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Abstract—Malware poses a significant threat to global cy-
bersecurity, with machine learning emerging as the primary
method for its detection and analysis. However, the opaque
nature of machine learning’s decision-making process of-
ten leads to confusion among stakeholders, undermining
their confidence in the detection outcomes. To enhance the
trustworthiness of malware detection, Explainable Artificial
Intelligence (XAI) is employed to offer transparent and
comprehensible explanations of the detection mechanisms,
which enable stakeholders to gain a deeper understanding
of detection mechanisms and assist in developing defensive
strategies. Despite the recent XAI advancements, several
challenges remain unaddressed. In this paper, we explore the
specific obstacles encountered in applying XAI to malware
detection and analysis, aiming to provide a road map for
future research in this critical domain.

Index Terms—Malware detection, explainable AI, XAI, mal-
ware explanations, XAI performance assessment.

1. Introduction

Malware is one of the most important cybersecurity
threats. It has a high impact on individuals, organizations,
and national infrastructure. In 2023, more than 100 million
samples of malware and potentially unwanted applications
(PUA) were identified by AV-Test [3]. Machine learn-
ing (ML) is the key to effectively detecting these large
numbers of malicious applications. Yet, these ML-based
systems are usually not transparent and security analysts
may find it difficult to understand the reasons why a
certain sample is flagged as malicious. To improve the
trustworthiness of malware detection systems and support
the analysts, Explainable AI (XAI) plays a crucial role
in exploring the internal logic of the decision process,
making it understandable to humans [4], [12], [67].

The integration of XAI in cybersecurity has already
witnessed significant success [10], [85], [91]. Numerous
studies and implementations have demonstrated the effi-
cacy of XAI in enhancing the interpretability and trust-
worthiness of malware detection systems. For example,
in a seminal work Arp et al. [1] proposed a lightweight
detection and explainable method called Drebin that lever-
aged a linear support vector machine to detect whether
an unknown application is malware or benign, while
also presenting to the user an overview of the important
features that influenced the classification decision. Wu

et al. [83] not only utilized a multi-layer perceptron
(MLP) with an attention mechanism to detect malware
but also pinpointed the key features and automatically
produced natural language descriptions to interpret the
core malicious behaviors of the flagged apps. Morcos et
al. [56] employed the SHAP (Shapley Additive Explana-
tions) method to interpret random forest models for identi-
fying the most influential features for predicting malware
or benign, along with quantifying their contributions for
individual applications. Leveraging XAI approaches, Liu
et al. [50] investigated why ML-based malware detection
approaches perform so well under temporal inconsistency.

Despite these advancements, applying XAI in malware
detection encounters several significant challenges. Firstly,
there is a notable deficiency in evaluating how well these
generated explanations align with the human-annotated
ground truth of malware or the expectations of malware
analysts and other stakeholders. Moreover, interpreting
the explanation results often requires advanced domain-
specific knowledge about malware, and thus XAI expla-
nations are frequently inaccessible to non-technical audi-
ences. Furthermore, the majority of XAI methods used
in malware analysis are found to be unstable [21], [22],
[45] and thus might leave the analysts confused when
they query the system several times for the same sample.
Additionally, in the malware detection domain clustering
is an important method to identify malware families [5],
[76], [88], but there is currently a scarcity of explainable
clustering methods for malware family detection. Lastly,
we note that deploying XAI in malware detection might
pose additional risks, as it may introduce new vulnerabil-
ities into malware detection pipelines.

In this paper, we systematize and discuss these chal-
lenges in more detail. We look at recent advancements in
the XAI field in the AI literature and outline new research
directions and opportunities that computer security and
malware researchers might want to explore. We thus hope
that this paper can help the community understand the
current landscape of XAI techniques being applied to mal-
ware detection and identify promising research avenues.

XAI systematization of knowledge studies: XAI
methods is a booming research area, and there have been
several surveys and systematization of knowledge studies
that summarized recent developments [14], [18], [26].
Particularly, Mohseni et al. [53] systematically studied
design and evaluation techniques for XAI methods, with
a focus on the different stakeholders involved. Gao et
al. [24] systematically surveyed the explanation-guided
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learning methods and discussed their performance evalua-
tion criteria. Some recent surveys also focused on different
AI subfields, such as deep learning [67], reinforcement
learning [65], [80] or anomaly detection [47].

Moreover, several survey papers on XAI methods ap-
plied in the cybersecurity field appeared recently [10],
[11], [59], [85], [91]. For example, Nadeem et al. [59]
systematically studied the XAI methods applied for defen-
sive and offensive cybersecurity tasks and discussed open
research challenges. Vigano and Magazzeni [78] discussed
the multi-faceted, multi-stakeholder nature of modern AI
systems and propose the framework of Explainable Se-
curity (XSec) that guides the design of trustworthy XAI
systems. Bhusal et al. [7] evaluated common XAI methods
and discussed open research challenges in the security
analytics domain. As one of the considered use cases, they
experimented with a set of popular XAI methods applied
to PDF malware detection, and provided quantitative and
qualitative assessment results.

Finally, specifically in the malware detection field,
a recent survey by Lin and Chang [49] reviewed the
XAI methods applied for malware detection and proposed
an interpretability score aggregating several important re-
quirements from Molnar [55] that can be used to evaluate
and compare XAI techniques.

In contrast to these works and drawing from their
insights, our position paper aims to summarize several
open research challenges for XAI methods in application
to malware detection. To the best of our knowledge, these
have not yet been discussed systematically, and our paper
is a first step in this direction.

2. Alignment with Human Explanations

According to the systematic survey on explanation-
guided learning by Gao et al. [24], XAI methods per-
formance evaluation can be categorized into two pivotal
dimensions: alignment with human explanations and faith-
fulness to model predictions. Alignment with human ex-
planations focuses on whether human experts would con-
sider the provided explanations correct and comprehensi-
ble. Faithfulness revolves around the concept of whether
the model explanation remains true to the underlying
model’s reasoning, for example, under perturbations and
when evaluating similar instances.

The alignment between the model’s and human ex-
planations is also called correctness. It focuses on the
accuracy and perceptibility of the model explanations from
a human perspective, delving into questions like “How
well does the model explanation align with the human
explanation?” and “How well can humans comprehend
the model explanation?” [24].

These questions are far from trivial. For example,
XAI methods often provide explanations in continuous
values, representing the contribution or importance of
each input feature to the model’s prediction. For instance,
for an Android malware detection model, an explainer
might indicate that a feature SEND_SMS contributes 0.8
to detecting an app as malware, while another feature
UrlConnect() contributes 0.2 to the same detection
result. These continuous values allow for a subtle under-
standing of how different features influence the model’s

output. Yet, human explanations, especially when anno-
tated for understanding, tend to be binary [24]. When
humans annotate the ground truth, they might label fea-
tures as either important or not important [15]. This
binary approach simplifies the explanations but might
lack the granularity provided by continuous values. The
challenge arises when trying to align these two types of
explanations. Continuous values from model explainers
provide a gradient of importance across features, which
does not directly map onto the binary categorization often
used in human annotations. At the same time, it is not
clear how to classify a feature importance value of 0.6
from a model explainer into binary terms. The importance
threshold for this decision can be subjective and may
not consistently align with human annotations. Translating
continuous values into a format that can be compared or
aligned with binary human annotations is thus needed.

Takeaway: XAI methods may output results that do
not correspond to human annotations. Systematic ap-
proaches to reconciling malware explanations from a
model and from a human analyst are needed.

2.1. Alignment Measurement Gaps

Substantial efforts have aimed to solve the alignment
problem in the AI community. For instance, Doshi et
al. [16] introduced simulatability and counterfactual sim-
ulation as metrics to assess interpretability. Concurrently,
Hase et al. [27] discovered that LIME enhances the simu-
latability of models with tabular data. However, they noted
that subjective evaluations of the explanations did not nec-
essarily correlate with their practical utility. The study by
Mohseni et al. [53] compared model explanations against
human subjective assessments and evaluations based on
ground-truth single-layer segmentation masks. Additional
methods, such as mental model assessments, satisfaction,
and trust evaluations via interviews and questionnaires,
have been deployed to reconcile differences between
model-generated and human-generated explanations [33],
[54]. Furthermore, Liao et al. [48] developed an extensive
XAI question bank for better capturing user requirements.
However, as we discuss next, only limited work focuses
on the explanation alignment in malware detection.

Evaluation methods for XAI techniques’ alignment
with human explanations broadly fall into three cate-
gories: case studies, user studies, and human annotation-
based evaluations [24], [53]. A case study is an in-depth
discussion of specific instances (an app or a malware
family) where explanations are provided by the model.
This is a common method to analyze and explain model-
generated results in malware detection [1], [52], [63].
A user study is another qualitative evaluation method,
involving participants (users) in evaluating the quality of
explanations generated by the model. This can be achieved
by, for example, creating a user interface that displays
model explanations to human subjects, and the subjects
rating the likelihood of the important features identified
in the model explanations leading to a correct prediction of
the underlying ground-truth label [33], [54]. For example,
in the AI field, van der Waa et al. [77] compared rule-
based and example-based XAI methods in the context
of decision support in diabetes self-management. They
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discovered that rule-based explanations seem to yield a
slightly better system understanding, while both rule- and
example-based explanations are able to persuade users to
follow the advice even when it is not correct. However,
neither of the XAI methods improved the task perfor-
mance for the users.

In the cybersecurity field, the study by Holder and
Wang [28] applied document analysis and expert reviews
for delving into stakeholder requirements for XAI systems
deployed for cyber missions. Yet, while there have been
several user studies with malware analysts [41], [84], [89],
we are not aware of any systematic user studies involving
explainable malware detection methods. The only study
involving expert evaluation of XAI method results for
malware detection was reported by Bhusal et al. [7],
which had a very small sample size (n=1). The lack of
user studies focusing on XAI techniques in the broader
cybersecurity domain has also been noted by Nadeem et
al. in their systematization-of-knowledge paper [59].

Many case studies and user studies assess whether
a human understands the model-generated explanation,
without evaluating the level of understanding. Instead, the
human annotation-based evaluation methods can measure
how well the human-annotated ground truth explanations
are aligned with the model-generated explanations. In the
AI community, Sen et al. [70] performed a quantitative
comparative analysis (behavioral similarity) of machine
attention maps created by deep learning models and hu-
man attention maps. Mohseni et al. [53] captured human
annotations of salient features to create a human-grounded
benchmark and investigate the relationship between sub-
jective and objective evaluation of saliency explanations
by comparing the benchmark with a binary feature mask
ground truth (an objective measure) and user rating eval-
uations (a subjective measure). Atanasova et al. [2] com-
pared the saliency scores assigned by the explainability
techniques with human annotations of salient input regions
to find relations between the model’s performance and the
agreement of its rationales with humans. Moreover, inter-
section over union (also called the Jaccard index) [44],
mean average precision [17], precision, recall, and F1 are
used to calculate the distance between ground truth and
model-generated explanations [73].

However, currently, there is limited work focusing on
establishing and measuring the explanation alignment in
malware detection. The only study in this area is the XMal
method proposed by Wu et al. [83] that estimated the
alignment of synthesized natural language explanations
with a ground truth on malware families.

Takeaway: There is a lack of evaluation metrics assess-
ing the alignment of XAI-based malware explanations.
While there are qualitative analysis methods such as case
studies that showcase some explanations to demonstrate
their comprehensibility to domain experts, they do not
measure the level of understanding. It is necessary to
develop metrics for evaluating the alignment, which can
assess the level of the users’ understanding and compare
the comprehensibility of different XAI techniques.

2.2. Explanations for Non-Technical Audiences

As another aspect related to alignment, we should note
that both expert and non-expert users of common XAI sys-
tems require usable explanations concerning their breadth
and depth of domain knowledge [31]. Nadeem et al. [59]
highlight the diversity of stakeholders in cybersecurity,
each with distinct intents and expertise levels, interacting
with the same ML models but for different purposes.
These stakeholders require explanations at varying levels
of detail and with different aims. For example, model users
use explanations to gain insights into why an app was
classified as malicious [51], and model designers apply
explanations to find the causes of misclassification and
ensure that the model employs meaningful features [6].

In the malware detection domain, XAI methods usu-
ally offer insights in the form of key features and rules
that integrate, for example, system API calls. Such ex-
planations, while valuable, demand a significant degree
of domain-specific knowledge to be fully comprehensible.
The process of interpreting these explanations can be par-
ticularly daunting for non-experts. For example, end-users
may find it challenging to grasp the technical nuances
of the explanations without a foundational understanding
of malware and its manifestations. This gap underscores
a critical barrier in the democratization of cybersecurity,
where the benefits of advanced malware detection and ex-
planation systems are limited by the technical proficiency
required to interpret them.

To design a more comprehensible XAI system, Wu et
al. [83] proposed a semantic matching of key features,
which aims to contextualize explanation results within a
framework understandable to various stakeholders. This
approach represents a step forward by integrating expert
knowledge into the system, thereby providing stakeholders
with more accessible explanations. However, the prevalent
trend in XAI techniques applied for malware detection still
leans heavily towards technical outputs [49] that may not
be readily accessible to non-technical audiences.

In the AI literature, as we mentioned, there have been
studies on comparing human attention and annotations
with the ones produced by XAI systems. For example,
Reiter [68] summarized the natural language generation
challenges for synthesizing usable explanations. Yet, as
mentioned, so far there have been no studies with malware
detection experts and malware detection system users to
understand their needs and preferences for explanations.

Takeaway: To address this gap, the generated explana-
tions need to be tailored to a specific purpose and au-
dience, catering to the varying levels of comprehension
of all stakeholders involved in malware detection. User
studies with malware detection stakeholders can help to
understand the requirements for automatically generated
malware explanations.

3. Instability of Malware Explanations

As we mentioned, the second component of the per-
formance evaluation of XAI methods according to Gao et
al. [24] is faithfulness to the ML model’s predictions.
Faithfulness revolves around the concept of whether the
model explanation remains true to the underlying model’s

556

Authorized licensed use limited to: Universiteit Leiden. Downloaded on February 12,2025 at 11:30:18 UTC from IEEE Xplore.  Restrictions apply. 



reasoning, for example, under perturbations and when
evaluating similar instances. Several criteria for assessing
faithfulness have been proposed in the literature. For
example, Yang et al. [87] summarized three significant
properties from different perspectives, i.e., generalizabil-
ity, fidelity, and persuasibility. Ganz et al. [23] presented a
framework for evaluating explanation methods on GNNs
for vulnerability discovery and developed a set of crite-
ria, including descriptive accuracy, structural robustness
(whether explanation results change with perturbations),
contrastivity, graph sparsity, stability (whether explanation
results change in different runs), as well as efficiency
(whether the explanation results are important to the
decision making) for comparing graph explanations and
linking them to properties of source code. Warnecke et
al. [81] formulated conciseness, sparsity, completeness,
and efficiency evaluation metrics to assess the perfor-
mance of explanation methods.

In malware detection, there have been several stud-
ies of XAI methods’ performance according to several
faithfulness criteria. Fan et al. [21] assessed five well-
known local and model-agnostic explanation approaches
(LIME, Anchor, LORE, SHAP, and LEMNA), and Li and
Gadyatskaya [45] evaluated five global explanation meth-
ods (SIRUS, deepRED, REM-D, ECLAIRE, and inTrees)
for robustness, stability, and effectiveness. Warnecke et
al. [82] introduced metrics such as the accuracy of expla-
nations, completeness, efficiency, and robustness.

Stability is a property that measures the consistency of
explanations generated for identical or similar instances
in the data [79], and it is an important part of faithful-
ness. Since XAI methods attempt to provide insight into
otherwise “black box” models, the provided explanations
must be reliable. But, when the method is subject to
randomness, there may be variations in the explanations,
calling its reliability into question [66]. In the malware
detection domain, stable explanation results are particu-
larly crucial, because classification into malware families
is based on similarity among the samples. If samples from
the same family receive widely different explanations,
malware researchers might miss the right family attribu-
tion or become confused [21]. Moreover, stable explana-
tions support the system’s reliability and the model users’
and designers’ trust, and are instrumental in debugging
and improving the system, enabling developers to address
deficiencies effectively. In essence, we can argue that
the stability of explanation results is not just a technical
requirement but a foundational aspect of user trust and the
overall efficacy of malware detection systems.

Yet, many popular XAI methods are inherently un-
stable. The study by Li and Gadyatskaya [45] has shown
that several established global XAI methods have stability
scores equal to zero when applied to malware detection,
while Fan et al. [21] found that stability scores for the
popular local XAI methods LEMNA, LORE, and Anchor
are below 0.5.

This instability, a consequence of the plurality of
explanations produced by the same model on the same
sample, is known as the disagreement problem in the
AI community [25], [34], [58], [60]. It follows from the
notion of the Rashomon effect for ML and XAI methods,
which describes the fact that different statistical models
can work equally well when fitting the same data [9],

[40], [58]. In a user study, Krishna et al. [34] showed that
practitioners are indeed aware that different XAI methods
do not agree in their explanations, and they often resort to
arbitrary choices, e.g., just rely on their favorite method.
It is thus important that the malware detection community
pays more attention to this issue. A possible solution
for XAI-enabled malware detection methods that will not
be confusing to analysts can lie in combining several
explainers, as proposed by, e.g., Pirie et al. [64]. Another
direction to explore is the Functional Decomposition tree
approach proposed by Laberge et al. [38].

Takeaway: XAI methods for malware detection have
high stability requirements, while many established XAI
methods are unstable. Further research into more stable
explanation methods is required.

4. No Studies of XAI for Malware Clustering

Supervised learning techniques, where the model
learns from labeled data to predict outcomes, have been
the center of attention in the AI community as well as in
malware detection. Correspondingly, the research of XAI
methods based on supervised learning and applying these
XAI methods in malware detection has also flourished.
Yet, there are also many established approaches for un-
supervised learning methods for malware detection and
categorization [5], [13], [20], [20]. Clustering algorithms
segment data into groups based on similarities without
prior labeling, offering a unique perspective in identifying
novel or unknown malware types [5], [76], [88]. It would
thus be useful for security analysts to receive explanations
as to why certain samples are grouped into a family.
Considering the explanation approaches for unsupervised
learning methods, we observe that there are several works
on explaining the results of unsupervised models in the
AI community and the absence of research focusing on
the explainability of clustering in malware detection.

In the AI community, Kauffmann et al. [32] proposed
a framework that can explain cluster assignments in terms
of input features that have contributed to the cluster as-
signments by rewriting clustering models as neural net-
works. Moshkovitz et al. [57] used a small decision tree
to partition a data set into clusters, which can characterize
clusters straightforwardly. Based on this research, Laber et
al. [37] proposed a simple greedy algorithm for building
explainable clustering for the k-means method, and Ed-
uardo et al. [36] constructed shallow decision trees — i.e.,
trees whose leaves are not very deep, which translates into
clusters that are defined by a small number of attributes.
Lawless et al. [39] provided a new approach that clusters
data points and constructs polytopes around the discovered
clusters to explain them.

In malware detection, research focusing on the ex-
plainability of clustering is, to the best of our knowledge,
unexplored, which limits the understanding of how these
models discern patterns and relationships in malware sam-
ples. Demystifying the operation of clustering algorithms
and elucidating the features that influence each cluster can
help identify new malware strains and provide evidence
to support the decision. Addressing this challenge is thus
very important for advancing the field of XAI in malware
detection, ensuring that both supervised and unsupervised
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learning methods are transparent, interpretable, and, con-
sequently, more trustworthy and effective.

Takeaway: There have been no studies of explainable
clustering methods for malware detection. New research
in this area can help elucidate novel patterns in emerging
malware strains. Additionally, it will be interesting to
compare XAI methods for unsupervised learning-based
malware detection methods based on their alignment and
faithfulness, as previous studies focused only on XAI
techniques for supervised learning.

5. Attack Risks on Malware Explanations

While model explanations are designed to improve
transparency, they inadvertently create new vulnerabilities,
and interpretability is potentially susceptible to malicious
manipulations [90]. As reported by Nadeem et al. [59],
adversaries might exploit the insights derived from these
explanations to initiate new attacks. Notably, state-of-the-
art XAI methods such as LIME and SHAP are not imper-
vious to such threats [74]. Zhang et al. [90] demonstrated
this by generating adversarial inputs to compromise ex-
plainable deep learning systems, impacting not just the
target deep neural networks but also the associated inter-
pretative models, thereby casting doubts on the reliability
of current XAI methods.

Further emphasizing this vulnerability, Kuppa et
al. [35] employed XAI techniques to undermine the clas-
sifiers’ confidentiality and robustness using counterfactual
explanations. They utilized a dataset of 30,120 malware
samples to test evasion tactics encompassing explanation-
based poisoning and evasion attacks. The study has
shown that XAI methods can be adversarially exploited
and also shed light on privacy attacks [19] encompass-
ing explanation-based model extraction, and membership
inference attacks [29] validated using leaked password
datasets and network traffic data.

In response to these threats, the community needs
to devise defense strategies to counteract explanation-
aware threat scenarios and safeguard XAI-enabled mal-
ware detection systems. The literature extensively dis-
cusses countermeasures against prediction-only attacks,
i.e., when the small perturbation in data will mislead the
model to predict wrong results [8], [46], [69]. Specifically
in the malware detection realm, we can mention, for
example, [42], [43], [69], [86]. For instance, Sun et al. [75]
and Severi et al. [71] demonstrated that explainability-
guided adversarial modifications significantly worsened
the detection performance of malware classifiers, and they
proposed methods to improve classifier robustness by
targeted feature selection and applying anomaly detection
techniques for identifying perturbed intruders. Still, strate-
gies to counter explanation-aware attacks remain markedly
underdeveloped [62]. For instance, robustness improve-
ment methods like AMM [75] require the ML model
designers to have in-depth expert knowledge about which
features can be feasibly added or modified in malware
samples without damaging the payload. This may not be
feasible for all stakeholders, especially considering that
advanced malware writers constantly look for new ways
to implement malicious functionality [30], [61], [72].

Takeaway: Strengthening the explainability of XAI
models against explanation-aware threats presents a
challenge that the AI and security communities should
try to address.

6. Conclusion

In this paper, we discuss the multifaceted challenges
associated with the current research on applying XAI in
malware detection and analysis. We reveal that there is a
lack of methods and studies to assess the XAI techniques’
alignment with human explanations, with a particular lack
of support for non-technical audiences, underscoring a
significant gap in accessibility. Moreover, we observe
a prevalent instability in popular XAI methods applied
to interpret the malware detection process, which might
result in a lack of trust from the users. The absence
of XAI techniques for clustering methods tailored for
malware detection further complicates the interpretability
of results. We also highlight the inherent risks associated
with deploying XAI in malware detection, potentially
exposing the system to sophisticated explanation-aware
attack vectors.
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