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A B S T R A C T

Computational neuroscience offers a valuable opportunity to understand the neural mechanisms underlying 
behavior. However, interpreting individual differences in these mechanisms, such as developmental differences, 
is less straightforward. We illustrate this challenge through studies that examine individual differences in 
reinforcement learning. In these studies, a computational model generates an individual-specific prediction error 
regressor to model activity in a brain region of interest. Individual differences in the resulting regression weight 
are typically interpreted as individual differences in neural coding. We first demonstrate that the absence of 
individual differences in neural coding is not problematic, as such differences are already captured in the in
dividual specific regressor. We then review that the presence of individual differences is typically interpreted as 
individual differences in the use of brain resources. However, through simulations, we illustrate that these dif
ferences could also stem from other factors such as the standardization of the prediction error, individual dif
ferences in brain networks outside the region of interest, individual differences in the duration of the prediction 
error response, individual differences in outcome valuation, and in overlooked individual differences in 
computational model parameters or the type of computational model. To clarify these interpretations, we pro
vide several recommendations. In this manner we aim to advance the understanding and interpretation of in
dividual differences in computational neuroscience.

1. Introduction

Computational neuroscience offers valuable opportunities to un
derstand the neural processes underlying a wide range of behaviors, 
including reinforcement learning, value-based decision-making, and 
delay discounting (Chase et al., 2015; Garrison et al., 2013; Humphreys 
et al., 2016; Lockwood and Klein-Flügge, 2021; Rangel et al., 2008; 
Trepel et al., 2005; Williams et al., 2021). These computational ap
proaches provide unique advantages to understand the relation between 
cognitive theories, behavioral data and their neural mechanisms (e.g., 
Farrell and Lewandowsky, 2015).

In the last decade, the approach has also become prominent in the 
study of individual differences in neural processes (Patzelt et al., 2018). 

For example, the approach has been used to investigate developmental 
differences (reviews by Van den Bos et al., 2017; Van den Bos and 
Eppinger, 2016; DePasque and Galván, 2017; Hartley and Somerville, 
2015; Hofmans and Van den Bos, 2022; Lourenco and Casey, 2013), 
learning differences (review by Van Duijvenvoorde et al., 2022), and 
differences related to mental illnesses (reviews by Hauser et al., 2019; 
Huys et al., 2016; Sonuga-Barke et al., 2016).

It has been argued that the study of individual differences by means 
of a computational neuroscience approach has two main advantages. 
First, the possibility to investigate individual differences in the neural 
coding of latent variables, that is underlying cognitive processes, instead 
of in the coding of manifest variables like stimuli or responses (Hartley 
and Somerville, 2015; Hauser et al., 2019; Huys et al., 2016; Patzelt 
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et al., 2018; Van den Bos et al., 2017). Second, the formulation of 
computational models, which stimulates formal, instead of verbal, the
ories, makes the origins of individual differences explicit (Guest and 
Martin, 2021; Patzelt et al., 2018; Van den Bos et al., 2017).

There are multiple computational neuroscience approaches. A 
common approach is to fit a computational model to behavioral data, 
after which a latent variable derived from this model is entered as a 
predictor in the fMRI analysis. This so-called latent input approach 
(Turner et al., 2017) is the main topic of the current paper. Other ap
proaches to computational neuroscience include fitting a computational 
model to the fMRI data directly (e.g., Ashby and Waldschmidt, 2008; 
Van Gerven, 2017) and fitting a computational model to behavioral and 
fMRI data simultaneously (e.g., Turner et al., 2013; Turner and Mcclure, 
2015). A final computational neuroscience approach is to use machine 
learning, and not computational models, to predict individual differ
ences from brain-related indices (e.g., Huys et al., 2016). We here focus 
on the first approach, and do not aim to generalize to the other three 
approaches.

Given the widespread use of the latent input approach, clear inter
pretation of individual differences in computational neuroscience 
studies is crucial. In this paper we illustrate that such interpretation is 
far from straightforward. We also provide recommendations to clarify 
interpretations, and if this is not feasible, to acknowledge the inherent 
ambiguity. In doing so, we summarize and extend previous methodo
logical work on the interpretation of individual differences in neuro
science (Katahira and Toyama, 2021; Lebreton et al., 2019; Mumford 
et al., 2024; Poldrack, 2010). We aim to do so in a tutorial way, such that 
it is accessible for a wide audience interested in the study of individual 
differences by a computational neuroscience approach. We illustrate our 
line of reasoning by focusing on developmental differences in rein
forcement learning, with a simple task and simple computational model. 
In the discussion, we argue that it is likely that scenarios and recom
mendations also apply to the study of other individual differences, for 
example related to mental health, other processes, like value-based de
cision making and intertemporal choice, and to more complex tasks and 
computational models.

2. Methods

We illustrate reasoning by focusing on computational neuroscience 
studies investigating individual, and particularly developmental, dif
ferences in reinforcement learning. To our knowledge, up to mid 2024, 
at least 12 developmental studies have used this approach (Boehme 
et al., 2017; Christakou et al., 2013; Cohen et al., 2010; Davidow et al., 
2016; Hauser et al., 2015; Javadi et al., 2014; Jones et al., 2014; 
Rodriguez Buritica et al., 2024; Rosenblau et al., 2018; Van den Bos 
et al., 2012; Waltmann et al., 2023; Westhoff et al., 2021). These studies 
implemented a variety of reinforcement learning tasks and reinforce
ment learning models.

For our purposes it suffices to describe a simple task (Fig. 1) in which 
participants repeatedly choose between two stimuli (e.g., a chair and a 
clock). After making a choice, the participant experiences an outcome 
(e.g., winning or losing one dollar) allowing them to gradually learn the 
value of each stimulus. This learned value then subsequently guides 
choice behavior in the next trial. Various computational models have 
been proposed to formalize the processes underlying these choices (for a 
review see Niv, 2009), one of which is inspired by the highly influential 
Rescorla-Wagner model (Rescorla and Wagner, 1972). We use this 
straightforward model to illustrate our line of reasoning, as it is suffi
cient for our current purposes.

A computational model can be fitted to the behavioral choice data of 
each individual i on trial t2. This model features a value (V) of the chosen 

option, which is defined by: 

Vchair,i,t+1 = Vchair,i,t +αi × PEi,t (1) 

where the prediction error (PE) is the difference between the 
observed outcome (O) and the value of the chosen option: 

PEi,t = Oi,t − Vchair,i,t (2) 

The estimated probability of participant i choosing the chair over the 
clock on trial t+1 is then given by the so-called softmax rule: 

Pr
(
choicei,t = chair

)
=

1
1 + e− βi(Vi,t,chair − Vi,t,clock)

(3) 

This model requires for each participant two parameters, the 
learning rate α and the inverse temperature β. If the learning rate is high, 
the outcome on a previous trial has a large effect on the estimated value. 
If the inverse temperature is high, choices are very much guided by 
differences in the values of the two stimuli.

The individual-specific prediction error variable can then be 
included as a first-level regressor into the functional Magnetic Reso
nance Imaging (fMRI) Generalized Linear Model (GLM) after convolu
tion with a hemodynamic response function. That is, schematically and 
omitting convolution, the intercept and all other regressors: 

fMRI GLM : neuralsignali,t = ϕi × PEi,t + εi,t (4) 

where the prediction error is defined as in Eq. 2, and ε refers to noise. 
The parameter ϕi then indicates for individual i the ‘neural coding’ of the 
prediction error in the brain. Specifically, it determines the scaling of the 
prediction errors to the neural signal.

This neural coding parameter ϕi is a common target for inferences on 
individual differences (e.g., Lebreton et al., 2019). For example, it is 
tested whether it relates to continuous individual difference character
istics, like age, or to nominal ones, like age group. The most common 
and most literal interpretation of individual differences in ϕi is that in
dividuals differ in their neural encoding (Lebreton et al., 2019). If one 
participant has a higher neural coding parameter, this could indicate 
something ‘positive’ about this participant (e.g., the participant was 
more engaged in the task) or ‘negative’ (e.g., the participant required 
more neural resources and was therefore less efficient in carrying out the 
computations; Lebreton et al., 2019; Poldrack, 2010).

However, interpretation of the ϕi parameter, and individual differ
ences in it, is more complex than it may initially seem. In the current 
paper, we focus on potential ambiguities in the interpretation of indi
vidual differences in computational neuroscience studies. While other, 
non-computational, factors may also affect the interpretation of these 
individual differences (Dubois and Adolphs, 2016; Poldrack et al., 
2017), our focus here is specifically on computational factors.

We illustrate our reasoning through seven scenarios. In each scenario 
we provide recommendations on how to clarify interpretations, and 
when this is not feasible, a recommendation on how to report explicitly 
that interpretation remains ambiguous. In these scenarios we distinguish 
between three concepts: the prediction error obtained from modeling 
the behavioral choice data (a latent variable); the neural response 
observed in the brain (directly measured data); and the neural coding 
parameter ϕi estimated from the fMRI GLM, which describes the relation 
between the neural responses and the prediction errors for individual i. 
Our goal is merely to make researchers aware of interpretational chal
lenges and to provide recommendations for addressing potential ambi
guities. We therefore do not elaborate on potential interpretational 
problems in the studies mentioned above. In the discussion, however, we 
do use examples from these prior studies to illustrate the decisions re
searchers make relating to the seven scenarios.

3. Scenarios

The scenarios we present here are not intended to be exhaustive but 2 Later, we discuss scenarios in which models are not fitted to each individual 
separately.
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they do represent common situations that may be encountered when 
interpreting individual differences in the neural coding parameter. We 
begin with five scenarios in which an adequate computational model 
was fitted to the behavioral choice data, and then proceed with two 
scenarios in which this was not the case.

3.1. Adequate computational model scenario 1: Lack of individual 
differences in neural coding

A perhaps intuitive interpretation suggest that if there are individual 
differences in the neural signal, these must be reflected in the ϕi 
parameter. However, individual differences can be present in the neural 
signal but absent in ϕi. Referring to the fMRI GLM in Eq. 4, individual 
differences in the neural signal can arise if prediction errors differ be
tween individuals, despite no differences in ϕi.

Suppose one individual barely uses prediction errors to update esti
mated values, that is, uses a low learning rate of α = 0.05, whereas 
another does, that is, α = 0.5. Both choose the same option which has an 
estimated value of 0.5 and they get rewarded by 1 for choosing that 
option. Following Eq. 2, they both have a prediction error of 1 – 

0.5 = 0.5. Yet, following Eq. 1, the updated value of the individual with 
the low learning rate becomes 0.5 + 0.05 * (1 – 0.5) = 0.525 and of the 
individual with the high learning rate 0.5 + 0.5 * (1 – 0.5) = 0.75. If 
they then again get rewarded by 1 for choosing that option, their pre
diction errors will differ because of different estimated values. Specif
ically, the first individual’s prediction error becomes 1 – 0.525 = 0.475, 
whereas those of the latter becomes 1 – 0.75 = 0.25. In the long run, 
prediction errors of the individual with the low learning rate will only 
deviate slightly (0.5 versus 0.475), resulting in small prediction error 
variance, whereas those of the individuals with the high learning rate 
(0.5 versus 0.25) will vary more.

Fig. 2 illustrates this point by showing how differences in learning 
rates lead to differences in behavioral prediction errors. As shown by the 
height of the vertical sticks, people with low learning rates (Fig. 2 A) 
adjust slower to the observed outcomes compared to people with higher 
learning rates (Fig. 2B), which leads to less variable behavioral predic
tion errors across the experiment. When we simulate the neural signal 
for both participants using Eq. 4 and use the same ϕi parameter for both 
participants, the resulting neural signal also differs between partici
pants. Specifically, the more variable behavioral prediction errors for 

Fig. 1. Example task with illustrative choice sequence. Left: Example trial in which a participant chooses between two stimuli that lead to probabilistic outcomes. 
Right: Example sequence of choices, experienced outcomes, and underlying value updating obtained from a reinforcement learning model.
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Fig. 2. Lack of individual differences in neural coding. Differences in learning rates α (low = 0.05 versus high = 0.5) lead to differences in behavioral prediction 
errors and differences in neural signal, despite having the same neural coding parameter ϕ. Vertical sticks in panel A represent prediction errors for a simulated 
participant with a low and high learning rate, respectively. The dotted lines are simulated neural responses, obtained with Eq. 4 using a small amount of noise (SD =
0.1) for illustrative purposes. To ease visualization, we simulated a learning process without choice behavior (cf. classical conditioning), which ensures that both 
simulated participants received the same outcomes; as such, the differences in the prediction errors solely arise due to differences in learning rates in this example 
figure (see Fig. 7 A for a scenario with choice behavior). Differences in the neural signal arise due to differences in how quickly the size of the reward prediction error 
changes across trials, which can be quantified with their variance. Panel B shows the prediction error variance (mean across 50 simulated datasets) as a function of 
the learning rate.
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the participant with the high learning rate, translate into a more variable 
neural signal (Fig. 2 C). In other words, because the prediction errors are 
more variable, the neural signal is more variable as well – even when the 
ϕi parameter is the same for both participants.

As such, an absence of individual differences in ϕi cannot be 
interpreted as reflecting no individual differences in the neural signal. 
Rather, the individual differences in neural data are entirely captured by 
individual differences in the behavioral prediction error. Key point here 
is that the parameter ϕi does not reflect the size of a neural response. 
Rather, it reflects the size of the neural response relative to the size of the 
prediction errors.

In terms of development, this absence of age-related individual dif
ferences in neural coding ϕi does not necessarily imply an absence of 
age-related differences in neural responses. Instead, it indicates that the 
scaling of behavioral prediction errors to neural responses is consistent 
across participants.

This scenario illustrates that individual differences in behavioral 
prediction errors do not necessarily co-occur with such differences in the 
neural coding of these prediction errors. This may be perceived as 
counterintuitive as, in many cases of cognitive neuroscience, researchers 
expect individual differences in behavioral data to co-occur, or even 
result from, individual differences in neural data (e.g., Kanai and Rees, 
2011; Marek et al., 2022). The same holds for some other computational 
neuroscience approaches like the two-stage neural approach, in which 
behavioral and fMRI model parameters are expected to covary 
(Forstmann et al., 2008). To explicate these expectations, our recom
mendation therefore is to explicitly state in a pre-registration whether, 
given the theoretical framework and specific research question, indi
vidual differences are expected in behavioral prediction errors, neural 
coding, or in both, and whether it is expected that behavioral and neural 
individual differences correlate.

3.2. Adequate computational model scenario 2: Spurious individual 
differences in neural coding due to standardization of prediction errors

Individual differences in neural coding may arise due to how 
behavioral prediction errors are included in the fMRI GLM. Specifically, 
standardization, that is, dividing prediction errors by their standard 
deviation before entering them as regressors may lead to individual 
differences in the ϕi parameter. That is, if we divide the prediction error 
by an individual-specific standard deviation sdi, the ϕi parameter is 
necessarily multiplied by this individual-specific standard deviation (cf. 
Eq. 4), see also Fig. 2b in Lebreton et al. (2019): 

fMRI GLM : neuralsignali,t = (ϕi × sdi) ×
(
PEi,t

/
sdi

)
+ εi,t (5) 

If there are no individual differences in ϕi, individual differences in 
the neural coding parameter, now (ϕi × sdi), can be considered as 
spurious, as they are due to individual differences in the standard de
viation of the behavioral prediction error (Lebreton et al., 2019). Sta
tistically, standardization may be a useful tool, for example, to put all 
regressors on a similar scale. However, substantively it is implausible 
that the neural response reflects ‘standard deviation adjusted prediction 
errors’ in exactly the way they are modeled, for the simple reason that 
determining this standard deviation requires participants’ knowledge of 
all prediction errors, which can only be known after the experiment is 
complete.

This scenario is also pertinent for developmental studies, as learning 
rates may differ between younger and older age groups (see Nussen
baum and Hartley, 2019 for a review). As shown in scenario 1, this will 
lead to age-related differences in the variability, and thus standard de
viation, of prediction errors (see Fig. 2). Therefore, standardizing 
behavioral prediction errors in the fMRI GLM is likely to result in 
spurious age-related differences in neural coding.

Therefore, we propose two recommendations to address scenario 2. 
First, to avoid these spurious individual differences, we recommend 

using unstandardized prediction errors in the fMRI GLM. Second, it is 
advised to report whether behavioral prediction errors were standard
ized or not, for example using the Cobidas checklist (https://osf.io/uvf 
r4). This allows readers to assess whether standardization could be a 
potential source of individual differences.

3.3. Adequate computational model scenario 3: Individual differences in 
neural coding originate in individual differences in the use of brain 
resources

In scenario 1, we showed that individual differences in neural re
sponses may arise due to individual differences in behavioral prediction 
errors, even in the absence of individual differences in neural coding. In 
the current scenario 3, we build on this scenario by also including in
dividual differences in the neural coding parameter ϕi.

To illustrate this, we extend the scenario 1 example by including a 
high ϕi parameter for the participant with the lower learning rate, and 
vice versa, a low ϕi parameter for the participant with the high learning 
rate. Thus, participants differ in both learning rate and in neural coding. 
As illustrated in Fig. 3, the combination of these parameters results in a 
markedly different neural response from the response compared to that 
in Fig. 2, with now a more variable neural signal for the participant with 
the lower learning rate, driven by the larger ϕi.

Individual differences in prediction errors may thus co-occur with 
individual differences in neural coding. This highlights the added value 
of fMRI: as it provides additional insights into effects not observable in 
behavior alone. Our first recommendation is again to explicate expec
tations regarding individual differences in behavioral prediction errors, 
neural coding, or both in a pre-registration. The second recommenda
tion relates to the possibility that individual differences in a region of 
interest may also reflect individual differences in the brain regions 
where prediction errors are coded. That is, a diminished coding in a 
region of interest could simply indicate that the prediction error is coded 
in another brain region. We therefore recommend to also pre-register 
whether it is expected that individual differences in a region of inter
est, or in spatial organization, are expected. In the former, it suffices to 
test individual differences in the ROI. In the latter, it is recommended to 
pre-register how the individual differences in spatial organization will 
be tested, in which several approaches can be adopted. For instance, one 
may test multivariate whether there are individual differences in mul
tiple ROIs (Fornari et al., 2023; Speer et al., 2023) or one may perform a 

−3

−2

−1

0

1

2

3

Time

N
eu

ra
l s

ig
na

l (
a.

u.
)

−2

0

2

P
re

di
ct

io
n 

er
ro

rs

Low α, high φ
High α, low φ

Fig. 3. Presence of individual differences in neural coding. Differences in 
learning rates α (low = 0.05 versus high = 0.5) lead to differences in prediction 
errors and differences in neural signal, which can co-occur with differences in 
neural coding ϕ (low = 0.5 versus high = 2). Vertical sticks represent prediction 
errors for a simulated participant with a low learning rate and high neural 
coding in purple, and a high learning rate and low neural coding in orange. The 
dotted lines are simulated neural responses, obtained with Eq. 4 using a small 
amount of noise (SD = 0.1) for illustrative purposes. Both simulated partici
pants received the same outcomes; as such, the differences in the prediction 
errors solely arise due to differences in learning rates. Contrary to Fig. 2, the 
neural responses of the participant with the low learning rate are stronger.
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whole-brain analysis to test individual differences in the entire brain.

3.4. Adequate computational model scenario 4: Spurious individual 
differences in neural coding due to neglected individual differences in the 
duration of neural responses

Individual differences in neural coding may arise if individual dif
ferences in the duration of a response are overlooked. As illustrated in 
Fig. 4 (see also Fig. 1 in Mumford et al., 2023), a response lasting twice 
as long generates a neural signal nearly identical to that of a response 
twice as strong (Mumford et al., 2023).

The first recommendation for addressing this scenario is to account 
for the duration of the neural response in the neural model. This can be 
done by including events with individual-, or even trial-, specific dura
tions instead of assuming a constant duration such as a stick function 
(Mumford et al., 2023). This approach is relatively straightforward 
when the duration of a neural signal can be observed, for example, via 
reaction times (Carp et al., 2012; Mumford et al., 2023). However, when 
this duration is not directly observable, for example, in case of a pre
diction error signal in the brain, it becomes more challenging. There are 
methods to estimate the duration of the hemodynamic response function 
(Lindquist et al., 2009; Lindquist and Wager, 2007), however they have 
only been applied to responses presumed to be longer in duration than 
prediction error signals.

We realize that accounting for the duration of the neural response is 
easier said than done. Therefore, the final recommendation for 
addressing interpretational ambiguities in this scenario is to acknowl
edge in the discussion of a paper that observed individual differences in 
ϕi may stem not only from individual differences in neural coding, but 
also from individual differences in the duration of the neural response.

There likely exist developmental differences in the duration of re
sponses. For example, reaction times decrease from childhood to 
adulthood (Huizinga et al., 2006; Ratcliff et al., 2012). Such age-related 
decreases in the duration of responses may thus introduce spurious 
age-related decreases in the neural coding parameter ϕi.

3.5. Adequate computational model scenario 5: No spurious individual 
differences in neural coding due to individual differences in inverse 
temperature

In Fig. 2 we showed that individual differences in the learning rate α 
lead to individual differences in the neural response, but not in the 
neural coding parameter ϕ. In this section and the next, we focus on the 
effect of the inverse temperature parameter β. Do individual differences 
in this parameter introduce individual differences in neural coding? The 
short answer is no, as explained further below.

The inverse temperature parameter β in Eq. 3 indicates how differ
ences in values are weighted in the choice process. That is, if two par
ticipants both have a high value estimate for ‘chair’ and a low value 
estimate for ‘clock’, but differ in their inverse temperature, the partici
pant with the higher inverse temperature is more likely to choose ‘chair’ 
than the other participant. The inverse temperature does not weigh 
prediction errors. It follows that when two participants have different 
inverse temperatures, no systematic differences in prediction errors are 
expected. Moreover, there is no reason to expect that different inverse 
temperatures will affect neural coding. A simulation (Fig. 5) confirms 
this: when simulating the simple RL paradigm depicted in Fig. 1 and Eqs. 
1–4 (with 1000 trials) using a wide range of inverse temperatures, we 
observe no systematic relation between inverse temperature β and pre
diction error variance. While β can be accurately estimated from the 
behavioral data, it does not influence the estimated neural coding 
parameter ϕ.

In terms of development, this result has important implications. It 
has been shown that inverse temperature typically decreases with age 
(Nussenbaum and Hartley, 2019). The aforementioned result thus in
dicates that potential age-related differences in neural prediction error 

coding were not spuriously introduced by age-related differences in 
inverse temperature. Our general recommendation regarding this sce
nario thus is simple: it does not matter.

This result depends critically on the assumption that individual dif
ferences in the inverse temperature parameter solely reflect differences 
in choice behavior. However, individual differences in the inverse 
temperature can also reflect individual differences in outcome sensi
tivity, which has markedly different implications, as we detail in the 
next scenario.

3.6. Inadequate computational model scenario 6: Spurious individual 
differences in neural coding due to neglected individual differences in 
outcome sensitivity

We now turn to two scenarios in which the computational model is 
inadequately specified. In scenario 6, we address the case where indi
vidual differences in outcome sensitivity are not adequately modeled.

For example, one participant may be more sensitive to outcomes of 
$1 and -$1 than others (e.g., Fontanesi et al., 2019; Pedersen et al., 
2017). A straightforward way to implement this outcome sensitivity in 
the computational model is to introduce a third individual-specific 
outcome sensitivity parameter, denoted as γi , to Eq. 2 (Ahn et al., 
2008; Huys et al., 2013; Steingroever et al., 2014): 

PEi,t = γi × Oi,t − Vchair,i,t (6) 

From Eq. 6, it is clear that the outcome sensitivity parameter γ in
fluences prediction errors. Simulations (see Fig. 6 A) confirm that 
outcome sensitivity affects prediction error variance. As a result, if we 
fail to adequately model individual differences in outcome sensitivity, 
we will introduce spurious individual differences in the neural coding 
parameter ϕi (see Fig. 6 C).

A perhaps intuitive suggestion for handling scenario 6 is to incor
porate individual differences in outcome sensitivity in the computa
tional model. However, this is challenging, because individual 
differences in outcome sensitivity lead to exactly the same predictions 
about choice behavior as individual differences in inverse temperature 
(see also Katahira and Toyama, 2021). This was already foreshadowed 
in Fig. 6B: neglecting individual differences in outcome sensitivity in
troduces individual differences in the inverse temperature. This can also 
be shown formally, as we will do next.

With some algebra, it can be shown that the outcome sensitivity 
parameter γ is formally equivalent to the inverse temperature param
eter β. That is, weighing all outcomes by a factor γ effectively leads to all 
value estimates being weighed by that factor γ (e.g., Van Maanen and 
Miletić, 2021). As a result, Eq. 3 can be rewritten as: 

Pr
(
choicei,t = chair

)
=

1
1 + e− βi(γi×valuei,t,chair − γi×valuei,t,clock)

=
1

1 + e− βi×γi(valuei,t,chair − valuei,t,clock)
(7) 

From the equation it can be derived that increases in γ have the same 
effect as decreases in β, and vice versa, when fitting the model to the 
same dataset. This may seem to contradict the simulation results in 
Fig. 6B which show a positive relationship between γ and β. Yet, this 
figure illustrates a different case, namely what happens to the estimated 
inverse temperature when assuming an outcome sensitivity of 1 that is 
truly different. In this case, any variability that results from true indi
vidual differences in outcome sensitivity loads onto the inverse 
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temperature parameter.
This implies that individual differences in outcome sensitivity have 

exactly the same effect as individual differences in choice behavior.3

Therefore, comparing a model without and with individual differences 
in outcome sensitivity does not yield information to decide whether 
individual differences are caused by inverse temperature settings or by 
outcome sensitivity. That is, one does not know whether one is in sce
nario 5 or in scenario 6. This is unfortunate, as scenario 5 will not 

introduce spurious individual differences in neural coding, whereas 
scenario 6 does.

Therefore, we recommend addressing scenario 6 by assessing indi
vidual differences in outcome sensitivity through external means. For 
example, this can be done with an outcome sensitivity questionnaire 
(Carver and White, 1994; Torrubia et al., 2001) or by using a number 
line estimation task (Siegler and Opfer, 2003). In the computational 
model, objective outcomes can then be replaced with their subjective 
counterparts. Alternatively, it may be considered to also analyze 
response times (e.g., Miletić et al., 2020). For example, it could be hy
pothesized that people with a high outcome sensitivity make faster de
cisions to quickly earn outcomes, whereas people with a high tendency 
to exploit, and thus a larger inverse temperature, carefully deliberate 
choice options, which may result in slower decisions. Third, it has been 
suggested to replace monetary outcomes (cf. Fig. 1) with points, as it 
may be less likely that there are individual, for example developmental, 

Fig. 4. Duration of neural responses. When the duration of the neural response is relatively short (A: ± 0.1 second, B: ± 1 second), the effect of doubling the 
duration on the BOLD response is highly similar to the effect of doubling the neural coding parameter ϕ. This implies that any observed increase in ϕ could have been 
caused by an increase in duration. Panel C illustrates the near-linear relationship between ϕ and duration: when the duration is assumed to be 0.01 second (i.e., a 
stick function), but the true duration is larger (e.g., up to 1 second), ϕ is overestimated to an extent that is nearly linearly related to the size of misspecification of 
the duration.
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Fig. 5. Inverse temperature. The effect of simulated inverse temperature settings on prediction error variance (A), the estimated inverse temperature β (B), and the 
estimated neural coding parameter ϕ (C). Each point represents a simulated dataset of 1000 trials, a simulated ”true” learning rate α = 0.1, and the simulated “true” 
inverse temperature β on the x-axis. Simulations assumed the choice paradigm depicted in Fig. 1, where outcomes were generated dependent on the choice. Neural 
data were simulated with a GLM with a neural coding parameter ϕ = 1. After simulating, a reinforcement learning model was fitted to the simulated behavioral data, 
and ϕ was estimated from the neural data using the fMRI GLM with the estimated prediction errors as predictor. It can be seen there is no systematic relationship 
between β and the prediction error variance (A), β can be accurately recovered from the behavioral data (B) but does not influence the estimated value of the neural 
coding parameter ϕ (C), which is also estimated accurately across a wide range of values of β.

3 Note that in this scenario, gains and losses are multiplied by a common 
outcome sensitivity factor γ. However, if there is a differential sensitivity to 
gains and losses, for example, due to loss aversion, this loss aversion parameter 
can be estimated in addition to the inverse temperature parameter (Huizenga 
et al., 2023). Model selection may then indicate that a model with a loss 
aversion parameter better describes the data than a model without.
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differences in the valuation of points than in the valuation of money 
(Geier and Luna, 2012; Teslovich et al., 2014). However, to our 
knowledge no studies tested whether this is actually the case (see e.g., 
the review in Kray et al., 2018). Moreover, if money is replaced by 
points, care should be taken to not generalize to money-based para
digms, as generalization is something which should be tested and cannot 
be assumed (Dekay et al., 2022; Eckstein et al., 2022; Yarkoni, 2022). If 
it is not feasible to incorporate any of these recommendations, we advise 
to state explicitly in the discussion of a study that individual differences 
in neural coding may have been introduced by individual differences in 
outcome sensitivity.

3.7. Inadequate computational model scenario 7: spurious individual 
differences in neural coding due neglecting individual differences in the 
computational model

In scenario 6 we discussed the case where the computational model 
did not account for individual differences in its parameters, that is, in 
outcome sensitivity. We showed that these individual differences in 
computational model parameters could not be detected through model 
comparison and therefore could introduce spurious individual in
differences in neural coding. We now turn to other instances of inade
quate modeling of individual differences in the computational model 
that may also introduce individual differences in neural coding. In some 
cases, such misspecification can be detected by computational model 
comparison. The role of model comparison in computational neurosci
ence studies has been investigated before (Katahira and Toyama, 2021; 
Wilson and Niv, 2015). Here, we add to this literature by showing its 
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Fig. 6. Outcome sensitivity. The effect of simulated outcome sensitivity on true prediction error variance (A); estimated inverse temperature β in case of a model 
misspecification (B), and the estimated neural coding parameter ϕ in case of a model misspecification (C). Each point represents a simulated dataset of 1000 trials, 
simulated with a “true” learning rate of α = 0.1, a “true” inverse temperature of β = 1, and a “true” outcome sensitivity γ depicted on the x-axis. Neural data were 
simulated with a GLM with a neural coding parameter ϕ = 1. After simulating, a reinforcement learning model was fitted to the simulated behavioral data. The model 
made the incorrect assumption that output sensitivity γ was 1 and estimated both the inverse temperature (B) and neural coding (C). The figures demonstrate that 
outcome sensitivity influences prediction error variance (A). Incorrectly assuming that individual differences in outcome sensitivity are absent introduces spurious 
individual differences in the estimated β parameter (B), and spurious individual differences in the neural coding parameter ϕ (C).
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importance in the study of individual differences.
As we already showed in scenario 1, individual differences in 

learning rates lead to differences in prediction error variance, which do 
not necessarily have to co-occur with individual differences in neural 
coding. We here illustrate that one may induce spurious individual 
differences in neural coding when one does not account for such dif
ferences in parameter estimates between individuals. First, consider a 
situation in which one individual has a low learning rate and the other a 
high learning rate (such as in scenario 1), but we assume the same high 
learning rate for both individuals. We compute the resulting prediction 
errors and use these as a predictor in the fMRI GLM. As illustrated in 
Fig. 7, we would incorrectly find individual differences in ϕi and thus 
conclude that participants differ in their neural coding.

Second, consider the more general situation in which individuals 
differ in the type of computational model that best describes their 
behavioral choice data. There is a wide variety of reinforcement learning 
models (e.g., Niv, 2009), and thus many potential sources of mis
specifications. We illustrate one potential origin of misspecification 
here. Suppose some individuals are best described by the 
Rescorla-Wagner model in Eqs. 1–3. This model features a static learning 
rate that does not change during the experiment. Other individuals, 
however, may be best described by a model in which the learning rate 
decreases during the experiment, because they become more confident 
and therefore learn less. The latter situation is for example modeled in a 
Pearce-Hall model (e.g., Roesch et al., 2012), a Bayesian learner model 
(e.g., Jepma et al., 2020), or with a decay function (e.g., Schaaf et al., 
2022).

What happens if data are generated with a dynamic, decaying 
learning rate but we incorrectly assume a static one following from the 
Rescorla-Wager model? As illustrated in Fig. 8B, the neural coding 
parameter ϕ will then be underestimated.4 This illustration thus shows 
that if one assumes there are no individual differences in the type of 
computational model, one may incorrectly conclude there are individual 
differences in neural coding.

Individual differences in the type of computational model, also 
known as strategy, are likely to be present. For example, developmental 
strategy differences have been observed in reinforcement learning 
(Crawley et al., 2020; Cutler et al., 2022; Jepma et al., 2020; Palminteri 
et al., 2016), reasoning (Jansen and Van der Maas, 2001; Lee and Sar
necka, 2011) and decision making (e.g. Huizenga et al., 2007; Huizenga 
et al., 2023; Jansen et al., 2012; Lang and Betsch, 2018; Mata et al., 
2011).

This scenario of individual differences in the type of computational 
model can be addressed by model comparison. We must note, however, 
that adequate model comparison is by no means straightforward 
(Palminteri et al., 2017; Van den Bos et al., 2017). First, a large set of 
potential models should be compared because model comparison only 
tells you which model in your model set fits the data best, not whether 
you found the true underlying model. For instance, in a different context 
a staggering total of 70 models were compared (Valton et al., 2024). 
Second, it is crucial to determine whether the task and design allow to 
delineate these models (Huizenga et al., 2012; Van den Bos et al., 2017; 
Wilson and Collins, 2019). This can be done for example by means of 
simulation (Palminteri et al., 2017; Van den Bos et al., 2017; Wilson and 
Collins, 2019). Note the conclusion of this analysis may be that the task, 
the design, or both should be adapted to be able to differentiate between 
models, see also (Wilson and Collins, 2019).

We recommend two ways to address model comparison, both firmly 
grounded in the work of Lee (Lee, 2011; Lee and Newell, 2011; Lee and 

Webb, 2005; see also Daw, 2011). First, for each participant, a variety of 
models can be compared using a Bayesian approach (for a develop
mental application see Steingroever et al., 2019). The parameters of the 
best-fitting model are then used to compute the prediction errors which 
are subsequently fed into the fMRI GLM. A potential drawback of this 
approach is that computational model parameters are estimated at the 
individual level, which may introduce instability of the estimates 
(Nilsson et al., 2011). This potential drawback can be addressed by using 
a second approach: a hierarchical Bayesian model-based mixture anal
ysis (for developmental applications see e.g., Bartlema et al., 2014; 
Huizenga et al., 2023; Zadelaar et al., 2021).5 In this approach, each 
participant is assigned to their best-fitting strategy, resulting in strategy 
groups. The computational model parameters in each strategy group 
follow a hierarchical structure, for example, all learning rates in the 
Rescorla-Wagner strategy group are normally distributed with a 
to-be-estimated mean and standard deviation. This method thus does 
not require estimation of model parameters for each individual sepa
rately, but only at the strategy group level, increasing parameter sta
bility (Nilsson et al., 2011).

Adoption of such model comparison approaches offers a solution to 
reduce spurious individual differences in neural coding. For related 
approaches to studying individual differences in strategy use, we refer to 
Van Duijvenvoorde et al. (2016), Gluth et al. (2014), Park et al. (2011), 
Peters et al. (2014), Venkatraman et al. (2009), and Zadelaar et al. 
(2019), see also Hayden and Niv (2021).

4. Discussion

A computational neuroscience approach to studying the origins of 
individual differences has gained increased popularity. For example, it 
has been applied to examine individual differences related to develop
ment, learning, and mental illnesses. However, potential challenges in 
the interpretation of individual differences from computational neuro
science studies have received less attention. To address this gap, we 
presented seven scenarios, all related to reinforcement learning, and 
provided recommendations on how to interpret individual differences in 
each scenario. Below we summarize scenarios and recommendations for 
future studies using a computational neuroscience approach to study 
developmental differences in reinforcement learning. We also indicate 
how these recommendations generalize to computational neuroscience 
studies of individual differences in other decision-making tasks. We 
would like to stress that multiple scenarios may occur simultaneously, 
and it is typically unclear which combination applies. Therefore, it may 
be helpful to implement all of the recommendations provided below.

First, we demonstrated that individual differences may emerge in 
behavioral prediction errors or in their neural coding, and that it is not 
necessary that these differences co-occur. This may sound counterintu
itive as researchers may expect such co-occurrence or even that 
behavioral differences are caused by neural ones (e.g., Kanai and Rees, 
2011; Marek et al., 2022). This intuition is also reflected in the devel
opmental computational neuroscience literature pertaining to rein
forcement learning with many explicitly mentioning expectations on 
co-occurrence. For instance, hypothesizing “that developmental differ
ences in striatal sensitivity to rewards might contribute to the observed 
developmental differences in adaptive behavior” (Van den Bos et al., 
2012) or “that inter-individual differences in learning behavior […] are 
associated with differences in PE-related activation” (Boehme et al., 
2017). Our recommendation is to explicitly state in a pre-registration 
which behavioral and neural individual differences are expected, to 
also pre-register whether it is hypothesized these are correlated, and to 
report on all results pertaining to these expectations.

Second, we demonstrated that spurious individual differences in 4 The extent to which φ is underestimated is related to the extent of mis
specification. If learning rates only decrease slightly across the experiment, the 
estimated behavioral prediction errors from a dynamic learning rate model 
would be similar to those obtained with a static learning rate. In such a case, the 
effect of misspecification on the neural coding φ would be minimal.

5 Note the approach can also be used to assess strategy changes within each 
participant (Schaaf, Jepma, Visser, and Huizenga, 2019).
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neural coding can be introduced by standardizing prediction errors in 
the fMRI analysis. Therefore, we recommend against standardizing. 
When reading the developmental computational literature, we realized 
it is uncommon (with some exceptions, e.g., Cohen et al., 2010; Rodri
guez Buritica et al., 2024) to report whether standardization was used or 
not. It is therefore difficult to determine whether standardization causes 
interpretational problems in the existing literature. This brings us to an 
additional recommendation to explicitly report whether or not stan
dardization was used.

Third, we showed that individual differences in neural coding are 
often attributed to differences in the extent to which brain resources are 
used. In the developmental computational literature these differences 
are typically investigated in ROIs and interpreted in terms of coding 
intensity (Boehme et al., 2017; Christakou et al., 2013; Cohen et al., 
2010; Davidow et al., 2016; Hauser et al., 2015; Jones et al., 2014; 
Rodriguez Buritica et al., 2024; Rosenblau et al., 2018; Waltmann et al., 
2023; Westhoff et al., 2021), not efficiency. These ROI analyses suffice 
for testing differences to be interpreted as coding intensity or efficiency, 
whereas multivariate analyses are required to test for individual dif
ferences in spatial organization. Our recommendation therefore is to 
pre-register whether univariate or multivariate individual differences 
are expected, and to report all results pertaining to these expectations.

Fourth, we demonstrated that neglected individual differences in the 
duration of neural responses will introduce spurious individual differ
ences in neural coding. Although the discussion on the confounding 
duration effect in fMRI is not new (e.g., Grinband et al., 2008), we share 
the goal of Mumford et al. (2023) to revive the discussion around 
interpretational challenges that arise from this confound. We believe it 
common practice to fix the duration of the neural response to arbitrarily 
short (Grinband et al., 2008). This is also reflected in the reviewed 
developmental computational neuroscience studies in which the dura
tion was fixed to one second (Javadi et al., 2014) or to infinitely small or 
a stick function (Cohen et al., 2010; Rodriguez Buritica et al., 2024; Van 
den Bos et al., 2012; Westhoff et al., 2021). Ideally, we recommend 
including the duration of the neural response in the neural model. 
Alternatively, if this is not feasible, which often will be the case, we 
recommend to state explicitly that individual differences in neural 
coding may have been introduced by unaccounted individual differ
ences in response duration.

Fifth, we showed that individual differences in inverse temperature 
do not introduce spurious differences in neural coding. However, in a 
subsequent, sixth, scenario, we showed that computational model 

comparison cannot disentangle individual differences in inverse tem
perature and those in outcome valuation, where the latter does introduce 
spurious individual differences in neural coding. In the reviewed liter
ature, many different types of outcomes are used, including money 
(Boehme et al., 2017; Waltmann et al., 2023), points (Davidow et al., 
2016; Rodriguez Buritica et al., 2024; Van den Bos et al., 2012), social 
feedback (Jones et al., 2014), and product ratings (Rosenblau et al., 
2018). Interestingly, Davidow et al. (2016) reported that they used the 
word ‘correct’ or ‘incorrect’ as outcomes, without monetary incentives, 
“to avoid confounds related to the motivational significance of monetary 
reward across age groups.” We are not aware of any literature studying 
age-related differences in the valuation of each of the aforementioned 
outcome types (but see a very recent unpublished study by Veselic et al. 
(2024), indicating age-related differences in valuation). A potential so
lution may be to include an outcome valuation parameter instead of an 
inverse temperature parameter in the behavioral computational model, 
as has been done in the developmental reinforcement learning literature 
(Boehme et al., 2017; Waltmann et al., 2023).6 However, as outlined in 
scenario 6, prediction errors will differ between an analysis using an 
outcome valuation parameter and one using an inverse temperature 
parameter, which in turn affects the neural coding. We showed that it is 
impossible to determine which of the two computational models–using 
inverse temperature or outcome valuation–captures the true underlying 
mechanism. This leads to our recommendation to explore by alternative 
means whether individual differences in valuation exist. If this proves to 
be infeasible, we recommended explicitly stating that neural coding 
differences may have arisen from unaccounted individual differences in 
valuation.

Finally, we demonstrated that neglecting individual differences in 
computational model parameters, or in the type of computational 
models may introduce spurious differences in neural coding. Our final 
recommendation, therefore, was to select individual-specific models 
with individual-specific, or at least age-group specific parameters. In our 
reading of the literature, we conclude many studies already implement 
this recommendation. Interestingly, one study (Hauser et al., 2015) did 
not include individual- or age-group specific parameters “because we 

Fig. 8. Individual differences in type of computational model. When the fMRI GLM is fitted using prediction errors from computational models that differ between 
participants, one reaches the correct conclusion that the neural coding ϕ was the same for both participants (A). However, if the same computational model was 
assumed for both participants, that is, if it was assumed that both participants used a static learning rate α, one would conclude that individual differences exist in the 
neural coding parameter ϕ (B).

6 Actually, both studies included two outcome sensitivity parameters; one for 
positive and one for negative outcomes, but fixed learning rates over positive 
and negative prediction errors, whereas Boehme also allowed learning rates to 
differ.
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were not interested to model any behavioral differences into fMRI 
regression analysis and in order to obtain canonical and stable param
eter estimates”. Apart from individual-specific models and parameters, 
we wish to emphasize that it is also important to consider different 
models and to carefully select the considered model set (Palminteri 
et al., 2017; Van den Bos et al., 2017). Therefore, we also recommend to 
test through simulations or in pilot data whether the task and models 
allow one to delineate different behaviors and therefore different ex
planations (Huizenga et al., 2012; Van den Bos et al., 2017; Wilson and 
Collins, 2019).

A potential limitation of the current study is that we illustrated our 
reasoning with a simple task and a simple reinforcement learning model. 
It may be argued that the scenarios do not apply to other types of pro
cesses, tasks, or computational models. However, the scenarios we 
describe are not specific to a reinforcement learning context, nor are 
many of them tied to the specific task or model we used. In scenarios 1 
and 3, we showed that individual differences in behavioral measures 
may or may not co-occur with such differences in neural coding. This is 
because the neural coding parameter captures the scaling of parametric 
modulators to the neural signal, a general characteristic of the latent 
input approach. Moreover, standardization of parametric modulators, as 
discussed in scenario 2, affects interpretation of the neural coding 
parameter regardless of the process of interest. The same applies to the 
impact of ignoring individual differences in the duration of neural re
sponses (scenario 4). These points are thus specific to the latent input 
approach and remain relevant regardless of the process, task, and 
computational model under consideration. In addition, our finding that 
the inverse temperature parameter does not affect the interpretation of 
the neural coding parameter likely generalizes to all choice paradigms 
that are modeled with softmax. This includes, for instance, inter
temporal choice tasks (where individuals choose between sooner- 
smaller, later-larger rewards) and risky decision tasks (where in
dividuals choose between safe options with a high probability of low 
reward and risky options with a lower probability of higher reward). 
This finding is particularly relevant for developmental studies, where 
age-related differences in inverse temperature parameters are one of the 
most robust findings (Nussenbaum and Hartley, 2019; Topel et al., 
2023). Finally, although we illustrated our points regarding inadequate 
model fitting (scenarios 6 and 7) using parameters from reinforcement 
learning models (i.e., outcome sensitivity and learning rate), parameters 
from other types of computational models that affect the variance of 
parametric modulators will likely induce spurious individual differences 
in neural coding if left unaddressed. It may also be argued that the 
scenarios do not apply to other types of individual differences, for 
example, related to mental health conditions (Hauser et al., 2019; Huys 
et al., 2016; Sonuga-Barke et al., 2016) or socio-economic status (Crone 
et al., 2024; Rakesh and Whittle, 2021). However, we do not see any 
reasons why the current scenarios would not generalize to these types of 
individual differences. Yet, we do recommend adapting the openly 
accessible code (available at https://osf.io/7shmn/) to check scenarios 
for other types of processes, tasks, and models.

Relatedly, we here focused on the most common methodology which 
assumes a single prediction error signal and corresponding neural cod
ing per participant. A less-frequently used approach uses subtraction 
logic to decompose prediction errors into multiple components, such as 
a ‘baseline’ prediction error (in the absence of a manipulation) and an 
additive effect of a manipulation on the prediction error (see e.g., Eldar 
and Niv, 2015; Wittmann et al., 2008). In these approaches, both indi
vidual differences in the neural coding parameter of the baseline signal 
and of the additive signal could be of interest. While we expect scenarios 
presented in the current paper to be relevant for both types of neural 
coding parameters, future studies could adapt the methods presented 
here to rigorously investigate the implications of the seven scenarios on 
such approaches.

5. Conclusion

In conclusion, with this paper, we aim to provide computational 
neuroscientists with recommendations for uncovering the origins of 
individual differences, as interpreting these differences is often more 
complex than it may initially appear.
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