritten as log

(
1

hd(hFE(Gi))

)
. The goal of this loss function is to maximize it,

which encourages the feature extractor hFE(·) to create similar representations for
graphs from both the source and target domains. This helps align the domains, mak-
ing the feature distributions of the source and target domains indistinguishable and
reducing discrepancies between them.

Class Aligner: Structure consistency between domains (via parameters-shared
feature extractor), discriminability in source domain (via source classifier), and domain-
invariant features (via domain classifier) do not necessarily lead to discriminability in
the target domain. That is, although we manage to align features cross domains, the
learned features may be distorted in the sense that they are not representative of the
underlying patterns in the target domain. As a result, features of the normal and
abnormal classes in the target domain may exhibit close proximity or even overlap,
leading to a high value of ϵt(h) in the target domain. This is known as excessive
alignment in [263] and collapse of target neighborhood structure in [264].

155

6.6. Module 2: Cross-Domain Graph Level Anomaly Detection

To alleviate this problem, we should consider the third term in (6.1), namely
[ϵs(h∗) + ϵt(h∗)], that considers labels from both domains. Although the true label
information in the target domain cannot be obtained, we can generate pseudolabels
and minimize the class centroid alignment loss:

LCA(X s,Ys,X t, Ŷt; ΘFE) =:
[
ψ(Csn, Ctn)− ψ(Cta, Ctn)

]
, (6.7)

where Ŷt are the pseudolabels obtained by directly applying hs(·) to the target
graphs, and hs(·) is obtained by optimizing loss term (6.5) in previous iteration. More-
over, Csn, Ctn , and Cta represent the centroid of normal source class, normal target
class, and anomalous target class, respectively. The function ψ(·, ·) is a distance met-
ric such as the Euclidean distance. Minimizing this loss can reduce the inter-domain
distance between centroids of normal classes, while simultaneously maximizing the
intra-domain distances between centroids of normal and abnormal classes within the
target domain. Particularly, with an increase of training epochs, we expect that the
discrepancy between source domain and target domain is reduced, the data structures
are better aligned, the hs(·) is further improved, and thus the pseudolabels are grad-
ually updated to approach the ground-truth labels, progressively improving the class
centroid alignment.

Adversarial Training: It can be seen that the optimization of (6.5) and (6.7)
involves a minimization w.r.t. parameters ΘFE , while the optimization of (6.6) con-
cerns a maximization w.r.t. parameters Θd and ΘFE . In other words, objective (6.6)
competes against objectives (6.5) and (6.7) during training over the overall objective
(6.2). To obtain a good trade-off, adversarial training techniques have been explored,
with impressive results [243].

For simplicity, we rewrite L(X s,Ys,X t; ΘFE ,Θd) as L(ΘFE ,Θd), which contains
two sets of parameters. Adversarial training attempts to find a saddle point (Θ̂FE , Θ̂d)

such that Θ̂FE = argmin
ΘFE

L(ΘFE , Θ̂d) and Θ̂d = argmax
Θd

L(Θ̂FE ,Θd). In other words,

we perform a minmax optimization over (6.2):

min
ΘFE

max
Θd

[λ1LSC(Θ
FE)− λ2LDA(Θ

FE ,Θd) + λ3LCA(Θ
FE)]. (6.8)

156

Chapter 6. Cross-Domain Graph Level Anomaly Detection

Hence, the trainable parameters can be optimized alternatively as follows:

Θd ← Θd − µ∂LDA

∂Θd
,

ΘFE ← ΘFE − µ
(
λ1
∂LSC

∂ΘFE
− λ2

∂LDA

∂ΘFE
+ λ3

∂LCA

∂ΘFE

)
,

(6.9)

where µ is the learning rate. We perform mini-batch training with gradient descent
and the corresponding pseudo-code is provided in Algorithm 5.

Algorithm 5 Mini-batch Algorithm of ARMET
Input: Labeled source graphs Gs = {Gs

n, Y
s
n }

Ns
n=1; Unlabeled target graphs Gt =

{Gs
n}

Nt
n=1; Balance parameters λ1, λ2 and λ3; Batch size Nb; Maximal training epochs

Ne; Maximal iteration per epoch Ni

Output: Predicted labels Ŷt of target graphs
1: Initialize parameters ΘFE ,Θd

2: for epoch < Ne and not converge do
3: for iteration < Ni do
4: Sample a batch Bs and Bt
5: Learn representations using hFE for Bs and Bt
6: Compute source classifier loss LSC using (6.5)
7: Compute domain classifier loss LDC using (6.6)
8: Backpropagate LDC and update Θd using (6.9)
9: Compute class aligner loss LCA using (6.7)

10: Compute total loss L using (6.2)
11: Backpropagate L and update ΘFE using (6.9)
12: end for
13: end for
14: ĥFE(Gt)← Use feature extractor with optimized parameters Θ̂FE to extract fea-

tures for Gt
15: Ŷt ← Use optimized source classifier ĥs(·) to predict labels for ĥFE(Gt)

6.7 Experiment Setup
We aim to answer the following research questions (RQ) via experiments:

RQ1 How does ARMET perform when compared to state-of-the-art graph level anomaly
detection methods?

RQ2 How does each component of ARMET affect the performance? (Ablation study)

157

6.7. Experiment Setup

Table 6.1: Datasets. #Nodes, #Edges, Degree, #Attr denote the average number of
nodes and edges, the average degree, and the dimensionality of node attributes, respectively.

Data #Graphs #Nodes #Edges Degree #Attr
BG 5000(5%) 10 30 3 200
HD 5000(5%) 7 20 2.86 200
SP 5000(5%) 6 24 4 200
TB 5000(5%) 16 52 3.25 200
LL 500(10%) 4.7 4.5 0.96 2
LM 500(10%) 4.7 3.1 0.66 2
LH 500(10%) 4.7 3.3 0.70 2

RQ3 How does the performance of ARMET change with different hyperparameter
values? (Sensitivity analysis)

In addition, to get a better understanding of ARMET, we utilize t-SNE [265] to
visualize the learned graph representations from both domains.

6.7.1 Benchmark Datasets

As summarized in Table 6.1, we study the following datasets collected from various
application fields of graph mining:

System Logs We use four benchmark datasets for log anomaly detection, as con-
verting logs into graphs and then leveraging GNNs to detect anomalies can achieve su-
perior performance [88, 232]. Hence, following [232], we construct four graph datasets:
HDFS (HD) [64], BGL (BG), SPIRIT (SP), and THUNDERBIRD (TH) [123], where
each dataset contains 5000 graphs with 5% anomalous graphs. Particularly, HD con-
sists of Hadoop Distributed File System logs while BG, SP, and TH containing system
logs collected from three different supercomputing systems. For this group of datasets,
we create 12 transfer tasks.

Letter Drawings We use three benchmark graph datasets with letter drawings of
varying levels of distortion: low (LL), medium (LM), and high (LH) [266]. Following
the practice of downsampling classification datasets for anomaly detection [168], for
each dataset the letters N, M, and W are selected as the normal class, comprising a
total of 450 instances (150 instances per letter), while the letter F is chosen as the
anomalous class (downsampled to 50 instances). For each graph, a node denotes the
end point of a line, an edge represents a line, and a node attribute represents its
two-dimensional coordinate. For these datasets, we create 6 transfer tasks.

158

Chapter 6. Cross-Domain Graph Level Anomaly Detection

Discussion on Dataset Selection: Some commonly used benchmark graph datasets,
including BZR, DHFR and COX2 (small molecules), as well as IMDB-Binary and
REDDIT (social networks), have been excluded from our analysis for the following
reasons: 1) the UDA assumptions do not hold for them, as these datasets have dif-
ferent definitions of classification problem, namely they have different label seman-
tics; 2) transferability cannot be guaranteed due to huge domain discrepancy between
datasets. For instance, node attributes of graphs in these datasets have different di-
mensionalities and/or meanings, and these datasets have very different graph statistics;
and 3) even supervised classification methods can only achieve very limited in-domain
classification accuracy (i.e., with an accuracy lower than 0.7) on these datasets.

6.7.2 Baselines

We compare ARMET to the following baselines:

• Unsupervised graph level anomaly detection methods: We directly apply
OCGIN [78], GLAM [79], and GLocalKD [81] on unlabeled target graphs.

• Traditional Domain Adaptation Methods: ADDA [244], CDAN [245],
and DeepCoral [242] are state-of-the-art UDA methods for image classification.
As they are not designed for graph-structured data, we modify these models for
cross-domain graph level anomaly detection by following [257].

To explore the ceiling performance of GLAD methods, we additionally present the
outcomes of iGAD [83], a supervised method that is not considered a direct competitor
due to its reliance on labeled target data.

6.7.3 Evaluation

We employ the widely used Area Under the Curve of the Receiver Operating Char-
acteristics curve (AUC ROC), Area Under the Curve of Precision Recall (AUC PR),
and F1-Score to evaluate and compare the different methods, where a higher value
(closer to 1) represents better anomaly detection accuracy. Particularly, we report
the average values of AUC ROC, AUC PR, F1-Score and the corresponding standard
deviations across 10 independent runs.

159

6.7. Experiment Setup

6.7.4 Implementation and Model Configuration

We use the publicly available implementations of OCGIN 1, GLAM 1, GLocalKD
2 and iGAD 3 with their recommended configurations. Besides, ADDA4, CDAN 5

and DeepCoral 5 are adapted from their publicly available implementations. As they
are not designed for graph-structured data, we modify these models for cross-domain
graph level anomaly detection by following the practice in [257]:

• CDAN: We replace the AlexNet encoder with a GIN plus a mean readout func-
tion;

• ADDA: Similarly, we replace the CNN encoder with a GIN plus a mean readout
function;

• DeepCoral: We replace the CNN encoder (CaffeNet) with a GIN plus a mean
readout function and apply CORAL loss to the last classification layer.

For ARMET, by following the practice in [242], the values of hyperparameters
λ1, λ2 and λ3 can be set such that, after the training process (e.g., 100 epochs),
the losses associated with one-class classification LSC , domain discrimination (LDA)
and class-alignment (LCA) are approximately at the same magnitude (after being
multiplied by their corresponding weights). The rational behind it is that we aim to
learn feature representations that are both label-discriminative and domain-invariant
[242]. Particularly, we found that there is usually not a single set of optimal weights
for each transfer task, as pointed out in multi-task learning by [267]. Although this
hyperparameter tuning method works well, it is time-consuming and labor-intensive.
For simplicity, we can adapt a de-facto strategy for hyperparameter tuning in UDA,
namely splitting the target dataset according to a ratio of 20% : 80%, where the 20%
data with labels is used as the validation dataset to select these three hyperparameters
and the remaining 80% data without labels is used as the test data.

For fair comparisons, all GIN models used in different domain adaptation methods
are configured with the same backbone architecture, namely a backbone of two layers
(64 hidden units) with each layer followed by a ReLU activation. Besides, all neural
network based methods are trained using mini-batch gradient descent, with a batch-
size of 512 on log anomaly detection datasets and a batchsize of 128 on other datasets

1https://github.com/lingxiaoshawn/glam
2https://github.com/RongrongMa/GLocalKD
3https://github.com/graph-level-anomalies/iGAD
4https://github.com/yuhui-zh15/pytorch-adda
5https://github.com/agrija9/deep-unsupervised-domain-adaptation

160

Chapter 6. Cross-Domain Graph Level Anomaly Detection

Table 6.2: Description of hyperparameters and their recommended values. Range indi-
cates the values that we have tested in the sensitivity analysis, and boldfaced values represent
the values suggested to use in the experiments.

Symbol Meaning Range
d embedding dimension {16, 32, 64, 96, 128, 160, 192, 224, 256, 300}
k number of neighbors in KDTree {2, 5, 8, 11, 14, 17, 20}
L number of layers {1,2, 3, 4, 5}
Bs batch size {16, 32, 64, 128, 256, 512, 1024}
λ weight decay parameter {0.0001, 0.001, 0.01, 0.1}
η learning rate {0.0001, 0.001,0.01}
Re readout function mean, sum, max
Ep Epochs for training {100, 200, 300, 400}

respectively, initial learning rate of 0.01, weight decay rate of 0.0001, and a maximum
of 200 training epochs. The settings for these hyperparameters for ARMET are sum-
marized in Table 6.2. Other algorithm-specific hyperparamters are set in accordance
with their respective references given by the original authors.

6.7.5 Training Hardware and Reproducibility

We implemented and ran all algorithms in Python 3.8, using PyTorch [109] and Py-
Torch Geometric [110] when applicable, on a workstation equipped with an Intel i7-
11700KF CPU and Nvidia RTX3070 GPU. For reproducibility, all code and datasets
are made available on GitHub6.

6.8 Experiment Results and Analysis
We answer the three research questions as follows.

6.8.1 Detection Accuracy (RQ1)

We perform the following analysis based on the experiment results in Tables 6.3, 6.4
and 6.6. Particularly, the results in terms of AUC PR and F1-Score are consistent
with those in terms of AUR ROC. Therefore, these results are either deferred to Table
6.8 or omitted.

6https://github.com/ZhongLIFR/ARMET/

161

6.8. Experiment Results and Analysis

Table 6.3: Anomaly detection accuracy (Average AUC ROC and corresponding standard
deviations across 10 runs) of unsupervised methods (OCCIN, GLAM, and GLocalKD) under
two scenarios: 1) when the training dataset is clean, namely containing exclusively normal
graphs (shown on the left side of ‘→’), and 2) when the training dataset is contaminated,
namely containing both normal and abnormal instances (shown on the right side of ‘→’).

Dataset OCGIN GLAM GLocalKD
BG 0.93±0.04 → 0.71±0.11(↓) 0.64±0.09 → 0.74±0.06(↑) 0.93±0.02 → 0.91±0.01(↓)
SP 0.62±0.16 → 0.59±0.16(↓) 0.70±0.09 → 0.71±0.09(↑) 0.81±0.08 → 0.66±0.15(↓)
HD 0.98±0.01 → 0.88±0.03(↓) 0.87±0.06 → 0.77±0.09(↓) 0.45±0.05 → 0.45±0.05(−)
TH 0.81±0.20 → 0.43±0.28(↓) 0.93±0.05 → 0.96±0.09(↑) 0.93±0.05 → 0.76±0.11(↓)
LL 0.99±0.00 → 0.70±0.10(↓) 0.82±0.18 → 0.72±0.18(↓) 0.56±0.11 → 0.53±0.10(↓)
LM 0.91±0.02 → 0.64±0.05(↓) 0.57±0.10 → 0.55±0.07(↓) 0.56±0.11 → 0.53±0.10(↓)
LH 0.65±0.10 → 0.52±0.08(↓) 0.66±0.08 → 0.54±0.10(↓) 0.56±0.11 → 0.53±0.10(↓)

Accuracy of Single-Domain GLAD

Table 6.3 demonstrates that unsupervised/semi-supervised methods OCGIN, GLAM7,
and GLocalKD generally suffer from large performance degradation when the training
data is contaminated with anomalies. Moreover, these unsupervised/semi-supervised
methods deliver very unstable results across different datasets even when the training
data is clean. For example, GLocalKD yields high performance on BGL (ROC = 0.91),
but very poor performance on HDFS (ROC = 0.45). In contrast, Table 6.4 shows that
supervised method iGAD achieves perfect results, with an ROC of 1.0, on all cases.
This indicates that these anomaly detection problems are solvable when sufficient
labeled data is available in the target domain. However, this is unrealistic in many
real-world scenarios as fully labeled data is usually expensive and often even impossible
to obtain in practice.

Accuracy of Traditional UDA Methods

Table 6.4 shows that when there is only one class in the source domain, ADDA,
CDAN, and DeepCoral behave like random guessing (e.g., with ROC ≈ 0.50), per-
forming much worse than ARMET for most transfer tasks. The potential factors
contributing to their subpar performance are as follows. First, CDAN considers the
conditional distribution that captures the cross-variance between feature representa-
tions and classifier predictions, but the conditional distribution degenerates to the
marginal distribution when there is only one class in the source domain. Second,

7With a few exceptions for GLAM, where the performance is slightly increased or stable.

162

Chapter 6. Cross-Domain Graph Level Anomaly Detection

Table 6.4: Anomaly detection accuracy (Average AUC ROC and corresponding standard
deviations across 10 runs). The best and runner-up results are highlighted in bold and
underlined, respectively. For unsupervised methods, we report the ROC values when the
training dataset contains both normal and abnormal instances. For cross-domain methods,
we report the ROC values when the source dataset contains only normal graphs. The results
of supervised method are shown only to be able to put the performance of graph level
anomaly detection methods in perspective (i.e., iGAD should not be considered as baseline).
Moreover, the poor performance of traditional UDA methods (namely ADDA, CDAN and
DeepCoral) are not due to intentionally choosing weak baselines or poor hyper-parameters.
The underlying reasons for their subpar performance are given in Chapter 6.8.1.

Dataset Supervised Unsupervised Traditional UDA Ours

iGAD OCGIN GLAM GLocalKD ADDA CDAN DeepCoral ARMET

HD → BG
1.0±0.00 0.71±0.11 0.74±0.06 0.91±0.01

0.50±0.00 0.50±0.02 0.50±0.00 0.77±0.06
SP → BG 0.50±0.00 0.49±0.03 0.50±0.00 0.85±0.07
TH → BG 0.50±0.00 0.50±0.00 0.50±0.00 0.83±0.05

BG → SP
1.0±0.00 0.59±0.16 0.71±0.09 0.66±0.15

0.50±0.00 0.50±0.01 0.50±0.00 0.89±0.07
HD → SP 0.50±0.00 0.51±0.04 0.50±0.00 0.91±0.04
TH → SP 0.50±0.00 0.50±0.00 0.50±0.00 0.88±0.06

BG → HD
1.0±0.00 0.88±0.03 0.77±0.09 0.45±0.05

0.50±0.00 0.50±0.01 0.50±0.00 0.79±0.04
SP → HD 0.50±0.00 0.51±0.01 0.50±0.00 0.90±0.03
TH → HD 0.50±0.00 0.50±0.00 0.50±0.00 0.81±0.06

BG → TH
1.0±0.00 0.43±0.28 0.96±0.09 0.76±0.11

0.50±0.00 0.60±0.20 0.50±0.00 1.0±0.00
SP → TH 0.50±0.00 0.69±0.24 0.50±0.00 1.0±0.00
HD → TH 0.50±0.00 0.72±0.24 0.50±0.00 1.0±0.00

LM → LL
1.0±0.00 0.70±0.10 0.72±0.18 0.53±0.10

0.50±0.00 0.50±0.00 0.50±0.00 0.98±0.02
LH → LL 0.50±0.00 0.50±0.00 0.50±0.00 0.96±0.00

LL → LM
1.0±0.00 0.64±0.05 0.55±0.07 0.53±0.10

0.50±0.00 0.50±0.00 0.50±0.00 0.88±0.02
LH → LM 0.50±0.00 0.50±0.00 0.50±0.00 0.78±0.03

LL → LH
1.0±0.00 0.52±0.08 0.54±0.10 0.53±0.10

0.50±0.00 0.50±0.00 0.50±0.00 0.79±0.02
LM → LH 0.50±0.00 0.50±0.00 0.50±0.00 0.80±0.05

DeepCoral aligns the second-order statistics of layer activations in the source encoder
and the target encoder, leading to random-guessing results since the source training
data contains only normal graphs while the target training data includes both normal
and abnormal graphs (and thus the statistics of layer activations should be differ-
ent by nature). Third, ADDA performs poorly as it utilizes different encoders for
the source and target domains, implying the importance of parameters-shared models
when encoding graphs from two domains. The efficacy of the source encoder degrades
to random-guessing when the source domain contains only a single class, as the source
classifier fails to acquire any informative knowledge. Furthermore, these traditional
UDA methods are primarily designed for balanced multiple classification problems,
making them ill-suited for anomaly detection, which involves an extremely imbal-

163

6.8. Experiment Results and Analysis

Table 6.5: Ablation studies with the following stripped-down variations, where ’3’ and ’7’
mean the corresponding component is included or excluded, respectively.

Components SD /SF /SC /DC /CA ARMET
Structure Feature Extractor 3 7 3 3 3 3

One-Class Classifier 3 3 7 3 3 3

Domain Classifier 7 3 3 7 3 3

Class Aligner 7 3 3 3 7 3

anced binary classification task. As a reference, we report the performance of ADDA,
CDAN, and DeepCoral when the source domain contains both labeled anomalous and
normal instances in Table 6.6. One can see that the performance of ADDA, CDAN,
and DeepCoral is largely boosted with auxiliary label information in most transfer
tasks. However, even with auxiliary labels, they are still outperformed by ARMET in
most cases.

Accuracy of ARMET

Table 6.4 shows that ARMET achieves the best performance on 13 out of 18 transfer
tasks, and the second-best performance on the remaining tasks. Further, it largely
outperforms unsupervised graph level anomaly detection methods on certain target
datasets, demonstrating the benefit of leveraging label information from a different
but related domain. For example, transferring knowledge from HD to SP leads to
54%, 28%, and 38% performance gains compared to OCGIN, GLAM, and GLocalKD,
respectively. Finally, ARMET achieves impressive results under the setting that the
source domain contains only normal graphs, while other traditional unsupervised do-
main adaptation methods provide “random-guessing” results, making ARMET more
applicable to real-world scenarios.

6.8.2 Ablation Study (RQ2)

As summarized in Table 6.5, we here compare ARMET to five its stripped-down
variations: SD is trained on the source domain and then directly applied on the
target domain; /SF is ARMET trained without the structure feature extractor; /SC
is ARMET trained without the source one-class classifier; /DC is ARMET trained
without the domain classifier; and /CA is ARMET trained without the class aligner.
We have the following important observations from Table 6.7:

• SD vs ARMET. ARMET is always superior to the case where we train the

164

Chapter 6. Cross-Domain Graph Level Anomaly Detection

Table 6.6: Anomaly detection accuracy (Average AUC ROC and corresponding standard
deviations across 10 runs) of traditional UDA methods (including ADDA, CDAN, and Deep-
Coral) when the source domain contains both labeled anomalous and normal instances. (‘↑’
indicates the performance is boosted compared to the case where the source domain contains
only normal instances, while ‘↓’ means it is degraded.)

Dataset ADDA∗ CDAN∗ DeepCoral∗ ARMET
HD → BG 0.50±0.03(−) 0.64±0.11(↑) 0.51±0.11(↑) 0.77±0.02
SP → BG 0.47±0.00(↓) 0.48±0.06(↓) 0.49±0.01(↓) 0.85±0.07
TH → BG 0.49±0.02(↓) 0.50±0.00(−) 0.50±0.00(−) 0.83±0.05
BG → SP 0.56±0.17(↑) 0.50±0.08(−) 0.49±0.19(↓) 0.89±0.07
HD → SP 0.63±0.24(↑) 0.50±0.03(↓) 0.60±0.16(↑) 0.91±0.04
TH → SP 0.54±0.13(↑) 0.50±0.00(−) 0.50±0.01(−) 0.88±0.06
BG → HD 0.62±0.13(↑) 0.50±0.08(−) 0.48±0.11(↓) 0.79±0.04
SP → HD 0.57±0.14(↑) 0.51±0.03(−) 0.51±0.01(↑) 0.90±0.03
TH → HD 0.57±0.06(↑) 0.51±0.02(↑) 0.50±0.00(−) 0.81±0.06
BG → TH 0.48±0.01(↓) 0.48±0.20(↓) 0.54±0.24(↑) 1.00±0.00
SP → TH 0.53±0.17(↑) 0.77±0.24(↑) 0.73±0.27(↑) 1.00±0.00
HD → TH 0.58±0.22(↑) 0.50±0.17(↓) 0.84±0.21(↑) 1.00±0.00

LM → LL 0.93±0.15(↑) 1.0±0.00(↑) 1.0±0.00(↑) 0.98±0.02
LH → LL 0.78±0.23(↑) 0.99±0.00(↑) 0.95±0.05(↑) 0.96±0.00
LL → LM 0.53±0.04(↑) 0.74±0.00(↑) 0.63±0.01(↑) 0.88±0.02
LH → LM 0.65±0.05(↑) 0.89±0.00(↑) 0.76±0.03(↑) 0.78±0.03
LL → LH 0.50±0.01(−) 0.78±0.00(↑) 0.59±0.02(↑) 0.79±0.02
LM → LH 0.66±0.08(↑) 0.87±0.00(↑) 0.80±0.01(↑) 0.80±0.05

model on the source domain and then directly apply it to the target domain.
This exemplifies the benefits and necessity of performing transfer learning.

• /SF vs ARMET. ARMET consistently outperforms its counterpart without
the structural feature extractor. This underlines the importance of considering
the neighborhood information in a set of graphs for CD-GLAD.

• /SC vs ARMET. It shows that explicitly incorporating the source label infor-
mation via a source classifier is typically beneficial.

• /DC vs ARMET. In most cases, explicitly aligning the embeddings of both
domains via a domain classifier is favorable. In certain cases, the presence of a
domain classifier may have a small adverse impact on performance. One possi-
ble reason is that the domain classifier overly distorts the embedding space by
aligning the embedding space in a brute-force manner. Another possible rea-
son is that the embeddings are also implicitly aligned via the parameters-shared
feature extractor and the class aligner.

165

6.8. Experiment Results and Analysis

Table 6.7: Ablation study (Average AUC ROC with 10 runs). SD: trained on source
domain and then directly applied on target domain; /SF: ARMET without structure feature
extractor; /SC: ARMET without source one-class classifier; /DC: ARMET without domain
classifier; /CA: ARMET without class aligner.

Dataset ARMET SD /SF /SC /DC /CA

HD → BG 0.77 0.55 0.74 0.48 0.55 0.57
SP → BG 0.85 0.66 0.81 0.55 0.60 0.58
TH → BG 0.83 0.60 0.74 0.64 0.64 0.77

BG → SP 0.89 0.71 0.55 0.67 0.62 0.59
HD → SP 0.91 0.74 0.62 0.73 0.72 0.64
TH → SP 0.88 0.61 0.52 0.73 0.77 0.58

BG → HD 0.79 0.60 0.58 0.59 0.59 0.60
SP → HD 0.90 0.61 0.74 0.67 0.53 0.67
TH → HD 0.81 0.68 0.66 0.70 0.64 0.68

BG → TH 1.0 0.77 0.61 1.0 0.90 0.73
SP → TH 1.0 0.56 0.06 1.0 0.77 0.68
HD → TH 1.0 0.88 0.79 1.0 0.96 0.88
LM → LL 0.98 0.98 0.71 0.70 0.99 0.98
LH → LL 0.96 0.92 0.65 0.73 0.87 0.90

LL → LM 0.88 0.74 0.75 0.62 0.77 0.85
LH → LM 0.78 0.76 0.55 0.42 0.71 0.73

LL → LH 0.79 0.74 0.60 0.59 0.72 0.71
LM → LH 0.80 0.71 0.56 0.63 0.67 0.70

• /CA vs ARMET. The removal of the class aligner always leads to a perfor-
mance degradation. This corroborates the importance of considering labels (or
pseudo-labels) in the target domain when performing CD-GLAD.

6.8.3 Sensitivity Analysis (RQ3)

We examine the effects of the following hyperparameters on the detection performance,
and Figure 6.2 depicts the selected results on four representative transfer tasks:

• The number of embedding dimensions d in parameters-shared feature extrac-
tor: most transfer tasks can achieve the best performance with an embedding
dimension of 64. Small fluctuations can be observed with varying number of
dimensions. Moreover, an overly small value of d may lead to suboptimal per-
formance, while a large value introduces a considerable computational burden.

166

Chapter 6. Cross-Domain Graph Level Anomaly Detection

16 32 64 96 128 160 192 224 256
#Embedding Dimensions

0.0

0.2

0.4

0.6

0.8

1.0

RO
C

AU
C

HD2SP
TH2BG
HD2TH
LM2LL

1 2 3 4 5
#Layers

0.0

0.2

0.4

0.6

0.8

1.0

2 5 8 11 14 17 20
#Neighbours

0.0

0.2

0.4

0.6

0.8

1.0

Figure 6.2: Sensitivity analysis of hyperparameters on four representative transfer tasks
(HD → SP, TH → BG, HD → TH, LM → LL). Average results over five runs.

• The number of hidden layers L in the GIN model in the parameters-shared
feature extractor: optimal performances are obtained when L = 1 or L = 2 on
most transfer tasks. A further increase of its value usually results in performance
degradation, which is widely known as over-smoothing [268].

• The number of neighbors k in the KNN graph: most transfer tasks can obtain the
best performance on a wide range of k’s values (namely 1 ≤ k ≤ 10). However,
further increasing the value of k may cause large performance fluctuations.

source normal

target anomalous
target normal

Figure 6.3: T-SNE visualization of the graph representation space during domain adapta-
tion on task LM → LL. From left to right: the number of epochs correspond to zero, two,
five and one hundred, respectively.

6.8.4 Visualization with T-SNE

Figure 6.3 visualizes the domain alignment and anomaly separation process on the
transfer task LM → LL. The target normal graphs (green dots) are progressively
adapted to the source normal graphs (blue dots), while the target anomalous graphs
(red crosses) become increasingly separable in the embedding space.

167

6.10. Discussion on Transferability

6.9 Discussion on Transferability
As shown in Table 6.7, when comparing ARMET with its counterpart without explicit
transfer learning (namely the column ‘SD’ that represents the scenarios where we train
the model on the source domain and then directly apply it to the target domain),
the performance gains from transfer learning are consistently non-negative. Moreover,
when comparing ARMET with the best performing single-domain graph level anomaly
detectors that are trained directly on the target domain, the performance gains are
often positive (in 13 out 18 cases, see Table 6.4). This further demonstrates the
benefits of transfer learning.

The underlying reason why transfer learning is beneficial in this context is that
the extent of “relatedness” among System Logs datasets (i.e., BG, HD, SP and TH)
is large enough, and so is the extent of “relatedness” among Letter Drawings datasets
(i.e., LL, LM, and LH). In cross domain graph-level anomaly detection, it is crucial
to ensure that the semantic meanings of normal patterns in the source and target
domains are approximately the same. For instance, in System Logs data, these are
normal patterns of system operations, while in Letter Drawings data, they represent
the same set of letters.

As in other typical unsupervised domain adaptation settings, we assume that the
source and target domains are different yet related. However, the extent of “related-
ness” in this study is ensured based on our domain knowledge rather than a quan-
tifiable transferability metric. To our knowledge, how to quantify the extent of this
“relatedness” (namely transferability cross datasets) remains a long-standing problem
[269]. Notably, when this “relatedness” is low, it may introduce negative transfer
[270]. Moreover, it is critical to note that the transferability is usually asymmetrical,
e.g., the performance gain for transfer task SP → TH is 0.44 (namely 1.0 minus 0.56
in terms of ROC AUC), which is different from the performance gain for TH → SP
(namely 0.23 in terms of ROC AUC). Therefore, we should exercise caution (especially
in safety-critical fields such as healthcare) when the transferability from the source do-
main to the target domain cannot be guaranteed, whether from a quantifiable metric
or domain knowledge perspective.

6.10 Conclusions
This paper studies the problem of cross-domain graph level anomaly detection, wherein
a set of unlabeled graphs from the target domain and a set of normal graphs from a

168

Chapter 6. Cross-Domain Graph Level Anomaly Detection

different but related domain are given. We propose ARMET, a theoretically moti-
vated, novel method to solve this widely encountered but largely understudied prob-
lem. Specifically, ARMET consists of four components: a feature extractor, an adver-
sarial domain classifier, a one-class classifier, and a class aligner. It is the first attempt
to combine graph neural networks and adversarial domain adaptation techniques for
performing graph level anomaly detection tasks. Extensive experiments demonstrate
the efficacy of ARMET and its superiority to single-domain graph level anomaly de-
tection methods and traditional unsupervised domain adaptation methods. Moreover,
extensive ablation studies validate the benefits of incorporating each component into
ARMET. Understanding and quantifying the transferability across different graph
domains should be addressed in future research.

169

6.10. Conclusions

Table 6.8: Anomaly detection accuracy: average AUC PR and corresponding standard
deviations across 10 runs (Top), and average F1-Score(Binary) and corresponding standard
deviations across 10 runs (Bottom)

Dataset Supervised Unsupervised Traditional UDA Ours

iGAD OCGIN GLAM GLocalKD ADDA CDAN DeepCoral ARMET

HD → BG
1.0±0.00 0.19±0.09 0.14±0.03 0.46±0.10

0.05±0.00 0.05±0.01 0.05±0.00 0.14±0.09
SP → BG 0.05±0.00 0.05±0.00 0.05±0.00 0.25±0.13
TH → BG 0.05±0.00 0.05±0.00 0.05±0.00 0.29±0.11

BG → SP
1.0±0.00 0.08±0.03 0.09±0.02 0.06±0.01

0.05±0.00 0.05±0.00 0.05±0.00 0.76±0.12
HD → SP 0.05±0.00 0.09±0.08 0.05±0.00 0.83±0.15
TH → SP 0.05±0.00 0.05±0.00 0.05±0.00 0.90±0.05

BG → HD
1.0±0.00 0.43±0.06 0.62±0.07 0.40±0.04

0.05±0.00 0.05±0.00 0.05±0.00 0.48±0.15
SP → HD 0.05±0.00 0.06±0.02 0.05±0.00 0.29±0.10
TH → HD 0.05±0.00 0.05±0.00 0.05±0.00 0.49±0.10

BG → TH
1.0±0.00 0.12±0.15 0.51±0.14 0.08±0.02

0.06±0.00 0.06±0.00 0.06±0.00 0.93±0.13
SP → TH 0.06±0.00 0.19±0.29 0.06±0.00 1.0±0.00
HD → TH 0.06±0.00 0.41±0.48 0.06±0.00 0.98±0.01

LM → LL
1.0±0.00 0.19±0.06 0.42±0.20 0.13±0.03

0.03±0.00 0.03±0.00 0.03±0.00 0.92±0.06
LH → LL 0.03±0.00 0.03±0.00 0.03±0.00 0.51±0.15

LL → LM
1.0±0.00 0.36±0.04 0.30±0.07 0.13±0.03

0.10±0.00 0.10±0.00 0.10±0.00 0.62±0.11
LH → LM 0.10±0.00 0.10±0.00 0.10±0.00 0.37±0.05

LL → LH
1.0±0.00 0.25±0.04 0.39±0.09 0.13±0.03

0.10±0.00 0.10±0.00 0.10±0.00 0.43±0.08
LM → LH 0.10±0.00 0.10±0.00 0.10±0.00 0.47±0.12

HD → BG
1.0±0.00 0.15±0.08 0.18±0.09 0.34±0.06

0.00±0.00 0.03±0.02 0.00±0.00 0.08±0.15
SP → BG 0.00±0.00 0.00±0.00 0.00±0.00 0.15±0.18
TH → BG 0.00±0.00 0.00±0.00 0.00±0.00 0.29±0.11

BG → SP
1.0±0.00 0.05±0.08 0.00±0.00 0.00±0.00

0.00±0.00 0.00±0.00 0.00±0.00 0.76±0.18
HD → SP 0.00±0.00 0.09±0.18 0.00±0.00 0.79±0.39
TH → SP 0.00±0.00 0.00±0.00 0.00±0.00 0.85±0.06

BG → HD
1.0±0.00 0.47±0.07 0.56±0.10 0.26±0.02

0.00±0.00 0.02±0.04 0.00±0.00 0.50±0.13
SP → HD 0.00±0.00 0.04±0.06 0.00±0.00 0.09±0.09
TH → HD 0.00±0.00 0.00±0.00 0.00±0.00 0.50±0.10

BG → TH
1.0±0.00 0.07±0.22 0.55±0.32 0.00±0.00

0.00±0.00 0.00±0.00 0.00±0.00 0.97±0.05
SP → TH 0.00±0.00 0.17±0.37 0.00±0.00 1.0±0.00
HD → TH 0.00±0.00 0.39±0.53 0.00±0.00 0.99±0.00

LM → LL
0.99±0.01 0.14±0.07 0.39±0.21 0.00±0.00

0.00±0.00 0.00±0.00 0.00±0.00 0.91±0.01
LH → LL 0.00±0.00 0.00±0.00 0.00±0.00 0.57±0.10

LL → LM
0.99±0.01 0.40±0.03 0.29±0.09 0.00±0.00

0.00±0.00 0.00±0.00 0.00±0.00 0.62±0.11
LH → LM 0.00±0.00 0.00±0.00 0.00±0.00 0.41±0.07

LL → LH
0.99±0.01 0.25±0.08 0.37±0.09 0.00±0.00

0.00±0.00 0.00±0.00 0.00±0.00 0.49±0.06
LM → LH 0.00±0.00 0.00±0.00 0.00±0.00 0.48±0.12

170

