

The role of glucocorticoid receptor signaling in metabolic disease: a matter of time and sex Li. S.

Citation

Li, S. (2025, April 23). *The role of glucocorticoid receptor signaling in metabolic disease: a matter of time and sex*. Retrieved from https://hdl.handle.net/1887/4212748

Version: Publisher's Version

Licence agreement concerning inclusion of doctoral

License: thesis in the Institutional Repository of the University

of Leiden

Downloaded from: https://hdl.handle.net/1887/4212748

Note: To cite this publication please use the final published version (if applicable).

1

General introduction and outline

GENERAL INTRODUCTION AND OUTLINE

Glucocorticoids are steroid hormones that play an essential role in many physiological processes, including the stress response and the maintenance of homeostasis [1-3]. These hormones, primarily cortisol in humans and exclusively corticosterone in mice, are synthesized and secreted by the adrenal glands in response to various stimuli. A factor that strongly affects adrenal glucocorticoid secretion is the circadian rhythm. Glucocorticoid effects are achieved via different signaling pathways, predominantly through binding to the glucocorticoid receptor (GR). The GR is expressed in almost all cell types in the human body. Activation of GRs initiates a cascade of events that alters gene expression and thereby regulates immune responses, metabolism and many other processes [4-8].

Synthetic glucocorticoids are potent anti-inflammatory and immunosuppressive drugs that have been widely used for treating various medical conditions including inflammatory diseases [9-11]. However, chronic glucocorticoid exposure—whether from exogenous sources or prolonged increases in endogenous levels—can result in severe metabolic disturbances, including muscle mass loss, impaired glucose and lipid metabolism, and osteoporosis [12-14]. Understanding the molecular and endocrine effects of glucocorticoids is essential to design appropriate therapeutic strategies and to mitigate the adverse effects when these steroids are used for a long period of time.

In the work presented in thesis, I investigated several metabolic disturbances associated with glucocorticoids, their biological mechanisms, and whether glucocorticoid actions are sexually dimorphic - and if so, whether interactions with sex steroids play a role. In addition, I address the optimal time of treatment with glucocorticoids in relation to reduction of side effects while maintaining therapeutic effects.

1 Glucocorticoid receptor signaling

The hypothalamic-pituitary-adrenal (HPA) axis is the main endocrine system that regulates secretion of glucocorticoids by the adrenal gland. When the HPA-axis is stimulated, corticotropin-releasing hormone (CRH) and arginine vasopressin (AVP) are released by the hypothalamic paraventricular nucleus (PVN) into a portal circulation system that connects the hypothalamus and the pituitary gland [15, 16]. Subsequently, CRH binds to the CRH-R1 receptor in the pituitary gland which leads to the release and secretion of the adrenocorticotrophic hormone (ACTH) into the systemic circulation. ACTH will

in turn increase the synthesis and secretion of cortisol and/or corticosterone from the adrenal glands [17]. At the basal non-stressed level, glucocorticoids are released from the adrenal glands in a circadian and ultradian rhythm. This release pattern is characterized by peak levels preceding and during the early active phase, which is in the morning in humans and at the beginning of the night in mice [18]. Next to the circadian variation, physical and psychological stress is an important stimulus of HPA-axis activation.

The HPA-axis is subject to negative feedback, as elevated circulating levels of glucocorticoids exert inhibition at the hypothalamic and pituitary level, suppressing the synthesis and release of CRH and ACTH respectively [19]. This regulatory mechanism is crucial since it helps in modulating the level of glucocorticoids in the body and balancing the stress response. Dysregulation of the secretion in the HPA-axis can lead to several health-related issues. For instance, long-term stress may lead to the sustained stimulation of the HPA-axis and the constant elevated levels of glucocorticoids in the bloodstream may cause anxiety and depression, immune dysfunction, as well as metabolic diseases [20].

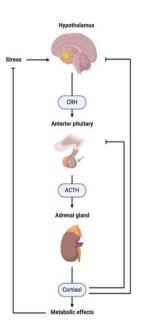


Fig. 1 Hypothalamic-pituitaryadrenal (HPA) axis. to neuroendocrine response stress involves activation of the HPA axis, beginning with the release corticotropin-releasing hormone (CRH) from the hypothalamus. CRH stimulates the pituitary gland to release adrenocorticotropic hormone (ACTH), which in turn triggers the adrenal glands to secrete glucocorticoids-cortisol in humans and corticosterone in rodents. Once in circulation, glucocorticoids exert both peripheral and central effects by binding to mineralocorticoid and/or glucocorticoid receptors in nearly all organs and tissues, including the brain. hippocampus modulate hypothalamic activity, thereby regulating HPA axis through feedback mechanisms.

The bioavailability of glucocorticoids is regulated by the balance between active and inactive forms. This process is regulated by two different enzymes that catalyze the turnover between the inactive (analogs of) cortisone or 11-dehydrocorticosterone and the active forms of cortisol or corticosterone. 11β -hydroxysteroid dehydrogenase 1 (11β -HSD1) positively affects cortisol

availability, by catalyzing the conversion of cortisone to cortisol, while 11β -HSD2 is responsible for the opposite reaction. 11β -HSD1 is predominantly expressed in metabolic tissues such as the liver and adipose tissue, locally amplifying intracellular glucocorticoid action. Its upregulation is often associated with metabolic dysregulation including insulin resistance, obesity, and dyslipidemia [21-23], emphasizing its role in metabolic homeostasis and the development of metabolic diseases. Conversely, 11β -HSD2 is expressed mainly in aldosterone target organs including the kidney and colon. It prevents cortisol or corticosterone from binding to mineralocorticoid receptors (MR), which allows selectivity for the mineralocorticoid hormone aldosterone. In this way 11β -HSD2 plays a role in the preservation of the levels of electrolytes and blood pressure. Gene mutations or inhibition of 11β -HSD2 are therefore associated with hypertension and abnormal electrolyte levels, demonstrating that 11β -HSD2 action is crucial in cardiovascular and renal functions [24, 25].

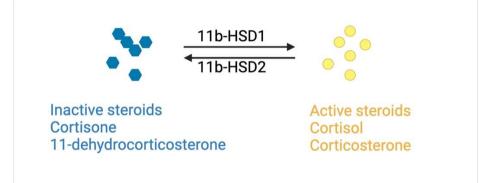


Fig. 2 Interconversion of Inactive and Active Glucocorticoids via 11 β -HSD Enzymes. The balance between inactive and active glucocorticoids is regulated by the actions of 11 β -HSD1 and 11 β -HSD2. 11 β -HSD1 converts inactive steroids, such as cortisone in humans and 11-dehydrocorticosterone in rodents, into their active forms, cortisol and corticosterone, respectively. 11 β -HSD2 facilitates the reverse process, inactivating these active glucocorticoids to maintain proper signaling and prevent overstimulation.

Corticosterone-binding globulin (CBG) is a glycoprotein synthesized in the liver which modulates glucocorticoid activity. CBG can bind glucocorticoids, thereby limiting their availability in target tissues, and it plays a crucial role in the clearance of glucocorticoids from the circulation. Under basal conditions, 80% of circulating glucocorticoids is bound by CBG, around 15% to albumin and only 5% is available as the free fraction. During stress and inflammation, the concentration of glucocorticoids is increased and can saturate the binding capacity by CBG, which results in increased free glucocorticoids levels and enhanced anti-inflammatory effects [26].

Glucocorticoids can act via two types of receptors: the GR and - in cells that do not express 11β-HSD2 - the MR. These two receptor types are the members of the nuclear receptor (NR) family of intracellular receptors, which also contains the estrogen receptor (ER), progesterone receptor (PR), and androgen receptor (AR) [27, 28]. Many of these receptors influence various metabolic processes within different tissues. The MR is activated by the endogenous glucocorticoids, while synthetic glucocorticoids do not influence MR activity except at very high doses [29]. In contrast, the GR is activated by cortisol and corticosterone and by synthetic glucocorticoids alike [30]. Upon glucocorticoid binding, GR undergoes conformational changes and translocates into the nucleus where it binds to glucocorticoid response elements (GREs) in the DNA. GR DNA binding is influenced by tissue-specific chromatin accessibility and interactions with coregulators which help regulate transcription. GR signaling is further modulated by cellular variations in receptor isoforms, post-translational modifications, and interactions with other transcriptionally active proteins, which together shape the cell-specific response to glucocorticoid signaling across various tissues [31, 32].

GR is a modular protein comprising of several distinct domains: the N-terminal transactivation domain (NTD), the DNA-binding domain (DBD), the hinge region and the Ligand-Binding Domain (LBD), each contributing to receptor function. The NTD contains an activation function-1 (AF-1) for ligand-independent transcriptional activation [33, 34]. The GR target gene selection depends on the DBD of GR. It contains two zinc finger motifs that allow the receptor to bind to GREs within the DNA. This binding triggers other receptor domains to recruit coactivators, chromatin remodeling complexes and other transcription machinery to the promoter region of the target genes to regulate transcription [35, 36]. These interactions lead to histone modification and nucleosome remodeling, which in turn increases chromatin accessibility and transcriptional activation [37]. Conversely, GR can also repress gene expression by binding to negative GREs (nGREs) or by interacting with other transcription factors such as NF-kB and AP-1 [38, 39]. This repression often involves the recruitment of corepressors and histone deacetylases (HDACs), leading to chromatin condensation and decreased accessibility [40]. The DBD is necessary in the interaction with GREs to regulate the GR in the activation as well as suppression of genes in response to glucocorticoids. The LBD of the GR contains the ligand binding pocket of the receptor, and glucocorticoid binding to this pocket induces a structural (or conformational) change of the receptor. This conformational change forms activation function-2 (AF-2) that is required for transcriptional activation that occurs in the presence of ligand, via recruitment of coactivators and other transcription machinery [41]. Additionally, the LBD is crucial for receptor dimerization required for interaction with many GREs on the DNA [41].

2 Androgens, the HPG-axis and glucocorticoids

Androgens are a group of hormones primarily known for their role in male sexual development and function. Androgen production by the testes is regulated by the Hypothalamus-Pituitary-Gonadal (HPG)-axis [42]. Analogous to the HPA-axis, this process starts in the hypothalamus, which releases gonadotropin-releasing hormone (GnRH) in a pulsatile manner. GnRH stimulates the pituitary gland to secrete two key hormones: luteinizing hormone (LH) and follicle-stimulating hormone (FSH). LH plays a crucial role in stimulating Leydig cells of the testes to secrete testosterone [43]. Similar to glucocorticoids, the levels of testosterone are also regulated through negative feedback loop in the HPG-axis.

Testosterone is mainly synthesized in the testes in men and in the adrenal glands of both men and women but in lesser amounts. It is involved in the development of the male reproductive tissues, secondary sexual characteristics and is essential to sexual health in both genders [44]. Similar to glucocorticoids, enzymatic modification of androgens is essential for this process. Dihydrotestosterone (DHT) is a potent steroid hormone with androgenic properties involved in several biological processes in human body. This sex hormone is derived from testosterone through the action of the enzyme 5-alpha reductase [45], and its physiological effects are therefore regulated by the expression of this enzyme. DHT exhibits a higher binding affinity to the AR and has increased biological activity in specific tissues that include prostate, skin, and hair follicles [46-48]. The pathways for androgen metabolism are not restricted to the conversion of testosterone to DHT. Aromatase is another essential enzyme which converts testosterone into estradiol, showing that the androgen and estrogen pathways are interrelated. This conversion is crucial in tissues such as adipose tissue, liver and the brain since (testosterone derived) estrogens via ERs regulate important (metabolic) processes in these tissues [49-51]. The equilibrium of these enzymatic conversions is extremely well maintained and loss of this balance has serious consequences for metabolic homeostasis. For instance, the activities of 5α -reductase and aromatase on androgens and estrogens affect muscle mass, body fat distribution, insulin sensitivity, and lipid metabolism [52-56], and dysregulation of these enzymes can lead to metabolic disorders.

The activation of the AR can induce genomic and non-genomic intracellular signaling. For genomic actions, testosterone and DHT diffuse through the cell membrane and bind to intracellular ARs which are present in the cytoplasm. In the nucleus, androgen-AR complexes bind to androgen response elements (AREs) of the regulatory regions of target genes [57]. Its genomic mechanisms of action are similar to those of GR. Expression of AR target genes in turn leads to the synthesis of proteins with various androgenic activities, to e.g. increase

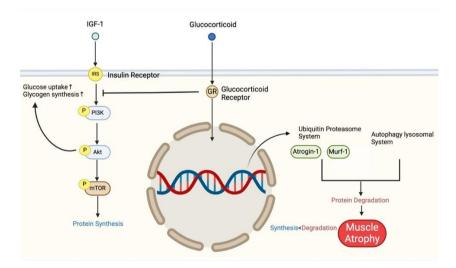
muscle mass and to change the distribution of the body fat [58, 59]. Nongenomic actions involve rapid signaling pathways through membraneassociated AR and secondary messengers including the activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway and the mitogen-activated protein kinase (MAPK) pathway [60]. These pathways lead to rapid cellular responses that do not involve direct changes in gene expression, contribute to a variety of cellular effects, such as increased glucose uptake, enhanced muscle cell contraction, and immediate changes in cellular metabolism [59, 61]. The effects of androgens in adulthood are generally transient. For instance, muscle mass may reduce when androgen concentration is low, but typically restores upon androgen replacement [62]. However, prolonged and excessive exposure to androgens contribute to various deleterious effects as exemplified in patients with polycystic ovary syndrome (PCOS) [63, 64]. Intriguingly, these AR-driven metabolic disorders have several similarities with GR-driven effects, and therefore attenuating GR signaling may provide a novel strategy for some androgen-induced pathologies.

Several studies have shown interactions between glucocorticoids and androgens, e.g. with effects of glucocorticoid signaling on the HPG-axis. Elevated glucocorticoid levels as a response to stress inhibit reproductive function to prioritize self-preservation. Glucocorticoid excess suppresses the HPG-axis by inhibition of GnRH and testosterone secretion [65]. The inhibition of testosterone production by glucocorticoids was also found at the level of the testis. In the testis, GR is expressed in various interstitial cell types including Leydig cells, macrophages, fibroblasts, smooth muscle cells [66], and male reproductive accessory tissues including the epididymis and prostate are also GR-enriched [67]. Male patients with Cushing's syndrome, characterized by elevated cortisol levels, show a correlation between high cortisol levels and low plasma testosterone concentrations, illustrating a clinical condition in which glucocorticoids suppress androgen levels [68]. Administration of the synthetic glucocorticoid dexamethasone was shown to suppress testosterone levels [69]. Furthermore, glucocorticoids have been found to inhibit steroidogenesis in the testes, leading to a decrease in testosterone production [70].

In addition to their effects on testosterone levels, glucocorticoids also influence estrogen levels. The ovary, the primary source of estrogens in females, is regulated by glucocorticoids throughout a woman's reproductive lifespan. Stress-related increases in glucocorticoids negatively affect fertility in women, compromising both ovarian function and uterine function. The GR is present in different ovarian cells including the follicles and corpus luteum and its expression is consistent throughout different stages of the reproductive cycle in rats [71]. Glucocorticoids inhibit LH-induced stimulation of steroidogenesis in ovarian cells, suppressing progesterone synthesis through direct effects on the

enzymes 3 β hydroxysteroid dehydrogenase (3 β -HSD) and 20 α hydroxysteroid dehydrogenase (20 α -HSD) [72,73]. The ovary exhibits tissue-specific regulation of glucocorticoids, including the regulation of 11 β -HSD expression during follicular maturation and ovulation [74]. These mechanisms regulate steroidogenesis, oocyte maturation, corpora lutea maintenance, and luteal regression [75, 76]. Although estrogen-glucocorticoid interactions are important, this thesis focuses primarily on androgen and glucocorticoid hormones.

3 Glucocorticoid receptor signaling in metabolic diseases


Metabolic diseases including obesity, type 2 diabetes, steatotic liver disease and cardiovascular diseases have become a global health burden. These conditions cause significant morbidity and mortality and are generally defined by a state of disrupted energy balance, insulin insensitivity and inflammation. Next to its profound effects on inflammatory and autoimmune diseases, GR also emerged as a critical player in the pathophysiology of these metabolic diseases due to its critical role in regulating metabolism, inflammation and the stress response.

GR signaling in various tissues is involved in the pathogenesis of metabolic diseases, including skeletal muscle, adipose tissue and liver [77-79]. However, these pathological effects via metabolic disturbances can differ between endogenous and exogenous glucocorticoids. The effects of synthetic glucocorticoids are often more pronounced due to their higher potency, longer half-life, and their administration may also disturb circadian regulation of endogenous glucocorticoids [80]. Endogenous glucocorticoids are tightly regulated by the body's feedback mechanisms, which (attempt to) mitigate prolonged exposure and its associated risks. In contrast, prolonged or overexposure to synthetic glucocorticoids can overwhelm these regulatory systems and lead to more severe side effects. Moreover, synthetic glucocorticoids are often administered in pharmacological doses that exceed physiological levels, further exacerbating their pathologic potential [80].

Dysregulated GR signaling has a significant impact on whole body metabolism, contributing to different metabolic disturbances. Conditions of glucocorticoid deficiency (e.g. Addison's disease) can be the result of several causes, including autoimmune disease, genetic defects in glucocorticoids production, or pituitary disease [81]. Symptoms associated with glucocorticoid deficiency include weight loss and low blood sugar levels. In contrast, patients with Cushing's syndrome with excessive cortisol production experience health issues such as central obesity, muscle loss, high blood sugar, fatty liver, high blood pressure, elevated cholesterol, weakened immune system, and insulin resistance [82]. In

patients with metabolic syndrome, elevated glucocorticoids levels are generally found and are often associated with hyperglycemia, insulin resistance and dyslipidemia [83-85]. However, obesity is not typically linked to high systemic glucocorticoid levels, but rather to an increase in local glucocorticoid effects that contribute to the development of metabolic syndrome [86].

One of the most concerning outcomes of chronic glucocorticoid exposure is muscle atrophy, a condition characterized by the loss of muscle mass and strength. This is particularly relevant in metabolic diseases where glucocorticoid levels are persistently high. Glucocorticoids stimulate the ubiquitin-proteasome pathway and the autophagy-lysosome system which degrades proteins from the skeletal muscles into amino acids [87, 88]. This catabolic effect is achieved through the upregulation of muscle-specific E3 ubiquitin ligases including muscle RING finger 1 (MuRF1) and atrogin-1 [89, 90]. As a result, glucocorticoids reduced muscle mass and function through this process of catabolism of muscle proteins, thereby resulting in muscle wasting and weakness [91]. GR signaling additionally impairs insulin signaling pathways in muscle tissue, leading to insulin resistance [92]. Glucocorticoids are involved in the activity of insulin receptor substrate (IRS) and phosphoinositide 3-kinase (PI3K)/Akt signaling which is crucial in muscle cells for glucose uptake and glycogen synthesis [87]. Decrease in the uptake and utilization of glucose in muscles contributes elevated blood glucose levels that lead to hyperglycemia in metabolic disorders.

Fig. 3 Glucocorticoid-induced regulation of muscle protein synthesis and degradation pathways. Insulin-like growth factor 1 (IGF-1) signaling through the insulin receptor (IRS) activates the PI3K-Akt-mTOR pathway, promoting glucose uptake, glycogen synthesis, and protein synthesis. Conversely, glucocorticoids bind to the glucocorticoid receptor (GR) and modulate transcriptional activity in muscle cells, leading to the activation of catabolic

pathways, including the ubiquitin-proteasome system (UPS) and autophagy-lysosomal system. Key markers such as Atrogin-1 and Murf-1 facilitate protein degradation, tipping the balance towards muscle atrophy when protein degradation exceeds protein synthesis. The interplay between these anabolic and catabolic pathways highlights the impact of glucocorticoid signaling on muscle homeostasis.

GR signaling pathways also significantly influence the function of adipose tissues. Chronic activation of GR signaling can result in obesity and adipocyte hypertrophy [93]. This includes the differentiation of preadipocytes into adipocytes and the expansion of these cells due to increased lipid accumulation [93, 94]. The overexpression of key adipogenic transcription factors such as PPARv and C/EBPα is driven by GR activation, and contributes to the expansion of adipose tissue mass, particularly in visceral fat depots [95]. The hypertrophic adipocytes become dysfunctional with reduced ability to store lipids, and with altered secretion of adipokines that in turn exacerbate the metabolic disturbances. The expanded visceral adipose tissue is metabolically active, secreting high levels pro-inflammatory cytokines, adipokines and free fatty acids, resulting in insulin resistance and cardiovascular disease [96, 97]. Moreover, overexpression of 11\beta-HSD1 in adipose tissues or liver is also associated with metabolic diseases. 11β-HSD1 increases local glucocorticoid levels and influences receptor activation in tissues, thereby affecting processes such as fatty acid metabolism and all other aspects mentioned above [98].

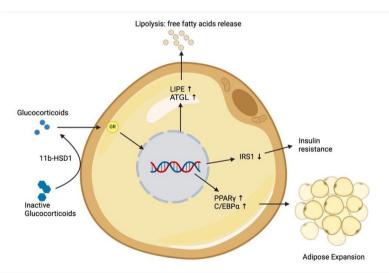


Fig. 4 Glucocorticoids signaling in Adipocytes. Glucocorticoids are activated locally within adipose tissue by 11β -hydroxysteroid dehydrogenase 1 (11β -HSD1), converting inactive GCs into their active forms. Glucocorticoid activation of GRs leads to increased lipolysis, mediated by the upregulation of lipolytic enzymes such as adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (LIPE), resulting in the release of free fatty acids (FFAs) into circulation. This contributes to systemic metabolic changes. Concurrently, glucocorticoids

impair insulin signaling by reducing Insulin Receptor Substrate 1 (IRS1) activity, promoting insulin resistance. Additionally, Glucocorticoids enhance the expression of transcription factors, including peroxisome proliferator-activated receptor gamma (PPAR γ) and CCAAT/enhancer-binding protein alpha (C/EBP α), which drive adipocyte differentiation, hypertrophy, and hyperplasia. These combined processes contribute to adipose tissue remodeling and expansion, further exacerbating obesity-related metabolic dysfunctions.

The liver is a central organ in glucose homeostasis and GR signaling significantly affects hepatic glucose metabolism. Glucocorticoids increase gluconeogenesis through the upregulation of key enzymes expression in the hepatic gluconeogenic pathway such as phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) [99]. In Metabolic dysfunction-Associated Fatty Liver Disease (MAFLD), the chronic activation of GR signaling stimulates the hepatic gluconeogenesis and thus causes hyperglycemia and impaired glucose tolerance [100, 101]. In addition, prolonged activation of GR exacerbate hyperglycemia by disrupting glycogenolysis in states of fasting and stress [101]. Moreover, glucocorticoids affect lipid fluxes in the body, which may also contribute to obesity and metabolic disease [102, 103].

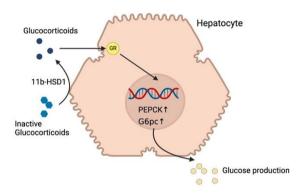


Fig. 5 Glucocorticoid-Regulated Hepatic Gluconeogenesis. Within the liver, inactive glucocorticoids are enzymatically converted into their active forms by 11β -hydroxysteroid dehydrogenase 1 (11β -HSD1), thereby enhancing their local bioavailability. The GR signaling cascade upregulates the expression of key gluconeogenic enzymes, including phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6pc), which are critical for the synthesis and release of glucose from non-carbohydrate substrates.

Given the central role of GR in metabolic diseases, intervention of GR signaling could be a potential therapeutic approach. Furthermore, novel and targetable biochemical pathways can be discovered by understanding the tissue-specific effects of GR and the molecular mechanisms behind its interactions with other metabolic regulators.

3.1 Androgen and glucocorticoid signaling crosstalk in metabolic tissues and sexual dimorphism of glucocorticoid effects

Sexually dimorphic effects of glucocorticoids have been observed in metabolic processes including inflammation and glucose metabolism. Males and females exhibit sex differences in transcriptional regulation in response to glucocorticoid treatment, involving differential regulation of signaling pathways such as apoptosis in thymocytes [104] and circadian rhythm of skeletal muscle, liver, adipose tissues, kidney [105-108]. In addition, chronic glucocorticoid exposure-induced metabolic alterations differ between sexes, in which male mice show increased blood glucose levels, insulin resistance, insulinemia, adiposity and hyperlipidemia as compared to female mice [109]. These findings suggest that males are more susceptible to the adverse metabolic effects of glucocorticoid exposure.

In skeletal muscle, previous studies suggest steroid hormone interaction between androgens and glucocorticoids. Dexamethasone treatment decreased muscle weight in male rats, which was prevented by concurrent administration of testosterone [110, 111]. Androgen administration thus protects against glucocorticoid-induced muscle atrophy, and this is likely mediated via downregulation of muscle specific ubiquitin ligases atrogin-1 and Murf1, which are known to be involved in glucocorticoid-induced protein degradation and muscle wasting [112]. These findings suggest direct crosstalk between glucocorticoids and androgens in skeletal muscle. In this tissue, the two steroids tend to have opposite (anabolic and catabolic) effects.

In white adipose tissue and liver, glucocorticoid-induced gene expression is in part dependent on AR signaling [113]. This suggests that AR activity can - in contrast to effects in skeletal muscle - increase GR-induced transcription in various peripheral tissues and this is possibly related to metabolic outcomes. In male but not in female mice, chronic exposure to glucocorticoids inhibits thermogenic activity in brown adipose tissue. [79, 114], indicating a sexual dimorphism that is possible related to differences in androgen and/or estrogen signaling. Excess corticosterone leads to lipid accumulation and a white adipose tissue-like appearance of brown adipose tissue in male mice, which is reversed by orchiectomy and restored with DHT administration [79]. Furthermore, DHT treatment potentiates GR signaling in brown adipose tissue in intact male mice [79]. In contrast, female mice are inherently more resistant to glucocorticoidinduced effects and exhibit lipid accumulation in brown adipose tissue following AR activation with DHT [115]. Altogether, many metabolic effects of glucocorticoids, including insulin resistance, seem to be androgen-dependent in mice.

Glucocorticoids and androgens exhibit different interactions in various tissues via different potential mechanisms. This crosstalk may involve competitive binding to shared response elements and possible coordination in the process of transcription. GR DNA binding is dependent on chromatin pre-accessibility [116], but can be influenced by AR-mediated chromatin opening [117]. In addition, various modulatory coactivators and the chaperone protein FKBP51 can affect GR signaling and are also associated with AR signaling, contributing to the complex crosstalk between glucocorticoids and androgens [118]. Other mechanisms potentially involve a negative androgen response element (nARE) in the GR promoter, overlapping cistromes of GRs and ARs, and potential cooperative transcriptional regulation through assisted loading [119]. This interference can result in mutual repression or modulation of target gene expression, affecting metabolic pathways regulated by both receptors. Besides direct interaction, AR activity can induce 11β-HSD1, influencing the local balance of GR and AR activation [120]. In addition, cytochrome P450 Enzymes (CYPs) are involved in the metabolism of both glucocorticoids and androgens. Regulation of CYP enzymes by GR and AR can affect the clearance and activity of these hormones, influencing their overall effects on metabolism [121].

The main focus of this thesis is crosstalk between glucocorticoids and androgens, but it should be noted that estrogens can also interact with glucocorticoids at the endocrine and molecular level. Estrogen signaling can contribute to the sexually dimorphic effects of glucocorticoids, and molecular interactions between these hormone systems play a crucial role in shaping metabolic processes and inflammatory responses.

3.2 The role of circadian glucocorticoid signaling in metabolic health

The daily oscillation of glucocorticoids is controlled by the central clock and the adrenal clock. In the suprachiasmatic nucleus of the hypothalamus, the central clock controls the circadian rhythm by regulating the activity of HPA-axis and the sympathetic innervation of the adrenal gland [122]. This regulation concerns the release of CRH and ACTH in response to environmental stimuli [123]. In addition, the adrenal gland also has an intrinsic clock that controls the steroid production and its response to ACTH. This peripheral clock is synchronized by the central clock and forms part of the regulation of this rhythm by controlling the adrenal's capability to secrete glucocorticoids [124]. This regulation is crucial for optimizing physiological processes and behavior at the right time of day [125]. The circadian rhythm of adrenal glucocorticoids is an important 'zeitgeber' mechanism for many cells in the body, and has significant implications for human health and disease.

The circadian secretion of glucocorticoids plays a vital role in regulating energy balance by increasing glucocorticoids levels before the active period [126]. Imbalances in glucocorticoid rhythms are associated with metabolic disorders like obesity, diabetes, dyslipidemia, and atherosclerosis [127]. Pathological excess or glucocorticoid insufficiency can lead to symptoms affecting metabolic functions, but loss of rhythmicity is often intrinsic to these situations, and disrupted circadian glucocorticoid rhythms are also linked to metabolic disorders [128]. The circadian aspect may well play a role in the onset or progression of conditions like obesity, type 2 diabetes, dyslipidemia, and atherosclerosis.

The strategies of chronotherapy in medicine have gained attention in the recent years, with studies demonstrating that the timing of medication administration may influence therapeutic outcomes [129, 130]. Recent findings suggest that whether or not the timing of glucocorticoid administration aligns with body's endogenous circadian rhythms may significantly influence their metabolic effects [130, 131]. In the clinic, morning compared to evening administration of glucocorticoids, when given in a pattern consistent with the endogenous rhythm of cortisol, improved glycemic control and reduced insulin resistance [132, 133]. The GR itself is also subjected to circadian regulation with variations in its expression and responsiveness during the day. Administration glucocorticoids when endogenous glucocorticoids levels are high can potentially minimize the negative effects including insulin insensitivity and dyslipidemia development caused by the prolonged exposure. However, the underlying mechanisms and clinical implications of these findings remain to be fully elucidated [134].

OUTLINE OF THIS THESIS

In this thesis we investigated how sex (hormones) and time can influence the functional and transcriptional response of glucocorticoid signaling, with a particular focus on metabolic processes in different peripheral tissues and under different pathological conditions.

In chapter 2, we investigated the potential sex differences in the effects of chronic corticosterone exposure and synthetic glucocorticoid treatment on muscle atrophy and dysfunction in mice. This revealed robust sex differences in muscle function and transcriptome in response to glucocorticoid exposure. Increased corticosterone exposure reduced grip strength specifically in female mice, while muscle mass decreased in both sexes. On skeletal muscle transcriptome, we observed that male mice exhibited more pronounced transcriptional variations in response to corticosterone treatment compared to

female mice. Altogether these findings help to outline the influence of sex on the skeletal muscle response to glucocorticoids.

In chapter 3, we evaluated whether the timing of synthetic glucocorticoid treatment affects the development of (metabolic) side effects. We found that out-of-phase but not in-phase treatment of synthetic glucocorticoid betamethasone induced insulin resistance and hyperinsulinemia. In the context of glucose metabolism, in-phase treatment generally caused less side effects compared to the out-of-phase treatment. The time of treatment in relation to the circadian variation in endogenous glucocorticoid levels should be considered when measuring glucocorticoid response.

In chapter 4, we investigated the role of GR signaling in the metabolic symptoms of polycystic ovary syndrome (PCOS) using a mouse model of prolonged DHT exposure. We observed that *Nr3c1* (GR) and *Hsd11b1* mRNA expression were upregulated various tissues of DHT-treated mice, suggesting a deregulated GR signaling. We evaluated the importance of GR signaling by performing treatment with a selective GR antagonist and found that this alleviated DHT-induced hyperglycemia and restored glucose tolerance. Given the similarities in metabolic symptoms between PCOS and excess glucocorticoid exposure, our results suggest that GR signaling may contribute to the metabolic symptoms observed in PCOS, but further research is required to determine the relevance of these findings to humans. To conclude, results of these studies and indications for human applications are discussed in chapter 5.

REFERENCE

- 1. Gallo-Payet, N. and M.C. Battista, *Steroidogenesis-adrenal cell signal transduction*. Compr Physiol, 2014. **4**(3): p. 889-964.
- 2. Hawley, J.M. and B.G. Keevil, *Endogenous glucocorticoid analysis by liquid chromatography-tandem mass spectrometry in routine clinical laboratories.* J Steroid Biochem Mol Biol, 2016. **162**: p. 27-40.
- 3. Travers, S., et al., *Multiplexed steroid profiling of gluco- and mineralocorticoids pathways using a liquid chromatography tandem mass spectrometry method.* J Steroid Biochem Mol Biol, 2017. **165**(Pt B): p. 202-211.
- 4. Vegiopoulos, A. and S. Herzig, *Glucocorticoids, metabolism and metabolic diseases.* Mol Cell Endocrinol, 2007. **275**(1-2): p. 43-61.
- 5. Cruz-Topete, D. and J.A. Cidlowski, *One hormone, two actions: anti- and pro-inflammatory effects of glucocorticoids.* Neuroimmunomodulation, 2015. **22**(1-2): p. 20-32.
- 6. De Bosscher, K. and G. Haegeman, *Minireview: latest perspectives on antiinflammatory actions of glucocorticoids.* Mol Endocrinol, 2009. **23**(3): p. 281-91.
- 7. Donatti, T.L., et al., *Effects of glucocorticoids on growth and bone mineralization*. J Pediatr (Rio J), 2011. **87**(1): p. 4-12.
- 8. Joels, M., *Impact of glucocorticoids on brain function: relevance for mood disorders.* Psychoneuroendocrinology, 2011. **36**(3): p. 406-14.
- 9. Sobieraj, D.M. and W.L. Baker, *Medications for Asthma.* JAMA, 2018. **319**(14): p. 1520.
- 10. Paolino, S., M. Cutolo, and C. Pizzorni, *Glucocorticoid management in rheumatoid arthritis: morning or night low dose?* Reumatologia, 2017. **55**(4): p. 189-197.
- 11. Lattanzi, S., et al., *Oral and intravenous steroids for multiple sclerosis relapse: a systematic review and meta-analysis.* J Neurol, 2017. **264**(8): p. 1697-1704.
- 12. Martins, C.S., et al., *HPA axis dysregulation, NR3C1 polymorphisms and glucocorticoid receptor isoforms imbalance in metabolic syndrome.* Diabetes Metab Res Rev, 2017. **33**(3).
- 13. Engeli, S., et al., *Regulation of 11beta-HSD genes in human adipose tissue: influence of central obesity and weight loss.* Obes Res, 2004. **12**(1): p. 9-17.
- 14. Chen, T.C., et al., *The glucocorticoid-Angptl4-ceramide axis induces insulin resistance through PP2A and PKCzeta.* Sci Signal, 2017. **10**(489).

- 15. Cook, C.J., Stress induces CRF release in the paraventricular nucleus, and both CRF and GABA release in the amygdala. Physiol Behav, 2004. **82**(4): p. 751-62.
- 16. Kim, J.S., S.Y. Han, and K.J. Iremonger, *Stress experience and hormone feedback tune distinct components of hypothalamic CRH neuron activity.* Nat Commun, 2019. **10**(1): p. 5696.
- 17. Slominski, A., et al., *CRH stimulation of corticosteroids production in melanocytes is mediated by ACTH.* Am J Physiol Endocrinol Metab, 2005. **288**(4): p. E701-6.
- 18. Levy, B.H. and J.G. Tasker, *Synaptic regulation of the hypothalamic-pituitary-adrenal axis and its modulation by glucocorticoids and stress.* Front Cell Neurosci, 2012. **6**: p. 24.
- 19. Hill, M.N. and J.G. Tasker, *Endocannabinoid signaling, glucocorticoid-mediated negative feedback, and regulation of the hypothalamic-pituitary-adrenal axis.* Neuroscience, 2012. **204**: p. 5-16.
- 20. Kivimaki, M., A. Bartolomucci, and I. Kawachi, *The multiple roles of life stress in metabolic disorders*. Nat Rev Endocrinol, 2023. **19**(1): p. 10-27.
- 21. Morgan, S.A., et al., 11beta-hydroxysteroid dehydrogenase type 1 regulates glucocorticoid-induced insulin resistance in skeletal muscle. Diabetes, 2009. **58**(11): p. 2506-15.
- 22. Staab, C.A. and E. Maser, *11beta-Hydroxysteroid dehydrogenase type 1 is an important regulator at the interface of obesity and inflammation.* J Steroid Biochem Mol Biol, 2010. **119**(1-2): p. 56-72.
- 23. Hermanowski-Vosatka, A., et al., *11beta-HSD1* inhibition ameliorates metabolic syndrome and prevents progression of atherosclerosis in mice. [Exp Med, 2005. **202**(4): p. 517-27.
- 24. Biller, K.J., R.J. Unwin, and D.G. Shirley, *Distal tubular electrolyte transport during inhibition of renal 11beta-hydroxysteroid dehydrogenase.* Am J Physiol Renal Physiol, 2001. **280**(1): p. F172-9.
- 25. van Uum, S.H., et al., *The role of 11 beta-hydroxysteroid dehydrogenase in the pathogenesis of hypertension.* Cardiovasc Res, 1998. **38**(1): p. 16-24.
- 26. Bae, Y.J. and J. Kratzsch, *Corticosteroid-binding globulin: modulating mechanisms of bioavailability of cortisol and its clinical implications.* Best Pract Res Clin Endocrinol Metab, 2015. **29**(5): p. 761-72.
- 27. Germain, P., et al., *Overview of nomenclature of nuclear receptors.* Pharmacol Rev, 2006. **58**(4): p. 685-704.
- 28. Gustafsson, J.A., *Historical overview of nuclear receptors.* J Steroid Biochem Mol Biol, 2016. **157**: p. 3-6.

- 29. Grossmann, C., et al., *Transactivation via the human glucocorticoid and mineralocorticoid receptor by therapeutically used steroids in CV-1 cells: a comparison of their glucocorticoid and mineralocorticoid properties.* Eur J Endocrinol, 2004. **151**(3): p. 397-406.
- 30. Reul, J.M. and E.R. de Kloet, *Two receptor systems for corticosterone in rat brain: microdistribution and differential occupation.* Endocrinology, 1985. **117**(6): p. 2505-11.
- 31. Vandevyver, S., L. Dejager, and C. Libert, *Comprehensive overview of the structure and regulation of the glucocorticoid receptor.* Endocr Rev, 2014. **35**(4): p. 671-93.
- 32. Scheschowitsch, K., J.A. Leite, and J. Assreuy, *New Insights in Glucocorticoid Receptor Signaling-More Than Just a Ligand-Binding Receptor.* Front Endocrinol (Lausanne), 2017. **8**: p. 16.
- 33. Almlof, T., J.A. Gustafsson, and A.P. Wright, *Role of hydrophobic amino acid clusters in the transactivation activity of the human glucocorticoid receptor.* Mol Cell Biol, 1997. **17**(2): p. 934-45.
- 34. Almlof, T., et al., Role of important hydrophobic amino acids in the interaction between the glucocorticoid receptor tau 1-core activation domain and target factors. Biochemistry, 1998. **37**(26): p. 9586-94.
- 35. Howard, K.J., et al., *Mapping the HSP90 binding region of the glucocorticoid receptor.* J Biol Chem, 1990. **265**(20): p. 11928-35.
- 36. Schule, R., et al., *Functional antagonism between oncoprotein c-Jun and the glucocorticoid receptor.* Cell, 1990. **62**(6): p. 1217-26.
- 37. Hebbar, P.B. and T.K. Archer, *Chromatin remodeling by nuclear receptors*. Chromosoma, 2003. **111**(8): p. 495-504.
- 38. Rao, N.A., et al., *Coactivation of GR and NFKB alters the repertoire of their binding sites and target genes.* Genome Res, 2011. **21**(9): p. 1404-16.
- 39. Fujioka, S., et al., *NF-kappaB and AP-1 connection: mechanism of NF-kappaB-dependent regulation of AP-1 activity.* Mol Cell Biol, 2004. **24**(17): p. 7806-19.
- 40. Ito, K., et al., *Histone deacetylase 2-mediated deacetylation of the glucocorticoid receptor enables NF-kappaB suppression.* J Exp Med, 2006. **203**(1): p. 7-13.
- 41. Bledsoe, R.K., et al., *Crystal structure of the glucocorticoid receptor ligand binding domain reveals a novel mode of receptor dimerization and coactivator recognition.* Cell, 2002. **110**(1): p. 93-105.
- 42. Gonzalez, D., et al., *Hair cortisol in polycystic ovary syndrome.* Sci Rep, 2022. **12**(1): p. 10309.

- 43. Conn, P.M. and W.F. Crowley, Jr., *Gonadotropin-releasing hormone and its analogs.* Annu Rev Med, 1994. **45**: p. 391-405.
- 44. Nassar, G.N. and S.W. Leslie, *Physiology, Testosterone*, in *StatPearls*. 2024: Treasure Island (FL).
- 45. Marks, L.S., *5alpha-reductase: history and clinical importance.* Rev Urol, 2004. **6 Suppl 9**(Suppl 9): p. S11-21.
- 46. Fu, D., et al., *Dihydrotestosterone-induced hair regrowth inhibition by activating androgen receptor in C57BL6 mice simulates androgenetic alopecia.* Biomed Pharmacother, 2021. **137**: p. 111247.
- 47. Marks, L.S., E.A. Mostaghel, and P.S. Nelson, *Prostate tissue androgens: history and current clinical relevance.* Urology, 2008. **72**(2): p. 247-54.
- 48. Drake, L., et al., *The effects of finasteride on scalp skin and serum androgen levels in men with androgenetic alopecia.* J Am Acad Dermatol, 1999. **41**(4): p. 550-4.
- 49. Fuente-Martin, E., et al., *Estrogen, astrocytes and the neuroendocrine control of metabolism.* Rev Endocr Metab Disord, 2013. **14**(4): p. 331-8.
- 50. Lebow, J. and L. Sim, *The influence of estrogen therapies on bone mineral density in premenopausal women with anorexia nervosa and amenorrhea.* Vitam Horm, 2013. **92**: p. 243-57.
- 51. Ferreira, J., Estrogen modulates cognitive function in mid-age female mice. Lab Anim (NY), 2023. **52**(11): p. 268.
- 52. Krause, J.S., et al., Gene expression of sex steroid metabolizing enzymes and receptors in the skeletal muscle of migrant and resident subspecies of white-crowned sparrow (Zonotrichia leucophrys). Oecologia, 2022. 199(3): p. 549-562.
- 53. Stremmel, W., et al., *Abnormalities in estrogen, androgen, and insulin metabolism in idiopathic hemochromatosis.* Ann N Y Acad Sci, 1988. **526**: p. 209-23.
- 54. Butler, L.M., M.M. Centenera, and J.V. Swinnen, *Androgen control of lipid metabolism in prostate cancer: novel insights and future applications.* Endocr Relat Cancer, 2016. **23**(5): p. R219-27.
- 55. Palmisano, B.T., L. Zhu, and J.M. Stafford, *Role of Estrogens in the Regulation of Liver Lipid Metabolism.* Adv Exp Med Biol, 2017. **1043**: p. 227-256.
- 56. Mahboobifard, F., et al., *Estrogen as a key regulator of energy homeostasis and metabolic health.* Biomed Pharmacother, 2022. **156**: p. 113808.
- 57. Shang, Y., M. Myers, and M. Brown, *Formation of the androgen receptor transcription complex.* Mol Cell, 2002. **9**(3): p. 601-10.

- 58. Fonseca, G., et al., Selective androgen receptor modulators (SARMs) as pharmacological treatment for muscle wasting in ongoing clinical trials. Expert Opin Investig Drugs, 2020. **29**(8): p. 881-891.
- 59. Yin, L., S. Qi, and Z. Zhu, *Advances in mitochondria-centered mechanism behind the roles of androgens and androgen receptor in the regulation of glucose and lipid metabolism.* Front Endocrinol (Lausanne), 2023. **14**: p. 1267170.
- 60. Shorning, B.Y., et al., *The PI3K-AKT-mTOR Pathway and Prostate Cancer:* At the Crossroads of AR, MAPK, and WNT Signaling. Int J Mol Sci, 2020. **21**(12).
- 61. Ting, H.J. and C. Chang, *Actin associated proteins function as androgen receptor coregulators: an implication of androgen receptor's roles in skeletal muscle.* J Steroid Biochem Mol Biol, 2008. **111**(3-5): p. 157-63.
- 62. Rossetti, M.L., J.L. Steiner, and B.S. Gordon, *Androgen-mediated regulation of skeletal muscle protein balance.* Mol Cell Endocrinol, 2017. **447**: p. 35-44.
- 63. Pelekanou, V. and E. Castanas, *Androgen Control in Prostate Cancer.* J Cell Biochem, 2016. **117**(10): p. 2224-34.
- 64. Ye, W., et al., *The role of androgen and its related signals in PCOS.* J Cell Mol Med, 2021. **25**(4): p. 1825-1837.
- 65. Mohammed, A.G., A.A. Mansour, and J.H. Ahmed, *Effect of exogenous glucocorticoids on male hypogonadism.* Biomed Rep, 2020. **13**(3): p. 12.
- 66. Schultz, R., et al., *Localization of the glucocorticoid receptor in testis and accessory sexual organs of male rat.* Mol Cell Endocrinol, 1993. **95**(1-2): p. 115-20.
- 67. Davey, R.A. and M. Grossmann, *Androgen Receptor Structure, Function and Biology: From Bench to Bedside.* Clin Biochem Rev, 2016. **37**(1): p. 3-15.
- 68. Aono, T., et al., *Influence of surgical stress under general anesthesia on serum gonadotropin levels in male and female patients.* J Clin Endocrinol Metab, 1976. **42**(1): p. 144-8.
- 69. Bambino, T.H. and A.J. Hsueh, *Direct inhibitory effect of glucocorticoids upon testicular luteinizing hormone receptor and steroidogenesis in vivo and in vitro.* Endocrinology, 1981. **108**(6): p. 2142-8.
- 70. Saez, J.M., et al., Effects of in vivo administration of dexamethasone, corticotropin and human chorionic gonadotropin on steroidogenesis and protein and DNA synthesis of testicular interstitial cells in prepuberal rats. Endocrinology, 1977. **101**(4): p. 1256-63.

- 71. Tetsuka, M., et al., *Expression of 11beta-hydroxysteroid dehydrogenase, glucocorticoid receptor, and mineralocorticoid receptor genes in rat ovary.* Biol Reprod, 1999. **60**(2): p. 330-5.
- 72. Michael, A.E., et al., *Direct inhibition of ovarian steroidogenesis by cortisol and the modulatory role of 11 beta-hydroxysteroid dehydrogenase.* Clin Endocrinol (Oxf), 1993. **38**(6): p. 641-4.
- 73. Schoonmaker, J.N. and G.F. Erickson, *Glucocorticoid modulation of follicle-stimulating hormone-mediated granulosa cell differentiation*. Endocrinology, 1983. **113**(4): p. 1356-63.
- 74. Michael, A.E., et al., *Ovarian 11beta-hydroxysteroid dehydrogenase* (11betaHSD) activity is suppressed in women with anovulatory polycystic ovary syndrome (PCOS): apparent role for ovarian androgens. J Clin Endocrinol Metab, 2013. **98**(8): p. 3375-83.
- 75. Bhaumik, S., et al., *Glucocorticoids and Their Receptor Isoforms: Roles in Female Reproduction, Pregnancy, and Foetal Development.* Biology (Basel), 2023. **12**(8).
- 76. Joseph, D.N. and S. Whirledge, *Stress and the HPA Axis: Balancing Homeostasis and Fertility.* Int J Mol Sci, 2017. **18**(10).
- 77. Schakman, O., et al., *Glucocorticoid-induced skeletal muscle atrophy.* Int J Biochem Cell Biol, 2013. **45**(10): p. 2163-72.
- 78. Beaupere, C., et al., *Molecular Mechanisms of Glucocorticoid-Induced Insulin Resistance*. Int J Mol Sci, 2021. **22**(2).
- 79. Gasparini, S.J., et al., *Androgens sensitise mice to glucocorticoid-induced insulin resistance and fat accumulation.* Diabetologia, 2019. **62**(8): p. 1463-1477.
- 80. Singh, R.R., J.S. Cuffe, and K.M. Moritz, *Short- and long-term effects of exposure to natural and synthetic glucocorticoids during development.* Clin Exp Pharmacol Physiol, 2012. **39**(11): p. 979-89.
- 81. Davenport, J., et al., *Addison's disease*. Am Fam Physician, 1991. **43**(4): p. 1338-42.
- 82. Gadelha, M., et al., *Cushing's syndrome.* Lancet, 2023. **402**(10418): p. 2237-2252.
- 83. Anagnostis, P., et al., *Clinical review: The pathogenetic role of cortisol in the metabolic syndrome: a hypothesis.* J Clin Endocrinol Metab, 2009. **94**(8): p. 2692-701.
- 84. Vali, A., et al., Adipocyte Glucocorticoid Receptor Activation With High Glucocorticoid Doses Impairs Healthy Adipose Tissue Expansion by Repressing Angiogenesis. Diabetes, 2024. **73**(2): p. 211-224.

- 85. Wang, M., The role of glucocorticoid action in the pathophysiology of the Metabolic Syndrome. Nutr Metab (Lond), 2005. **2**(1): p. 3.
- 86. Akalestou, E., L. Genser, and G.A. Rutter, *Glucocorticoid Metabolism in Obesity and Following Weight Loss.* Front Endocrinol (Lausanne), 2020. **11**: p. 59.
- 87. Nakao, R., et al., *Ubiquitin ligase Cbl-b is a negative regulator for insulin-like growth factor 1 signaling during muscle atrophy caused by unloading.*Mol Cell Biol, 2009. **29**(17): p. 4798-811.
- 88. Zheng, B., et al., *FOXO3a mediates signaling crosstalk that coordinates ubiquitin and atrogin-1/MAFbx expression during glucocorticoid-induced skeletal muscle atrophy.* FASEB J, 2010. **24**(8): p. 2660-9.
- 89. Jagoe, R.T., et al., Skeletal muscle mRNA levels for cathepsin B, but not components of the ubiquitin-proteasome pathway, are increased in patients with lung cancer referred for thoracotomy. Clin Sci (Lond), 2002. **102**(3): p. 353-61.
- 90. Sandri, M., et al., Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell, 2004. **117**(3): p. 399-412.
- 91. Shin, Y.S., et al., *Prednisolone-induced muscle dysfunction is caused more by atrophy than by altered acetylcholine receptor expression.* Anesth Analg, 2000. **91**(2): p. 322-8.
- 92. Whorwood, C.B., et al., *Regulation of glucocorticoid receptor alpha and beta isoforms and type I 11beta-hydroxysteroid dehydrogenase expression in human skeletal muscle cells: a key role in the pathogenesis of insulin resistance?* J Clin Endocrinol Metab, 2001. **86**(5): p. 2296-308.
- 93. Dalle, H., et al., Adipocyte Glucocorticoid Receptor Deficiency Promotes Adipose Tissue Expandability and Improves the Metabolic Profile Under Corticosterone Exposure. Diabetes, 2019. **68**(2): p. 305-317.
- 94. Peckett, A.J., D.C. Wright, and M.C. Riddell, *The effects of glucocorticoids on adipose tissue lipid metabolism.* Metabolism, 2011. **60**(11): p. 1500-10.
- 95. Madsen, M.S., et al., *Peroxisome proliferator-activated receptor gamma and C/EBPalpha synergistically activate key metabolic adipocyte genes by assisted loading.* Mol Cell Biol, 2014. **34**(6): p. 939-54.
- 96. Do, T.T.H., et al., *Glucocorticoid-induced insulin resistance is related to macrophage visceral adipose tissue infiltration.* J Steroid Biochem Mol Biol, 2019. **185**: p. 150-162.
- 97. Despres, J.P., et al., *Regional distribution of body fat, plasma lipoproteins, and cardiovascular disease.* Arteriosclerosis, 1990. **10**(4): p. 497-511.

- 98. Seckl, J.R. and B.R. Walker, *Minireview: 11beta-hydroxysteroid dehydrogenase type 1- a tissue-specific amplifier of glucocorticoid action.* Endocrinology, 2001. **142**(4): p. 1371-6.
- 99. Bose, S.K., I. Hutson, and C.A. Harris, *Hepatic Glucocorticoid Receptor Plays a Greater Role Than Adipose GR in Metabolic Syndrome Despite Renal Compensation.* Endocrinology, 2016. **157**(12): p. 4943-4960.
- 100. Smith, G.I., et al., *Insulin resistance drives hepatic de novo lipogenesis in nonalcoholic fatty liver disease.* J Clin Invest, 2020. **130**(3): p. 1453-1460.
- 101. Bhat, N. and A. Mani, *Dysregulation of Lipid and Glucose Metabolism in Nonalcoholic Fatty Liver Disease*. Nutrients, 2023. **15**(10).
- 102. Macfarlane, E., H. Zhou, and M.J. Seibel, *The glucocorticoid receptor in skeletal health and disease: insights from targeted knockout mice.* J Endocrinol, 2024. **261**(2).
- 103. Kroon, J., et al., Selective Glucocorticoid Receptor Antagonist CORT125281 Activates Brown Adipose Tissue and Alters Lipid Distribution in Male Mice. Endocrinology, 2018. **159**(1): p. 535-546.
- 104. Bourke, C.H., C.S. Harrell, and G.N. Neigh, *Stress-induced sex differences:* adaptations mediated by the glucocorticoid receptor. Horm Behav, 2012. **62**(3): p. 210-8.
- 105. Rosa-Caldwell, M.E. and N.P. Greene, *Muscle metabolism and atrophy: let's talk about sex.* Biol Sex Differ, 2019. **10**(1): p. 43.
- 106. Astafev, A.A., et al., *Sexual dimorphism of circadian liver transcriptome.* iScience, 2024. **27**(4): p. 109483.
- 107. Mattsson, C. and T. Olsson, *Estrogens and glucocorticoid hormones in adipose tissue metabolism*. Curr Med Chem, 2007. **14**(27): p. 2918-24.
- 108. Costello, H.M., et al., *Circadian clocks of the kidney: function, mechanism, and regulation.* Physiol Rev, 2022. **102**(4): p. 1669-1701.
- 109. Kaikaew, K., et al., Sex Difference in Corticosterone-Induced Insulin Resistance in Mice. Endocrinology, 2019. **160**(10): p. 2367-2387.
- 110. Zhao, W., et al., *Testosterone protects against dexamethasone-induced muscle atrophy, protein degradation and MAFbx upregulation.* J Steroid Biochem Mol Biol, 2008. **110**(1-2): p. 125-9.
- 111. Wu, Y., et al., *REDD1* is a major target of testosterone action in preventing dexamethasone-induced muscle loss. Endocrinology, 2010. **151**(3): p. 1050-9.
- 112. Wu, Y., et al., *Testosterone reduced methylprednisolone-induced muscle atrophy in spinal cord-injured rats.* Spinal Cord, 2012. **50**(1): p. 57-62.

- 113. Spaanderman, D.C.E., et al., *Androgens modulate glucocorticoid receptor activity in adipose tissue and liver.* J Endocrinol, 2018.
- 114. Mousovich-Neto, F., et al., *Brown adipose tissue remodelling induced by corticosterone in male Wistar rats.* Exp Physiol, 2019. **104**(4): p. 514-528.
- 115. Kaikaew, K., A. Grefhorst, and J.A. Visser, Sex Differences in Brown Adipose Tissue Function: Sex Hormones, Glucocorticoids, and Their Crosstalk. Front Endocrinol (Lausanne), 2021. 12: p. 652444.
- 116. John, S., et al., *Chromatin accessibility pre-determines glucocorticoid receptor binding patterns.* Nat Genet, 2011. **43**(3): p. 264-8.
- 117. Kulik, M., et al., Androgen and glucocorticoid receptor direct distinct transcriptional programs by receptor-specific and shared DNA binding sites. Nucleic Acids Res, 2021. **49**(7): p. 3856-3875.
- 118. Sinclair, D., et al., *Dysregulation of glucocorticoid receptor co-factors FKBP5, BAG1 and PTGES3 in prefrontal cortex in psychotic illness.* Sci Rep, 2013. **3**: p. 3539.
- 119. Arora, V.K., et al., Glucocorticoid receptor confers resistance to antiandrogens by bypassing androgen receptor blockade. Cell, 2013. **155**(6): p. 1309-22.
- 120. Ishida, Y., et al., *Expression of steroid-converting enzymes in osteoblasts derived from rat vertebrae.* Osteoporos Int, 2002. **13**(3): p. 235-40.
- 121. Monostory, K. and Z. Dvorak, *Steroid regulation of drug-metabolizing cytochromes P450.* Curr Drug Metab, 2011. **12**(2): p. 154-72.
- Buijs, R.M. and A. Kalsbeek, *Hypothalamic integration of central and peripheral clocks.* Nat Rev Neurosci, 2001. **2**(7): p. 521-6.
- 123. Buijs, R.M., et al., *Suprachiasmatic nucleus lesion increases corticosterone secretion*. Am J Physiol, 1993. **264**(6 Pt 2): p. R1186-92.
- 124. Meyer-Bernstein, E.L., et al., *Effects of suprachiasmatic transplants on circadian rhythms of neuroendocrine function in golden hamsters.* Endocrinology, 1999. **140**(1): p. 207-18.
- 125. Son, G.H., S. Chung, and K. Kim, *The adrenal peripheral clock:* glucocorticoid and the circadian timing system. Front Neuroendocrinol, 2011. **32**(4): p. 451-65.
- 126. Chung, S., G.H. Son, and K. Kim, *Circadian rhythm of adrenal glucocorticoid: its regulation and clinical implications.* Biochim Biophys Acta, 2011. **1812**(5): p. 581-91.
- 127. Kalafatakis, K., et al., Temporal control of glucocorticoid neurodynamics and its relevance for brain homeostasis, neuropathology and

- *glucocorticoid-based therapeutics.* Neurosci Biobehav Rev, 2016. **61**: p. 12-25.
- 128. Sotak, M., et al., *Peripheral circadian clocks are diversely affected by adrenalectomy*. Chronobiol Int, 2016. **33**(5): p. 520-9.
- 129. Mohta, M., *Timing of dexamethasone administration.* Med Sci Monit, 2010. **16**(8): p. LE12.
- 130. Wu, T., et al., *Timing of glucocorticoid administration determines severity of lipid metabolism and behavioral effects in rats.* Chronobiol Int, 2017. **34**(1): p. 78-92.
- 131. Costello, R., et al., *Timing of glucocorticoid administration: a cross-sectional survey of glucocorticoid users in an online social network for health.* Rheumatology (Oxford), 2017. **56**(3): p. 494-495.
- 132. Nesbitt, L.T., Jr., *Minimizing complications from systemic glucocorticosteroid use.* Dermatol Clin, 1995. **13**(4): p. 925-39.
- 133. Kassi, E. and A.G. Papavassiliou, *Glucose can promote a glucocorticoid resistance state.* J Cell Mol Med, 2012. **16**(5): p. 1146-9
- 134. Tholen, S., et al., Flattening of circadian glucocorticoid oscillations drives acute hyperinsulinemia and adipocyte hypertrophy. Cell Rep, 2022. **39**(13): p. 111018.