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Chapter 1 
Introduction 
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Introduction 
 

Imagine yourself in a library attempting to write this introduction. In front of you are a laptop, 
your phone, and some snacks you're saving for later. To your left, a few students are quietly 
whispering to each other. To your right, people walk by and occasionally stop to browse the 
bookshelves. Outside, the rain softly taps on the windows. 

It is remarkable that most humans, most of the time, can focus on writing amidst this myriad 
of possible distractions. How do we manage to override millions of years of evolutionary 
tendencies (registering novel movements in our environment) for an internally set goal that 
didn't even exist until a few hundred years ago (writing a dissertation) on a device invented 
only a few decades ago (the laptop)? And, equally intriguingly, why does this ability to pursue 
these goals fluctuate so much? At times, you might find yourself in a state of flow, impervious 
to distractions, while at other times, every little sound pulls you away from your goal. 

The human capacity for flexible goal-directed behavior described here is called 'cognitive 
control,' although this concept serves more as an umbrella term for many distinct processes and 
mechanisms that enable this unique ability. This dissertation will focus on understanding the 
neural mechanisms that give rise to variability in cognitive control, specifically focusing on the 
interaction between the ascending arousal system and cognitive control processes. 

Cognitive control 
Decades of neurophysiological research have sought to understand the capacity for cognitive 
control. I define cognitive control as the collection of mechanisms responsible for flexibly 
adapting thought and action in the service of task goals, in contrast to automatic or reflexive 
thought and behavior. The controlled versus automatic distinction is fundamental in cognitive 
psychology (and was popularized by the late Daniel Kahneman (2011), and much effort has 
been put into characterizing cognitive control both on the cognitive and the neurobiological 
levels of analysis (Botvinick & Braver, 2015).  

On the cognitive level, cognitive control is often assessed through cognitive tasks that measure 
an individual's ability to manage and adapt their thought processes and actions in response to 
changing task demands and conflicting information. The Stroop task (Chapter 2), arrow flanker 
task (Chapter 3), and task-switching task (Chapter 4) are three historically rich cognitive 
control tasks used in the work presented here that each emphasize a different aspect of the 
capacity for cognitive control. 

In the Stroop task, participants are asked to name the color of the font of a word that may spell 
out a different color (e.g., the word "red" printed in blue ink) (MacLeod, 1991). The task 
measures cognitive control by requiring participants to suppress the automatic process of 
reading the word in favor of identifying the ink color. The performance difference between 
congruent trials (where the word and ink color match) and incongruent trials (where they do 
not) is known as the incongruence cost, and this measure indexes the effort to override the 
automatic reading response. 
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The arrow flanker task involves participants responding to a central target stimulus (an arrow 
pointing left or right) flanked by distractor stimuli that can either be congruent (pointing in the 
same direction) or incongruent (pointing in the opposite direction) (Ridderinkhof, Wylie, van 
den Wildenberg, Bashore, & van der Molen, 2021). The incongruence cost here is reflected in 
the slower response times and increased error rates when the flankers are incongruent, 
highlighting the effort to narrowly focus on the central target and overcome the conflicting 
information from the flankers.  

In task-switching experiments, participants switch between different tasks (e.g., categorizing 
shapes by color or type) based on a given cue (Kiesel et al., 2010). The cognitive control 
required for this task is evident in the switch cost, which is the increased response time and 
error rate when switching tasks compared to repeating the same task. This cost arises because 
switching tasks requires reconfiguring mental processes to accommodate new rules and 
suppress previously relevant ones. 

Cognitive control tasks like the ones described above have also played a vital role in examining 
the neural underpinnings of cognitive control so far. What is clear is that the frontal lobe plays 
a crucial role in the capacity for cognitive control (Friedman & Robbins, 2022; Miller & Cohen, 
2001). Furthermore, neurophysiological studies using EEG have identified specific brain 
oscillations linked to cognitive control. Theta-band (4–8 Hz) oscillations in the midfrontal 
cortex, particularly in and around the anterior cingulate cortex, are strongly associated with 
conflict monitoring and resolution during these tasks (Cavanagh & Frank, 2014). For instance, 
during the Stroop and flanker tasks, increased theta activity is observed in response to 
incongruent stimuli, reflecting the heightened demand for cognitive control to manage 
conflicting information (Botvinick, Braver, Barch, Carter, & Cohen, 2001).  

In addition to theta oscillations, alpha-band (8–12 Hz) activity is also implicated in cognitive 
control, particularly inhibiting irrelevant information and maintaining task goals (Jensen & 
Mazaheri, 2010). For example, during task-switching tasks, which require rapid shifts between 
different cognitive operations, the switch costs—reflected in increased reaction times and error 
rates—correlate with variations in both theta and alpha rhythms (Cooper, Darriba, Karayanidis, 
& Barceló, 2016). These EEG markers provide a temporal and spectral window into the 
dynamic processes underlying cognitive control, highlighting how different brain regions 
coordinate to adaptively regulate behavior in the face of varying cognitive demands (Miller & 
Cohen, 2001).  

While cognitive control is renowned as enabling the uniquely human capacity for flexible 
behavior, it is also notorious for its limitations: humans are limited in how many control-
demanding tasks they can perform simultaneously (e.g., playing a new piano piece and parsing 
difficult mathematical equations), how intensely they can focus on one single task (e.g. 
studying in the library while your neighbors are whispering to each other) and how consistently 
it can be deployed (e.g., resisting a cookie in the morning versus after a long day of work) 
(Musslick & Cohen, 2021). Why is it that such an important capacity has such glaring 
limitations? Predominantly, researchers have attempted to explain the limitations as 
weaknesses, for example, viewing cognitive control as dependent on a central resource that is 
depleted if used too much (Hagger, Wood, Stiff, & Chatzisarantis, 2010; Lavie, Hirst, de 
Fockert, & Viding, 2004). While compelling, decades of research have failed to provide strong 
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evidence for the depletion account (Friese, Loschelder, Gieseler, Frankenbach, & Inzlicht, 
2019) or other, and comparable accounts.  

Meanwhile, another approach has been more successful in addressing the limitations of control 
and serves as the backbone for the work in this dissertation: the resource-rational analysis 
approach (Lieder & Griffiths, 2019). This approach seeks to identify the optimal computations 
necessary for a given function and uses these to generate hypotheses about the underlying 
mechanisms and observed behavior. This method has driven significant progress in many 
scientific domains, including psychology (Anderson, 1990; Geisler, 2003; Tenenbaum, 
Griffiths, & Kemp, 2006), but until recently has been surprisingly scarce in cognitive control 
research.  

A critical step in the resource-rational analysis approach is defining the 'objective function' or 
goal of cognitive control, which is challenging given the broad scope of processes it 
encompasses. So far, several levels of optimization have been tried out. Task-level optimization 
focuses on optimizing performance in specific tasks. Meta-level optimization addresses 
broader control systems. An example of a theory on this level is the expected value of control 
theory, which theorizes how cognitive control limitations arise through balancing control 
investment and rewards (Shenhav, Botvinick, & Cohen, 2013). Optimization under constraints, 
or bounded rationality, addresses the practical constraints on cognitive control, emphasizing 
that optimization must account for the limited mechanistic resources available.  

In contrast to the weakness accounts, the resource-rational analysis approach views the 
limitations of cognitive control not as flaws but as pointers to optimizations we perhaps have 
not understood yet (Musslick & Cohen, 2021; Shenhav et al., 2017). In this vein, Musslick and 
Cohen (2021) take the bounded rationality approach and propose that the limitations in 
cognitive control result from optimizing trade-offs inherent in neural systems. For example, 
the trade-off between learning efficiency and processing efficiency: sharing representations in 
neural networks enables rapid learning and generalization but at the cost of multitasking 
performance, as you cannot use the same representation simultaneously for two different tasks. 
Another trade-off is between cognitive stability and flexibility: being more stable on one task, 
by definition, results in being worse at switching from task to task. Being stable is beneficial 
when writing your dissertation in the library, but not so much when you are a doctor on duty, 
having to respond quickly to emergency calls.  

As mentioned, the level to which one exerts control fluctuates over time, both on larger (e.g., 
circadian) timescales and from moment to moment. The resource-rational analysis approach 
suits our goal well to generate hypotheses about this variance, and we explicitly work with the 
approach in Chapter 4. However, while the resource-rational approach constrains the search 
space to hypothetical mechanisms that facilitate (near) optimality, there could still be countless 
possible mechanisms in theory.  

Ascending arousal system 
Parallel to the classic work in cognitive control, a separate stream of research has gradually 
conducted a paradigm shift in cognitive neuroscience. This research shows that the brain is not 
a passive receiver and processor of inputs but a dynamically active organ that continuously 
changes states, sometimes through external inputs, but often without environmental changes 
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(Fox & Raichle, 2007; McGinley, Vinck, et al., 2015). Changing brain states allows the brain 
to change how it responds to the environment without having to go through the laborious 
process of changing the wiring of the brain, thus providing the brain with a vital tool to adapt 
to the ever-changing demands of the world and body over several timescales – from moment-
to-moment to circadian to even longer timeframes.  

The ascending arousal system, a set of interconnected brainstem nuclei with axonal projections 
to the thalamus and the cortex, underlies many of these changes in brain states. As the name 
suggests, these nuclei regulate the level of arousal, the global state of activation of our nervous 
system (Calderon, Kilinc, Maritan, Banavar, & Pfaff, 2016; Munn, Müller, Wainstein, & Shine, 
2021). The ascending arousal system regulates arousal levels by projecting neuromodulators 
through their diffuse projections, thereby changing how neurons subsequently respond to 
incoming signals. The activity of the ascending arousal systems can be best measured 
invasively through direct neural recordings in the brainstem, but (with a stroke of luck for 
researchers that work with humans) research has shown that pupil size is a reliable non-invasive 
alternative to estimate the activity of the ascending arousal system (Aston-Jones & Cohen, 
2005; McGinley, Vinck, et al., 2015; Munn et al., 2021; Reimer et al., 2014). On top, different 
aspects of pupil size, for example, the distinction between pupil size between trials (baseline 
pupil size) and change in pupil size during tasks (pupil derivative), can even capture subtleties 
in how the ascending arousal systems shape arousal (Reimer et al., 2016). This reliability and 
accessibility have led to a surge in the use of pupillometry as a tool in cognitive control research 
(van der Wel & van Steenbergen, 2018).  

How exactly each unique cell population and neuromodulator in the ascending arousal system 
sculpts brain states is still the topic of ongoing research (with pupillometry playing an 
important role). What is already clear is that the locus coeruleus (LC) plays a central role in 
influencing cognitive processes through its noradrenergic projections (Sara, 2009; Sara & 
Bouret, 2012). The LC is a small nucleus in the pons responsible for the bulk of the brain's 
norepinephrine (NE) production. Despite its small size, the LC sends extensive and divergent 
projections throughout the brain, supplying NE to the cerebral cortex, cerebellum, and 
hippocampus. Slow fluctuations of activity of the LC are modulated through, for example, 
inputs from hypothalamic hypocretin/orexin inputs (España, Reis, Valentino, & Berridge, 
2005) which align with circadian rhythm. However, moment-to-moment fluctuations are also 
possible through cortical connections from the anterior cingulate cortex (ACC) and the 
orbitofrontal cortex (OFC) to the LC (Aston-Jones & Cohen, 2005). These connections are 
especially interesting in the context of this dissertation, as the ACC and OFC are both heavily 
implicated in cognitive control processes (Botvinick et al., 2001). Recent findings by Jordan et 
al. (2023) further support this cortex–LC–cortex loop by demonstrating that the frontal brain 
regions detect visuomotor prediction errors and then use the LC to broadcast these visuomotor 
prediction errors across the cortex, thereby facilitating sensorimotor plasticity (Jordan & 
Keller, 2023).  

Aston-Jones and Cohen (2005) propose that the LC exhibits two distinct modes of activity: 
phasic and tonic. Phasic activation, characterized by bursts of activity in response to task-
related events, is associated with enhanced performance and accurate behavioral responses, 
promoting the exploitation of known rewards. Conversely, tonic activity, marked by elevated 
baseline activity without phasic bursts, is linked to increased distractibility and exploration of 
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new opportunities when the utility of the current task diminishes. Furthermore, Aston-Jones 
and Cohen (2005) hypothesize that NE released from LC neurons modulates the activity of 
target neurons by enhancing the contrast between synaptically evoked activity and spontaneous 
activity. In other words, NE increases the signal-to-noise ratio by enhancing the responsiveness 
of target neurons to incoming signals while simultaneously reducing their background noise. 
This modulation is referred to as neural gain, and the hypothesis that the ascending arousal 
system modulates neural gain is particularly well-suited to test in computational models – the 
topic of the next two sections.  

Computational Models in Cognitive Neuroscience 
Many theories on arousal and cognitive control have been expressed solely verbally, 
particularly in psychology. While verbal theories and hypotheses are undeniably useful, they 
have significant pitfalls. One of these pitfalls is that verbal theories can be opaque or 
ambiguous. With computational modeling, it is not necessary to abandon verbal theory per se; 
you also express it in purely mathematical terms. In this section, I will lay out several arguments 
for using computational models in cognitive neuroscience, specifically focusing on 
understanding neural mechanisms of cognitive phenomena. 

One of the primary benefits of computational models is that they force researchers to formalize 
their verbal theories quantitatively. This process of formalization requires specifying the exact 
relationships between variables, making the implicit assumptions of verbal theories explicit 
and testable. However, merely adopting computational models does not automatically resolve 
all ambiguities; there are still implicit virtues that guide the choices researchers make when 
designing these models. As Heijnen et al. (2024) emphasize, these choices often remain 
unspoken in the literature, leading to potential biases and locked-in research traditions. 
Therefore, it's crucial for researchers to also be transparent about the underlying motivations 
and criteria that inform their modeling decisions to ensure that the models serve their intended 
purpose effectively. 

Following the formalization of their theory, the researcher can simulate and predict the 
outcomes of different experimental conditions, thereby serving as a computational testbed for 
the implications of that theory. These predictions allow researchers to test their theories' 
validity in silico before conducting costly and time-consuming experiments. By running 
simulations, researchers can explore a wide range of hypothetical scenarios, identify critical 
variables, and refine their hypotheses, making subsequent empirical studies more focused and 
efficient.  

Computational modeling also offers a way out of what has been termed the "Flatland fallacy"—
the tendency to oversimplify complex, high-dimensional psychological phenomena into low-
dimensional explanations. As discussed by Jolly and Chang (2019), this fallacy arises because 
of our cognitive limitations and the fact that traditional methodological approaches often lead 
us to favor simpler, more tractable theories, even when the phenomena we study are inherently 
complex and multidimensional. Traditional experimental designs and statistical analyses often 
limit researchers to examining a few variables at a time, leading to potentially oversimplified 
conclusions. In contrast, computational models can handle high-dimensional data, capturing 
the intricate interactions between numerous factors that shape, for example, cognitive control 
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variability. By embracing this complexity instead of turning to reductionist approaches, 
researchers can gain a deeper and more accurate understanding of the phenomena under study. 

Especially in research as conducted in this dissertation, computational models are invaluable. 
In essence, the brain is an information-processing machine, and its cognitive capacities can be 
mechanistically explained by laying bare how neural computations over neural representations 
give rise to those capacities (Barack & Krakauer, 2021; Piccinini, 2020). These computations 
are real, causally effective properties of the nervous system, not just metaphorical descriptions. 
One step further, some philosophers (e.g., Piccinini, 2020) argue that these computations are 
multiply realizable: on a certain level of analysis, the computations are identical whether 
implemented in silicon or biological networks. While I am unconvinced by the multiple 
realizability argument (I think there are biochemical properties within cells that cannot be 
replicated in non-biological networks; Sterling & Laughlin, 2015), I do support the idea that 
the neural networks implemented in silicon can capture real properties of the neural networks 
implemented in biological systems (Stinson, 2020). Therefore, when we try to elucidate the 
neural mechanisms underlying cognitive control, replicating the properties of those 
mechanisms in computational models implemented in silicon is a promising way to make 
progress in understanding the biological neural mechanisms.  

Next to these ontological arguments for using computational models, there is an important 
epistemic point as well: computational models promote cumulative science by providing a 
framework for systematically building on previous research. Unlike verbal theories, which can 
be ambiguous and open to multiple interpretations, computational models are precise and 
reproducible. They can be shared, tested, and extended by other researchers, facilitating 
collaboration and the gradual accumulation of knowledge (Doerig et al., 2023; Jolly & Chang, 
2019). This iterative process of model refinement and validation helps develop robust theories 
that better capture the mechanisms that instantiate cognitive control. A good example of how 
this can play out is with the class of models that stem from the tradition of connectionism, 
which is the topic of the next section.  

Connectionist Models of Control 
The models used throughout this dissertation fall under the category of parallel distributed 
processing (PDP) models or connectionist models. These models utilize highly interconnected, 
neuron-like processing units to simulate cognitive processes, closely mirroring the structure 
and function of biological neural networks. In the past four decades since the start of the 
research program (Rumelhart, Hinton, & McClelland, 1986), connectionist models have been 
able to successfully emulate how humans solve cognitive tasks, thereby showing that there is 
a possible answer to one of the biggest questions in cognitive neuroscience: how can complex 
cognition arise from "simple" neurons? According to connectionism, the answer lies in 
distributed processing rather than centralized master units.  

Especially in the field of cognitive control, there is a rich history of successful connectionist 
models. A good example of this history is the subclass of connectionist models that iteratively 
attempt to capture how humans solve the Stroop task (Botvinick et al., 2001; J. D. Cohen, 
Dunbar, & McClelland, 1990a; J. D. Cohen & Huston, 1994; J. D. Cohen & Servan-Schreiber, 
1992a, 1992b; Kalanthroff, Davelaar, Henik, Goldfarb, & Usher, 2018; Miller & Cohen, 2001). 
A history which we supplement in Chapter 2. This iterative improvement of computational 
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models that attempt to model the same cognitive phenomenon is a good example of the 
epistemic advantage of computational modeling mentioned in the previous section.  

Approach 
In the work reported below, I aimed to explore the interplay between arousal and cognitive 
control, thereby examining how fluctuations in arousal contribute to variability in cognitive 
performance. By combining empirical tests, electrophysiology, pupillometry, and 
computational modeling, the research seeks to advance our understanding of the neural and 
computational mechanisms underpinning cognitive control and its variability.  

The hypothesis I pursued is that the variance in the human ability to exert control can be 
mechanistically explained (at least partly) by arousal dynamics. 

Overview 
The dissertation is divided into five chapters, with this introduction being the first. The second 
chapter examines how fluctuations in global neural gain influence cognitive control, both 
empirically and in computational models. The third chapter explores the effects of phasic 
alertness on cognitive control, presenting a novel account of how phasic alertness boosts 
arousal and generates an urgency signal that impacts performance. The fourth chapter addresses 
the stability-flexibility trade-off, investigating how individuals regulate this trade-off in 
response to different contextual demands through task-switching paradigms and 
neurophysiological measures. In the fifth chapter, I outline the next steps I think are essential 
for further research. What follows now is a more detailed summary of the following three 
chapters.  

Chapter Two investigates how fluctuations in global neural gain affect cognitive control. 
Using behavioral methods, pupillometry, and computational modeling, we examine the impact 
of neural gain on the Stroop task, a classic measure of cognitive control. First, simulations of 
a comprehensive connectionist model of the Stroop task, which includes task conflict and both 
proactive and reactive forms of control, predict accurately that increasing global gain leads to 
an overall speeding of reaction times, increased Stroop interference, and decreased Stroop 
facilitation. Pupillometric analyses reveal that the pre-trial pupil derivative, a non-invasive 
index of global gain, correlates with Stroop task performance as predicted in the model 
simulations: increased pupil derivative correlates with increased interference and decreased 
facilitation. An analysis of the internal model dynamics suggests that a gain-related increase in 
task conflict and corresponding (within-trial) increase in reactive control are vital for 
understanding this pattern of behavioral results. Indeed, a similar connectionist model without 
this task-conflict-control loop could not account for the results. Thus, this chapter shows how 
spontaneous fluctuations in neural gain significantly impact reactive cognitive control and that 
we can predict the impact of these fluctuations in neural gain on behavior through 
computational modeling.  

Chapter Three explores a decade-old mystery in the arrow flanker task. Why does a short tone 
before the stimulus presentation speed up response times while also increasing incongruence 
costs? Here, we present a novel, biologically informed account suggesting that phasic alertness 
generates an evidence-independent urgency signal. This urgency signal shortens overall 
response times and amplifies competition between evidence accumulators, impairing cognitive 
control. By using a combination of the arrow flanker task, pupil measurements, and 
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electrophysiological data, the study demonstrates that phasic alertness increases conflict in 
incongruent trials. A connectionist model of the flanker task incorporating time-varying 
urgency and lateral inhibition among evidence accumulators successfully reproduces the 
behavioral effects of phasic alertness, highlighting the interplay between dynamic changes in 
urgency, cognitive control, and evidence accumulation. This chapter provides insights into the 
complex relationship between phasic alertness, urgency, and cognitive control. 

Chapter Four addresses the stability-flexibility trade-off in cognitive control, which is 
essential for adapting to varying contextual demands in daily life. Using a cued task-switching 
paradigm, the study reported in this chapter investigates whether humans can efficiently 
regulate this trade-off by adjusting their cognitive flexibility in response to different contextual 
demands and the neural correlates of this adaptation. Therefore, participants performed a 
parity-magnitude task-switching task under varying switch-frequency conditions while we 
measured their pupil size and alpha/theta oscillatory power. The study replicates the trade-off 
between switch and congruency costs empirically and in computational simulations. Results 
show that participants exhibit decreased switch costs in high-switch contexts, indicating greater 
flexibility, but increased incongruence costs, indicating reduced stability. Furthermore, 
baseline pupil size and pre-cue alpha power levels correlate with switch frequency, suggesting 
these markers track stability-flexibility adaptations. This chapter bridges the gap between 
empirical and theoretical research by combining neurophysiological measures with 
computational models, providing a comprehensive understanding of the mechanisms 
underlying adaptations to the stability-flexibility trade-off.  

In summary, the chapters in this dissertation collectively advance our understanding of how 
ascending arousal systems, particularly the locus coeruleus-norepinephrine (LC-NE) system, 
influence various aspects of cognitive control. By integrating empirical tests, computational 
modeling, and neurophysiological measurements, this research sheds light on the dynamic 
regulation of cognitive control and offers potential pathways for enhancing cognitive 
performance through targeted interventions. 

 
 
 
 
 
 
 
  


