
Resource-constrained neural architecture search on language models: a
case study
Paraskeva, A.; Reis, J.P.; Verberne, S.; Rijn, J.N. van

Citation
Paraskeva, A., Reis, J. P., Verberne, S., & Rijn, J. N. van. (2024). Resource-constrained neural
architecture search on language models: a case study. Retrieved from
https://hdl.handle.net/1887/4209761

Version: Accepted Manuscript
License: Creative Commons CC BY 4.0 license
Downloaded from: https://hdl.handle.net/1887/4209761

Note: To cite this publication please use the final published version (if applicable).

https://creativecommons.org/licenses/by/4.0/
https://hdl.handle.net/1887/4209761

Resource-constrained Neural Architecture Search on Language Models:
A Case Study

Andreas Paraskeva 1 João Pedro Reis 2 Suzan Verberne 1 Jan N. van Rijn 1

Abstract

Transformer-based language models have
achieved milestones in natural language pro-
cessing, but they come with challenges, mainly
due to their computational footprint. Applying
automated machine learning to these models
can democratize their use and foster further
research and development. We present a case
study using neural architecture search (NAS) to
optimize DistilBERT in a resource-constrained
environment with a 4 000 GPU-hour budget. We
employ an evolutionary algorithm that uses a two-
level hierarchical search space and a segmented
pipeline for component enhancement. While
in order to obtain state-of-the-art results more
compute budget is required, our results show
efficient exploration, and a strong correlation be-
tween pre-training and downstream performance.
This suggests a potential applicability of using
pre-training validation as a cutoff criterion during
model training. Finally, our learning curves
analysis emphasizes the potential for efficient
resource allocation through the adoption of an
epoch-level stopping strategy, thus directing
resources towards more promising candidate
models. Future work should focus on scaling
these insights to larger language models and more
diverse tasks.

1. Introduction
Recent advancements in the field of Large Language
Models (LLMs) (Zhao et al., 2023) have caught the at-
tention of many researchers and users. The transformer

1Leiden Institute of Advanced Computer Science (LIACS),
Leiden University, Leiden, Netherlands 2Departamento de En-
genharia Eletrotécnica e de Computadores, University of Porto,
Porto, Portugal. Correspondence to: Andreas Paraskeva
<a.paraskeva@liacs.leidenuniv.nl>.

Accepted to the Workshop on Advancing Neural Network Training
at International Conference on Machine Learning (WANT@ICML
2024).

architecture (Vaswani et al., 2017) and subsequent mod-
els such as Bidirectional Encoder Representations from
Transformers (BERT) (Devlin et al., 2019), Generative Pre-
trained Transformer (GPT) (Radford & Narasimhan, 2018),
BLOOM (Scao et al., 2022) and LLaMa (Touvron et al.,
2023) introduced rapid breakthoughs in the field of Natural
Language Processing (NLP). Platforms such as Hugging-
Face empower developers, researchers, and organizations
by providing pre-trained models, fostering innovation and
community-driven research.

The key idea of Automated Machine Learning (Au-
toML) (Hutter et al., 2019) is to is to optimise several as-
pects of the training process such as the neural architecture.
AutoML plays a supporting role in automating the identifica-
tion of an appropriate machine learning pipeline for a given
task. The underlying aim is the democratization of machine
learning, enabling researchers to apply their expert knowl-
edge to higher-value tasks while automating routine pro-
cesses such as hyperparameter optimization and the search
for a better neural architecture. Designing effective neural
network architectures and tuning structural parameters is a
challenging and widely researched area. These challenges
have led to the inception of the field of Neural Architecture
Search (NAS) (White et al., 2023), where the specific task
of designing an architecture is automated.

Challenges more specific towards language models also
arise. The LLM training procedure consists potentially of
two phases, (i) a pre-training phase on a large corpus of
(often unlabelled) text, which is typically computationally
expensive, and (ii) a fine-tuning phase on the task of interest,
which is computationally much cheaper. The limited intu-
ition towards their effective design is an obstacle that also
restricts the explored architectures since humans are less
likely to investigate more complex architectures. Indeed,
while NAS has the potential to identify improved models,
NAS on the pre-training of language models has been iden-
tified as one of the most complex challenges for deploying
AutoML on LLMs (Tornede et al., 2023).

In our research, we investigate transformer-based language
models, typically characterized by a large number of train-
able parameters. The objective is to explore the macro-
architecture of these models and derive an effective search

1

Resource-constrained NAS on language models: A case study

space for potential models to explore. Additionally, we
want to adopt a search method that utilises a multi-objective
optimization approach. We hope to primarily optimize the
performance of the model on the downstream task of ques-
tion answering, while secondarily minimizing the explored
candidates’ model sizes. Our overall aim is to investigate
the application of AutoML to LLMs, acknowledge arising
challenges (Tornede et al., 2023), and identify promising
opportunities for making this procedure more efficient.

In this paper, we report on a case study that brings NAS
and language models together in a resource-constrained en-
vironment. We apply our proposed NAS methodology to
the DistilBERT model1 (Sanh et al., 2019), which was pre-
trained on the task of Masked Language Modeling (MLM).
While larger models exist, due to the computational cost of
pre-training such models, we choose this relatively smaller
language model of approximately 66 million parameters.
As such, we will refer to DistilBERT as a language model,
rather than an LLM. The search space includes two search-
able levels by adding macro-level architecture hyperparam-
eters to a cell-based search; derived from submodules of the
transformer encoder (i.e. Feed-forward Neural Network and
Multi-head self-attention). The search method is based on
a genetic algorithm (Bäck, 1996), specifically an adapted
version of Non-dominated Sorting Genetic Algoritm II
(NSGA-II) (Deb et al., 2002) to optimize generated models
on the two previously mentioned objectives (performance
and model size). We perform pre-training and finetuning
on explored model variants, and use the downstream task
performance metric as one of the objective scores.

Based on the expensive life-cycle of transformer-based lan-
guage models, in combination with the resource-constrained
environments that are typically available to researchers, it
is important to use available resources effectively and ef-
ficiently. In such a resource-constrained environment, we
utilised a small compute grant out of which of ∼4 000 GPU-
hours have been spent on our pipeline, while an extra portion
GPU-hours was dedicated to development purposes and pre-
liminary analysis. The used GPUs were NVIDIA A100s with
40GB VRAM. This execution would otherwise amount to
approximately AC15 000 assuming use of a popular cloud
platform.2 Through our experiments, we derive insights
into typical resource needs and identify potential areas for
targeted focus and cost-effective resource allocation.

While in order to obtain state-of-the-art results more com-
pute budget is required, our results show efficient explo-

1This is the distilled version of Bert Base un-
cased provided by https://huggingface.co/
distilbert-base-uncased, which is trained on En-
glish language using a masked language modeling objective.

2 Assuming usage of a machine with two A100 GPUs, the cost
is calculated according to the respective pricing in the Google
Cloud and Amazon Web Services (AWS).

ration of the search space. Firstly, we observe a strong
correlation between pre-training and performance on the
downstream task, suggesting a potential applicability of us-
ing multi-fidelity approaches as a cutoff criterion during the
pre-training. Secondly, a learning curves analysis empha-
sizes the potential for efficient resource allocation through
the adoption of an epoch-level stopping strategy, thus di-
recting resources toward more promising candidate models.
The above observations indicate potential in applying multi-
fidelity approaches (such as learning curve analysis (Mohr &
van Rijn, 2022) or bandit-based methods (Li et al., 2017)) to
early discard non-promising candidate networks, which has
the potential to speed up the search process tremendously.

We see this work as one of the first stepping stones towards
performing efficient NAS on the pre-training of language
models for specific tasks.

2. Related Work
We structure the related work in sections based on
transformer-based language models, NAS, and NAS for
large language models.

2.1. Transformer-based Language Models

Pre-trained language models, particularly transformer-based
architectures (Vaswani et al., 2017), have revolutionized
the field of natural language processing. Amongst the
most influential LLMs, the GPT (Radford & Narasimhan,
2018) has showcased the potential of generative pre-training.
BERT (Devlin et al., 2019) uses bidirectional transform-
ers, through stacking the encoder of the transformer and
a masked language model objective. BART (Lewis et al.,
2020) and PaLM (Chowdhery et al., 2023) used in context
learning, whilst Megatron-Turing NLG (Smith et al., 2022)
used reinforcement learning. There are various possible
learning paradigms for the pre-training phrase, but for this
work, we will focus on MLM which was also used for the
pre-training phase of DistilBERT from HuggingFace.

2.2. Neural Architecture Search (NAS)

A NAS methodology heavily depends on the expressiveness
of the search space, the effectiveness of the search method
that traverses it, and the appropriate usage of performance
estimation strategy (White et al., 2023). Early adopters
of NAS were based on reinforcement learning (Zoph &
Le, 2017) which possessed clear downsides in terms of
computational cost. Notably, Efficient Neural Architecture
Search (ENAS) (Pham et al., 2018) is an efficient reinforce-
ment learning-based NAS algorithm that leverages a su-
pernet to optimize the search space. By training a super-
net that contains all possible subnetworks, the algorithm
can efficiently identify the best architecture for a given

2

https://huggingface.co/distilbert-base-uncased
https://huggingface.co/distilbert-base-uncased

Resource-constrained NAS on language models: A case study

task. Gradient-based methods, like Differentiable Architure
Search (DARTS) (Liu et al., 2019), utilised continuous re-
laxation of the search space, making it differentiable and
thus enabling the use of gradient descent. These supernet-
based approaches speed up the model search at the cost of
additional model size during training, which can be restric-
tive in situations where memory is a limiting factor (such
as in the case of training an LLM). Evolutionary Algorithm
(EA) based methods were proposed to exploit evaluated
candidate models for effective population maintenance and
evolution (Jian et al., 2023; Deb et al., 2002). An interesting
approach was NSGA-Net (Lu et al., 2019), which employed
a multi-objective genetic algorithm to efficiently balance
accuracy and computational cost in NAS for Convolution
Neural Networks (CNNs). This does not directly translate
to transformer-based models but strengthens the potential
applicability of utilised techniques.

2.3. NAS for LLMs

NAS has been heavily researched in the area of CNNs and
Recurrent Neural Networks (RNNs), with a focus on the
computer vision field. Although research on NAS for trans-
formers has been limited, it is gradually expanding, espe-
cially into NLP-related tasks. For example, Primer (So
et al., 2021) is a NAS algorithm based on EA that searches
for a decoder-only auto-regressive language model. The
search space definition consists of TensorFlow applications
(primitives) and evolution is applied to search for candi-
date models. AutoBERT-Zero (Gao et al., 2022) proposes a
search space containing primitive operations with the NAS
method aimed to develop a novel attention structure. NAS-
BERT (Xu et al., 2021) employs neural architecture search
to compress BERT models, achieving adaptive model sizes
and task-agnostic applicability. The main drawback would
be the high computational cost associated with training a
large supernet. AutoTinyBERT (Yin et al., 2021) focused on
the automatic optimization of hyperparameters defining the
architecture of BERT, which was tailored towards resource-
constrained environments. Following a macro-search space
it contained limited expressiveness but depicted very promis-
ing results. Inspired by the AutoTinyBERT, we developed a
more expressive hierarchical search space, that defines prim-
itive components of the transformer encoder backbone, and
added macro-level architecture hyperparameters in order to
mutate the current architecture in a modular approach. Addi-
tionally, we retain weights associated with unaffected layers
post-mutation (Real et al., 2017) and investigate the effec-
tiveness of epoch-level multi-fidelity in our NAS method.

3. Methodology
In this case study, we propose a definition for the NAS
search space, accompanied by a search method responsible

for the exploration of models within it.

3.1. Search Space

The architecture of a transformer encoder in the DistilBERT
model has four components: Multi-head self-attention,
Layer Normalization, Feed-forward Neural Network layer
(FNN) and the output layer. The multi-head self-attention
allows the model to focus on different parts of the input
sequence simultaneously, capturing relationships between
tokens. The FNN introduces non-linearity, allowing the
model to capture complex patterns and high-level features.
Arguably the multi-head self-attention and FNN are the
most crucial parts of the transformer encoder. We introduce
enhanced searchability to a cell-based approach by incor-
porating macro-level architecture hyperparameters; thereby
incorporating two levels of searchability in a hierarchical
search space.

Firstly, the multi-head self-attention mechanism involves the
specification of the number of attention heads, each focusing
on distinct aspects or patterns in the data. This paralleliza-
tion enables a richer understanding of complex data patterns,
albeit with increased computational and memory costs. Sec-
ondly, the FNN incorporates several hyperparameters. The
choice of activation function, namely ReLU (Agarap, 2018)
or GELU (Hendrycks & Gimpel, 2016), impacts the non-
linear transformations between linear layers. Additionally,
parameters like the intermediate size and the number of
layers in the FNN allow for customization of the architec-
ture, influencing the representation of high-level features in
the data. The previously mentioned hyperparameters have
a parameter space that spans relatively close to the origi-
nal values of the DistilBERT model, incorporating similar
settings to the AutoTinyBert (Yin et al., 2021).

3.2. Search Method

The proposed pipeline follows a Genetic Algorithm, more
specifically an NSGA-II (Deb et al., 2002) approach. The
complete pipeline of the proposed search method is depicted
in Figure 1. The incremental steps are outlined hereafter.

NSGA-II has been empirically shown in literature to be
an effective way to apply genetic algorithms to a multi-
objective problem (Lu et al., 2019). In our work modifi-
cations have been applied to the original algorithm, which
were guided by intuition, empirical analysis from small-
scale experiments, and constraints posed by the project’s
available resources. These will be explained further here-
after. Furthermore, based on empirical evidence and lit-
erature (Yin et al., 2021), the decision has been made to
omit the crossover function. The crossover function would
also minimize the ability of weight-inheritance (Real et al.,
2017).

3

Resource-constrained NAS on language models: A case study

Figure 1. The NAS pipeline outlines the operational steps for the proposed exploration method, based on genetic algorithms. The
original DistilBERT model undergoes mutations to create the initial parents’ population of size µ. Parent selection is then performed by
investigating the Pareto front to choose the best-fitted parents. These selected parents undergo further mutations to generate the stemmed
offspring population, which requires pre-training. Candidate models are pre-trained, and the top-performing half is chosen based on their
masked language modeling loss. Subsequently, the selected models undergo additional pre-training and fine-tuning. Finally, we compute
their objective scores and choose the next-generation parents through plus-selection.

It should be noted that due to the high cost associated with
the models’ life-cycle, small values were chosen for both
the parents’ population size (µ) and the offspring population
size (λ), set at 8 and 12, respectively.

3.2.1. PARENT SELECTION

Mating selection is the procedure that selects (typically two)
parents that will undergo cross-over and mutation to create
the offspring. Even though the mating selection procedure
is typically associated with the crossover function, the selec-
tion of parent pairs is still implemented and will be referred
to as parent selection hereafter. We implemented the parent
selection procedure in order to select the best-fitted parents
which will undergo mutations, to consequently create the
offspring population. The parent selection procedure relies
on the formulation of Pareto fronts and calculation of Pareto
ranks (according to the original NSGA-II algorithm). Con-
trary to the original approach, the crowding distance was
calculated using only one axis, promoting diversity based
on the model size.

We also utilise pure tournament selection instead of the
original elitist selection. This change aims to encourage
exploration, especially in the absence of a crossover func-
tion. The k value, determining the subset of the population
selected for tournament selection, was set to 3. This small
value enhances diversity and induces robustness in an other-
wise noisy environment with small population sizes.

3.2.2. MUTATION

The mutation function introduces random changes to the
individuals’ genotype, in order to exploit identified optimal
solutions. The mutation function will create our candidate
models and guide the traversal through the search space with
considerations about the exploration and exploitation trade-
off. Firstly, we probabilistically add or remove an encoder
block as a whole. Following this, the module of multi-
head self-attention is altered stochastically in the encoder
blocks, while an FNN will randomly be added or existing
ones altered. Each of these modules is generated randomly
within the defined parameter spaces (see Appendix A).

3.2.3. TRAINING PROCEDURE

As explained earlier, the mutation-operator has the poten-
tial to add or remove additional encoder blocks or adjust
multi-head self-attention and FNN blocks. As a result, after
a model has been mutated, it contains both already trained
and untrained layers. As such, we need a process to effi-
ciently train these models. In an attempt to make this more
efficient, we split this process up in two stages. In the first
phase of pre-training, pre-training phase 0, the unaffected
layers are initially frozen and training of 4 epochs is in ef-
fect. Through investigation of the MLM retrieved loss, we
discard half of the models and proceed with the best models
in the next phase, pre-training phase 1. We proceed to un-
freeze all of the layers and further train for 8 epochs. This

4

Resource-constrained NAS on language models: A case study

segmented training in theory should allow for more stable
and efficient training, since by freezing weights the number
of parameters to be updated is reduced. This makes training
faster whilst also reducing the demand for computational
resources. Additionally, the multi-fidelity optimization on
the epoch level allows for fewer computational resources
to be used per generation since we fully pre-trained fewer
models.

Finally, we finetune these models on the task of question-
answering using the SQUAD v1.1 dataset. As the objective
scores, we use (1) the average performance of the F1 mea-
sure (Sokolova et al., 2006) and Exact Match (EM) scores
for the model, as well as (2) the model size ratio. Since both
scores (F1 and EM) are on the same scale and present equal
importance in the benchmarking of this dataset, we use their
average as a performance objective metric of our candidates.
Depending on the application, a weighted average can be
used which provides more importance on one of the two
metrics. For example, in the case of the medical sector,
arguably EM would be required due to the need of precise
answers. Each model is now associated with performance
and size objective scores, which are used in the following
step, the next-generation selection.

3.2.4. NEXT-GENERATION SELECTION

In regards to the selection of the parents for the next genera-
tion, plus-selection, also indicated as (µ + λ), is used. The
selection pool of candidate models for the next generation
of parents can include both candidates from the offspring as
well as from the parents of the current generation. This pro-
vides a form of elitism since it retains individuals potentially
from the previous generation of parents, thus preventing
the loss of good genetic material, ensuring that the best-
performing candidates have a higher likelihood of surviving
from one generation to the next. This was essential based on
the small population sizes explained earlier. We select the
top individuals from the pool of parents and offspring based
on the Pareto rank and crowding distance (seen in Figure 2),
following the elitist selection implemented in the NSGA-II
approach.

4. Experimental Setup
We investigate the progress of the generated models over
generations and derive conclusions for the effectiveness of
our approach and insights into future research directions.

4.1. Baselines

Our baseline model is the original pre-trained DistilBERT
model from HuggingFace with an EM score 62.0 and an
F1 of 75.9, thus an average of 69.0. NAS is used to create
models stemming from the original architecture, followed

by the training process outlined in Section 3. To ensure a
fair comparison, the same training procedures are applied
to all models, and the final evaluation metrics include the
candidate models downstream performance score and their
number of trainable parameters (i.e. size of the model).

4.2. Datasets

Data required for our experimentation phase was loaded
from the HuggingFace Datasets library (Lhoest et al., 2021),
and these underwent necessary tokenization procedure but
deliberately omitting data-level filtering or pre-processing
to enhance the existing datasets. For the pre-training we
used textual content extracted from articles from the En-
glish Wikipedia (Xu & Lapata, 2019) and a diverse set of
books (Zhu et al., 2015), while finetuning used SQUAD
v1.1 (Rajpurkar et al., 2016). In both cases tokenization was
achieved through usage the DistilBERT tokenizer, loaded
from the HuggingFace Transformers library (Wolf et al.,
2020).

4.3. Hardware

The hardware used to run the experiments is part of the
SNELLIUS supercluster provided by the Dutch national
ICT provider SURF, consisting of two Intel Xeon Platinum
8360Y CPUs, four NVIDIA A100, 40GB HMB2 GPUs, and
sixteen 32GB 3200MHz DDR4 RAM.

4.4. Running time and repeats

Due to the high cost of pre-training and the limited resources,
only one run of the optimisation pipeline is conducted with
the number of generations limited to three. Each generation
resulted in the creation of 12 offspring models, out of which
6 underwent both phases of pre-training, and the remaining
6 were cut of after 4 epochs. Additionally, the initial gener-
ation required the creation of 8 parents, which underwent
both phases of pre-training. Moreover, the last generation
of offspring models underwent both phases of pre-training
in order to collect more data for our analysis. This resulted
in the generation of 44 models in total. Based on the two
phases of pre-training, 32 models have been fully trained,
while 12 have only went through pre-training phase 0. The
two pre-training phases used two GPUs with an approximate
training time of 15 and 40 hours respectively. Despite the
low number of generated models, insights and indications
have been obtained, offering suggestions for efficient budget
utilization in future research. Moreover, the pipeline has
been segmented and there was independent execution of
the components. This provides fine-grained control, easier
expandability, or targeted future optimization and reduces
the risk of invalidation of results in a resource-constrained
environment.

5

Resource-constrained NAS on language models: A case study

5. Results
We present our results in this section to derive insights on
the effectiveness of certain decision points as well as in-
dicate effective paths for future work. The experimental
analysis is presented in three distinct key areas of inves-
tigation, namely Pareto front investigation, Multi-fidelity
optimization and Cutoff criterion. These will be expanded
upon in the subsections to follow.

5.1. Pareto front investigation

The generation of Pareto fronts involves an iterative and
repeating process. A candidate solution dominates another
if it is at least as good as any other solution in the pool in all
objectives and strictly better in at least one objective. The
identification of non-dominated solutions categorizes them
in the current Pareto front ranking. These solutions are then
excluded from the set, and the process is repeated until no
candidate solutions remain.

Figure 2 illustrates the plotted Pareto fronts across three
generations. It should be noted that only the parents and
the selected models that enter pre-training phase 1 are de-
picted here, since plotted models should have underwent
both phases of pre-training to retrieve the final downstream
task performance. Colours indicate the Pareto front rankings
for each candidate. As the Pareto front number increases
(see Figure 2), the candidates represented by those Pareto
fronts become less significant due to being dominated to a
greater extent by candidates from lower numbered (higher
ranked) Pareto fronts. Offspring candidates are represented
by squares, while the parent population is denoted by circles.

While there seems to be little improvement across genera-
tions, it is evident that each generation contains a diverse set
of data points, signifying the exploration of a wide range of
neural network architectures by the NAS algorithm. These
widely scattered data points signify a diverse set of can-
didate solutions, which is crucial for capturing different
trade-offs between the typically conflicting objectives that
we investigate. Moreover, we note that across generations
the selection of models to be carried over to the next gen-
eration is typically from the parents population. It can be
observed that the better performing half of the models, in
each generation, always includes models of bigger size than
the original. Even though models of smaller size have been
successfully explored, they have not been selected to en-
ter the second phase of pre-training (pre-training phase
1). This tendenency, along with the lack of improvement
could be attributed to the low number of explored configura-
tions. Another attribute could be the pre-defined allocation
of budget that is equal across all candidates (defined by the
epochs). Absence of convergence (see Figure 3) can lead
to hinderance in their selection for future generations. Gao
et al. (2022) have reported exploration across more than 750

candidates, where we were able to only explore dozens of
candidates within our compute budget. This further rein-
forces the validity of employing plus-selection, allowing
us to preserve promising genetic material and preventing
its loss in the event of a bad generation. The risk is quite
evident due to the small population sizes.

This also emphasizes the need to explore ways that would
enable bigger population pool sizes. Such a technique could
be the utilization of learning curves (Mohr & van Rijn,
2022) to effectively allocate resources to more promising
candidates and ensure full convergence of a smaller portion
of models prior to the selection of candidates from the pool.

5.2. Multi-fidelity optimization

Figure 3 presents the offspring population of the third and
last generation. The offspring population proceeds to un-
dergo through both phases of pre-training (i.e. pre-training
phase 0 and pre-training phase 1) to derive data for the
cutoff models. Three models that experienced exploding
gradients or had a high valued associated loss have been
excluded from the figure.

The presented learning curves of the MLM loss allow us
to conclude whether the cutoff criterion between the two
phases of training has been effective and whether a multi-
fidelity optimization approach (such as on an epoch level)
would be a good strategy to explore further. The analy-
sis of the learning curves indicates that almost all of the
selected models (solid lines) manage to remain the domi-
nant performers after the cutoff criterion at the 4 epochs
mark (around 18 000 steps). It is worth mentioning that
candidate model 0 which was the worst performer at our
cutoff point managed to outperform a significant number
of models as well as two of the selected models (the two
lower-performing ones). The collected data hints that learn-
ing curve analysis on LLMs would be worth investigating,
potentially allowing for more models to be explored by
utilizing hyperband or similar selection mechanisms.

5.3. Cutoff criterion

To conduct a more thorough evaluation of the effective-
ness of our cutoff criterion, we investigate the correlation
between the MLM loss during pre-training and the perfor-
mance on the downstream task. We record the pre-training
loss on the task of MLM at the cutoff point (between the
two phases of pre-training) and the final pre-training loss of
our offspring models in the last generation (generation 3).
As previously mentioned, in order to obtain ample models
for this experiment, we ensured to finish the training process
for all the models of the third generation of the evolutionary
algorithm for both pre-training phases.

From the 12 models in this generation, 2 had exploding

6

Resource-constrained NAS on language models: A case study

gradients. As such, we are left with 10 models. We then
plot them against the performance on the downstream task
of question answering. By monitoring and recording the pre-
training loss both during and after training, while also ex-
amining its correlation with downstream task performance,
allows us to better understand the development of model per-
formance during the training process across a wider range
of models.

Figure 4 shows the results. Note that each models is repre-
sented by two points (a red and a blue point). The points
that belong to the same model can be identified by hav-
ing the same value for fine-tuning performance (vertical
axis). Figure 4 provides empirical indications that the loss
during pre-training can be an effective cutoff criterion for
model selection. The presented correlation for the final
pre-training loss and the cut-off point pre-training loss in
regards to the downstream task performance score is −0.771
and −0.789, respectively. These results signify strong cor-
relation and thus the applicability of the pre-training metric
score as an indication for our downstream task performance.
This is crucial since during the exploration of models and
their pre-training phase, we lack information on their future
performance on a downstream task. An effective stopping
criterion is necessary for better distribution of available
resources.

6. Discussion
Optimization of the holistic lifecycle of LLMs through Au-
toML has a huge potential but it is undoubtedly accompa-
nied by challenges (Tornede et al., 2023). Our focus is the
application of NAS to language models. In this section we
outline the challenges we encountered and the limitations
we identified. We also propose future work.

Despite the extensive compute budget, the number of ex-
ecuted generations of the evolutionary algorithm is quite
restricted. As evident by other black-box optimization ap-
proaches (Yin et al., 2021; Gao et al., 2022; Zoph & Le,
2017), it is typically required to generate many models until
the program identifies a model that outperforms the original.

The modular pipeline provided is currently composed of
two objective metrics, i.e. performance of the downstream
task and the model size. However, the Pareto front optimiza-
tion approach we used allows for the potential addition of
further and more sophisticated objectives, such as multiple
downstream tasks or memory usage. The current question-
answering task is focused on the extraction of the answer,
assuming the correct context is provided. Since knowl-
edge is neither universal nor static, future applications of
the pipeline or NAS should explore generative models aug-
mented through information retrieval. Furthermore, even
though empirical evidence and literature studies (Yin et al.,

0.40 0.45 0.50 0.55 0.60 0.65 0.70
Model Size ratio (original/optimized))

35

40

45

50

55

60

65

Pe
rfo

rm
an

ce
 o

n
SQ

uA
D

v1
.1

 (A
vg

(F
1

sc
or

e,
 E

M
 sc

or
e)

)

Front 1 - offspring
Front 1 - parents
Front 2 - offspring
Front 2 - parents
Front 3 - parents

(a) Generation 1 - Pareto fronts

0.40 0.45 0.50 0.55 0.60 0.65 0.70
Model Size ratio (original/optimized))

35

40

45

50

55

60

65

Pe
rfo

rm
an

ce
 o

n
SQ

uA
D

v1
.1

 (A
vg

(F
1

sc
or

e,
 E

M
 sc

or
e)

)

Front 1 - parents
Front 2 - offspring
Front 3 - offspring
Front 4 - offspring

(b) Generation 2 - Pareto fronts

0.40 0.45 0.50 0.55 0.60 0.65 0.70
Model Size ratio (original/optimized))

35

40

45

50

55

60

65

Pe
rfo

rm
an

ce
 o

n
SQ

uA
D

v1
.1

 (A
vg

(F
1

sc
or

e,
 E

M
 sc

or
e)

)

Front 1 - parents
Front 2 - offspring
Front 3 - offspring
Front 4 - offspring

(c) Generation 3 - Pareto fronts

Figure 2. Pareto fronts formulated for the primary objective of
the downstream task of question answering (average of F1 and
Exact Match scores), and the secondary objective of the ratio of the
original model size to the candidate model size. Higher numbered
Pareto front rankings indicate models of less significance since
they are dominated by the models in lower numbered Pareto fronts.
Pareto front rankings are indicated by coloration choices specified
in the legends, while population type is depicted by the shape of the
data point. Circles represent candidates in the parent population,
while squares depict the offspring.

7

Resource-constrained NAS on language models: A case study

0 100000 200000 300000 400000 500000
Number of Steps

1.50

1.75

2.00

2.25

2.50

2.75

3.00

Va
lid

at
io

n
Lo

ss

Model 0 Eval Loss
Model 1 Eval Loss
Model 2 Eval Loss
Model 3 Eval Loss
Model 4 Eval Loss
Model 6 Eval Loss
Model 7 Eval Loss
Model 8 Eval Loss
Model 9 Eval Loss

Figure 3. Masked language modeling task loss captured during the
two phases of pre-training for the offspring population of gener-
ation 3. The solid lines represent the selected models that have
moved to pre-training phase 1, whilst the dotted lines represent
the models that were otherwise cut off.

2 3 4 5 6
Pretrain Loss

10

20

30

40

50

60

Fi
ne

-t
un

in
g

Pe
rf

or
m

an
ce

 S
co

re

Final pre-train Data Points
Cutoff pre-train Data Points

Figure 4. Correlation between the retrieved loss during the pre-
training phase, and the downstream task performance score (post
pre-training). The blue dots represent the final pre-training masked
language modeling loss, and the red dots depict this loss at the
cutoff point.

2021) demonstrate that the absence of a crossover function
does not necessarily constrain the exploration capabilities
of the black-box optimization strategy, it could be worth
investigating this further.

Based on our experimental results, we believe that resource
expenditure in further execution of the pipeline might yield
good results, but before using these additional resources, we
should explore ways to improve the training efficiency of
the pipeline, in particular the pre-training component. There
is currently a lot of research revolving around parameter ef-
ficient fine-tuning techniques (Ding et al., 2023) but limited
intuition as to how to make the pre-training phase more effi-
cient. It would be worth investigating techniques to leverage
the retained weights of the model (of the unaffected layers)
in an attempt to speed up the pre-training phase (Real et al.,
2017). This can potentially allow for exploration of wider

search space, utilizing the same amount of resources.

7. Conclusions
In this paper, we performed a case study on neural architec-
ture search on DistilBERT. We propose a novel hierarchical
search space to adapt the backbone of the transformer en-
coder, in combination with a segmented NSGA-II-based
pipeline. Beyond reporting the final results, we also anal-
ysed the explored models. This gives insights in ways to
further optimise the search procedure, and give pointers to
where the pipeline can be further improved for future re-
search. We indicated the components of the pipeline that
are important to undergo further investigation and efforts
should be exerted towards their optimization.

As the pre-training phase of the various models is the most
expensive part of the pipeline, improving its efficiency will
potentially have a large impact on future research and ap-
plications. Our results indicate that there is a correlation
between the performance on the pre-training task and the
downstream task with signs of applicability of learning
curve utilization in a multi-fidelity optimization approach
but further empirical investigation and evidence is encour-
aged. These insights, along with further investigation of
how to efficiently use weight inheritance (Real et al., 2017)
can potentially reduce the resources needed to train indi-
viduals models as well as effectively cut-off non-promising
candidates. This reduction in resource expenditure can con-
sequently boost the search space exploration.

Another interesting direction for future research can be in-
creasing the complexity of the search space. In this work,
we kept the search space relatively confined, but extending
it by adding more complex mutations will result in stronger
deviations from the original transformer architecture.

Additionally, subsequent research should extend our find-
ings to include larger language models and a broader array
of downstream tasks, thereby investigating and improving
the generalisability of the insights.

Acknowledgements
This research is part of the project LESSEN with project
number NWA.1389.20.183 of the research program NWA-
ORC 2020/21, which is (partly) funded by the Dutch Re-
search Council (NWO). This work has been (partly) fi-
nanced by the Dutch Research Council (NWO) and has
used the Dutch national e-infrastructure, with the support
of the SURF Cooperative, using grant no. EINF-5916. This
work was partially carried out while doing a research intern-
ship at DEUS: human(ity)-centered AI.

8

Resource-constrained NAS on language models: A case study

References
Agarap, A. F. Deep learning using rectified linear

units (ReLU). Computing Research Repository, CoRR,
abs/1803.08375, 2018.

Bäck, T. Evolutionary algorithms in theory and practice -
evolution strategies, evolutionary programming, genetic
algorithms. Oxford University Press, 1996. ISBN 978-0-
19-509971-3.

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra,
G., Roberts, A., Barham, P., Chung, H. W., Sutton,
C., Gehrmann, S., Schuh, P., Shi, K., Tsvyashchenko,
S., Maynez, J., Rao, A., Barnes, P., Tay, Y., Shazeer,
N., Prabhakaran, V., Reif, E., Du, N., Hutchinson, B.,
Pope, R., Bradbury, J., Austin, J., Isard, M., Gur-Ari, G.,
Yin, P., Duke, T., Levskaya, A., Ghemawat, S., Dev, S.,
Michalewski, H., Garcia, X., Misra, V., Robinson, K., Fe-
dus, L., Zhou, D., Ippolito, D., Luan, D., Lim, H., Zoph,
B., Spiridonov, A., Sepassi, R., Dohan, D., Agrawal,
S., Omernick, M., Dai, A. M., Pillai, T. S., Pellat, M.,
Lewkowycz, A., Moreira, E., Child, R., Polozov, O., Lee,
K., Zhou, Z., Wang, X., Saeta, B., Diaz, M., Firat, O.,
Catasta, M., Wei, J., Meier-Hellstern, K., Eck, D., Dean,
J., Petrov, S., and Fiedel, N. PaLM: Scaling language
modeling with pathways. Journal of Machine Learning
Research, 24:240:1–240:113, 2023.

Deb, K., Agrawal, S., Pratap, A., and Meyarivan, T. A fast
and elitist multiobjective genetic algorithm: NSGA-II.
IEEE Transactions on Evolutionary Computation, 6(2):
182–197, 2002.

Devlin, J., Chang, M., Lee, K., and Toutanova, K. BERT:
Pre-training of deep bidirectional transformers for lan-
guage understanding. In Proceedings of the Conference of
the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies,
NAACL 2019, pp. 4171–4186, 2019.

Ding, N., Qin, Y., Yang, G., Wei, F., Yang, Z., Su, Y., Hu, S.,
Chen, Y., Chan, C., Chen, W., Yi, J., Zhao, W., Wang, X.,
Liu, Z., Zheng, H., Chen, J., Liu, Y., Tang, J., Li, J., and
Sun, M. Parameter-efficient fine-tuning of large-scale pre-
trained language models. Nature Machine Intelligence, 5:
220–235, 2023.

Gao, J., Xu, H., Shi, H., Ren, X., Yu, P. L. H., Liang, X.,
Jiang, X., and Li, Z. Autobert-zero: Evolving BERT back-
bone from scratch. In Proceedings of the 36th AAAI Con-
ference on Artificial Intelligence, AAAI 2022, pp. 10663–
10671, 2022.

Hendrycks, D. and Gimpel, K. Gaussian error linear
units (GELUs). Computing Research Repository, CoRR,
abs/1606.08415, 2016.

Hutter, F., Kotthoff, L., and Vanschoren, J. Automated Ma-
chine Learning: Methods, Systems, Challenges. Springer
International Publishing, 2019. ISBN 978-3-030-05318-
5.

Jian, Z., Wenran, H., Ying, Z., and Shufan, J. EENAS: An
efficient evolutionary algorithm for neural architecture
search. In Proceedings of The Asian Conference on Ma-
chine Learning, ACML 2023, volume 189 of Proceedings
of Machine Learning Research, pp. 1261–1276, 2023.

Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mo-
hamed, A., Levy, O., Stoyanov, V., and Zettlemoyer, L.
BART: denoising sequence-to-sequence pre-training for
natural language generation, translation, and comprehen-
sion. In Proceedings of the Annual Meeting of the As-
sociation for Computational Linguistics, ACL 2020, pp.
7871–7880, 2020.

Lhoest, Q., del Moral, A. V., Jernite, Y., Thakur, A., von
Platen, P., Patil, S., Chaumond, J., Drame, M., Plu, J.,
Tunstall, L., Davison, J., Sasko, M., Chhablani, G., Malik,
B., Brandeis, S., Scao, T. L., Sanh, V., Xu, C., Patry, N.,
McMillan-Major, A., Schmid, P., Gugger, S., Delangue,
C., Matussière, T., Debut, L., Bekman, S., Cistac, P.,
Goehringer, T., Mustar, V., Lagunas, F., Rush, A. M., and
Wolf, T. Datasets: A community library for natural lan-
guage processing. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing: Sys-
tem Demonstrations, EMNLP 2021, pp. 175–184, 2021.

Li, L., Jamieson, K. G., DeSalvo, G., Rostamizadeh, A.,
and Talwalkar, A. Hyperband: A novel bandit-based
approach to hyperparameter optimization. Journal of
Machine Learning Research, 18:185:1–185:52, 2017.

Liu, H., Simonyan, K., and Yang, Y. DARTS: Differentiable
architecture search. In 7th International Conference on
Learning Representations, ICLR 2019, 2019.

Lu, Z., Whalen, I., Boddeti, V., Dhebar, Y. D., Deb, K.,
Goodman, E. D., and Banzhaf, W. NSGA-Net: neural
architecture search using multi-objective genetic algo-
rithm. In Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO 2019, pp. 419–427,
2019.

Mohr, F. and van Rijn, J. N. Learning curves for deci-
sion making in supervised machine learning - A survey.
Computing Research Repository, CoRR, abs/2201.12150,
2022.

Pham, H., Guan, M. Y., Zoph, B., Le, Q. V., and Dean, J.
Efficient neural architecture search via parameters shar-
ing. In Proceedings of the 35th International Conference
on Machine Learning, ICML 2018, volume 80 of Pro-
ceedings of Machine Learning Research, pp. 4092–4101,
2018.

9

Resource-constrained NAS on language models: A case study

Radford, A. and Narasimhan, K. Improving language
understanding by generative pre-training, 2018.
OpenAI Blog, https://openai.com/index/
language-unsupervised/ [retrieved: July 9th,
2024].

Rajpurkar, P., Zhang, J., Lopyrev, K., and Liang, P. SQuAD:
100,000+ questions for machine comprehension of text.
In Proceedings of the Conference on Empirical Methods
in Natural Language Processing, EMNLP 2016, pp. 2383–
2392, 2016.

Real, E., Moore, S., Selle, A., Saxena, S., Leon-Suematsu,
Y. I., Tan, J., Le, Q. V., and Kurakin, A. Large-scale
evolution of image classifiers. In Proceedings of the 34th
International Conference on Machine Learning, ICML
2017, volume 70 of Proceedings of Machine Learning
Research, pp. 2902–2911, 2017.

Sanh, V., Debut, L., Chaumond, J., and Wolf, T. Dis-
tilBERT, a distilled version of BERT: smaller, faster,
cheaper and lighter. Computing Research Repository,
CoRR, abs/1910.01108, 2019.

Scao, T. L., Fan, A., Akiki, C., Pavlick, E., Ilic, S., Hesslow,
D., Castagné, R., Luccioni, A. S., Yvon, F., Gallé, M.,
Tow, J., Rush, A. M., Biderman, S., Webson, A., Am-
manamanchi, P. S., Wang, T., Sagot, B., Muennighoff, N.,
del Moral, A. V., Ruwase, O., Bawden, R., Bekman, S.,
McMillan-Major, A., Beltagy, I., Nguyen, H., Saulnier, L.,
Tan, S., Suarez, P. O., Sanh, V., Laurençon, H., Jernite, Y.,
Launay, J., Mitchell, M., Raffel, C., Gokaslan, A., Simhi,
A., Soroa, A., Aji, A. F., Alfassy, A., Rogers, A., Nitzav,
A. K., Xu, C., Mou, C., Emezue, C., Klamm, C., Leong,
C., van Strien, D., Adelani, D. I., et al. BLOOM: A
176b-parameter open-access multilingual language model.
Computing Research Repository, CoRR, abs/2211.05100,
2022.

Smith, S., Patwary, M., Norick, B., LeGresley, P., Rajbhan-
dari, S., Casper, J., Liu, Z., Prabhumoye, S., Zerveas, G.,
Korthikanti, V., Zheng, E., Child, R., Aminabadi, R. Y.,
Bernauer, J., Song, X., Shoeybi, M., He, Y., Houston,
M., Tiwary, S., and Catanzaro, B. Using deepspeed and
megatron to train megatron-turing NLG 530b, A large-
scale generative language model. Computing Research
Repository, CoRR, abs/2201.11990, 2022.

So, D. R., Manke, W., Liu, H., Dai, Z., Shazeer, N., and Le,
Q. V. Searching for efficient transformers for language
modeling. In Advances in Neural Information Processing
Systems 34: Annual Conference on Neural Information
Processing Systems 2021, NeurIPS 2021, pp. 6010–6022,
2021.

Sokolova, M., Japkowicz, N., and Szpakowicz, S. Beyond
accuracy, F-score and ROC: A family of discriminant

measures for performance evaluation. In AI 2006: Ad-
vances in Artificial Intelligence, 19th Australian Joint
Conference on Artificial Intelligence, AJCAI 2006, vol-
ume 4304 of Lecture Notes in Computer Science, pp.
1015–1021, 2006.

Tornede, A., Deng, D., Eimer, T., Giovanelli, J., Mohan, A.,
Ruhkopf, T., Segel, S., Theodorakopoulos, D., Tornede,
T., Wachsmuth, H., and Lindauer, M. AutoML in the
age of large language models: Current challenges, future
opportunities and risks. Computing Research Repository,
CoRR, abs/2306.08107, 2023.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,
Azhar, F., Rodriguez, A., Joulin, A., Grave, E., and
Lample, G. Llama: Open and efficient foundation lan-
guage models. Computing Research Repository, CoRR,
abs/2302.13971, 2023.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Atten-
tion is all you need. In Advances in Neural Information
Processing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, NeurIPS, 2017.

White, C., Safari, M., Sukthanker, R., Ru, B., Elsken, T.,
Zela, A., Dey, D., and Hutter, F. Neural architecture
search: Insights from 1000 papers. Computing Research
Repository, CoRR, abs/2301.08727, 2023.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C.,
Moi, A., Cistac, P., Rault, T., Louf, R., Funtowicz, M.,
Davison, J., Shleifer, S., von Platen, P., Ma, C., Jernite,
Y., Plu, J., Xu, C., Scao, T. L., Gugger, S., Drame, M.,
Lhoest, Q., and Rush, A. M. Transformers: State-of-the-
art natural language processing. In Proceedings of the
Conference on Empirical Methods in Natural Language
Processing: System Demonstrations, EMNLP 2020, pp.
38–45, 2020.

Xu, J., Tan, X., Luo, R., Song, K., Li, J., Qin, T., and Liu, T.
NAS-BERT: task-agnostic and adaptive-size BERT com-
pression with neural architecture search. In Proceedings
of the Association for Computing Machinery: Special In-
terest Group on Knowledge Discovery and Data Mining.
ACM SIGKDD 2021, pp. 1933–1943, 2021.

Xu, Y. and Lapata, M. Weakly supervised domain detec-
tion. Transactions of the Association for Computational
Linguistics, 7:581–596, 2019.

Yin, Y., Chen, C., Shang, L., Jiang, X., Chen, X., and Liu,
Q. AutoTinyBERT: Automatic hyper-parameter optimiza-
tion for efficient pre-trained language models. In Proceed-
ings of the Annual Meeting of the Association for Com-
putational Linguistics and the International Joint Con-

10

https://openai.com/index/language-unsupervised/
https://openai.com/index/language-unsupervised/

Resource-constrained NAS on language models: A case study

ference on Natural Language Processing, ACL/IJCNLP
2021, pp. 5146–5157, 2021.

Zhao, W. X., Zhou, K., Li, J., Tang, T., Wang, X., Hou, Y.,
Min, Y., Zhang, B., Zhang, J., Dong, Z., Du, Y., Yang,
C., Chen, Y., Chen, Z., Jiang, J., Ren, R., Li, Y., Tang,
X., Liu, Z., Liu, P., Nie, J., and Wen, J. A survey of
large language models. Computing Research Repository,
CoRR, abs/2303.18223, 2023.

Zhu, Y., Kiros, R., Zemel, R. S., Salakhutdinov, R., Ur-
tasun, R., Torralba, A., and Fidler, S. Aligning books
and movies: Towards story-like visual explanations by
watching movies and reading books. In Proceedings of
the IEEE International Conference on Computer Vision,
ICCV 2015, pp. 19–27, 2015.

Zoph, B. and Le, Q. V. Neural architecture search with
reinforcement learning. In 5th International Conference
on Learning Representations, ICLR 2017, 2017.

11

Resource-constrained NAS on language models: A case study

A. Hyperparameter search space

Table 1. The search space for architectural components’ hyperparameters.
Module Probability Action Parameter Parameter Space Description

Transformer-
encoder 0.2 Add/Remove None None

The default transformer-
encoder block of DistilBERT
is probabilistically added or
removed

Multi-head
self-attention 0.4 Alter

Number of
attention
heads

[2, 4, 8, 12, 16, 20, 24,
32]

Defines the number of atten-
tion heads that are included
in the associated component,
which replaces the existing
one

FNN 0.4 Add/Alter

Activation
function [ReLU, GELU]

Defines the activation func-
tion to be used in between the
linear layers of the FNN

Number of
layers [2, 3, 4] Defines the number of

stacked linear layers
Intermediate-
size

[2048, 2112, 2176, ...,
3968, 4032, 4096]

Defines the dimensionality of
the hidden layers of the FNN.

12

