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Chapter 1

Introduction

The utilization of artificial intelligence in manufacturing processes has attracted con-
siderable interest from both academic researchers and industry practitioners [1, 2].
This growing field is commonly known as smart manufacturing [2]. Anomaly detec-
tion, in particular, is a key area of research with numerous successful and potential
applications in smart manufacturing [3], where machine learning algorithms analyze
data collected from sensors and other sources to identify abnormal patterns and fa-
cilitate predictive maintenance. However, applying anomaly detection techniques to
real-world use-cases in smart manufacturing often presents obstacles, motivating the
development of this dissertation.

In this chapter, we will first provide an overview of smart manufacturing and
related concepts, setting the stage for the broader context of this dissertation and
outlining the current research landscape. We will then introduce the concept of trust-
worthy anomaly detection, which is central to this work. This section includes a review
of fundamental concepts and relevant literature on anomaly detection and trustworthy
AI. Building on this, we will present trustworthy anomaly detection in the context of
smart manufacturing, in which we summarize the main contributions of this disserta-
tion. Furthermore, we will explore the concepts of model-centric AI and data-centric
AI, highlighting the necessity of integrating both perspectives for data-driven smart
manufacturing. Following this, we will formally present the research questions ad-
dressed in this dissertation and the corresponding contributions made to answer them.
Finally, we will outline the structure of this dissertation and provide an overview of
the remaining chapters.

This chapter is partially based on the following publication:

1



1.1. Smart Manufacturing

• Zhong Li, Yuxuan Zhu, and Matthijs van Leeuwen. “A survey on explainable
anomaly detection.” ACM Transactions on Knowledge Discovery from Data 18,
no. 1 (2023): 1-54.

1.1 Smart Manufacturing
This section introduces the concepts of Industry 4.0, Smart Manufacturing, Cyber-
Physical Systems, Digital Twin, and Predictive Maintenance.

1.1.1 Industry 4.0 and Smart Manufacturing

The evolution of mass industries is generally divided into four stages: 1) Industry
1.0, which relied on steam and water-powered machinery; 2) Industry 2.0, charac-
terized by the use of electricity and mass production techniques; 3) Industry 3.0,
which introduced digitization and automation; and 4) Industry 4.0, which focuses on
cyber-physical systems [4]. Specifically, with the rapid development of information,
communication, and other technologies—such as the Internet of Things, Cloud Com-
puting, Big Data, Robotics, and Artificial Intelligence—the manufacturing industry
has entered the fourth stage of industrial production, known as Industry 4.0, since
the early 2010s [5]. However, the concept of Industry 4.0 does not have a universally
accepted definition. A commonly recognized definition is presented below.

Definition 1.1 (Industry 4.0). Industry 4.0 is commonly viewed as the convergence of
various advanced technologies, such as Internet of Things, Cloud Computing, Big Data,
Robotics, and Artificial Intelligence, aimed at integrating the physical and virtual
worlds through cyber-physical systems (CPS). [4]

Particularly, Smart Manufacturing is a subset within the broader Industry 4.0
framework. It focuses specifically on applying these advanced technologies to improve
manufacturing processes. Smart manufacturing has garnered significant attention from
industry, government organizations, and academia. Despite this interest, a universally
accepted definition of smart manufacturing has yet to be established [6, 7]. We present
its more commonly used definition in Definition 1.2.

Definition 1.2 (Smart Manufacturing). According to the National Institute of Stan-
dards and Technology, “smart manufacturing is fully integrated, collaborative manu-
facturing system that respond in real time to meet changing demands and conditions
in the factory, in the supply network and in customer needs.” [6]
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Chapter 1. Introduction

Besides, smart manufacturing is also commonly known as intelligent manufactur-
ing. However, Wang et al. [2] performed detailed comparisons to show the differences
between these two concepts. In brief, intelligent manufacturing is defined as the in-
tersection of artificial intelligence and manufacturing [8], and this term has been used
since 1980s. Zhong et al. [8] pointed out that the manufacturing has been shifted
from knowledge-based intelligent manufacturing to knowledge-enabled and data-driven
smart manufacturing, where the term “smart” refers to the creation and usage of data.
Therefore, Toben et al. [9] considered smart manufacturing as a new version of intel-
ligent manufacturing that highlights the use of advanced technologies and analytics
methods. Specifically, Zheng et al. [5] proposed a conceptual framework of smart
manufacturing systems for Industry 4.0, and this framework consists of the following
dimensions: smart design, smart machining, smart monitoring, smart control, and
smart scheduling.

1.1.2 Cyber-Physical Systems and Digital Twin

Tao et al. [10] indicated that cyber-physical integration is a crucial prerequisite for
and the core of smart manufacturing. Particularly, Cyber-Physical Systems (CPS)
and Digital Twins (DTs) are two preferred means to achieve such an integration. The
formal definition for CPS is given in Definition 1.3, while the formal definition for DT
is given in Definition 1.4.

Definition 1.3 (Cyber-Physical Systems). “Cyber-Physical Systems are multidimen-
sional and complex system that integrate the cyber world and the dynamic physical
world. Through the integration and collaboration of computing, communication, and
control, CPS provide real-time sensing, information feedback, dynamic control, and
other services.” [10, 11, 12]

Definition 1.4 (Digital Twin). A Digital Twin is a high-fidelity digital replica of a
physical asset, process, or system in virtual space. It uses real-time data and sim-
ulations to mirror the physical counterpart’s state, performance, and behavior. [10,
13]

Tao et al. systematically analyzed and compared Cyber-Physical Systems (CPS)
and Digital Twins (DTs) across several aspects: origin, cyber-physical mapping, hi-
erarchical modeling, and core elements [10]. The relationship between CPS and DTs
can be summarized as follows: CPS are foundational systems that integrate physical
processes with digital controls and computations [14], while DTs are specific digital
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1.1. Smart Manufacturing

replicas of physical entities or processes [15]. DTs rely on CPS for real-time data
acquisition and interaction, as CPS emphasize the powerful computing and commu-
nication capabilities of the cyber world more strongly when compared to DTs [16].
Conversely, DTs focus on creating high-fidelity virtual models that replicate the phys-
ical system’s geometry, structure, behavior, rules, functionality, and other dynamics
[10]. Consequently, DTs can provide detailed insights into operations, enabling pre-
dictive maintenance, optimization of manufacturing processes, and what-if analysis
through simulations [10].

1.1.3 Predictive Maintenance
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Figure 1.1: Maintenance strategies can be divided into five main stages based on their
evolution over time. (Inspired by Figure 1 in [17])

In this dissertation, we focus on the predictive maintenance aspect, which is one
of the major goals of Industry 4.0 [18]. Specifically, predictive maintenance is the
application that can leverage data and simulations from DTs to anticipate and plan
maintenance activities before failures occur. On a broader level, maintenance plays a
pivotal role in industrial applications, as effective strategies prevent unexpected down-
times, lower operational costs, and potentially extend the remaining useful lifetime of
machinery [17]. Consequently, maintenance practices have attracted substantial at-
tention from both industry and academia [19, 20, 17], showing continuous evolution
over recent years. According to [17], these practices can broadly be categorized into
the following five stages, as shown in Figure 1.1:

1) Corrective Maintenance: Also known as reactive maintenance, this run-to-
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failure strategy involves performing repairs or replacements only after equipment
has failed. It focuses on addressing issues after they occur, rather than preventing
them in advance.

2) Preventive Maintenance: Also known as planned maintenance, this approach
involves scheduling regular inspections and maintenance activities to prevent
equipment failures. It is carried out proactively, even when the equipment is
operating normally.

3) Condition-based Maintenance: It involves monitoring the actual condition
of equipment based on real-time data, aiming to determine when maintenance is
needed. Maintenance actions are performed only when specific indicators show
that performance is deteriorating or a failure is likely to occur.

4) Predictive Maintenance: It builds upon Condition-based Maintenance by us-
ing advanced analytics (such as machine learning and data mining techniques)
to predict when equipment will fail based on its current condition and histor-
ical data. It not only monitors equipment conditions but also forecasts future
failures with a higher degree of accuracy, enabling more efficient scheduling of
maintenance activities.

5) Prescriptive Maintenance: It refers to more advanced strategies that not only
predict but also recommend optimal maintenance actions to prevent or mitigate
equipment failures. It provides guidance on the best interventions, considering
factors like cost, risk, and operational impact.

While the more recent prescriptive maintenance strategy offers several advantages
over predictive maintenance, its implementation in real-world applications remains
challenging without a robust foundation in predictive maintenance. Moreover, predic-
tive maintenance itself faces numerous unresolved issues [17], such as: 1) industrial
data is susceptible to errors due to harsh environmental conditions, sensor faults, or
transmission errors; 2) the volume of data is large and growing exponentially; 3) data
types can vary in actual industrial applications, resulting in different modalities of
data such as videos, audios, texts, images, time series, graphs, logs, and tabular data;
and 4) industrial environments and production systems can differ widely between man-
ufacturers. Additionally, Digital Twins (DTs), which can be modeled in the virtual
world for each critical component in the physical world, provide a promising approach
to enhancing predictive maintenance [5]. For these reasons, our focus is on predictive
maintenance. Formally, predictive maintenance can be defined as follows.
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1.1. Smart Manufacturing

Definition 1.5 (Predictive Maintenance). “Predictive maintenance is a set of activ-
ities that detect changes in the physical condition of equipment (signs of failure) in
order to carry out the appropriate maintenance work for maximizing the service life
of equipment without increasing the risk of failure.” [21]

However, with the rapid advancement of technology and increasing demands in
industry, the traditional definition of predictive maintenance (namely Definition 1.5)
has become somewhat overly generalized and even outdated. To address evolving
needs, Predictive Maintenance 4.0 (PdM 4.0) has emerged, aligned with the princi-
ples of Industry 4.0, providing a blueprint for more intelligent and efficient predictive
maintenance systems [22, 23, 24, 21]. PdM 4.0 leverages advanced technologies such as
the Internet of Things (IoT) for data collection, Big Data techniques for data prepro-
cessing, and Data Mining and Machine Learning techniques for in-depth data analysis.
These technologies collectively enable decision support systems that accurately predict
when maintenance should be performed, thereby preventing unexpected breakdowns
and minimizing downtime. As shown in Figure 1.2, the system architecture for PdM
4.0 generally consists of the following components [22, 23, 24, 21]:

• Data Acquisition: Sensors are employed to collect data such as temperature,
humidity, and vibration from physical assets. This data is then transmitted
through networks using Internet of Things (IoT) technologies.

• Data Pre-processing: The collected data is stored in data warehouses, which
can be in the Cloud, where Big Data techniques are used for data cleaning,
integration, feature extraction, and transformation.

• Data Analysis: Data mining and machine learning techniques are leveraged to
perform two main tasks:

– Diagnosis: Involves anomaly detection (unsupervised or semi-supervised)
and anomaly classification (supervised) in the data.

– Prognosis: Focuses on predicting future anomalies and potential failures.

• Decision Support: Utilizes the results from data analysis to conduct fault
detection, fault isolation, fault prediction, and degradation assessment, thereby
supporting maintenance decision-making.

• Maintenance Implementation: Implements maintenance activities in the
physical world according to the maintenance decisions generated in the cyber
world.
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Figure 1.2: The system architecture for PdM 4.0 generally consists of five components.
(Inspired by Figure 6 in [24])

As emphasized in [18], anomaly detection is central to Predictive Maintenance, with
a primary focus on identifying anomalies in equipment at early stages and alerting the
manufacturing technicians to initiate maintenance activities. Moreover, the abnormal
behavior of data can stem from various causes. As Nunes et al. [17] highlighted, the
detected anomalies can be explored for decision support in two main ways based on
their causes of anomalies: 1) if anomalies are due to noise from sensor malfunctions,
low battery, or other external disturbances, they are considered irrelevant and should
be removed to prevent misinterpretation; 2) if anomalies result from relevant events,
such as potential equipment failures or process issues, they should be automatically
detected from sensor data and utilized by models to predict the remaining useful
lifetime, prompting further analysis and potentially leading to maintenance actions.
The main contributions of this dissertation center around anomaly detection, which
will be introduced in the next section. However, rather than limiting our scope to

7



1.2. Trustworthy Anomaly Detection

anomaly detection in the specific context of predictive maintenance and sensor data,
we emphasize that many of our developed approaches and findings are applicable to
more generic scenarios.

1.2 Trustworthy Anomaly Detection
In this section, we will begin by reviewing the fundamental concepts, terminologies,
and relevant literature in anomaly detection. Next, we will provide a brief overview of
trustworthy artificial intelligence. Building on this foundation, we will highlight the
intersection of these two fields, where we will position the contributions of the various
research papers included in this dissertation.

1.2.1 Anomaly Detection

We first introduce the concepts of anomaly and anomaly detection. Then, we present
a categorization of anomaly detection techniques based on the availability of labels.

Definition 1.6 (Anomaly). An anomaly is an object that is notably different from
the majority of the remaining objects.

Depending on the specific application domain, an anomaly can also be called an
outlier or a novelty. Moreover, it may also be known as an unusual, irregular, atypical,
inconsistent, unexpected, rare, erroneous, faulty, fraudulent, malicious, unnatural, or
strange object [25]. Except for a few works such as [25], the term outlier is used as a
synonym for anomaly in most research. For consistency, we will use the term anomaly
in this dissertation.

Definition 1.7 (Anomaly Detection). The process of identifying anomalies is called
anomaly detection.

Since the seminal work in [26], anomaly detection has been well studied and there
exists a plethora of comprehensive surveys and reviews on it, including but not limited
to [27, 28, 29, 30, 31, 32, 33, 34, 35, 36]. Particularly, depending on the specific type of
data and the application domain, the techniques used to perform anomaly detection
can be different. The commonly seen data types include tabular data, time series,
text, image, video, audio, graph, and log data. In this dissertation, we primarily focus
on the following three types of data:

• Tabular data, which refers to data that is organized into a table, where informa-
tion consists of rows (observations) and columns (features or attributes);
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• Log data, which refers to the detailed records generated by software or devices
during their operation. These logs capture information about events that occur
within a system, providing valuable insights into its performance, security, and
usage patterns.

• Graph data, which represents information that is structured as a collection of
nodes and edges that connect these nodes. This structure is used to model
relationships between different entities in a way that makes the connections and
associations between them easy to understand and analyze.

Anomaly detection techniques can be categorized into three types based on the
availability of labels, regardless of the data type: supervised, unsupervised, and semi-
supervised [31, 34]. Before introducing these categories, it is essential to understand
two key concepts: 1) Transductive learning, which makes predictions directly for spe-
cific test instances without learning a general model for unseen data, thus lacking
distinct training and test stages; and 2) Inductive learning, which involves training
a model on labeled data to learn general rules that are then applied to unseen test
instances [37], thus containing separate training and test stages.

• Supervised anomaly detection requires labeled instances of both normal
and abnormal data during training, treating the task as an imbalanced binary
classification problem due to the typically low ratio of anomalies (e.g., less than
5%). It is an inductive learning approach, where the model learns general rules
from specific training examples and applies these rules to unseen test instances.

• Unsupervised anomaly detection, in contrast, does not require labeled train-
ing data and is usually performed in a transductive learning manner, without a
separate training phase. These techniques are generally based on the assump-
tion that normal instances occur far more frequently than abnormal ones in the
dataset.

• Semi-supervised anomaly detection operates with partially labeled data,
where the labeled instances may include both normal and abnormal examples,
or more commonly, only normal examples. In this common scenario, most semi-
supervised methods train on datasets exclusively consisting of normal data,
aiming to model the normal data distribution during training. Any instances
that significantly deviate from this distribution during inference are considered
anomalies. Thus, it is also an inductive learning approach. Notably, many semi-
supervised methods can function in an unsupervised manner while still being
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inductive rather than transductive: given the typically low anomaly ratio, these
methods use a subset of samples from the data to train the model, assuming
that the training data contains few anomalies and the model can robustly learn
the normal distribution.

Particularly, semi-supervised and unsupervised anomaly detection are the most
commonly used techniques in manufacturing due to the scarcity of labels [3]. In this
dissertation, we will primarily consider semi-supervised and unsupervised anomaly
detection for the same reason.

1.2.2 Trustworthy Artificial Intelligence

Definition 1.8 (Trustworthy AI). “Trustworthy AI is a framework to ensure that
a system is worthy of being trusted based on the evidence concerning its stated re-
quirements. It makes sure that the users’ and stakeholders’ expectations are met in a
verifiable way.” [38]

As highlighted in [38], with the growing volume of research on trustworthy AI,
reaching a consensus on a common set of principles to ensure AI trustworthiness is
challenging. However, we argue that at least the following five principles should be
considered [38, 39]:

• Effectiveness: AI systems must provide accurate predictions, as it is crucial
for their use in replacing or assisting human decision-makers. Without accuracy,
the utility of AI systems is compromised.

• Explainability: Stakeholders involved with the AI system should be able to
understand the reasoning behind its decisions, ensuring transparency and trust
in the system’s outputs.

• Generalizability/Robustness: AI systems should function reliably across var-
ious conditions. Robustness refers to the ability of an AI system to handle ex-
ecution errors, erroneous inputs, or unseen data, while generalizability pertains
to the system’s capability to make accurate predictions on unseen data [39]. It is
important to note that the relationship between robustness and generalizability
can be complex [40, 39]; for simplicity, they are treated as a unified concept in
this dissertation.

• Fairness: AI systems should avoid introducing or perpetuating biases and dis-
crimination against any individual or group within society.
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• Privacy: AI systems must ensure that sensitive information is protected through-
out its entire lifecycle. In particular, unauthorized use of data that can identify
individuals or households should be strictly avoided [39].

1.2.3 Trustworthy Anomaly Detection in the Context of Smart
Manufacturing

Anomaly detection has achieved a wide range of successful applications in many
decision-critical domains. For example, anomaly detection algorithms are being used
to diagnose diseases in healthcare [41]. In financial services, many banks use anomaly
detection methods to detect abnormal behavior in credit card transactions [42]. In
addition, the self-driving car manufacturing industry applies anomaly detection algo-
rithms on camera data to detect corner cases [43]. In other decision-critical areas—such
as spacecraft design—anomaly detection algorithms are used to detect sensor faults
[44]. As we can see, anomaly detection systems for high-stakes decisions are deeply
impacting our daily lives and society.

Despite significant successes, anomaly detection still faces many limitations. Par-
ticularly, given that these tasks are often safety-critical and can have life-changing
consequences, a major concern is whether we can truly trust the results provided by
these anomaly detection systems. Therefore, ensuring that anomaly detection sys-
tems operate in a trustworthy manner is essential when deploying them in real-world
applications [45].

Anomaly detection is an important subfield of machine learning and data mining,
both of which are critical components of the broader field of AI. Therefore, to as-
sess the trustworthiness of an anomaly detection system, we should consider the five
key principles established for trustworthy AI systems, as outlined in Chapter 1.2.2:
effectiveness, explainability, generalizability, fairness, and privacy. However, this dis-
sertation focuses specifically on anomaly detection in smart manufacturing, which
typically involves data from machines rather than humans. Consequently, the prin-
ciples of fairness and privacy will not be addressed. In the following, we will briefly
introduce the principles of effectiveness, explainability, and generalizability to achieve
trustworthy anomaly detection in the context of smart manufacturing.

Principle 1: Effectiveness of Anomaly Detection. Effectively identifying
anomalies is the fundamental requirement for all anomaly detection systems [45].
Given a dataset, high accuracy in an anomaly detection system is typically achieved
by selecting and deploying an appropriate detection model. However, in real-world
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industrial applications, we encounter two key challenges: 1) Most anomaly detection
research, since the seminal work in [26], has focused on simple tabular data, whereas
real-world scenarios in smart manufacturing often involve complex data such as log
events, time series, or graphs; 2) Even after converting complex data into simple form
(e.g., through feature extraction), the resulting high dimensionality can reduce the
effectiveness of many traditional anomaly detection methods in smart manufactur-
ing. Particularly, Chapters 2 (to Challenge 1) and 3 (to Challenge 2) mainly make
contributions in this aspect.

Principle 2: Explainability of Anomaly Detection. According to [46], we can
define eXplainable Anomaly Detection (XAD) as the extraction of relevant knowledge
from an anomaly detection model concerning relationships either contained in data
or learned by the model, where the knowledge is considered relevant if it can provide
insight into the anomaly detection problem investigated by the end-user. Particularly,
providing anomaly detection results with corresponding explanations can help gain
the trust of end-users in anomaly detection systems. Moreover, the explanations can
also assist end-users to validate the anomaly detection results in unsupervised settings.
Even more, explanations can potentially enable end-users to find the root causes of
anomalies and thereby take remedial or preventive actions. For a long time, however,
the anomaly detection community has mainly focused on detection accuracy, largely
ignoring the interpretation of corresponding outcomes. More importantly, there is an
increasing demand for explainability when deploying anomaly detection systems in
industrial manufacturing. Chapters 4 and 5 mainly make contributions in this aspect.

Principle 3: Generalizability of Anomaly Detection. We define generaliz-
ability as the ability of an anomaly detection system to operate reliably under various
conditions, which includes two main aspects: First, the anomaly detection system
should perform reliably on unseen data, especially when there is concept drift in the
data. Second, given that anomaly detection tasks are often unsupervised or semi-
supervised, the system should perform consistently across different datasets, requiring
the capability to automatically tune model hyperparameters without relying on data
labels. Chapter 6 contributes to the first aspect, focusing on generalizability to unseen
data, while Chapter 7 addresses the second aspect, emphasizing adaptability across
various datasets.
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1.3 Model-Centric AI and Data-Centric AI
In this section, we begin by introducing concepts in model-centric AI (and we will
discuss how the included papers can be interpreted from this perspective in Chap-
ter 1.4). Next, we explore concepts in data-centric AI (and we will illustrate how
the papers presented in this dissertation relate to them in Chapter 1.4). Finally, we
explain the necessity of integrating these two complementary approaches to further
advance data-driven smart manufacturing.

Definition 1.9 (Model-centric AI). “Model-centric AI is the paradigm emphasizing
the choice of the suitable model type, architecture, and hyperparameters from a wide
range of possibilities for building effective and efficient AI systems.” [47]

More specifically, model-centric AI focuses on enhancing the performance of AI
systems by improving algorithms to work more effectively with existing, often fixed,
datasets [48]. This approach emphasizes designing better model architectures, fine-
tuning hyperparameters, developing more effective and efficient optimization tech-
niques, and proposing new models types or learning paradigms [47]. Typically, the
data is created once, and its quality and quantity remain consistent throughout the
development cycle of the AI system, while substantial efforts are directed toward build-
ing more advanced learning models. Despite the huge successes of Model-centric AI
in the past decades, it still suffers from some notable limitations [48]:

• Vulnerability to adversarial samples,

• Low generalization capacity.

Definition 1.10 (Data-centric AI). “Data-centric AI is the paradigm emphasizing
that systematic design and engineering of data are essential for building effective and
efficient AI systems.” [47]

Data is an essential element in AI systems, which include anomaly detection sys-
tems. Recently, the significance of data has been greatly amplified by the rise of
data-centric AI [49, 50]. Although data-centric AI is a relatively new concept [49, 50,
47, 51, 52, 53], many classic research topics such as data augmentation and feature
selection can be considered as subfields of data-centric AI. Data augmentation aims to
enrich the training dataset by adding slightly modified data instances, while feature
selection attempts to reduce data complexity by keeping only relevant features. Ac-
cording to [49], there are three main data-centric AI objectives (the underlined parts
are involved in this dissertation):
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• Training data development, which includes data collection, data labeling, data
preparation (such as data cleaning, feature extraction, and data transformation),
data reduction (such as feature selection, dimension reduction, instance selec-
tion), and data augmentation (e.g., basic manipulation, deep learning approaches);
Particularly, data collection and data labeling are considered data creation, and
the rest is data processing;

• Inference data development, which consists of in-distribution evaluation
(such as data slicing, algorithmic recourse), out-of-distribution evaluation (such
as adversarial perturbation, distribution shift), and prompt engineering;

• Data maintenance, which contains data understanding (such as data visualiza-
tion, data valuation), data quality assurance (such as quality assessment, quality
improvement), and data storage & retrieval (such as resource allocation, query
acceleration).

In summary, Data-centric AI focus on improving the quality, consistency, and
richness of the data used to train and test AI models. In this paradigm, the focus
shifts from constantly refining the model to ensuring that the data is clean, well-
labeled, diverse, and representative of the problem domain. The idea is that with
high-quality data, even simpler models can perform exceptionally well. Data-centric
AI is often advocated for in situations where models are already highly optimized, and
further gains can be achieved by addressing data issues rather than the models.

Complementary views of model-centic AI and data-centric AI. While
there has been a recent shift in focus from model-centric AI to data-centric AI, we
argue that these two paradigms are inherently complementary. In other words, al-
though we emphasize the importance of data-centric AI, this should not diminish the
role of model-centric AI. Successfully addressing challenges in smart manufacturing
requires considering both the methods of action (namely algorithms on “how-to”) and
the insights hidden within the data (namely knowledge on “what-is”) [48]. In this
dissertation, we will approach the trustworthy anomaly detection problem from both
data-centric and model-centric AI perspectives, recognizing them as twin drivers for
advancing smart manufacturing.

1.4 Research Questions and Contributions
In this dissertation, we develop anomaly detection approaches primarily with the aim
to enhance the manufacturing process of high-tech systems. However, it is important to
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note that many of our developed approaches and findings are applicable to (and often
even were designed for) more generic scenarios. As achieving trustworthy anomaly
detection for smart manufacturing is non-trivial, we tackle them from two different
and complementary perspectives (i.e., data-centic AI and model-centric AI), leading
to two primary research questions, each with several sub-questions as outlined below:

Q1 How to develop and/or improve anomaly detection for smart manu-
facturing from a data-centric AI perspective?

First, we face challenges from a data-centric AI perspective (which systematically
engineers the data used as input for the anomaly detection system [54]):

• Complex data. Not limited to simple tabular datasets, a real-world use
case could involve complex data such as log events, time series, graphs,
etc. We propose the following research question and make corresponding
contributions to answer it:

– Q1.1: How to deal with complex data in system logs to effectively
detect and explain anomalies?

– Answer to Q1.1 (Contribution 1): Graph Neural Network based Log
Anomaly Detection and Explanation [55], which will be presented in
Chapter 2. In this chapter, we propose a graph-based method for
unsupervised log anomaly detection, dubbed Logs2Graphs, which first
converts event logs into attributed, directed, and weighted graphs, and
then leverages graph neural networks to perform graph-level anomaly
detection. Specifically, we introduce One-Class Digraph Inception Con-
volutional Networks, abbreviated as OCDiGCN, a novel graph neural
network model for detecting graph-level anomalies in a collection of
attributed, directed, and weighted graphs. Crucially, we furnish a con-
cise set of nodes pivotal in OCDiGCN’s prediction as explanations for
each detected anomaly, offering valuable insights for subsequent root
cause analysis.

• High-dimensional data. Even after transforming complex data to simple
data (e.g., via feature extraction), the dimensionality of the resulting data
can be very high, rendering many traditional anomaly detection approaches
less effective. We propose the following research question and make corre-
sponding contributions to answer it:
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– Q1.2: How to handle high-dimensionality in system logs to effectively
detect anomalies?

– Answer to Q1.2 (Contribution 2): Feature Selection for Fault Detection
and Prediction based on Event Log Analysis [56], which will be presented
in Chapter 3. In this chapter, we develop a feature selection method for
log-based anomaly detection and prediction. Specifically, our method
consists of three main modules: the Log Event Vectorization module
that converts semi-structured log texts into time series; the Selection
of Relevant Features module that leverages Kendall rank correlation
and Granger causality test to select log events for fault detection and
prediction; and the Removal of Redundant Features module that utilizes
Kendall rank correlation to reduce redundant log events.

Q2 How to develop and/or improve anomaly detection for smart manu-
facturing from a model-centric AI perspective?

On the other hand, we may face challenges from the model-centric AI perspective
(which aims to produce the best anomaly detection system for a given dataset):

• Explainability. Many algorithms, especially those based on neural net-
works, lack transparency and are therefore not easily understandable to
end-users. We propose the following research questions and make corre-
sponding contributions to answer these questions:

– Q2.1: How to achieve intrinsic explainability of anomaly detection sys-
tems?

– Q2.2: Are post-doc explanations for Graph Neural Networks robust to
adversarial attacks?

– Answer to Q2.1 (Contribution 3): A Survey on Explainable Anomaly
Detection [46], on which Chapter 1 (namely this chapter) is partially
based. Specifically, this work provides a comprehensive and structured
survey on state-of-the-art explainable anomaly detection techniques.
We propose a taxonomy based on the main aspects that characterize
each explainable anomaly detection technique, aiming to help practi-
tioners and researchers find the explainable anomaly detection method
that best suits their needs.

– Answer to Q2.1 (Contribution 4): Explainable Contextual Anomaly
Detection Using Quantile Regression Forests [57], which will be pre-
sented in Chapter 4. In this chapter, we develop connections between
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dependency-based traditional anomaly detection methods and contex-
tual anomaly detection methods. Based on resulting insights, we pro-
pose a novel approach to inherently interpretable contextual anomaly
detection that uses Quantile Regression Forests to model dependencies
between features.

– Answer to Q2.2 (Contribution 5): Explainable Graph Neural Networks
under Fire [58], which will be presented in Chapter 5. In this chapter,
we demonstrate that post-hoc Graph Neural Networks (GNNs) expla-
nations cannot be trusted, as common GNN explanation methods turn
out to be highly susceptible to adversarial perturbations. That is, even
small perturbations of the original graph structure that preserve the
model’s predictions may yield drastically different explanations. This
calls into question the trustworthiness and practical utility of post-hoc
explanation methods for GNNs. To be able to attack GNN explanation
models, we devise a novel attack method dubbed GXAttack, the first
optimization-based adversarial white-box attack method for post-hoc
GNN explanations under such settings.

• Generalizability. Algorithms developed based on specific datasets suf-
fer from performance degradation when deployed on new datasets that are
generated by new but similar mechanisms (e.g., due to robot, or software
upgrade). We propose the following research question and make corre-
sponding contributions to answer it:

– Q2.3: How to detect graph-level anomalies in an unseen target domain
with the help of labeled normal graphs from a different but related
source domain?

– Answer to Q2.3 (Contribution 6): Cross-domain Graph Level Anomaly
Detection [59], which will be presented in Chapter 6. In this chapter,
we propose a cross-domain graph level anomaly detection method, aim-
ing to identify anomalous graphs from a set of unlabeled graphs (target
domain) by using easily accessible normal graphs from a different but
related domain (source domain). Our method consists of four compo-
nents: a feature extractor that preserves semantic and topological infor-
mation of individual graphs while incorporating the distance between
different graphs; an adversarial domain classifier to make graph level
representations domain-invariant; a one-class classifier to exploit label
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information in the source domain; and a class aligner to align classes
from both domains based on pseudolabels.

• Automatability. Due to the lack of labels, it is challenging to per-
form model selection (e.g., hyper-parameter optimization) for unsupervised
anomaly detection algorithms. This is a critical part of achieving an au-
tomated anomaly detection system. We propose the following research
question and make corresponding contributions to answer it:

– Q2.4: How to automatically tune hyperparamaters in anomaly detec-
tion systems without relying on labels?

– Answer to Q2.4 (Contribution 7): Towards Automated Self-Supervised
Learning for Truly Unsupervised Graph Anomaly Detection, which will
be presented in Chapter 7. In this chapter, we empirically demonstrate
that three important factors can substantially impact detection perfor-
mance of self-supervised learning (SSL) based graph anomaly detection
methods across datasets: 1) the specific SSL strategy employed; 2) the
tuning of the strategy’s hyperparameters; and 3) the allocation of com-
bination weights when using multiple strategies. Most SSL-based graph
anomaly detection methods circumvent these issues by arbitrarily or
selectively choosing SSL strategies, hyperparameter settings, and com-
bination weights. To mitigate this issue, we propose to use an internal
evaluation strategy (with theoretical analysis) to select hyperparame-
ters in SSL for unsupervised anomaly detection.
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1.5 Outline of This Dissertation
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Figure 1.3: Organization of this dissertation

As shown in Figure 1.3, this Introduction chapter provides necessary background in-
formation for understanding this dissertation, including the introduction of Smart
Manufacturing, Trustworthy Anomaly Detection, Model-Centric AI and Data-Centric
AI. Moreover, we also present the research questions and contributions, and the outline
of this dissertation in this chapter.

Chapters 2 through 7 contain the research papers as published or submitted, where
Chapters 2 and 3 aim to answer research question Q1 (including sub-questions Q1.1
and Q1.2) and Chapters 4, 5, 6, and 7 attempt to answer research question Q2 (in-
cluding sub-questions Q2.1, Q2.2, Q2.3 and Q2.4).

Chapter 8 –Conclusions and Future Directions concludes the dissertation by sum-
marizing the findings and answers to research questions from Chapters 2 to 7. More-
over, we also discuss the limitations of current work, point out challenges and outline
possible future directions.
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