
MoreFixes: a large-scale dataset of CVE fix commits mined through
enhanced repository discovery
Akhoundali, J.; Nouri, S.R.; Rietveld, K.F.D.; Gadyatskaya, O.

Citation
Akhoundali, J., Nouri, S. R., Rietveld, K. F. D., & Gadyatskaya, O. (2024). MoreFixes: a large-
scale dataset of CVE fix commits mined through enhanced repository discovery. Promise
2024, 42-51. doi:10.1145/3663533.3664036
 
Version: Publisher's Version
License: Creative Commons CC BY 4.0 license
Downloaded from: https://hdl.handle.net/1887/4213015
 
Note: To cite this publication please use the final published version (if applicable).

https://creativecommons.org/licenses/by/4.0/
https://hdl.handle.net/1887/4213015


MoreFixes: A Large-Scale Dataset of CVE Fix Commits Mined
through Enhanced Repository Discovery

Jafar Akhoundali
LIACS, Leiden University
Leiden, The Netherlands

j.akhoundali@liacs.leidenuniv.nl

Sajad Rahim Nouri
Islamic Azad University

Ramsar, Iran
s.rahimnouri@iau.ir

Kristian Rietveld
LIACS, Leiden University
Leiden, The Netherlands

k.f.d.rietveld@liacs.leidenuniv.nl

Olga Gadyatskaya
LIACS, Leiden University
Leiden, The Netherlands

o.gadyatskaya@liacs.leidenuniv.nl

ABSTRACT

Vulnerability datasets have become an important instrument in soft-

ware security research, being used to develop automated, machine

learning-based vulnerability detection and patching approaches.

Yet, any limitations of these datasets may translate into inadequate

performance of the developed solutions. For example, the limited

size of a vulnerability dataset may restrict the applicability of deep

learning techniques.

In our work, we have designed and implemented a novel work-

flow with several heuristic methods to combine state-of-the-art

methods related to CVE fix commits gathering. As a consequence

of our improvements, we have been able to gather the largest pro-

gramming language-independent real-world dataset of CVE vul-

nerabilities with the associated fix commits. Our dataset containing

26,617 unique CVEs coming from 6,945 unique GitHub projects is,

to the best of our knowledge, by far the biggest CVE vulnerability

dataset with fix commits available today. These CVEs are associ-

ated with 31,883 unique commits that fixed those vulnerabilities.

Compared to prior work, our dataset brings about a 397% increase

in CVEs, a 295% increase in covered open-source projects, and a

480% increase in commit fixes. Our larger dataset thus substantially

improves over the current real-world vulnerability datasets and

enables further progress in research on vulnerability detection and

software security.

We release to the community a 14GB PostgreSQL database that

contains information on CVEs up to January 24, 2024, CWEs of each

CVE, files and methods changed by each commit, and repository

metadata. Additionally, patch files related to the fix commits are

available as a separate package. Furthermore, we make our dataset

collection tool also available to the community.

CCS CONCEPTS

• Security and privacy→ Software security engineering.

PROMISE ’24, July 16, 2024, Porto de Galinhas, Brazil

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0675-2/24/07
https://doi.org/10.1145/3663533.3664036

KEYWORDS

Vulnerability dataset, software repository mining, open-source,

real-world vulnerability dataset, dataset, CVE

ACM Reference Format:

Jafar Akhoundali, Sajad Rahim Nouri, Kristian Rietveld, and Olga Gady-

atskaya. 2024. MoreFixes: A Large-Scale Dataset of CVE Fix Commits Mined

through Enhanced Repository Discovery. In Proceedings of the 20th Inter-

national Conference on Predictive Models and Data Analytics in Software

Engineering (PROMISE ’24), July 16, 2024, Porto de Galinhas, Brazil. ACM,

New York, NY, USA, 10 pages. https://doi.org/10.1145/3663533.3664036

1 INTRODUCTION

Vulnerabilities in Open-Source Software (OSS) can cause massive

damage to systems [25]. When software vulnerabilities are dis-

closed they are assigned a Common Vulnerabilities and Exposures

(CVE) identifier and recorded in the National Vulnerability Database

(NVD) [26]. CVE records are typically brief and contain informa-

tion such as a unique identifier, description, severity estimation,

and references [6]. CVE entries with links to vulnerability fix com-

mits in the corresponding software project repositories can be used

to extract vulnerable and non-vulnerable versions of the relevant

code snippets, resulting in the creation of a vulnerability dataset

associated with patches.

Such datasets have proven effective for studying vulnerability

characteristics [24], identification of security weaknesses [22, 36],

and development of vulnerability detection techniques [1, 7, 12],

which are a crucial component of modern secure software develop-

ment processes [23]. Still, the size of currently available high-quality

vulnerability datasets is an ongoing challenge, in particular for deep

learning models that rely heavily on the training dataset size [17].

For instance, a recent study by Kluban et al. [22] mentioned the lack

of good vulnerability datasets and consequently saw the need to

create their dataset by combining data from Snyk1 and VulnCode-

DB2. Unfortunately, both data sources have been deprecated for

approximately two years now and are not being updated.

Several other approaches have been proposed to increase the

number of samples in vulnerability datasets. Vulnerable code gen-

eration can produce a large number of samples [5, 37, 39]. However,

these samples are not similar to real-world data, which puts their

usage in real-world vulnerability analysis under question. Another

1https://github.com/snyk/vulnerabilitydb
2https://www.vulncode-db.com/

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

42

https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://orcid.org/0009-0002-8260-9508
https://orcid.org/0009-0003-4076-3037
https://orcid.org/0000-0003-0455-3430
https://orcid.org/0000-0002-3760-9165
https://doi.org/10.1145/3663533.3664036
https://doi.org/10.1145/3663533.3664036
https://github.com/snyk/vulnerabilitydb
https://www.vulncode-db.com/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3663533.3664036&domain=pdf&date_stamp=2024-07-10


PROMISE ’24, July 16, 2024, Porto de Galinhas, Brazil Jafar Akhoundali, Sajad Rahim Nouri, Kristian Rietveld, and Olga Gadyatskaya

approach is to insecurely refactor real-world software to make the

vulnerabilities unique and realistic [35]. Although in such cases the

control flow of the software is real-world, the artificially introduced

vulnerabilities can be different from real-world vulnerabilities.

Thus, mining of fix commits from CVEs in open-source soft-

ware (OSS) projects is the preeminent way to collect real-world

vulnerability datasets. The majority of prior work on such mining

is either done manually [30], what certainly limits the size of such

datasets, or it is based on detecting Git-commit links to GitHub

projects (or any other version control system) [4, 7, 12, 32]. Our

key observations are that CVE descriptions in the NVD usually

do not have uniform description data and reference types, and the

fix commits are often not mentioned. This causes existing mining

methodologies to frequently fail to relate a CVE to its fix commits.

In this work, we describe how we have enhanced existing state-

of-the-art methodologies using a novel workflow to match a CVE

to its fix commit in a repository. Our approach has resulted in a

significantly larger-scale real-world CVE fix commit dataset. This

is achieved by applying several heuristic methods combined with

the Prospector tool [34], which can extract relevant candidate fix

commits given a CVE and OSS repository.

Our contributions are as follows:

(1) We propose several heuristic methods to detect CVEs related to

OSS while removing irrelevant projects.

(2) We design a novel automatic workflow that gathers CVE fix

commits, which results in a significantly larger real-world vul-

nerability dataset compared to prior work. Moreover, our tool

implementing the proposed workflow allows importing the

dump and updating the data sources to add new vulnerabilities

efficiently. We share the tool with the community.

(3) Our dataset and the tool are shared with the community as a

PostgreSQL database dump, including patch files3. This allows

the full reconstruction of vulnerable projects across several

programming languages.

2 OURWORKFLOW

Our goal is to collect CVE fix commits in OSS projects that were

previously missed by other approaches. Fig. 1 presents our work-

flow. As can be seen in the figure, we augment the state-of-the-art

CVEFixes workflow [4] with several heuristic methods to detect the

relation between a CVE and its corresponding OSS projects. These

help identify the corresponding fix commits in case the CVE de-

scription does not contain a direct fix commit link. In the remainder

of this section, we discuss the different steps from Fig. 1.

Data Sources. To determine sources of CVE information that

contain the most suitable references, we manually analyzed several

datasets related to CVEs and open-source software such as Snyk4,

OSV5. Based on our analysis, the NVD6 (also used by CVEFixes)

and the GitHub Security Advisory (GHSA)7, which both provide

CVE descriptions and references, have been chosen as the main

sources of data. In the GHSA, some vulnerability entries are linked

3https://github.com/JafarAkhondali/Morefixes
4https://github.com/snyk/vulnerabilitydb
5https://github.com/google/osv.dev
6https://nvd.nist.gov/
7https://github.com/github/advisory-database

Figure 1: The flowchart diagram of our methodology, com-

pared to the state-of-the-art cross-programming language

vulnerability dataset collection method CVEFixes [4] (shown

within the yellow contour).

to a relevant repository or a software registry package, as these

were reviewed by GitHub staff. This information is also collected.

To improve the detection of CVEs in OSS, we also use the Com-

mon Platform Enumeration (CPE)8 dictionary provided by the NVD.

CPE is a structured way to identify different versions of software,

which is used in the NVD to list affected products. In addition,

similarly to CVEFixes [4], we also collect and store the assigned

Common Weakness Enumeration types (CWEs9) of each CVE.

2.1 References Processing (A)

A reference in a CVE description is simply a URL. Similar to prior

works [4, 7, 12, 32, 42], we consider a direct link to a GitHub com-

mit as the fix commit. Whereas none of the mentioned works does

further process a link if it is not a direct commit link, our workflow

employs several methods to first find the GitHub repository corre-

sponding to a CVE (discussed in Sec. 2.2 - 2.5), which subsequently

is used to extract the vulnerability fix commits (see Sec. 2.6). As a

8https://nvd.nist.gov/products/cpe
9https://cwe.mitre.org/

43

https://github.com/JafarAkhondali/Morefixes
https://github.com/snyk/vulnerabilitydb
https://github.com/google/osv.dev
https://nvd.nist.gov/
https://github.com/github/advisory-database
https://nvd.nist.gov/products/cpe
https://cwe.mitre.org/


MoreFixes: A Large-Scale Dataset of CVE Fix Commits Mined through Enhanced Repository Discovery PROMISE ’24, July 16, 2024, Porto de Galinhas, Brazil

result, we significantly increase the number of collected CVEs that

are related to GitHub projects.

2.2 CPE Processing (B)

In NVD, each CVE can be linked to multiple CPEs as the directly

affected software. A CPE name comprises a sequence of fields.

When a CPE refers to a software package, in many cases the third

and fourth components of the CPE name refer to the organization

and software name. When available, we try to find the link to the

corresponding GitHub repository using the following steps:

• We collect the CPEs referenced by the CVE, and from these CPEs

we obtain the organization and software name. We then try to

match these with data in the NIST CPE Dictionary to find links.

• If the first step fails, we convert the CPE components “organiza-

tion_name:software_name” to “https://github.com/organization_

name:software_name” and check whether this repository exists.

After the translation of a CPE to a link by either of the mentioned

methods, the link will be treated exactly like a link from a reference

that was not a direct commit, and it will be passed to step (D),

discussed in Sec. 2.4.

2.3 Registry Package Manager (C)

The input to this step is either a URL from step (D) or a package

name with its ecosystem from GHSA. In the latter case, depending

on the software registry platform, we convert the package name to

the URL related to it. For example, for the express package from

the npm ecosystem, this would yield the URL “https://www.npmjs.

com/package/express”.

Subsequently, both cases can be treated as a URL, and the URL

is checked if it belongs to a package registry address and has a

corresponding GitHub repository. If it is not possible to use the

official software registry platform to extract GitHub repository

links with web scraping, we use Open Source Insights10 to extract

the GitHub project link. This mechanism is implemented for several

programming languages (JavaScript, Golang, Ruby, PHP, Python,

Java, Rust, and C#). If a GitHub link is not found at this stage, the

reference is ignored.

2.4 GitHub Repository Address (D)

After processing the links (CVE references, and CPE-based link

extractions) in the previous steps, a regular expression (regex) is

used to check if the link is related to a GitHub project (e.g. exact

project link, link to issue, pull request, tags, etc). If so, the base

GitHub project link will be passed to the next step.

2.5 Blocklisted Repositories and Patterns (E)

When a link is identified as a GitHub repository or a GitHub re-

source, it will first be validated using a specially designed blocklist to

make sure the GitHub repository corresponds to a software project.

For example, sometimes references in a CVE are links to a proof-of-

concept exploit [11] or a repository related to security research. We

created the blocklist by manually selecting some keywords (such

as “exploit”, “0day”, “bug bounty”, “PoC”, “vulnerability”, “security”,

etc.) and some full repository names that are not relevant to the

10https://docs.deps.dev/

Table 1: Examples of Prospector commit rules and their re-

spective scores [34].

Score Description

64 Commit message mentions the vulnerability

identifier

32 Commit message mentions a GitHub issue or

bug-tracking ticket containing the vulnerability ID

8 Commit modifies files mentioned in the advisory

2 Commit message mentions a bug-tracking ticket

original project. For example, repositories named “Disclosure” or

“RVD” were mentioned in the references several times, but if we

filter each word as a regex, other valid repositories would be filtered.

To tune the blocklist, we ran the pipeline 5 times and each time

we sorted the top repeated GitHub project URLs linked from dif-

ferent CVEs and manually checked repository names and count of

the CVEs. After each round of running the pipeline, we fine-tuned

the blocklist to remove specific keywords and repositories from

the list. In total, we started with 114,432 different links to GitHub

projects, and we blocked 36,835 links (32%) using the final blocklist

version. Among those, we blocked 18,446 links in the NVD dataset,

10,515 links from GHSA references, and 7,874 links extracted from

the CPE dictionary provided by the NVD dataset.

Note that there might still be some irrelevant repositories or

keywords that we did not block. This irrelevant data will then be

analyzed by the remainder of the pipeline that incorporates further

quality checks as we discuss next.

2.6 Detecting Candidate Fix Commits (F)

To detect candidate fix commits, we use the state-of-the-art Prospec-

tor tool [34] that can detect and score candidate vulnerability fix

commits given the repository URL and CVE identifier [34]. Prospec-

tor analyzes a given CVE description and Git project using a set of

handcrafted rules, such as a mention of CVE-ID in the commit mes-

sage or a commit touching files mentioned in the advisory, etc. Each

rule is assigned a score reflecting how likely the matching commit

is to be a fix commit for the given CVE. For illustrative purposes,

we provide 4 representative examples of Prospector rules with their

scores in Table 1; the full list of rules and scores is available in [34].

Commits that are near the time frame of the CVE publication date

are collected and analyzed using these rules, and each candidate

commit receives a total score from Prospector corresponding to

the sum of scores for each matched rule. Subsequently, Prospector

reports and ranks possible candidate commits for each CVE with

their matched rules and scores.

Despite the good results from Prospector, its performance (in

terms of execution time) does not allow all CVEs associated with

GitHub projects to be processed in a reasonable time. Additionally,

there appears to be a limit for the maximum number of commits to

scan with the original Prospector implementation, and when this

limit is reached, the tool crashes. For example, scanning for CVE-

2021-28952 in the Linux kernel with the default configuration of

2,000 commits to scan will fail, as the total count of commits to scan

is around 23,000. When we modified Prospector to scan only 2,000

44

https://github.com/organization_name:software_name
https://github.com/organization_name:software_name
https://www.npmjs.com/package/express
https://www.npmjs.com/package/express
https://docs.deps.dev/


PROMISE ’24, July 16, 2024, Porto de Galinhas, Brazil Jafar Akhoundali, Sajad Rahim Nouri, Kristian Rietveld, and Olga Gadyatskaya

commits, this CVE-ID took 4 hours and 32 minutes to complete,

with an average scanning speed of 7 commits per minute. This

and other reported experiments were done on a server machine

with AMD EPYC 7282 CPU @2.8GHz with 64GB of RAM running

Ubuntu 22.04 as the operating system

Due to these practical limitations, we updated Prospector and

improved its scalability as follows:

• Parallel processing:Combinations of a CVE and aGitHub repos-

itory URL were fed to Prospector in parallel while preventing

race conditions. As Prospector uses the Git command, we al-

lowed only one process to work on each CVE for each repository

simultaneously.

• Caching: Cloning projects (especially large projects like the

Linux kernel) was time-consuming and repeating, so we cached

repositories to increase performance. When the machine is run-

ning out of storage, the cached repositories are removed auto-

matically.

• Tag detection: Prospector’s tag detection was found to be very

time-consuming. Removing this part increased the performance

significantly, and we did not observe any change in candidate

output ranking.

• Chosen candidates:We found that the root cause behind the

crashing when the initial count of candidate commits to scan

is higher than a certain threshold was that Prospector decides

to stop, rather than continuing with a limited set of candidate

commits. In such cases, we modified Prospector to only process

the same amount of commits as the threshold, with priority given

to commits that are near the CVE publication date and to commits

that were mentioned in the CVE references. In our work, we used

2,000 as the threshold (candidate commits limit) for running the

Prospector.

With our optimizations for commit processing, the aforemen-

tioned CVE-2021-28952 from the Linux kernel took only 8 minutes

to complete scanning, resulting in a 97% decrease in runtime with

an average speed of 250 commits per second scan.

In total, 77,597 CVEs were mapped to GitHub projects. The pro-

cess to execute Prospector on all these CVEs mapped to GitHub

projects took ≈9 days to complete. For each CVE repository link

processed by Prospector, we store the top 10 commits with the

highest scores in the database. However, not all these candidate

commits might be related to the CVE, and we further discuss our

approach to address this.

Choosing the Score Threshold. To be able to automatically

choose the most relevant fix commits only, a minimum threshold

Prospector score needs to be established. To this end, we chose to

manually review a set of samples by labeling each CVE and commit

pair as related or not related. A single CVE may have multiple fix

commits, and also a single fix commit may fix multiple CVEs.

We divided all fix commits into buckets based on their Prospec-

tor scores, with a step of 5. The total number of samples in each

bucket can be seen in Fig. 2 (note that the Y-axis is log scaled). We

can see that the population of samples with lower scores is signifi-

cantly higher compared to higher scores, as there are some rules

used by Prospector with low scores that match with commits more

frequently, but they are less indicative of the commit relevance.

Table 2: The effect of choosing different thresholds on the

size of the dataset, with and without using direct commits.

Threshold CVEs Projects Commits Accuracy Samples

0 42,581 6,481 231,634 0.1152 395,649

35 13,872 3,242 22,016 0.8714 27,913

65 12,011 2,837 16,592 0.9588 19,865

110 3,030 1,046 3,497 1.0000 3,822

0† 57,717 11,673 247,445 0.1516 412,645

35† 29,008 8,434 37,827 0.9201 44,909

65† 27,147 8,029 32,403 0.9778 36,861

110† 18,166 6,238 19,308 1.0000 20,818

†Including direct commits mentioned in the CVE description.

For manual inspection, we used stratified random sampling and

chose 500 samples for population size based on our time budget for

reviewing, and randomly selected samples from each bucket based

on the population of each bucket. For buckets that had fewer than

5 candidates for manual review, we took all samples. This strati-

fied sampling resulted in a total of 712 samples to review. Then,

two authors that are experienced in secure software development

and vulnerability research, jointly compared the CVE descriptions

and the GitHub commit information of the selected samples and

assessed whether they were related. To make the assessment un-

biased, reviewers did not have access to the score assigned by the

Prospector. To assist in the manual review process, we developed

a web application that displays the CVE description and GitHub

commit page side-by-side. The review process of all 712 samples

took ≈11 hours.

The results of our manual inspection can be seen in Fig. 3 (the

Y-axis is log scaled). For the score range of 65-70 and higher, we can

see that the majority of the inspected commits are related to their

CVEs. To reduce noise in the dataset we thus chose the score of 65

as the minimum acceptable score for adding a candidate commit

fix to the dataset.

The effect of choosing different thresholds on the dataset size

is summarized in Table 2, with and without using direct commits

that are mentioned in the CVE description. Before applying the

threshold, the median of commit scores was 14, and 94.9% of com-

mits were scored below 65. Considering the related and unrelated

CVE-commit samples per population, we can estimate that if we

choose 65 as the threshold, there will be approximately 4.12% noise

in the dataset that arises from the Prospector heuristics. We defined

a sample as noise where the fix commit is not related to its related

specific CVE in the dataset. When combined with direct commit

fixes mentioned in the advisory, which are related to their CVEs by

default, the total noise ratio should be reduced to 2.12%.

We use only the samples with scores ≥ 65 in our dataset that we

analyze and compare with others in the next section. However, we

keep the data for samples with scores lower than 65 in the database

for future reuse by other researchers. In our dataset collection tool,

it is easy to set the threshold to customize the dataset.

45



MoreFixes: A Large-Scale Dataset of CVE Fix Commits Mined through Enhanced Repository Discovery PROMISE ’24, July 16, 2024, Porto de Galinhas, Brazil

Figure 2: Total number of extracted fix commit candidates from Prospector for each bucket (log scaled).

Figure 3: Manual assessment results of the relevance between discovered commits and their related CVE per each range, based

on stratified random sampling (log scaled).

3 DATASET DESCRIPTION

In this section, we describe the format of our dataset that we called

MoreFixes and compare it with datasets published in prior work.

3.1 PostgreSQL Database

Similarly to CVEFixes [4], we extract all data related to a fix com-

mit, such as repository metadata (stars, programming language)

and commit information such as changed files, changed methods,

changed lines, etc. We replicate the data structure of CVEFixes and

extend it in a compatible way (see Fig. 4). Thus, all prior approaches

that rely on CVEFixes can be easily applied to our extended dataset.

As can be seen in the figure, two new columns that we have in-

troduced are shown in blue. These store the commit score (from

Prospector) and the type of relationship that made detecting the

relation between CVE and repository possible. In the construction

step a few tables were introduced that are used for the internal

construction process. The most important of these is a table named

cve_project which stores the relation of a CVE (cve_id) with a

GitHub repository (repo_url), with the type of relation (rel_type).

This table includes all CVE to repository relation samples that were

not added directly to the fixes table. The final database is shared

46



PROMISE ’24, July 16, 2024, Porto de Galinhas, Brazil Jafar Akhoundali, Sajad Rahim Nouri, Kristian Rietveld, and Olga Gadyatskaya

Figure 4: An entity relationship diagram of the MoreFixes dataset based on [4], with new columns and tables added in blue. PK

stands for Primary Key; FK for Foreign Key.

with the community as a PostgreSQL database dump, including the

tables used in the construction process.

Patch Files.We also publish all extracted commits as separate

patch files. There are two main motivations to do so. Firstly, large

commits (e.g. modifying binary files) would crash the detection pro-

cess of changed methods. Having the patch files allows researchers

who are only interested in the commits to extract the code from

patches without having to run the full database, as it would be

time-consuming to extract all patch files manually. Secondly, in

some cases, the commit is not available inside the cloned repository

but is visible in the GitHub web interface (e.g. a commit that is

available only in a fork). It is worth mentioning that this GitHub

feature can sometimes be used unethically by showing a commit

outside of the repository11. However, in CVE descriptions this is

not common and links are reviewed by CVE publishers. We used

GitHub directly to extract such patches. Patch files are stored with

the name "github_com_PROJECT-NAME_COMMIT-HASH" where

hash and project name can be derived from the database. This can

help future studies that rely on patch files as input.

3.2 Dataset Statistics

In the following MoreFixes reference statistics, we only include

direct links to fix commits and commits detected by Prospector with

11https://github.com/torvalds/linux/commit/b4061a10fc29010a610ff2b5b20160d7335e69bf

Figure 5: Distribution of CVEs and CVEs with fixes over the

years.

a minimum score of 65. In total, MoreFixes covers fix commits for

26,617 CVEs from 1999 until January 24, 2024. In Fig. 5, we present

the distribution of the number of CVEs and the number of CVEs we

extracted with their fixes over the years (the Y-axis is log-scaled).

Table 3 summarizes the top occurrences of different CWE vulner-

ability types. Similar to what has been disclosed for CVEFixes [4],

we also detect that CWE-79 is the most repeated type of vulnerabil-

ity. MoreFixes covers 309 different vulnerability types, which is an

≈58% increase compared to the CWEs covered by CVEFixes (180

different types). The top 10 most frequent CWE types in our dataset

47

https://github.com/torvalds/linux/commit/b4061a10fc29010a610ff2b5b20160d7335e69bf


MoreFixes: A Large-Scale Dataset of CVE Fix Commits Mined through Enhanced Repository Discovery PROMISE ’24, July 16, 2024, Porto de Galinhas, Brazil

Table 3: Comparison of top CWE distributions over vulnera-

bilities in our work and CVEFixes.

CWE Description CVEs

CVEFixes MoreFixes

CWE-79 Improper Neutralization of Input During Web

Page Generation (’Cross-site Scripting’)

635 3,479

Noinfo† Insufficient Information 193 1,479

CWE-787 Out-of-bounds Write 205 1,471

CWE-125 Out-of-bounds Read 380 1,333

CWE-119 Improper Restriction of Operations within the

Bounds of a Memory Buffer

408 1,149

CWE-20 Improper Input Validation 382 1,119

CWE-476 NULL Pointer Dereference 195 994

CWE-89 Improper Neutralization of Special Elements

used in an SQL Command (’SQL Injection’)

130 795

Other* Other 165 792

CWE-200 Exposure of Sensitive Information to an Unau-

thorized Actor

276 686

†NVD-CVE-noinfo

* NVD-CWE-other

are similar to CVEFixes, except for having CWE-89 (SQL Injection)

in our top 10, while CVEFixes had instead CWE-264 (Permissions

Privileges and Access Control).

In MoreFixes, we identified 54 different file types related to

programming languages and environment configurations, which

is significantly higher compared to the identified file formats in

CVEFixes (31). Our dataset includes programming languages that

are not available in CVEFixes, such as Dart, Kotlin, Groovy, Pascal,

etc. Fig. 6 presents a distribution of the number of file changes

related to fixes per programming language in our dataset compared

to CVEFixes, in top-repeated samples of programming languages.

Note that sometimes a fix commit contains both data related

to a fix of code (i.e. the patch) and documentation. For example, a

commit in the Linux kernel12, that fixed CVE-2013-4312, changed a

text file for documentation and the relevant C code with the same

commit. Thus, there are fix commits with different file changes that

can be selected in future studies with diverse objectives, such as

understanding vulnerable code changes or studying the changes

documentation.

Table 4 presents the top 10 projects in MoreFixes with the most

CVEs and the boxplots of the Common Vulnerability Scoring Sys-

tem (CVSS) scores of these CVEs. Usually, vulnerabilities with very

low severity scores are not assigned a CVE. This can also be seen

in the CVSS column of Table 4: the minimum CVSS score of CVEs

is greater than 2 and most of the scores are higher than 4, which is

the minimum threshold for medium impact severity.

3.3 Datasets Comparison

To make a fair comparison between our dataset and prior work,

we chose the top 5 projects (Linux, Tcpdump, phpMyAdmin, Im-

ageMagick and Tensorflow) with the most CVEs in CVEFixes13 [4],

CrossVul14 [27], Reis and Abreu15 [32] and MoreFixes, and only

considered the years 2010 until 2020, as the other works were pub-

lished in 2021. The visualization of the dataset intersections in Fig. 7

12https://github.com/torvalds/linux/commit/759c01142a5d0f364a462346168a56de28a80f52
13https://zenodo.org/records/7029359
14https://zenodo.org/records/4734050
15https://github.com/TQRG/security-patches-dataset

Figure 6: Distribution of fixes in different programming lan-

guages, compared to CVEFixes [4].

Table 4: Top repositories with most CVEs

Repository CVEs CVSSv3 Score

Linux 2,984

ImageMagick 600

Wireshark 495

Gpac 479

Tensorflow 473

Qemu 380

Php-src 313

FFmpeg 307

Moodle 274

Go 262

shows that most of the CVEs from CVEFixes, dataset by Reis and

Abreu [32] and CrossVul are shared. Although we did not merge

their data dumps directly in our work, it can be seen that almost

all CVEs (except two16) detected in prior work are also detected by

our workflow. Furthermore, our dataset contains 821 unique CVEs

16Our heuristics did detect the correct GitHub links for these 2 CVEs, but the fix
commit detection (step F) failed.

48

https://github.com/torvalds/linux/commit/759c01142a5d0f364a462346168a56de28a80f52
https://zenodo.org/records/7029359
https://zenodo.org/records/4734050
https://github.com/TQRG/security-patches-dataset


PROMISE ’24, July 16, 2024, Porto de Galinhas, Brazil Jafar Akhoundali, Sajad Rahim Nouri, Kristian Rietveld, and Olga Gadyatskaya

Figure 7: Comparison between MoreFixes, CrossVul [27], Reis

and Abreu [32] and CVEFixes [4] for unique CVEs with com-

mit fixes in top 5 projects with most CVEs included in the

datasets.

Table 5: Comparison of MoreFixes to prior work.

Dataset CVEs Projects Commits CVE Years

DiverseVul [7] N/A 797 7,514 1999-2023

DiverseVul (mix)† [7] N/A 933 21,949 1999-2023

ProjectKB* [18] 624 205 1,282 2007-2019

BigVul* [12] 3,754 348 4,432 2002-2019

CrossVul [27] 5,138 1,675 5,877 1999-2021

CVEFixes [4] 5,365 1,754 5,495 1999-2021

Reis (mix)† [32] 5,942 1,339 8,057 2002-2019

MoreFixes 26,617 6,945 31,883 1999-2024

* Contains only one programming language

†Including merged results of other works

(60% increase) with fix commits that were not previously detected

in the same projects and date range.

Table 5 presents an overall comparison between MoreFixes and

prior work. As of January 24, 2024, our dataset contains 26,617

unique CVEs coming from 6,945 unique GitHub projects, which

is a 397% increase in the number of CVEs and a 295% increase in

included open-source projects compared to CVEFixes. Concern-

ing these CVEs, MoreFixes comprises 31,883 unique commits that

fixed the vulnerabilities, which is a 480% increase compared to

CVEFixes. Note that we did not explicitly focus on any specific set

of programming languages.

3.4 Impact of Our Heuristics

Table 6 helps to assess the contribution of our new heuristics used

to extract fix commits. It can be seen that ≈53% of the final commits

available in our dataset are direct results of our novel methodology

(steps B, C, D). Notably, we see that the GitHub Security Advisory

(GHSA) shows promising results in gathering direct commit fixes

and CVE to open-source project mappings. It is worth mentioning

that whenever a direct fix commit or a CVE to repository address

Table 6: Distribution of CVE to repository mapping with

different heuristics using their reference step identifiers as

given in Fig. 1.

Relation type Occurrences

NVD direct commit (Step A) 13,736

NVD repository based (Step D) 9,284

CPE repository based (Step B) 7,234

GHSA direct commit (Step A) 3,260

CPE direct commit (Step B) 2,191

GHSA repository based (Step D) 531

GitHub API search (Step B) 374

GHSA registry address (Step C) 251

mapping was identified, no duplicate records were inserted in the

database. Thus, it is not possible to compare the quality of the NVD

dataset with GHSA based on the presented table. Early termination

of the workflow is also another reason why Step C (the last step in

the flowchart) in our pipeline brought so few results.

4 LIMITATIONS

In this section, we discuss the limitations of our work. As we build

on the state-of-the-art methods like CVEFixes [4] and Prospec-

tor [34], we also inherit many of their limitations. Notably, we have

updated the CVEFixes workflow and its key limitation of starting

from scratch every time (see Sec. 5.2 in [4]) is not applicable to our

tool, as we made the process incremental. Other CVEFixes limita-

tions, such as relying on the stability of NVD and other databases,

using only GitHub sources, and not considering the project license

information, are still applicable to our work. For example, many

different public or self-hosted services include open-source soft-

ware, such as Chrome, Android, and several self-hosted Git-based

services. By adding such services, it is possible to further increase

the quantity of samples in this dataset.

Information related to CVEs (such as vulnerability description,

or version tagging) or CWEs is sometimes labeled incorrectly or

missing in the source databases like NVD, and so we inherit this

limitation. For example, as mentioned in Table 3, there are 2,271

samples without CWE types. By adding further heuristic ormachine

learning methods it should be possible to improve data labeling.

The overall limitation of the repository mining approaches is

the availability of data. Repositories can be removed or renamed,

and thus the corresponding fix commits or patch files will not be

retrievable. This explains the slight discrepancy in the numbers

in Tables 2 and 5. Table 5 shows the final size of the MoreFixes

dataset, which comprises the retrieved fix commits and patch files.

Our heuristics, for example, the blocklist keywords used to ignore

non-related GitHub repositories, might have introduced some noise

into the dataset. Also, noise may appear in our CVE to repository

mapping step. However, in the manual review step, we did not

detect any incorrect CVE to repository linking for scores above

65. This might be due to the Prospector’s rules that prevent the

commits in the wrong repository from getting a high score.

Still, as we have shown, the Prospector heuristics generate some

noise and select commits that occasionally might not be relevant

49



MoreFixes: A Large-Scale Dataset of CVE Fix Commits Mined through Enhanced Repository Discovery PROMISE ’24, July 16, 2024, Porto de Galinhas, Brazil

to the target CVEs. We have tried to reduce this noise as much as

possible by evaluating it in a manual review and selecting a reason-

able Prospector score threshold, but the resulting dataset might still

include some irrelevant commits. We share the Prospector scores

so that it is possible select a more reliable commit subset. We note

that most of the high-score yet irrelevant commits were security

fixes, but not related to assigned CVE. Another option for future

improvements in detecting fix commits is to combine Prospector

with advanced generative AI-based methods like VCFinder [10].

Moreover, in fix commits, sometimes non-security-related changes

are mixed in the same commit with security-related changes. For

example, test cases are often implemented to verify fixing the vul-

nerability. Such changes might be useful in specific research, but

such data must be ignored for studies like automated vulnerabil-

ity detection. An additional data-cleaning approach is required

to prune such non-security changes. This data quality issue was

also studied by Croft et al. [9]. As mentioned in [9], some existing

datasets are noisy due to poor keyword choices. We tackled this

issue by using Prospector as a more robust approach. Moreover, in

our dataset, each vulnerability fix commit is assigned to at least one

CVE, which allows proper tracing and validation. With a custom

threshold setting for vulnerability score or limiting top score com-

mits per CVE, it is possible to further increase the overall accuracy

of available commits, at the cost of a reduced dataset size.

5 RELATED WORK

In this section, we discuss the related literature on vulnerability

datasets and their common applications.

Existing Datasets. As we mentioned, the majority of existing

vulnerability datasets are either generated or mined through pub-

licly available open-source software projects. Generated vulnerabil-

ity datasets are usually less used due to their artificial nature and

lack of similarity with real-world datasets. CVEFixes [4], on which

we build, uses the NVD CVEs data and attempts to detect commit

links in the CVE record references. Subsequently, all data related

to CWEs, CVEs, repository, code, and file changes are stored in a

database. The CrossVul [27] dataset was collected using a similar

approach, but by only gathering commits as simple files, making it

harder to execute SQL queries for complex data joining and analysis.

DiverseVul [7] implemented their database extraction by choosing

a different vulnerability source and limiting it to C/C++. However,

one of the main data sources of their work is no longer publicly

available, preventing it from having an updated version of the data.

BigVul [12] also focused on the C/C++ programming languages

and it relies on a limited set of known high-quality projects such as

Chrome, Android, and Linux. Ponta et al. [30] manually created a

dataset for the Java programming language by mining vulnerability

disclosure information from various security websites such as NVD.

Similarly, Reis et al. [32] created a dataset by mining CVE details

and augmenting their dataset with other security datasets. In a

recent research, Wang et al. [41] created the ReposVul dataset by

choosing a vulnerability website that references GitHub, and two

projects from Google, covering only four programming languages.

Vulnerability Research and Its Applications. Vulnerability

datasets commit fixes have various applications such as automatic

vulnerability repairing with machine learning [8, 13, 14, 16, 19],

automatic bug generation [20, 28, 29], vulnerability detection [15,

31], benchmarking security analysis tools [21, 43], understanding

and studying security commits [33, 38], vulnerability fix commits

identification[40]. Quality and quantity of the data from vulnera-

bility datasets and the diversity of projects and languages covered

by them are important aspects that MoreFixes addresses.

6 CONCLUSIONS

We have shown that by using several smart heuristics and com-

bining state-of-the-art approaches it is possible to substantially

improve the discovery of CVE fix commits in open-source projects

and, as a byproduct, increase the number of different types of dis-

covered vulnerabilities. Thanks to our approach, we publish the

largest programming language-independent real-world CVE vulner-

ability dataset with fixes. Compared to the state-of-the-art methods,

our dataset also includes significantly more samples, patch files,

CWEs, and the relation between a public CVE and the correspond-

ing GitHub repository related to the CVE. Our MoreFixes dataset

can be used by the community to study vulnerabilities in OSS,

vulnerability detection, common vulnerable patterns, and static

application security testing benchmarks.

DECLARATIONS

Data-Availability Statement. Dataset [2] and source code [3] are

available on Zenodo.

Funding Statement. This research was partially supported by the

Dutch Research Council (NWO) under the project NWA.1215.18.008

Cyber Security by Integrated Design (C-SIDe).

REFERENCES
[1] 2022. Machine Learning for Source Code Vulnerability Detection: What Works

and What Isn’t There Yet. IEEE Security & Privacy 20, 5 (2022), 60–76.
[2] Jafar Akhoundali, Sajad Rahim Nouri, Kristian F. D. Rietveld, and Olga GADY-

ATSKAYA. 2024. MoreFixes: Largest CVE dataset with fixes. https://doi.org/10.
5281/zenodo.11199120

[3] Jafar Akhoundali, Sajad Rahim Nouri, Kristian F. D. Rietveld, and Olga GADY-
ATSKAYA. 2024. Source code for "MoreFixes". https://doi.org/10.5281/zenodo.
11110595

[4] Guru Bhandari, Amara Naseer, and Leon Moonen. 2021. CVEFixes: Automated
collection of vulnerabilities and their fixes from open-source software. In Proc. of
PROMISE. 30–39.

[5] Tim Boland and Paul E Black. 2012. Juliet 1. 1 C/C++ and Java test suite. Computer
45, 10 (2012), 88–90.

[6] Nicholas Chan and John A Chandy. 2022. Extracting vulnerabilities from GitHub
commits. In Proc. of SANER. IEEE, 235–239.

[7] Yizheng Chen, Zhoujie Ding, Xinyun Chen, and David Wagner. 2023. DiverseVul:
A New Vulnerable Source Code Dataset for Deep Learning Based Vulnerability
Detection. arXiv preprint arXiv:2304.00409 (2023).

[8] Zimin Chen, Steve Kommrusch, and Martin Monperrus. 2022. Neural transfer
learning for repairing security vulnerabilities in C code. IEEE Transactions on
Software Engineering 49, 1 (2022), 147–165.

[9] Roland Croft, M Ali Babar, and MMehdi Kholoosi. 2023. Data quality for software
vulnerability datasets. In Proc. of ICSE. IEEE, 121–133.

[10] Trevor Dunlap, Elizabeth Lin, William Enck, and Bradley Reaves. 2023.
VFCFinder: Seamlessly pairing security advisories and patches. arXiv preprint
arXiv:2311.01532 (2023).

[11] Soufian El Yadmani, Robin The, and Olga Gadyatskaya. 2022. Beyond the Surface:
Investigating Malicious CVE Proof of Concept Exploits on GitHub. arXiv preprint
arXiv:2210.08374 (2022).

[12] Jiahao Fan, Yi Li, Shaohua Wang, and Tien N Nguyen. 2020. AC/C++ code
vulnerability dataset with code changes and CVE summaries. In Proc. of MSR.
508–512.

[13] Michael Fu, Chakkrit Tantithamthavorn, Trung Le, Yuki Kume, Van Nguyen,
Dinh Phung, and John Grundy. 2024. AIBughunter: A practical tool for predicting,
classifying and repairing software vulnerabilities. Empirical Software Engineering
29, 1 (2024), 4.

50

https://doi.org/10.5281/zenodo.11199120
https://doi.org/10.5281/zenodo.11199120
https://doi.org/10.5281/zenodo.11110595
https://doi.org/10.5281/zenodo.11110595


PROMISE ’24, July 16, 2024, Porto de Galinhas, Brazil Jafar Akhoundali, Sajad Rahim Nouri, Kristian Rietveld, and Olga Gadyatskaya

[14] Michael Fu, Chakkrit Tantithamthavorn, Trung Le, Van Nguyen, and Dinh Phung.
2022. VulRepair: A T5-based automated software vulnerability repair. In Proc. of
ESEC/FSE. 935–947.

[15] Michael Fu, Chakkrit Tantithamthavorn, Van Nguyen, and Trung Le. 2023. Chat-
GPT for vulnerability detection, classification, and repair: How far are we? arXiv
preprint arXiv:2310.09810 (2023).

[16] Anastasiia Grishina. 2022. Enabling automatic repair of source code vulner-
abilities using data-driven methods. In Proc. of ICSE: Companion Proceedings.
275–277.

[17] Yuejun Guo and Seifeddine Bettaieb. 2023. An Investigation of Quality Issues in
Vulnerability Detection Datasets. In Proc. of EuroS&P Workshops. IEEE, 29–33.

[18] Daan Hommersom, Antonino Sabetta, Bonaventura Coppola, Dario Di Nucci,
and Damian A. Tamburri. 2021. Automated Mapping of Vulnerability Advisories
onto their Fix Commits in Open Source Repositories. https://arxiv.org/pdf/2103.
13375.pdf

[19] Kai Huang, Xiangxin Meng, Jian Zhang, Yang Liu, Wenjie Wang, Shuhao Li, and
Yuqing Zhang. 2023. An empirical study on fine-tuning large language models
of code for automated program repair. In Proc. of ASE. IEEE, 1162–1174.

[20] Ali Reza Ibrahimzada, Yang Chen, Ryan Rong, and Reyhaneh Jabbarvand. 2023.
Automated Bug Generation in the era of Large Language Models. arXiv preprint
arXiv:2310.02407 (2023).

[21] Avishree Khare, Saikat Dutta, Ziyang Li, Alaia Solko-Breslin, Rajeev Alur, and
Mayur Naik. 2023. Understanding the Effectiveness of Large Language Models
in Detecting Security Vulnerabilities. arXiv preprint arXiv:2311.16169 (2023).

[22] Maryna Kluban, Mohammad Mannan, and Amr Youssef. 2023. On Detecting and
Measuring Exploitable JavaScript Functions in Real-World Applications. ACM
TOPS (2023).

[23] Arina Kudriavtseva and Olga Gadyatskaya. 2024. You cannot improve what you
do not measure: A triangulation study of software security metrics. In Proc. of
SAC. ACM.

[24] Frank Li and Vern Paxson. 2017. A large-scale empirical study of security patches.
In Proc. of CCS. 2201–2215.

[25] Truong Giang Nguyen, Thanh Le-Cong, Hong Jin Kang, Xuan-Bach D Le, and
David Lo. 2022. Vulcurator: a vulnerability-fixing commit detector. In Proc. of
ESEC/FSE. 1726–1730.

[26] Giang Nguyen-Truong, Hong Jin Kang, David Lo, Abhishek Sharma, Andrew E
Santosa, Asankhaya Sharma, and Ming Yi Ang. 2022. Hermes: Using commit-
issue linking to detect vulnerability-fixing commits. In Proc. of SANER. IEEE,
51–62.

[27] Georgios Nikitopoulos, Konstantina Dritsa, Panos Louridas, and Dimitris
Mitropoulos. 2021. CrossVul: A cross-language vulnerability dataset with commit
data. In Proc. of ESEC/FSE. 1565–1569.

[28] Yu Nong, Richard Fang, Guangbei Yi, Kunsong Zhao, Xiapu Luo, Feng Chen, and
Haipeng Cai. 2023. VGX: Large-scale Sample Generation for Boosting Learning-
Based Software Vulnerability Analyses. arXiv preprint arXiv:2310.15436 (2023).

[29] Yu Nong, Yuzhe Ou, Michael Pradel, Feng Chen, and Haipeng Cai. 2023. VULGEN:
Realistic Vulnerability Generation Via Pattern Mining and Deep Learning. In
Proc. of ICSE.

[30] Serena Elisa Ponta, Henrik Plate, Antonino Sabetta, Michele Bezzi, and Cédric
Dangremont. 2019. A manually-curated dataset of fixes to vulnerabilities of
open-source software. In Proc. of MSR. IEEE, 383–387.

[31] Moumita Das Purba, Arpita Ghosh, Benjamin J Radford, and Bill Chu. 2023.
Software vulnerability detection using large language models. In Proc. of ISSRE
Workshops. IEEE, 112–119.

[32] Sofia Reis and Rui Abreu. 2021. A ground-truth dataset of real security patches.
arXiv preprint arXiv:2110.09635 (2021).

[33] Sofia Reis, Rui Abreu, Hakan Erdogmus, and Corina Păsăreanu. 2022. SECOM:
Towards a convention for security commit messages. In Proc. of MSR. 764–765.

[34] Antonino Sabetta, Serena Elisa Ponta, Rocio Cabrera Lozoya, Michele Bezzi,
Tommaso Sacchetti, Matteo Greco, Gergő Balogh, Péter Hegedűs, Rudolf Ferenc,
Ranindya Paramitha, et al. 2024. Known Vulnerabilities of Open Source Projects:
Where Are the Fixes? IEEE Security & Privacy (2024).

[35] Felix Schuckert, Basel Katt, and Hanno Langweg. 2023. Insecurity Refactoring:
Automated Injection of Vulnerabilities in Source Code. Computers & Security 128
(2023), 103121.

[36] K Sivakumar and K Garg. 2007. Constructing a “common cross-site scripting vul-
nerabilities enumeration (CXE)” using CWE and CVE. In Proc. of ICISS. Springer,
277–291.

[37] Bertrand Stivalet and Elizabeth Fong. 2016. Large scale generation of complex
and faulty PHP test cases. In Proc. of ICST. IEEE, 409–415.

[38] Shiyu Sun, Shu Wang, Xinda Wang, Yunlong Xing, Elisa Zhang, and Kun Sun.
2023. Exploring Security Commits in Python. In Proc. of ICSME. IEEE, 171–181.

[39] Norbert Tihanyi, Tamas Bisztray, Ridhi Jain, Mohamed Amine Ferrag, Lucas C
Cordeiro, and Vasileios Mavroeidis. 2023. The FormAI dataset: Generative AI in
software security through the lens of formal verification. In Proc. of PROMISE.
33–43.

[40] Hieu Dinh Vo, Thanh Trong Vu, and Son Nguyen. 2023. Silent Vulnerability-
fixing Commit Identification Based on Graph Neural Networks. arXiv preprint
arXiv:2309.08225 (2023).

[41] Xinchen Wang, Ruida Hu, Cuiyun Gao, Xin-Cheng Wen, Yujia Chen, and Qing
Liao. 2024. A Repository-Level Dataset For Detecting, Classifying and Repairing
Software Vulnerabilities. arXiv preprint arXiv:2401.13169 (2024).

[42] Xinda Wang, Kun Sun, Archer Batcheller, and Sushil Jajodia. 2019. Detecting"
0-day" vulnerability: An empirical study of secret security patch in OSS. In Proc.
of DSN. IEEE, 485–492.

[43] Yi Wu, Nan Jiang, Hung Viet Pham, Thibaud Lutellier, Jordan Davis, Lin Tan,
Petr Babkin, and Sameena Shah. 2023. How Effective Are Neural Networks for
Fixing Security Vulnerabilities. arXiv preprint arXiv:2305.18607 (2023).

Received 2024-03-28; accepted 2024-04-19

51

https://arxiv.org/pdf/2103.13375.pdf
https://arxiv.org/pdf/2103.13375.pdf

	Abstract
	1 Introduction
	2 Our Workflow
	2.1 References Processing (A)
	2.2 CPE Processing (B)
	2.3 Registry Package Manager (C)
	2.4 GitHub Repository Address (D)
	2.5 Blocklisted Repositories and Patterns (E)
	2.6 Detecting Candidate Fix Commits (F)

	3 Dataset Description
	3.1 PostgreSQL Database
	3.2 Dataset Statistics
	3.3 Datasets Comparison
	3.4 Impact of Our Heuristics

	4 Limitations
	5 Related Work
	6 Conclusions
	References

