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Abstract
Toxicological test methods generate raw data and provide instructions on how to use these to 
determine a final outcome such as a classification of test compounds as hits or non-hits. The data 
processing pipeline provided in the test method description is often highly complex. Usually, multiple 
layers of data, ranging from a machine-generated output to the final hit definition, are considered. 
Transition between each of these layers often requires several data processing steps. As changes in 
any of these processing steps can impact the final output of new approach methods (NAMs), the 
processing pipeline is an essential part of a NAM description and should be included in reporting 
templates such as the ToxTemp. The same raw data, processed in different ways, may result in  
different final outcomes that may affect the readiness status and regulatory acceptance of the NAM, 
as an altered output can affect robustness, performance, and relevance. Data management, pro-
cessing, and interpretation are therefore important elements of a comprehensive NAM definition. 
We aim to give an overview of the most important data levels to be considered during the devel-
opment and application of a NAM. In addition, we illustrate data processing and evaluation steps  
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data processing pipelines) and their typical architecture are hard 
to find in the literature. However, many related aspects are well 
covered: (i) There is coverage of data structure in the context of 
dedicated data processing pipelines. Such pipelines are often used 
in the context of automated (algorithmic), standardized, and trace-
able data processing. They may contain some decision points and 
input by users, as well as quality assurance steps found in dash-
boards such as the National Interagency Center for Alternative 
Toxiological Methods’ (NICEATM) Integrated Chemical Envi-
ronment and the U.S. Environmental Protection Agency’s (EPA) 
CompTox Chemicals Dashboard (Bell et al., 2020; Daniel et al., 
2022; Feshuk et al., 2023). 

Here, we use the term “pipeline” in a general sense, i.e., not 
suggesting or discussing specific operations and types of deci-
sions, but rather outlining common elements of data processing 
relevant to many types of NAMs. (ii) One field for which data 
processing has been described repeatedly and extensively is com-
putational toxicology (Knudsen et al., 2013; Lynch et al., 2024). 
However, this has largely been done with a technical focus on the 
data pipelining process or on data integration from various assays. 
With the advent of artificial intelligence (AI) and machine learn-
ing (ML) applied to large data sets, the challenges and opportu-
nities of data analysis and interpretation have grown (Hartung, 
2023a,b; Kleinstreuer and Hartung, 2024). (iii) Specific initiatives 
to document the various steps of data analysis also covered om-
ics technologies and chemical structure curation. Initial efforts 
focused on the Omics Data Analysis Framework (R-ODAF) (Ver-
heijen et al., 2020) and the National Toxicology Program’s (NTP) 
approach to genomic dose-response modeling (NTP, 2018) to ad-
dress regulatory concerns with respect to omics data. These ef-
forts parallel international initiatives to cover all steps in reporting 
omics data analysis via the OECD Omics Reporting Framework 
(OORF) (Harrill et al., 2021; OECD, 2023), which aims to foster 

1  Setting the scene

The 21st century is widely acknowledged as the “century of data”. 
Various economists have labelled data as the world’s new “pe-
troleum”1, due to its immense value. Yet, as Hal Varian, a former 
chief economist at Google, pointed out in an interview in 2009, 
it’s not just about data itself but about how we interact with it. He 
remarked, “The ability to take data – to be able to understand it, to 
process it, to extract value from it, to visualize it, to communicate 
it – will be a hugely important skill in the next decades.” In the 
same year, Nature published an article titled “Toxicology for the 
twenty-first century”, which highlighted the critical role of new 
approach methodologies (NAMs) in revolutionizing toxicology. 
The paper emphasized that the field must embrace data-driven 
methods and utilize NAMs to address the high demand for data on 
chemicals (Hartung, 2009). 

But what is data? The complexity of data acquisition, data struc-
tures, and their many processing steps is easily underestimated. 
Data can be “raw” or “processed”, often with several intermedi-
ate layers. Examples for data types are quantitative continuous nu-
meric values (with associated uncertainty) such as test compound 
potency in molarity units, and categorical outputs such as binary 
(positive/negative) classifications or semi-quantitative groupings 
(low, medium, high).

In life sciences such as toxicology, experimental data is essential 
for accepting or refuting hypotheses, for generating knowledge, 
and for taking data-based decisions. This is especially important 
when deriving regulatory decisions on approval or classification 
and labelling of a compound. Therefore, it is important to care-
fully consider the different types of data being referenced and how 
specific types of data at various levels are processed.

Despite the importance of the topic, stand-alone publications on 
general principles of data processing workflows (here also called 

between these data levels. As NAMs are increasingly standard components of the spectrum of toxi-
cological test methods used for risk assessment, awareness of the significance of data processing 
steps in NAMs is crucial for building trust, ensuring acceptance, and fostering the reproducibility of 
NAM outcomes.

Plain language summary
Toxicological test methods initially generate raw data. These need to be further processed to 
determine a final outcome, such as the classification of test compounds as hits or non-hits. The pro-
cessing of the raw data is often highly complex and proceeds stepwise. This process generates many 
layers of data connected by several processing steps. Any change to these processing steps can 
impact the final output of new approach methods (NAMs). This means that the same raw data, 
processed in different ways, may result in different final outcomes. Data management, processing 
and interpretation are therefore considered important elements of a comprehensive NAM definition. 
We illustrate data processing and evaluation steps that play an important role. Awareness of the 
significance of data processing steps in NAMs is crucial for building trust, ensuring acceptance, and 
fostering the reproducibility of NAM outcomes.

1 Expression coined by British mathematician Clive Humby in 2006.
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crucial: data of public concern or generated with the help of pub-
lic funds should be findable and accessible. If they are accessible, 
they should be documented to the extent that the process used to 
get from the raw data to the final output is sufficiently detailed to 
be independently reproduced. Also, documentation should allow 
for assessment of the quality of the reported outcome and the rel-
evance of the assay. Findability and accessibility are key features 
of the FAIR principles (next to interoperability and reusability of 
data) (Wilkinson et al., 2016). Consideration and standardization 
of metadata and definition of protocols for the data processing 
pipeline are key elements of FAIR data2 and thus overlap with the 
topic of our article. We hope to raise awareness here that metadata 
and processing protocols are not just background details of data 
storage but are prerequisites for NAM development, validation 
and use, and especially for the interpretation of NAM data. More-
over, quality control is a formal requirement for Good Cell Cul-
ture Practice (GCCP) (Pamies et al., 2022), Good In Vitro Method 
Practice (GIVIMP) (OECD, 2018), and within the extensive Good 
Laboratory Practice (GLP) framework3 for data used in regulatory 
decision making.

Some important background information has already been cov-
ered elsewhere: Extensive guidance already exists on, e.g., criteria 
for test method readiness (Bal-Price et al., 2018; Crouzet et al., 
2023), detailed NAM descriptions (OECD, 2017b; Krebs et al., 
2019), integration of NAM data in a regulatory context (OECD, 
2017a; Schmeisser et al., 2023), or components of test method 
papers (Leist and Hengstler, 2018; Collen et al., 2024). Here, we 
also do not cover the experimental part of data generation with 
NAMs. Moreover, discussions on data context or suggestions on 
how to proceed with hits or non-hits, e.g., in the developmental 
neurotoxicity in vitro battery (DNT-IVB) (Blum et al., 2023), are 
covered elsewhere (Pallocca and Leist, 2022; Hartung et al., 2024; 
Smirnova et al., 2024). Our presentation of a generic set of ele-
ments to be considered for a data processing pipeline should also 
not be confused with dedicated and implemented pipelines (Bell 
et al., 2020; Daniel et al., 2022; Feshuk et al., 2023) or with is-
sues of data integration, e.g., by combining NAM data in a defined 
approach for skin sensitization (Kleinstreuer et al., 2018; OECD, 
2021; Strickland et al., 2022).

3  Multi-step data processing

For the generic data processing pipeline (procedure/pathway) de-
scribed here, we focus on the “life stages” of data, covering the pe-
riod from when they are born (data acquisition, method/machine 
output) to when they reach adulthood (final test method outcome). 
It is, for most NAMs, an oversimplification to assume that test 
methods generate raw data that are converted in one step to the 
final output. In reality, six or more levels of data may be defined 
(Fig. 1; Tab. 1). To understand the complexity of data processing 
it is useful to first look at the different data layers, i.e., the types of 

reproducibility and transparency for regulatory toxicological ap-
plication by providing a framework that ensures all the required 
data, together with associated metadata and data analytical pro-
cesses, are reported for review by the data evaluators. Also un-
der the auspices of the OECD, the (Q)SAR community developed 
a (Q)SAR Result Reporting Format (QRRF) to complement the  
(Q)SAR Assessment Framework (QAF) for similar purposes 
(OECD, 2024), and substantial work has been done by the US 
EPA and NICEATM to develop chemical structure standardization 
and curation pipelines (e.g., Mansouri et al., 2024). 

Many users of NAMs or of their data would benefit from an 
open, pipeline-independent display and discussion of the steps that 
may be relevant to process raw data into final NAM test outcomes. 
The implications have been captured by Kessel et al. (2023), using 
example data of NAMs for developmental neurotoxicity (DNT), 
to clearly highlight that different approaches to management of 
raw data and different uses of biostatistical methods can affect the 
outcome of NAMs, e.g., a hit definition (Zhu et al., 2013) or a 
point of departure (PoD) (Sturla, 2018). Kessel et al. (2023) gave 
five examples for biostatistical procedures that can affect the fi-
nal test results. Another example comes from the field of mixture 
evaluations, where five mathematical models led to different out-
comes of the same input dataset (Lasch et al., 2020). 

Here, we provide a generalized, broadly applicable framework 
to position such key procedures and other steps that affect a NAM 
outcome. We explain typical levels of NAM data processing, il-
lustrate how the data might be processed, and exemplify some 
pitfalls that should be avoided in this context. The intention is to 
give an overview of choices to be considered for NAM data pro-
cessing and to indicate what needs to be covered by a complete 
NAM description. It should be noted that the majority of validated 
NAMs address hazard identification and characterization. How-
ever, some also produce data to parametrize toxicokinetic models 
(physiology-based kinetic modelling, PBK) (Tsaioun et al., 2016) 
or to derive PoDs for quantitative risk assessment (e.g., Reinke 
et al., 2025), and most considerations also apply to such NAMs. 
Moreover, the issue did not arise from the increased use of NAMs. 
In classical toxicology, complex processing of raw data (e.g., 
pathological scoring of tissue sections) to final outputs (e.g., tu-
morigenicity) is widely applied, and the impact of data processing 
pipelines on outcomes tends to be underestimated there also.

2  Delimitation to related topics

The topic of data processing to generate a final NAM output is 
sometimes considered of minor importance compared to other, 
more obvious issues. Moreover, not all stakeholders realize the 
definition and requirements for data processing. Finally, data pro-
cessing is often confused with other topics, such as data storage or 
data interpretation. 

We do not address issues of data structure and data storage in 
detail here. However, important aspects related to this topic are 

2 Also part of the readiness criteria considered in the ongoing revision of OECD GD 34 (OECD, 2005) on method validation.
3 https://www.oecd.org/en/topics/sub-issues/testing-of-chemicals/good-laboratory-practice-and-compliance-monitoring.html 

https://www.oecd.org/en/topics/sub-issues/testing-of-chemicals/good-laboratory-practice-and-compliance-monitoring.html
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method analytical endpoint (microscopic imaging systems, fluor-
imeters/luminometers, mass spectrometers, electrophysiological 
recording setups, polymerase chain reaction machines, fluores-
cence-activated cell sorters/scanners, etc.), can affect level I data. 
Modern laboratory instruments often only have an on/off button, 
a start button, and some sample input. Researchers may not be al-
lowed or able to change hardware parameters or associated soft-
ware settings. An example of a simple “machine” is a fluorescence 
microscope. Usually, the lenses, light source, filters and camera 
are a fixed setup. However, microscope types may differ between 
laboratories (and be equipped with different lenses, light sources, 
filters, and cameras), thus resulting in different results. For many 
reasons, the “machine” cannot be defined in every detail in a 
NAM description. Moreover, suppliers, procedures, technology, 
etc. continuously change, so that the analytical device even within 
one given lab can change. Hence, it may happen that variability 
is observed among results although the test system, the exposure 
scheme, and many other NAM elements defined in the test method 
description remain unchanged.

Some classic examples of machine specifications are: (i) opti-
cal filters that are narrow or wide; photo multiplier or camera 

data generated at different steps of data processing (this section), 
and then more closely examine how data transition from one level 
to the next, i.e., what types of procedures and inputs are relevant 
(Section 4). Staying within the metaphor of data “life stages”, 
there is also a fetal stage (Level zero data) and an adult life stage 
(Level IATA). These are briefly discussed before and after Level I-
VI to provide an overall frame; their detailed discussion is outside 
the scope of this review.

3.1  Level zero: Machine configurations
We use level zero here to indicate a data domain not generally 
considered in data processing pipelines yet important for complete 
test method descriptions. One could also cover this level zero as 
processing input, i.e., as part of the data processing section (Sec-
tion 4). We prefer to mention it here, as in the processing section 
we focus on steps between typical data levels, but not on the steps 
before the first level. Notably, the term “level zero” has an entirely 
different meaning for ToxCast data (where it is used to describe 
the usual data entry format).

Many “machine parameters”, i.e., properties and physical set-
tings/configurations of the instruments used to assess the test 

Fig. 1: Overview and concept of data 
levels in NAMs
Compound testing in NAMs generates 
initial machine output data. The raw data 
are processed in various steps (exemplified 
by six levels) towards the final NAM 
output in a data processing pipeline. The 
characteristics of every level on this path 
are important features for the design and 
validation of a NAM, as well as for the use 
of data generated by NAMs. Alternative 
processing procedures can alter the NAM 
outputs. Level I data (machine output) 
not only depends on the test method and 
the test item (chemical), but also on the 
machine used to measure the analytical 
endpoint of the NAM, and on specific 
machine configurations (which may be 
considered level zero). While this generic 
overview applies to many NAMs, there 
may be cases where one of the levels is 
missing, or where additional levels are 
added.
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ticular categories of NAMs. Beyond this, awareness of machine 
settings/characteristics on the outcome of level I data is important, 
especially if NAMs are transferred across laboratories. Typically, 
machine configurations are described in SOP sections on the ana-
lytical endpoint; in addition, some may feature as metadata.

3.2  Level I: Machine output data
All NAMs use some form of machine-based measurement as their 
analytical endpoint. This can be considered the initial level of data 
generated by the NAM (Fig. 1). This data level (level I) represents 
the “rawest data” produced by a NAM, often with a very complex 
structure and hard to read or interpret by the experimenter. We pre-
fer the term “machine data”, as we reserve the term “raw data” for 
the next data level. However, there is no fixed rule on how “raw 
data” are defined. It depends on the analytical endpoint used, and 
there are differences amongst NAMs. It is more important to ex-
plain the terminology behind the levels, and to be transparent in 
what is done at which level.

For several NAMs, level I data undergo some processing before 
they can be considered “classic raw data” (level II). After the pro-
cessing, data are more readily human-readable. For this reason, 

(CMOS, CCD) settings for high/low sensitivity or gain; (iii) 
electrode impedance/amplifier characteristics for microelectrode 
array (MEA) devices; (iv) ambient control (temperature, CO2) 
for many devices such as automated microscopes or MEA devic-
es. How can one ensure that data level I (machine output data) re-
mains as consistent as possible based on the inputs from level ze-
ro data? A common approach is to define performance standards, 
i.e., to define a set of test conditions (e.g., various compounds at 
certain concentrations used in the NAM) and to require results to 
remain within a certain range. This is commonly done based on 
test outcome data (level V or VI), and it may require considerable 
evaluation efforts (Petersen et al., 2023). Sometimes, a defini-
tion based on lower data levels can be more stringent and more 
precise. The most immediate approach to this is sometimes the 
“calibration” of the machine or the analytical endpoint assess-
ment procedure.

Guidance for NAMs should consider exact settings described 
in standard operating protocols (SOP) and in detailed method 
descriptions such as the ToxTemp (OECD, 2017b; Krebs et al., 
2019). Good In Vitro Reporting Standards (GIVReSt) aim for this 
(Samuel et al., 2016; Hartung et al., 2019) but are specific to par-

Tab. 1: Exemplification of data levels 
More detailed description of data levels that are depicted in Fig. 1. The six main data levels I-VI are displayed between bold lines. The data level 
in the grey boxes is not covered in this manuscript. 

Data level	 Description	 Examples	 Typical steps leading to this level

“Level zero”: 	 Defines the hardware conditions	 Fluorescence filter settings; 	 Strictly speaking, this is rather 
Machine configurations	 for data acquisition; settings and 	 camera sensitivity settings	 a processing step than a level. It is 
	 technical parameters that influence 		  included here, as it is before the 
	 measurements		  first level

Level I:	 Initial, machine-generated data, 	 Voltage changes; light intensity; 	 Data acquisition 
Machine output data	 often in raw form	 pixel values in image data

Level II: 	 Data sets with measurable values	 Cell count in an image; 	 Conversion of machine data to 
Raw data	 (e.g., numbers, areas) that are 	 fluorescence intensity	 human-readable; numbers, values,  
	 directly accessible		  etc.; quality control; filtering of  
			   erroneous data

Level III: 	 Normalized or relative values, 	 Ratios/percentages relative	 Data aggregation; data  
Averaged and relative (raw) 	 often in relation to control data	 to the control	 normalization; check of AC 
data	

Level IV: 	 Curves representing responses	 Sigmoidal toxicity curves	 Curve fitting and modeling 
Concentration-response 	 to different concentrations		  (data aggregation) 
curves	

Level V: 	 Reducing curve data to single	 BMC; PoD (may also be expressed	 Threshold calculation; uncertainty 
Integrated curve information	 numerical values, such as 	 as probability function instead of	 analysis of PoD 
	 threshold concentrations	 a single value)	

Level VI: 	 Final decision or classification	 “Hit” definition; toxicological	 (Calibration to positive control 
Hit definition		  classification; activity call	 items); application of prediction  
			   models (PM, DIP) for classification

“Level IATA” 	 Integration of outputs of various	 Use of DA, such as OECD GD 497	 Data may be integrated at, e.g.,  
(not covered here)	 NAMs in an IATA or computational 	 or TG 467 to result in a GHS 	 level III or VI (with different 
	 model	 classification as output	 outcomes)

AC, acceptance criteria; BMC, benchmark concentration; DA, defined approach; DIP, data interpretation procedure; GHS, Globally Harmonized 
System of Classification and Labelling of Chemicals; IATA, Integrated Approaches to Testing and Assessment; OECD GD, OECD guideline;  
PM, prediction model; PoD, point of departure
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At this stage of data processing, all single sample replicates (of-
ten referred to as technical replicates) of an independent assay run 
(often referred to as biological replicates) are still fully separated. 
This data tier is often considered the most suitable “raw data” input 
format for databases. It provides a high level of detail (granularity). 
Thus, it leaves many choices open (e.g., types of data integration, 
types of regression analysis, and uncertainty calculations) for alter-
native analysis pipelines. An important consideration at level II is 
that some data may already have been flagged (considered invalid) 
and therefore excluded from further processing. Curation of data 
at the transition of level I to level II is based on technical quality 
control measures. For instance, cells may have been contaminated, 
or an image may be all black, or a current spike may have resulted 
in an obvious artifact, or errors may have occurred during the ex-
perimental study part (no cells plated in one well, results affected 
by construction work, etc.). Removal of such data (flagging for ex-
clusion) should not be considered as loss, but as necessary curation 
required for subsequent analysis that should be traceable.

3.4  Level III: Averaged and relative (raw) data
Many types of data on level II cannot be interpreted if they are not 
presented relative to control data. Such data comprise, e.g., the ob-
ject area of images, electric signals in MEA, counts of nucleic acid 
species, and fluorescence/absorbance values. In level III, the nec-
essary context is incorporated. As a first step, multiple data points 
such as technical or biological replicates must be summarized. 
Depending on the data summary method, i.e., forming a mean, 
median, or minimum activity concentration, results might change 
(Kessel et al., 2023). At level III, data are normalized to values 
obtained from reference items. Moreover, level III is distinct from 
level II in that samples generated under identical conditions within 
one experiment (technical replicates) are averaged. In some data 
processing pipelines, data generated in different experiments may 
also be averaged at level III. Some test conditions, specified as 
negative controls4, serve to define a baseline or reference level of 
the test endpoint. The level III data of test chemicals are often giv-
en as fractions of this reference level. As data are given “relative” 
to “no disturbance” (a negative control), level III is the first stage 
where the data explicitly indicates an “effect” that can be easily 
interpreted by humans (notably, the effect is already present in the 
data before), often expressed as a percentage or a “fold change”. 
An example may help to clarify the difference between levels II 
and III: If alcohol is consumed, the performance in an attention test 
may be reduced by 27 points (level II data). This data cannot be in-
terpreted if one does not know how many points full performance 
represents. The relative reduction in performance could be 1% or 
80% compared to control. The average performance of, e.g., a so-
ber control group would need to serve as a reference, similar to 
negative control samples in a NAM. Thus, only data from level III 
onward provide information on the effect size. 

Two special cases are mentioned here for completeness: (i) for 
NAMs with multiparametric readouts (e.g., cell painting or tran-
scriptomics), new composite endpoints may be generated for further 

the first data level that is stored in repositories and/or used for fur-
ther processing is sometimes not level I, but level II.

A few examples may help to clarify this: Machine data can 
be current or voltage changes, often combined with some time 
information (within the machine). Some of this is further pro-
cessed within the machine (e.g., in a spectrophotometer, the pho-
tomultiplier current of the samples and a reference light beam are 
combined and converted to an absorbance signal). This is done 
by proprietary software linked to the hardware. Users of NAMs 
must have sufficient trust in the reliability of the hardware’s data 
output. 

For many NAMs, level I data generated by an analytical device 
are accessible (and storable). However, in many cases, they are 
processed further (for a number of technical and practical reasons) 
before storage and subsequent use in the NAM data processing 
pipeline. Examples are (i) the generation of time-dependent spike 
sequences (e.g., in electrophysiological readouts from initial volt-
age recordings); (ii) generation of base sequences from initial 
electrical or optical readings in DNA sequencing runs; and (iii) 
fragment/molecule-specific displays for mass spectrometric data. 
Sometimes, positional information is added to primary data (e.g., 
from a photomultiplier), and data are then stored as 2D arrays, i.e., 
pixels of a raw image. In many such cases, the machine output da-
ta cannot be interpreted without substantial context and additional 
processing. Such data are often processed to the next level, greatly 
reducing the data volume (and storage space requirements). 

As some of the processes done by dedicated software within 
(or associated with) analytical devices (machines) may not be de-
scribed within the method description, the hardware used for the 
data acquisition and initial processing should be specified in con-
junction with the latest software version running the hardware. For 
these reasons, it is useful to define “level zero” data that takes the 
possible effects of different machine types and configurations into 
account (see Section 3.1). These aspects are also important details 
to consider when assessing potential sources of variability within 
NAM experiments (Petersen et al., 2023).

3.3  Level II: Raw data
At the level II stage, the data mostly takes the format of numbers, 
linked to a unit of measurement or a quantitative scale. Examples 
include (i) object area/size/count, if the test endpoint is based on 
microscopic images; (ii) abundancy counts or cycle numbers in 
transcriptomic/PCR-based measurements; (iii) nucleotide se-
quences for sequencing data; (iv) absorbance or fluorescence 
values. Out of these examples, the first point most clearly dem-
onstrates the enormous data volume reduction (several orders of 
magnitude) needed, e.g., from a series of images to the number 
of cells in these images (a single figure). At level I also several 
primary analytical endpoints (e.g., fluorescence channels) may 
be combined to generate the actual raw data. One example is the 
combination of information from various fluorescence channels 
in image-based data to identify biological features (e.g., size and 
number of cells or cell organelles).

4 The topic of defining controls falls outside the scope of our overview and is covered elsewhere (e.g., GIVIMP (OECD, 2018), GD 34 (OECD, 2005) revision).
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periments in general, as the transition from level III to level IV 
may include a data averaging step when experiments have been 
run several times. One approach that considers all data in one step 
would be to apply mixed effect models (mathematically com-
plex). Three alternative approaches are (i) averaging of the data 
points of each test condition (mathematically easier) before curve 
fitting (this would be an additional step leading from level II to 
level III); (ii) fitting the curves through all available data points 
without consideration of independent runs; (iii) calculating the 
integrated curve information (e.g., the PoD) for each experiment 
and averaging the values at level V (mathematically easiest). The 
procedure chosen for integrating data from several experimental 
runs is usually defined in a NAM’s SOP. Each approach has some 
experimental, statistical, practical, and conceptual considerations, 
but also disadvantages. Not covered here are Bayesian approach-
es, which result in probability distributions over the concentration 
range and can potentially better quantify propagated uncertainty 
throughout data modelling to results (Reinke et al., 2025). The 
type of procedure chosen can affect the test outcome and there-
fore needs to be clearly and transparently defined in the method 
description and/or in the output data repository.

processing through levels IV-VI. A typical example would be the 
defined combination of a group of transcripts in a pathway, a gene 
ontology term group or a weighted gene correlated network analy-
sis module (Callegaro et al., 2021). In all such cases, the combined 
group readout would be a single average or summary response pa-
rameter; (ii) sometimes level III data can be adjusted for response 
dynamics by the use of positive controls. This type of normalization 
differs from normalization to negative controls (baseline).

3.5  Level IV: Concentration-response curves
Level IV data differ from level III data in that they give informa-
tion on how the test endpoint changes when the concentration of 
test compounds is increased. This level is not always mandatory, 
but it is necessary to later derive toxicological information on ef-
fect/hazard thresholds, e.g., a PoD (Box 1). The data format at 
level IV is a “curve”, which is usually a mathematical function 
with concentrations plotted on the abscissa (x-axis) and effect 
size as a dependent variable on the ordinate (y-axis). Such curves 
often have certain features, such as monotonicity. “Toxicological 
curves” also tend to reach an asymptote so that further increases in 
concentration do not change the outcome. On a semi-log axis such 
curves appear sigmoidal. 

The data processing procedure by regression analysis (colloqui-
ally termed “curve fitting”) may have rigid rules (e.g., only allow 
certain curve shapes) or be very open; for instance, it may include 
non-monotonic curve shapes and non-parametric approaches 
(Kappenberg et al., 2021; Wheeler, 2023). The requirements for 
the underlying data structure increase with the complexity of the 
considered curve shape. The requirements for a straight line are 
low (few data points may be sufficient), while fitting a meaning-
ful higher polynomial curve requires data from a larger number 
of concentrations. Typical sigmoidal curves, such as 4-parameter 
logistic regressions, may be constructed from 6 to 8 “meaningful” 
data points. This means that not all data points can be in the satu-
ration part and that there should be a minimum number of points 
in the part with the steepest slope. Another very important aspect 
is that sufficient data points define the baseline (start level) of the 
curve (Krebs et al., 2018; Kappenberg et al., 2020).

Level IV data are defined to a large degree via the curve fit se-
lection criteria applied. Decisions on the type of curve fitted (re-
gression model used) may be based on the correlation coefficient of 
the data points and on considerations like the avoidance of overfit-
ting (e.g., Akaike information-criteria (AIC) or residual analysis) 
(Krebs et al., 2020a). It has been exemplified previously, e.g., in the 
DNT-IVB, that variations in curve fitting models can yield different 
results and impact subsequent level V data (Kessel et al., 2023).

Although averaging of independent experimental runs, i.e., “bi-
ological replicates”, seems like a standard procedure, it can some-
times be a remarkably complex issue. It also may be addressed 
in different ways in otherwise quite similar data processing pipe-
lines. This depends, in part, on how an “independent experiment” 
is defined (this topic will be addressed in a follow-up article). 
Here, we discuss the need for combining data from several ex-

Box 1: Nomenclature on assay “hits” important  
for level VI
The field of alternative methods recognized early on that 
NAMs need a prediction model (PM), i.e., something convert-
ing NAM test data (level V) into a prediction of a toxicological 
outcome (Leist et al., 2010; Crofton et al., 2011; Ferrario et al., 
2014; Collen et al., 2024). Initially, it was believed that a single 
NAM would predict an apical adverse outcome (e.g., eye irrita-
tion). This concept has been mostly abandoned, but the concept 
of the PM remains. It is considered now to interpret the data 
produced by the NAM in terms of a classification of test items 
as having or not having “an effect” in the respective NAM. PM 
should not be mistaken to be only an issue of data science, i.e., 
a specific type of algorithm to transform data. The role is much 
broader and of high importance to modern toxicology: a PM 
is the essential link from data (generated by NAMs) to a bio-
logical/toxicological interpretation. The exact definitions of the 
term have been changing with time and among organisations. 
The below set of definitions gives a general overview:
Prediction model: An “algorithm that converts each test re-

sult into a prediction of the (toxic) effect of interest” (OECD, 
2005). The PM procedure is used to convert the results 
from a test method into a prediction of the toxic effect of 
interest. A PM contains four elements: a definition of the 
specific purpose(s) for which the test is to be used, a defini-
tion of all possible results that may be obtained, an algo-
rithm that converts each test result into a prediction of the 
toxic effect of interest, and an indication of the accuracy of 
the prediction5. 

5 https://ntp.niehs.nih.gov/sites/default/files/iccvam/docs/about_docs/validate.pdf 
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2020a), i.e., the critical concentration (BMC) depends entirely on a 
pre-determined critical effect (BMR). Such definitions (parameter 
settings) are essential elements of NAM descriptions. Changing 
such parameters, e.g., in an alternative analysis pipeline, will likely 
influence some NAM outputs.

For some purposes, level V data may serve as the NAM output 
(Fig. 1), e.g., where it provides information on the potency of a 
test item concerning one (or more) test endpoints. Some NAMs, 
or some problem formulations, do not require a classification or 
hit definition. The NAMs originally validated by the OECD were 
intended to make direct toxicological predictions for classification 
according to the Globally Harmonized System of Classification 
and Labelling of Chemicals (GHS) system. All such NAMs in 
OECD test guidelines (TG) have a classification endpoint (level 
VI), e.g., categorizing compounds to be mutagens, eye irritants, 
or phototoxicants. For mechanistic NAMs, such a classification is 
not always given, and in such cases, level V may be considered 
a final data level and the exit of the processing pipeline. At this 
stage, measures of uncertainty around the output data (e.g., a 95% 
confidence interval of a BMC or PoD) are nearly as important as 
the data values themselves. Conversely, the level V output loses 
some value if it is not associated with uncertainty measures. The 
procedure to assess uncertainty (e.g., algorithms used to determine 
the coefficient of variation or a lower bound of a BMC confidence 
interval) is part of good test method descriptions (Krebs et al., 
2019) and data integration (OECD, 2017a; Watt and Judson, 2018; 
Krishna et al., 2021). The uncertainty of a PoD may be calculated 
and indicated in different ways that can be communicated via level 
V outputs (Leontaridou et al., 2017, 2019; Gabbert et al., 2022; 
Kessel et al., 2023).

3.7  Level VI: NAM output/hit definition
For many NAMs, level VI data results in a hit identification or 
a “statement of bioactivity”. In some databases, e.g., Tox21/Tox-
Cast, this is also termed an “activity call”. The data are neither a 
curve nor a number, but a classification or decision outcome that 
is dependent on a data interpretation procedure (DIP) or prediction 
model (PM) (Box 1) and uses level V data as input to an algorithm 
or a formula (Schmidt et al., 2017; Collen et al., 2024). This criti-
cal aspect of NAM development requires time and considerable 
resources, as large data sets need to be generated and analyzed. It 
is usually the basis for validation of a method and for defining per-
formance metrics (Leist et al., 2010; Crofton et al., 2011; Aschner 
et al., 2017).

Level VI data are typical NAM outputs used to support regula-
tory (and research) decision making. However, the output of some 
NAMs can be perceived as being derived collectively from level 
V and VI. Consider the example of a neurite outgrowth assay to 
investigate DNT (Krug et al., 2013; Blum et al., 2023; Suciu et 
al., 2023). A compound that affects neurite outgrowth specifically 
would be classified as positive/a hit/an activity at level VI, and the 
lowest concentration at which it affects neurites is X µM (com-
pound potency/PoD, determined at level V). Therefore, a typical 
“combined output” is “hit at concentration X”. An alternative out-
come is “no hit until concentration X” or “test negative until high-
est investigated concentration”. 

3.6  Level V: Integrated curve information
In contrast to the data format of level IV (which usually consists of 
concentration-response curves), data in level V are individual num-
bers. These numbers capture information from the level IV curves. 
They reduce a two-dimensional information matrix (concentration 
vs effect) to a single number that is representative of the intended 
measurement. Classical examples of such information are a PoD, a 
lowest observed (adverse) effect level (LO(A)EL), or a benchmark 
concentration (BMC) for individual endpoints (Krebs et al., 2019, 
2020b; Delp et al., 2021; Blum et al., 2023; Zobl et al., 2024) or 
for omics data (OECD, 2023). It is important to understand that 
this “magic” data reduction is only possible based on certain as-
sumptions and pre-defined processes. For instance, a BMC can 
only be derived if a benchmark response (BMR) is set (Krebs et al., 

Data analysis procedure (DAP): A procedure according to 
which raw data of a NAM are converted into a result (e.g., 
the IC50) by a specified algorithm (pipeline). The last step 
may involve the PM.

Data interpretation procedure (DIP): An interpretation pro-
cedure used to determine how well the results from the test 
predict or model the biological effect of interest. In many 
cases it converts test data (e.g., IC50 values for various test 
endpoints) into a classification (e.g., non-toxic, borderline, 
toxic). Without a DIP, classical validation procedures (ac-
cording to OECD, 2005) cannot determine predictivity, and 
under such circumstances an important element of valida-
tion would fail (Leist et al., 2012; Collen et al., 2024). For 
most practical purposes, a DIP is an alternative term for a 
PM.

Screening hit: Originally defined as a compound that exhib-
its the desired biological activity towards a drug target in a 
pharmacological screening. It has been suggested that the 
activity must be confirmed by re-testing to call an “assay 
positive” a real screening hit (Smirnova et al., 2024; Magel 
et al., 2024). The definition was transferred to toxicology 
as: a compound that exhibits an effect in a NAM with effect 
size boundaries predefined by the PM. Notably, some pipe-
lines (e.g., tcpl, used in ToxCast) use continuous hit calling 
(instead of a categorical call). The output is then a potency 
value (in concentration units), which indicates that the test 
item is a “hit at concentration x µM”. 

Point of departure (PoD): In toxicology, this relates to the 
lowest concentration (or dose) at which a biological re-
sponse is first observed. In a narrow sense, the PoD refers 
to responses considered to be adverse. The PoD is the start-
ing point for calculations/extrapolations needed for risk 
assessment. In next generation risk assessment, PoDs are 
derived from NAMs. Often they are considered as start-
ing points for in vitro to in vivo extrapolations. In a general 
sense, the PoD is the link between experimental toxicology 
and risk assessment processes that affect regulatory poli-
cies and risk management. 
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al., 2024; Najjar et al., 2024a,b). This integration procedure can 
consider various regulations and may have different objectives 
and outcomes, ranging from setting health-based guidance val-
ues to classifying toxicities (according to GHS or the CLP regula-
tions) to deriving PoDs for quantitative risk assessment. A large 
portfolio of case studies on the use of IATA is available as the 
OECD Case Studies Project6. Data types used may not be lim-
ited to hazard but may also address exposure and toxicokinetics 
(Chang et al., 2022). Some forms of data integration use only 
expert judgement, while others aspire to be fully computational; 
many combinations and tiered approaches are currently being ex-
plored. One of the recent approaches to establish IATA level data 
on hazard is to develop quantitative adverse outcome pathways 
(qAOPs), in which the relations between molecular initiating 
events (MIEs), key events (KEs), and adverse outcomes (AOs) 
are described mathematically (Perkins et al., 2019; Di Tillio and 
Beltman, 2024). Here, level V and VI NAM data are used as 
representatives of MIEs, KEs, and/or AOs. An extension of this 
concept is the combination of qAOP with toxicokinetic models 
in quantitative systems toxicology approaches (Polak et al., 2019; 
Beattie et al., 2024) as the highest level of computational data in-
tegration to assess human risks of chemicals. 

4  General overview of data processing steps  
between the data levels

As demonstrated above, similar raw data can result in different 
NAM outputs when processing steps are altered. For this reason, 
we will give a general overview on what “data processing” may 
imply.

Since data processing occurs between all levels, one data level 
may always be considered the upstream data level and the one re-
sulting from processing the downstream data level (Fig. 2). The 
term processing is used here in its widest sense, including (i) the 
mathematical transformation of data point numeric values; (ii) the 
integration of data points; (iii) the amending of data points with 
additional information; (iv) the relation of data points to one an-
other or (v) the flagging of data points (sometimes leading to ex-
clusion from further processing). At each transition from one level 
to the next, data may be “processed” in three fundamental ways 
(category 1-3). Categories 1 and 2 have subcategories (1A, 1B, 
2A, 2B). A general overview of types of data processing is given 
below. An important notion is that data processing implies the use 
of additional “information” or rules. This means that the steps 
between the levels are not just determined by the raw data. Or, 
seen from a different perspective, the raw data are not sufficient 
to determine the final outcome at level V or VI. Here, a general 
overview is given, while a more extensive description and exem-
plification by application to various case studies is planned as a 
follow-up publication, and descriptions of some exemplary pipe-
lines (e.g., tpcl7 or CRSTATS) can be found elsewhere (Filer et al., 
2017; Daniel et al., 2022; Kessel et al., 2023).

Instead of interpreting levels V and VI separately, some pipe-
lines (e.g., tcpl, the ToxCast Data Analysis Pipeline) use a continu-
ous hit call (instead of a categorical call). In simplified terms, the 
combined output of levels V/VI is then a potency value, which in-
dicates that the test item is a “hit at concentration X µM”. This pro-
cedure works well for assays with a single endpoint or with multi-
ple endpoints that are independent in their biological implication.

In cases where endpoints strongly affect one another (usually 
in assays with multiple functional endpoints plus cytotoxicity), a 
categorical hit call has some advantages (elimination of false hit 
calls of the functional parameter under conditions of cytotoxic-
ity). It allows also a sub-specification of non-hits into “no effect” 
compounds and “cytotoxic” compounds. One may also include 
borderline categories whose definition is sometimes based on 
uncertainty measures that were derived at the previous data level 
(Leontaridou et al., 2017, 2019; Delp et al., 2018; Gabbert et al., 
2022). Moreover, statistical tools and measures may allow data in-
terpretation procedures based on probabilistic assessment (Leist et 
al., 2014; Maertens et al., 2022).

Notably, a feedback connection may be required between level 
VI and level V data when a NAM has more than one endpoint 
(Fig. 1). In such cases, a hit definition may require integration 
of test endpoints. For instance, a cell function endpoint could be 
compared to a cytotoxicity endpoint, considering that dead cells 
cannot grow neurites or have mitochondrial function. This means 
that the data on reduced neurite outgrowth or mitochondrial 
function are likely to be wrong (i.e., meaningless in a biological 
sense) because the preconditions for the measurement (i.e., hav-
ing similar numbers of live cells in each culture compartment) 
have not been fulfilled. Therefore, many NAM method descrip-
tions specify that there must be a data integration step (at level 
VI) that flags data on specific cell function effects as valid or 
non-valid, based on the measurement under consideration. This 
step determines whether data on an individual endpoint, such as 
neurite outgrowth determined at level V, may be used, and in turn 
explains why level V data on specific cell functions may become 
invalid (not usable for hazard evaluation) if level VI has certain 
outcomes (identification of potent cytotoxicity). Re-analysis by 
alternative pipelines (e.g., not using such a feedback connection) 
may not consider such rules in the same way and thus lead to an 
altered overall output.

3.8  Level IATA
As mentioned for level zero, level IATA is outside the core data 
processing pipeline and therefore not discussed extensively here. 
However, it is an essential subsequent step for the regulatory use 
of data (Tab. 1). As the output of a single NAM is usually not 
sufficient for risk assessment, data from many NAMs may be in-
tegrated to come to a regulatory weight-of-evidence conclusion 
on specific forms of activity, such as developmental neurotoxicity 
(DNT), non-genotoxic carcinogenicity, endocrine disruption or 
various other forms of systemic or topical toxicity (Kleinstreuer 
et al., 2017; Casey et al., 2018; Ebmeyer et al., 2024; Jochum et 

6 https://www.oecd.org/en/topics/sub-issues/assessment-of-chemicals/integrated-approaches-to-testing-and-assessment.html 
7 https://www.epa.gov/comptox-tools/exploring-toxcast-data
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within the same NAM. Prominent examples are noise-levels/noise-
thresholds or background corrections of machine data. In the latter 
case, the background level is determined from the data, then the data 
are processed using this information in category 2 (e.g., subtraction 
of a local or global background for image data). Rules on how to 
handle process configurations are part of SOPs or the method de-
scription of a NAM. For some level transitions setting of configura-
tions may be fully automated and performed by a data processing 
pipeline. In other cases, expert knowledge is required to optimally 
parametrize the processing procedure. A typical automated configu-
ration of a process/algorithm (e.g., at the transition of level III to 
level IV) is the generation of concentration-response curve data. 
Here, the data structure may determine in which way control data 
are used (Kappenberg et al., 2020; La et al., 2023) and which curve-
fit model is chosen (Krebs et al., 2020a; Daniel et al., 2022; Kessel 
et al., 2023). A typical operator-dependent process is the setting of 
background and contrast in Western blots. The level zero data (see 
Section 3.1) may be considered a special type of configuration (1B 
input) in the sense that it occurs even before data level I.

4.2  Data processing category 2:  
Data transformations
This category involves actions, such as executable steps or process-
ing rules. It includes both basic calculations (2A) and complex algo-
rithms (2B) for data processing and integration.

Basic calculations (2A)
Fixed rules and standard mathematical operations are applied in the 
sense of non-iterative processes and the application of fundamen-
tal arithmetic functions (e.g., division or addition). For instance, 
a background value may be subtracted from data. The subtracted 

4.1  Data processing category 1:  
Input of additional information
The additional information that is added to the test data consists of 
an “information package”. This may be a number (e.g., calibration 
curve), spatial information (e.g., plate layout) or an experimental 
variable (e.g., analysis time). It therefore differs from category 2, 
where the input is an action (e.g., a calculation rule). The two main 
types of category 1 input are metadata (1A) and configurations of 
processes (1B) (Fig. 2). Input information from category 1 may be 
used to parametrize category 2 actions.

Metadata (1A input)
They may apply to any transition from one data level to another to 
support data processing. Metadata must be reported where they ap-
ply, as they include information required for data transformations. 
The usual procedure is to define them as fixed values/parameters 
in detailed SOPs. An example is a plate map (with sample position-
ing), information on reference values or information on variable ex-
perimental parameters. Such metadata information is, e.g., required 
at level II (raw data). To process the data to level III (averaged and 
relative (raw) data), metadata is needed to indicate which samples 
are treatment conditions, controls or replicates, and how they have 
to be calculated. Another example is the specification of a BMR so 
that, e.g., a BMC25 or a BMC50 may be calculated (level IV to V 
processing).

Configurations (1B input)
They differ from 1A input in that the 1B input is not necessarily in 
the form of fixed values. The input information for process configu-
rations may be partially derived from the experimental data stream. 
This means that 1B input may differ from experiment to experiment 

Fig. 2: Processing categories between 
any two data levels
Data processing occurs between all 
data levels. This means that one level 
can always be considered upstream, 
and the next level as its downstream 
data level. Data processing between the 
levels is affected by three types of input/
actions. These are depicted here as 
different process categories. Category 1 
involves the input of additional information 
to the data. Category 2 involves the 
transformation of data. Category 3 includes 
flagging and exclusion of data. There are 
feedbacks and interactions between these 
categories. For instance, category 1 input 
often affects data transformations (category 
2). Moreover, there can be feedback 
from the data stream into the processing 
categories.
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specified data ranges of positive controls. Several sets of AC can 
be defined within the method description of a NAM, but at least 
one set for positive and negative control items is mandatory.

5  Conclusions and outlook

In summary, this paper discusses the complex procedure of pro-
cessing generated data to a final NAM output (e.g., a hit call or 
information supporting a regulatory decision). As this processing 
pipeline may decisively impact the results, it should be considered 
a core element of a NAM description. To support this process, the 
paper illustrates the data levels that may be considered (Fig. 1), 
and an overview of input and transition steps from one data level 
to another (Fig. 2). This is meant to provide general knowledge 
and awareness of the complexity of data processing. Examples of 
detailed data processing pipelines and their application to toxicol-
ogy and drug development may be found elsewhere (Krebs et al., 
2020b; Bell et al., 2020; Feshuk et al., 2023). 

For some NAMs, a dozen or more processing steps can be re-
quired. The set of steps (the “pipeline”) is adequate when adapted 
to specific requirements and features of a given NAM. Converse-
ly, this means that data processing pipelines may differ among 
NAMs, and understanding the influence of varying steps and iden-
tifying consensus results supports generating optimal outcomes. 
The use of different data pipelines for a set of different NAMs is 
not problematic as the processing pipeline is part of each NAM 
definition, laid down in the prediction model (PM), and is thus 
part of the test method description and validation (Box 1). This 
does not exclude that some NAMs use the same pipeline, or that 
several pipeline elements are standardized (when appropriate) 
across a larger panel or battery of NAMs.

In the context of the global use of data, harmonization of data 
processing may be desirable. Also, it is important to recognize 
that changing the pipelines of already established NAMs can have 
serious consequences. In the worst case, the NAM may need to 
be re-validated, as the alteration of data processing may have 
changed the output. A typical measure of NAM performance is the 
comparison of NAM output with a gold standard or a ground truth 
(ideally human toxicological data). If the output of a NAM chang-
es (because of the use of an alternative data processing pipeline), 
then the apparent performance of the NAM could change. With 
NAMs becoming a standard component for risk assessment, such 
considerations on the impact of data processing on final NAM out-
comes will be critical to secure their acceptance. Moreover, insight 
into data processing is essential for stakeholders (e.g., regulators) 
working with heterogeneous sets of NAM data (from different 
laboratories, from different time periods, etc.). NAM results may 
differ under such conditions, even with relatively similar raw data. 
Over time, guidance documents may be developed on parameters 
that need to be kept constant or that need to be transparently dis-
closed. Developing similar reporting templates for data process-
ing, like those developed for omics technologies and (Q)SARs, 
can provide the necessary information required to understand, 
interpret, and reproduce NAM-derived results and ensure robust, 
trustworthy data to support improved public health protection.

value may be fixed or derived from category 1. Examples in NAMs 
could be the subtraction of background signals in a fluorescence/ab-
sorbance measurement or subtraction of baseline currents in electric 
signaling test endpoints. In a similar way, basic additions or averag-
ing may occur at this level, like taking into account signals of mul-
tiple images or electrodes as summary data for one set of samples 
exposed to the same test compound concentration. At the transition 
from level II to level III, an example of a 2A transformation may be 
the computation of the mean (arithmetic, geometric or median) of 
several replicate samples and the normalization of data to control 
samples. Often, metadata (1A) and configurations (1B) of category 
1 are required for such basic calculations (2A).

Complex algorithms (2B)
Often, iterative complex procedures (including machine learning) 
cannot be described with one of the basic arithmetic operations 
alone. Category 2B may require input from other categories (1 and 
3) and can also be affected by the data processing stream. For in-
stance, image processing algorithms are applied to raw image data, 
e.g., for object recognition and classification. Algorithms may also 
be used for the normalization process of multi-dimensional datasets 
(e.g., transcriptomics, proteomics and metabolomics data) or for 
classification (e.g., by using support vector machines or random for-
ests). While automatic configurations (category 1B) may determine 
curve-fit decisions between level III and IV data, the curve fitting 
process itself (and its quality control) may be considered a complex 
algorithm (category 2B). Deriving BMC/PoD values or their uncer-
tainty measures may also require category 2B processing. 

4.3  Data processing category 3:  
Data flagging and data exclusion
In category 3, data may be flagged and/or excluded. The process-
ing of data in categories 1 and 2 can affect actions in category 3 
that alter the structure of the data and therefore may impact data 
configurations and transformations (Fig. 2). Data flagging and 
exclusion can happen at any data transition step. Machine output 
data (level I) may require the exclusion of data due to machine er-
rors in measurements or operator mistakes. Some data are flagged 
(and may be excluded from the data processing stream) at level 
II (raw data) or level III (averaged and relative (raw) data). They 
may be detected and labelled as “outliers”, e.g., because of bacte-
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