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ORIGINAL ARTICLE
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Abstract

Objectives. In cystic fibrosis (CF), an imbalanced lipid metabolism
is associated with lung inflammation. Little is known about the
role that specific lipid mediators (LMs) exert in CF lung
inflammation, and whether their levels change during early
disease progression. Therefore, we measured airway LM profiles of
young CF patients, correlating these with disease-associated
parameters. Methods. Levels of omega (x)-3/6 PUFAs and their LM
derivatives were determined in bronchoalveolar lavage fluid
(BALF) of children with CF ages 1–5 using a targeted
high-performance liquid chromatography–tandem mass
spectrometry approach. Hierarchical clustering analysis was
performed on relative LM levels. Individual relative LM levels were
correlated with neutrophilic inflammation (BALF %Neu) and
structural lung damage (PRAGMA-CF %Disease). Significant
correlations were included in a backward multivariate linear
regression model to identify the LMs that are best related to
disease progression. Results. A total of 65 BALF samples were
analysed for x-3/6 lipid content. LM profiles clustered into an
arachidonic acid (AA)-enriched and a linoleic acid (LA)-enriched
sample cluster. AA derivatives like 17-OH-DH-HETE, 5-HETE,
5,15-diHETE, 15-HETE, 15-KETE, LTB4 and 6-trans-LTB4 positively
correlated with BALF %Neu and/or PRAGMA %Dis. Contrastingly,
9-HoTrE and the LA derivatives 9-HoDE, 9(10)-EpOME, 9
(10)-DiHOME, 13-HoDE, 13-oxoODE and 12(13)-EpOME negatively
correlated with BALF %Neu and/or PRAGMA %Dis. 6-trans-LTB4

was the strongest predictor for BALF %Neu. 5-HETE and 15-KETE
contributed most to PRAGMA %Dis prediction. Conclusions. Our
data provide more insight into the lung lipidome of infants with
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CF, and show that a shift from LA derivatives to AA derivatives in
BALF associates with early CF lung disease progression.

Keywords: alveolar macrophages, cystic fibrosis, inflammasome,
lipid mediators, neutrophils, translational immunology

INTRODUCTION

Cystic fibrosis (CF) is an autosomal recessive
disease caused by mutations in the CFTR gene.
The absence of functional CFTR protein leads to
impaired transport of chloride and bicarbonate
ions across the cell membrane, resulting in thick
mucus excretions. Although CF is a multi-organ
disease, its most prominent feature is progressive
lung damage caused by chronic airway infection
and inflammation.1 Inflammation in CF lung
disease is characterised by neutrophil influx into
the airway lumen, which can already be detected
in 3-month-old CF infants and is even observed in
children with CF without respiratory symptoms.2–5

The presence of neutrophils and their secreted
enzymes, such as neutrophil elastase, associates
with more rapid progression of structural lung
damage in CF infants.3 In addition to increased
inflammation, it is known that resolution of
inflammation is impaired in CF lungs, further
perpetuating chronic inflammation.6 Our recent
findings suggest that the capacity of airway
macrophages to counter inflammation and
promote homeostasis is reduced during initiation
of CF airway disease.7

Under normal conditions, cytokines, chemokines
and bioactive lipid mediators (LMs) belonging to
the x-3/6 pathways delicately orchestrate the
different phases of an inflammatory response
from onset towards its resolution, thereby
enabling proper tissue recovery. The x-3/6 lipid
pathways consist of polyunsaturated fatty acids
(PUFAs) such as (among others) linoleic acid (LA),
arachidonic acid (AA) and docosahexaenoic acid
(DHA) and their LM derivatives. During the onset
of inflammation, AA, an x-6 PUFA, is rapidly
converted into a wide range of LMs such as
prostaglandin E2 (PGE2) and leukotriene B4 (LTB4)
that contribute to inflammation by increasing
vascular permeability and promoting immune cell
recruitment to the site of inflammation.8 This
initial phase is followed by a process called LM
class switching, characterised by the production of
pro-resolving LMs, such as lipoxin A4, that
promote a return to homeostasis.8,9

In CF, excessive activation of the AA pathway
has been described before as reflected by
increased AA:LA and/or AA(x-6):DHA(x-3) ratios
compared to non-CF controls, suggesting a
(chronic) inflammatory state.10,11 This x-6:x-3
imbalance has been demonstrated repeatedly in
lung epithelial cell cultures and murine models, as
well as plasma and sputum samples of CF
subjects.12–18 However, it is unclear how
accurately plasma and sputum reflect pathological
processes in the airway lumen. As a result of the
invasive nature of sampling, lipidomic analysis of
PUFA-derived LMs in bronchoalveolar lavage fluid
(BALF) is scarce, yet higher levels of AA, as well as
the AA-derived 15-KETE, are reported in adult CF
BALF compared to non-CF BALF.19,20 We have
previously reported abnormal levels of bioactive
lipids in CF infants, although the relationship
between early disease progression and changes in
specific LMs remains to be further elucidated.21,22

In this study, we therefore aim to further
investigate the role of LMs in early CF lung
disease. We measured LM profiles in BALF samples
from CF infants (1–5 years), and correlated
individual PUFA-derived LMs to neutrophilic
inflammation and structural lung damage.
Investigating the potential relationship between
the lung lipidome and CF lung disease will
provide further insight into the pathogenesis of
CF airway inflammation, and may provide new
avenues for both monitoring and treating CF lung
inflammation.

RESULTS

Demographic data

A total of 65 study visits of 46 young CF patients
from the I-BALL cohort were included. Table 1
summarises the demographics per age group. The
majority (96%) of samples were derived from
subjects with at least one DF508 mutation. In
general, CFTR mutations are divided into classes
I–VI, of which IV-VI result in partial CFTR protein
function. These so-called residual function
mutations are typically associated with a milder
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disease phenotype.1 In our cohort, 22% of
samples were from subjects with at least one
known residual function mutation. Of note, eight
samples were collected while the subject was
receiving lumacaftor/ivacaftor treatment, with the
treatment duration ranging from 7 days to
13.3 months. The incidence of BALF cultures
positive for either bacterial or fungal pathogen
increased with age, from 41% at age 1 to 78% at
age 5 (P = 0.03, Table 1).

Neutrophilic inflammation and structural
lung damage increase with age

CF lung disease is characterised by persistent
neutrophil influx to the airways, aggravating the
inflammatory processes that ultimately lead to
structural lung damage. The magnitude of this
neutrophil influx is expressed as the percentage of
neutrophils of total BALF leucocytes (BALF %Neu).
Structural lung damage is summarised by the
PRAGMA-CF %Dis score measured on chest CT. In
our cohort, both BALF %Neu (Figure 1a) and
PRAGMA-CF %Dis (Figure 1b) are significantly
increased between ages 1 and 5 (P = 0.0035 &
P < 0.0001, respectively). Moreover, BALF %Neu
and PRAGMA-CF %Dis show a strong correlation
(r = 0.54, P < 0.001) (Figure 1c), similar to previous

reports.4,23 These data illustrate the progressive
nature of CF lung disease, while also highlighting
the high degree of variability in lung disease
among CF infants.

Hierarchical LM clustering shows two
distinct patient populations

Elevated levels of AA and other x-6 LMs have
been described in CF compared to non-CF, and
associate with dysregulated inflammatory
processes.10,11 However, the comparison between
CF and non-CF subjects accounts for neither the
variability in lung disease among CF patients nor
the changes that might occur in the early stages
of lung disease progression. We therefore set out
to investigate potential differences in x-3/6 LM
profiles within our cohort. To account for the
variability of lavage efficacy and subsequent BALF
dilution, measured LM levels have been
normalised using total area (TA) normalisation,
resulting in relative lipid abundance rather than
absolute concentrations. A two-way hierarchical
clustering method was used to visualise the
cohort distribution of the measured LMs,
generating two sample clusters (SC1 and SC2) and
two lipid clusters (Figure 2). Samples were
predominantly clustered based on the LM origin

Table 1. Cohort demographics

All (n = 65) 1 Year (n = 17) 3 Years (n = 22) 5 Years (n = 26) P-valuea

Sex

Male (%) 25 (38%) 5 (29%) 8 (36%) 12 (46%) 0.53

Female (%) 40 (62%) 12 (71%) 14 (64%) 14 (54%)

CFTR mutation (%)

Homozygous DF508 27 (41%) 6 (35%) 10 (45%) 11 (42%) 0.51

Heterozygous DF508 33 (51%) 8 (47%) 11 (50%) 14 (54%)

No DF508 5 (8%) 3 (18%) 1 (5%) 1 (4%)

Residual CFTR function (%) 16 (22%) 5 (29%) 4 (18%) 7 (26%) 0.68

Lumacaftor/ivacaftor therapy (%) 8 (12%) 0 (0%) 5 (23%) 3 (11%) 0.10

Durationb 6.2 (0.2–13.3) — 6.7 (0.5–12.9) 5.6 (0.2–13.3)

BALF culture

Any pathogen 42 (65%) 7 (41%) 14 (64%) 21 (78%) 0.03

Bacteriac 41 (62%) 7 (41%) 13 (59%) 21 (78%) 0.03

P. aeruginosa 4 (6%) 0 (0%) 1 (5%) 3 (11%) 0.28

Fungald 7 (12%) 1 (6%) 3 (14%) 3 (15%) 0.63

Aspergillus spp. 5 (8%) 1 (6%) 1 (5%) 3 (11%) 0.63

BALF, bronchoalveolar lavage fluid.
aAge groups were compared using the Chi-squared test.
bMean treatment duration (range) in months.
cCultures were positive for either one or several of the following pathogens: Escherichia coli (1), Haemophilus influenzae (18), Moraxella

catarrhalis (5), Pseudomonas aeruginosa (4), Staphylococcus aureus (22) or other bacteria (6).
dCultures were positive for Aspergillus fumigatus (5) or Penicillium species.
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in the x-3/6 pathways (Supplementary figure 2).
Subjects in SC1 displayed medium-to-high relative
levels of AA and EPA/DHA derivatives (e.g. HETEs,
HEPEs and HDHAs), and low relative levels of

upstream x-3/6 PUFAs LA, AA, EPA and DHA and
LA derivatives such as 9-HoDE, 9(10)-EpOME, 9
(10)-DiHOME and 12(13)-EpOME. SC2 showed the
exact opposite profile.
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Figure 1. Progression of CF lung disease in early life. (a) BALF neutrophil count was obtained from clinical pathology reports and expressed as a

percentage of total BALF leucocytes (BALF %Neu). (b) Structural lung damage was measured using the Perth–Rotterdam annotated grid

morphometric analysis for CF (PRAGMA-CF) score. PRAGMA-CF %Disease (PRAGMA-CF %Dis) is calculated as %bronchiectasis + %mucus

plugging + %airway wall thickening. (c) Correlation between BALF %Neu and PRAGMA-CF %Dis. Spearman correlation was used to assess the

correlation of BALF %Neu and PRAGMA-CF %Dis, and lines depict simple linear regression with a 95% confidence interval. The Mann–Whitney

test was used to compare BALF %Neu and PRAGMA-CF %Dis between age groups. Dots represent individual samples and horizontal lines depict

median (ns, P > 0.05; **P < 0.005; ***P < 0.0001).

Figure 2. Two-way hierarchical clustered using ω-3/6 LM profiles show two distinct subject clusters. A heatmap with hierarchical cluster analyses

(Euclidean distance) shows the distribution of CF subjects over two distinct sample clusters (SC1/2) associating with specific parts of the ω-3/6

lipid pathways.
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We next assessed the difference in relative LM
levels and distribution of demographic and clinical
variables between SC1 and SC2. Most relative LM
levels were significantly different between SC1
and SC2, except for several AA derivatives such as

PGE2 and LTB4 (Figure 3). Age, sex, positive
microbiological cultures and residual CFTR
function were evenly distributed between both
clusters (Table 2). Intriguingly, all but one subject
receiving lumacaftor/ivacaftor treatment were
clustered into SC1, although this was not
statistically significant. Lung disease parameters
BALF %Neu and PRAGMA-CF %Dis did not differ
between SC1 and SC2 (Table 2).

Correlations with neutrophilic inflammation
and structural lung damage highlight an
AA-driven LM switch

Despite the lack of significant demographic
changes between our two SC, individual LMs can
still associate with disease parameters. As such, we
next assessed the relationship between individual
LMs and BALF %Neu and PRAGMA-CF %Dis.
Partial correlation plots were used in which
gender, age, residual CFTR function,
microbiological culture and lumacaftor/ivacaftor
treatment were treated as confounding factors.
Overall, positive correlations were found for
AA-derivatives 17-OH-DH-HETE, 5-HETE,
5,15-diHETE, 15-HETE, 15-KETE, LTB4 and
6-trans-LTB4 with BALF %Neu, PRAGMA-CF %Dis
or both (Table 3, Figure 4). The opposite was the
case for LA derivatives 9-HoDE, 9(10)-EpOME, 9
(10)-DiHOME, 13-HoDE, 13-oxoODE and 12
(13)-EpOME, and ALA derivative 9-HoTrE, for
which negative correlations with BALF %Neu

Table 2. Comparison of demographic and clinical variables between sample clusters

Cluster 1 (n = 42) Cluster 2 (n = 23) P-valuea

Age 1 11 (26%) 6 (26%) 0.89

Age 3 15 (36%) 7 (30%)

Age 5 16 (38%) 10 (43%)

Sex

Male (%) 18 (43%) 7 (30%) 0.32

Female (%) 24 (57%) 16 (70%)

Culture positiveb 29 (69%) 13 (56%) 0.31

Residual function mutation 8 (19%) 8 (35%) 0.16

Lumacaftor/ivacaftor 7 (17%) 1 (0.04%) 0.24

BALF %Neuc,d 20 (9.75–35.25) 13 (8–33) 0.12

PRAGMA-CF %Disc,e 1.61 (0.67–3.02) 1.57 (0.87–2.35) 0.80

BALF, Bronchoalveolar lavage fluid; PRAGMA, Perth–Rotterdam annotated grid morphometric analysis.
aDistribution of demographic characteristics between sample clusters was assessed using a Chi-squared test (age, sex, culture result and residual

function) or Fisher’s exact test (lumacaftor/ivacaftor treatment).
bBALF culture positive for any bacterial or fungal pathogen.
cMedian levels (IQR) and non-parametric Mann–Whitney test.
dPercentage neutrophils of total BALF leucocytes.
eTotal percentage of lung volume affected by bronchiectasis, mucus plugging and airway wall thickening.

Figure 3. Comparison of relative LM levels between SC1 and SC2. A

volcano plot showing the log2-fold change in LMs between SC1 and

SC2. Values are FDR corrected and dots represent individual LMs. Red

colour indicates LMs whose levels are significantly higher in SC1 and

yellow colour indicates LMs whose levels are significantly higher in

SC2.
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and/or PRAGMA-CF %Dis were observed (Table 3,
Figure 4). These findings suggest that increased
neutrophilic inflammation and structural lung
damage coincide with a shift from LA derivatives
towards AA derivatives.

6-trans-LTB4 is a predictor of neutrophilic
inflammation, while 5-HETE and 15-KETE are
predictors of structural lung damage

To identify the LM(s) best related to the lung
disease parameters of BALF %Neu and

PRAGMA-CF %Dis, a multivariate linear regression
model was performed (Table 4). This model
included all significant correlates of Table 3.
Gender, age, residual CFTR function,
microbiological culture and lumacaftor/ivacaftor
treatment were included as covariates. Here, BALF
%Neu was best predicted by age, residual CFTR
function, microbiological culture and relative
6-trans-LTB4 levels. Relative 15-KETE and 9-HoTrE
levels contributed to the BALF %Neu prediction
model, although these were not significant.
PRAGMA-CF %Dis was best explained by age and

Table 3. Correlation of lipid mediators with BALF %Neu and PRAGMA-CF %Dis

Lipid mediator Biosynthesis %Neu %Dis

Ω-6 pathway

Linoleic acid (LA) — �0.25 �0.19

Arachidonic acid (AA) — �0.21 0.03

AdA — �0.12 0.01

DGLA — �0.20 0.14

5-HETE ALOX-5 0.09 0.34*

LTB4 ALOX-5/LTA4H 0.15 0.27*

6-trans-LTB4 ALOX-5/LTA4H 0.36** 0.34**

9-HoDE ALOX-5/CYP/COX/FRO �0.31* �0.21

5,15-diHETE ALOX-5/ALOX-15 0.27* 0.23

12-HETE ALOX-12 0.08 0.20

8,15-diHETE ALOX-15 0.17 0.09

13-HoDE ALOX-15 �0.14 �0.33*

13-oxoODE ALOX-15 + dehydrogenase �0.18 �0.34**

15-HETE ALOX-15 + oxidation 0.27* 0.29*

15-KETE ALOX-15 0.38** 0.40**

17-OH-DH-HETE ALOX-15 0.20 0.28*

PGE2 COX-1/2 + PGE2 synthase 0.02 0.16

TxB2 COX-1/2 + TxAS 0.05 0.07

9(10)-EpOME CYP �0.33* �0.30*

9(10)-DiHOME CYP + sEH �0.32* �0.26*

12(13)-EpOME CYP �0.33* �0.32*

11-HETE CYP/FRO 0.13 0.18

Ω-3 Pathway

a-Linoleic acid (ALA) — �0.13 0.08

EPA — �0.22 0.09

DHA — �0.23 0.02

DPAn-3 — �0.12 0.18

9-HoTrE ALOX-5 �0.28* 0.01

12-HEPE ALOX-12 0.03 0.05

14-HDHA ALOX-12/ALOX-15 0.00 0.15

13-HoTrE ALOX-15 �0.15 �0.04

15-HEPE ALOX-15 0.04 0.24

17-HDHA ALOX-15 �0.02 0.13

Depicted values are Pearson r correlation coefficients. Bold values indicate a statistically significant correlation.

%Dis, total percentage of lung volume affected by bronchiectasis, mucus plugging and airway wall thickening; %Neu, Percentage neutrophils of

total BALF leucocytes; ALOX, lipoxygenase; COX; cyclooxygenase; CYP, cytochrome P450; FRO, free radical oxygenation; LTA4H, LTA4 hydrolase;

sEH, soluble epoxy hydrolase; TxAS; thromboxane A2 synthase. Bold values indicate P-values < 0.05.

*P < 0.05.

**P < 0.005.
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gender, and relative levels of AA derivatives
5-HETE and 15-KETE. Positive microbiological
culture, lumacaftor/ivacaftor treatment and
relative 13-oxoODE levels contributed to the
model but did not meet the threshold for
statistical significance. These findings reveal that
lung disease progression in early CF, in addition
to being correlated with demographic and clinical
characteristics such as age, gender, severity of
CFTR mutation and culture status, is also strongly
associated with an increase in specific AA
derivatives in the airways.

DISCUSSION

In a cohort of infants, we show that early CF lung
disease progression, expressed as higher BALF %
Neu and PRAGMA-CF %Dis scores, coincides with
a distinct shift in the x-6 lipid pathway, from LA
derivatives to AA derivatives.

Imbalances in x-6 lipid metabolism, including
an AA-dominated environment, have been well
described in CF and are thought to contribute to
pulmonary symptoms.10,11,16 Much less is known,
however, about the specific LMs involved, the
differences between CF subjects and the LM
changes that occur during lung early disease. As
progressive lung disease is the most prominent
cause of morbidity and mortality in CF, gaining
more insight into the role of LMs in CF lung
inflammation can contribute to new therapeutic
avenues, as well as more precise disease
monitoring tools.

While an increased AA:LA ratio has been
described extensively in CF as compared to
controls,10,11,13,14 our findings reveal that not all
children with CF display this increased AA:LA ratio
to the same extent, suggesting that lipid
imbalances typical for CF lung disease are at least
in part acquired during the early disease stage,

Figure 4. Visualisation of ω-6 PUFA pathway correlations with BALF %Neu and/or PRAGMA-CF %Dis. Red octagons show positive correlation

and orange diamonds show negative correlations. Correlation with BALF %Neu, PRAGMA-CF %Dis or both are indicated with the numbers 1

and/or 2, respectively.
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thus highlighting the need for timely
intervention.

The finding that 6-trans-LTB4 was the strongest
LM predictor for %BALF Neu is in line with the
fact that LTB4 is a well-described chemoattractant
for neutrophils.24 We previously showed that LTB4

is higher in BALF of CF infants compared to
non-CF controls.21

Of all x-3/6 LMs that correlated with BALF %
Neu and PRAGMA-CF %Dis, we found that
15-KETE was a predictor for PRAGMA-CF %Dis,
and was just shy of being a statistically significant
predictor for BALF %Neu. 15-KETE, also termed
15-oxoETE, is an AA derivative that has been
documented in BALF of adult CF patients
before.17 Interestingly, in that study, 15-KETE was
nearly absent in BALF of non-CF-matched controls,
suggesting a direct link with CF pathology.
Several studies propose a beneficial role for
15-KETE. In macrophage cultures, 15-KETE
promotes anti-oxidant responses through an
Nrf-2-dependent mechanism, inhibiting
NF-jB-associated pro-inflammatory responses.25

15-KETE was also found to prevent the apoptosis
of pulmonary arterial smooth muscle cells through
regulation of the Akt pathway in a rat model for
pulmonary arterial hypertension.26 The overall
increased abundance of HETEs, HEPEs and HDHAs
in SC1 is indicative of increased 15-lipoxygenase
(ALOX15) activity, which is expressed by
macrophages and is required for the production

of pro-resolving lipid mediators (also known as
SPMs).27 We therefore speculate that the
increased levels of 15-KETE that we observe with
advanced lung inflammation may reflect an
anti-inflammatory or pro-resolving response that
attempts to promote a return to homeostasis.
Besides being a poor chemoattractant to
monocytes,28 not much is known about the effect
of 15-KETE on tissue-resident or infiltrating
leucocytes. As many bioactive LMs can directly
interact with receptors on immune cells, the
possible immune-modulatory effect of 15-KETE
warrants future investigation.

The lipidomic profile with more LA derivatives
appeared to be negatively associated with both
BALF %Neu and PRAGMA-CF %Dis. LA-derivatives
like 9,10- and 12,13-DiHOME, which are known to
inhibit the neutrophil respiratory burst, could
protect against structural lung damage.29

However, LA itself was found to promote
neutrophilic respiratory burst,30 suggesting that
an LA-enriched lipidome might be beneficial not
solely because of its suppression of neutrophilic
inflammation, but a more general promotion of
adequate neutrophilic function. Of note,
therapeutic supplementation of LA has shown
some positive effects on the growth of infant CF
patients,31 but in a murine CF model actually led
to higher AA levels and more neutrophil influx in
BALF,32 suggesting that the interplay between
PUFA metabolism and the progression of CF lung

Table 4. Multivariate linear regression model for prediction of BALF %Neu and PRAGMA-CF %Dis

Predictor Adjusted R2 F-value P-value Beta P-value

Predicting BALF %Neu

15-KETE 0.50 10.15 <0.001 0.19 0.06

9-HoTrE �0.18 0.06

6-trans-LTB4 0.20 0.04

Age (1 year) �0.22 0.02

Residual CFTR function �0.26 0.008

Culture positivea 0.38 < 0.001

Predicting PRAGMA-CF %Dis

5-HETE 0.57 10.51 <0.001 0.32 0.01

15-KETE 0.25 0.009

13-oxoODE �0.19 0.05

Age (1 years) �0.57 < 0.001

Age (3 years) �0.33 0.001

Gender (female) 0.26 0.004

Lumacaftor/ivacaftor treatment �0.16 0.09

Culture positivea 0.17 0.06

BALF %Neu, Percentage neutrophils of total BALF leucocytes; PRAGMA-CF %Dis, total percentage of lung volume affected by bronchiectasis,

mucus plugging and airway wall thickening. Bold values indicate P-values < 0.05.
aBALF culture positive for any bacterial or fungal pathogen.

2024 | Vol. 13 | e70000

Page 8

ª 2024 The Author(s). Clinical & Translational Immunology published by John Wiley & Sons Australia, Ltd on behalf of

Australian and New Zealand Society for Immunology, Inc.

Lipid pathway shift in early cystic fibrosis lung disease LJM Slimmen et al.

 20500068, 2024, 9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cti2.70000 by L

eiden U
niversity L

ibraries, W
iley O

nline L
ibrary on [27/03/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



disease is complex and not easily mitigated by
supplementation of LA. Another possible avenue
of interest is the use of fenretinide, a synthetic
retinoic acid derivative that is currently being
explored as a therapeutic in CF. In CF mice,
fenretinide decreased the AA:DHA ratio in
plasma.33 However, the effects of fenretinide on
the lung lipidome remain unknown. Its effects
appear to be pleiotropic in nature and are still
not fully understood.

Understanding of CF lung inflammation has
evolved from merely the presence of chronic
infection to a condition in which the lung’s
ability to counter inflammation and return to
homeostasis is increasingly impaired.6 In this
context, the role of pro-resolving LMs in CF lung
disease is of particular interest. Such LMs include
several x-3/6-derived LMs such as lipoxin A4,
resolvins, protectins and maresins that promote
resolution of inflammation in various ways.8,9

Inability to induce an LM class switch towards
these resolution-promoting LMs may contribute
to chronic inflammation. Unfortunately, as a
result of their low abundance in ex vivo
material, such mediators are difficult to measure
in human samples, which was also the case in
our dataset.

CFTR modulator therapy has improved clinical
outcomes in CF,34,35 but airway inflammation is
still detectable under modulator treatment.36,37

While our study was not set up to investigate the
effect of lumacaftor/ivacaftor treatment on
the lung lipidome, it is interesting to see that
even with the low number of lumacaftor-/
ivacaftor-treated subjects (8 of 65), this modulator
appears to be a negative predictor, albeit not
statistically significant, for PRAGMA %Dis. Still,
with a mean BALF %Neu of 20.9% in
lumacaftor-/ivacaftor-treated patients, which is well
above the expected amount of neutrophils in a
non-inflamed lung,38 these findings confirm that
airway inflammation persists despite lumacaftor/
ivacaftor treatment. This is further highlighted by
the fact that nearly all lumacaftor/ivacaftor-treated
subjects clustered into the AA-enriched SC1.
Together, these findings show lumacaftor/ivacaftor
to have a disease-stabilising, rather than a
curative, effect on CF lung disease. Therefore,
early initiation of more effective CFTR modulator
treatment, such as elexacaftor/tezacaftor/ivacaftor,
is highly anticipated. Additional studies
investigating the effect of lumacaftor/ivacaftor
treatment, as well as the more recently introduced

elexacaftor/tezacaftor/ivacaftor treatment, on the
LM profile and lung disease progression are
needed.

The majority of LMs that were found to
correlate with BALF %Neu and PRAGMA %Dis are
biosynthesised by specific lipoxygenases such as
ALOX-5 or ALOX-15, which would suggest
increased activity of these enzymes. However, our
data do not allow for direct conclusions on
enzymatic activity, nor do they provide
information on the cell types involved in the
production of the LMs measured. To further
complicate matters, many LMs can arise from non-
enzymatic reactions such as free radical oxidation.
Therefore, further investigation into the chirality
of some of these LMs would be needed in order
to better discern the underlying regulatory
mechanism of lipid production. CF is shown to
lead to high levels of oxidative stress markers,39

which is to be expected with the neutrophilic
inflammation involved.23 It is therefore reasonable
to speculate that at least a portion of the LMs we
measured is driven by reactive oxygen species.

Our study has several limitations. As a result of
the cross-sectional nature of our study,
conclusions about causality cannot be made.
Furthermore, while several subjects (n = 18) were
included twice, our study is neither designed nor
powered to draw any conclusions regarding
longitudinal LM changes. Additionally, the use of
relative abundance rather than absolute
concentrations of LMs limits the conclusions that
can be drawn from our data as an increased
abundance of one LM will automatically result in
a decreased abundance of another. The
heterogeneity of BALF samples, and more
specifically the variability in dilution of the
samples, remains a challenge when comparing
BALF components between subjects. Most
parameters available for normalisation, such as
protein content and leucocyte count, are
themselves affected by inflammation and
are therefore not suitable for normalisation in
studies concerning inflammatory processes.
However, as an inflammatory state is affected by
the balance between pro-inflammatory and
anti-inflammatory agents, the shift in relative
abundance that we report is meaningful even
with this limitation. Lastly, we do not have non-CF
controls to compare our data to. Unfortunately,
the invasive nature of BALF collection does not
allow for the collection of age-matched healthy
control material as a result of ethical constraints.
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In summary, our data indicate that lung disease
progression in early CF is associated with a x-3/6
PUFA shift from LA derivatives towards AA
derivatives. Importantly, this shift is observed in
clinically stable CF infants, highlighting the need
for timely intervention with adequate treatment
that is aimed at reducing airway inflammation.

METHODS

Study design and subjects

Children diagnosed with CF aged 1–5 years were included
in the early CF I-BALL (inflammatory markers in
bronchoalveolar lavage to predict early CF lung disease)
monitoring programme at the Erasmus MC-Sophia
Children’s Hospital in Rotterdam, the Netherlands. Children
underwent bronchoscopy with bronchoalveolar lavage
(BAL) and chest CT at ages 1, 3 and/or 5 while in stable
clinical condition. Study samples were collected between
May 2016 and November 2020. The study was approved by
the institutional review board of the Erasmus MC and
registered on clinicaltrial.gov (NCT02907788). Written
informed consent was obtained from parents or legal
guardians.

Chest CT

A free-breathing low-dose chest CT was performed within
1 week of BALF collection. Structural lung disease was
quantified using the standardised Perth–Rotterdam
annotated grid morphometric analysis for CF (PRAGMA-CF)
scoring, performed by two independent observers.40

Diseased lung volume (PRAGMA %Dis), expressed as a
percentage of total lung volume, was calculated as the sum
of percentages with bronchiectasis, mucus plugging and
airway wall thickening. Intra- and inter-observer consistency
scores for %Dis were 0.98 and 0.83, respectively.

Bronchoalveolar lavage fluid collection and
processing

Bronchoscopy was performed under general anaesthesia,
and BALF was collected as described previously.3 Samples
were placed on ice immediately after collection. BALF
culture and cytology, including the percentage neutrophils
of total BALF leucocytes (BALF %Neu), were performed as
part of routine clinical care. Remaining BALF was
homogenised with a 19G needle in 2.5 mM EDTA,
centrifuged for 10 min at 800 g to pellet cells and then
centrifuged for 10 min at 3000 g to obtain debris-free
supernatant that was used to measure LM content.

Targeted lipid mediator analysis

BALF samples (400 lL) were quenched by adding 1.2 mL
methanol (MeOH) and 4 lL internal standard solution
consisting of LTB4-d4, 15-HETE-d8, PGE2-d4 and DHA-d5

(50 ng mL�1) in MeOH. Samples were placed at �20°C for
20 min and centrifuged for 10 min at 16.200 g at 4°C after
which LMs were extracted using solid-phase extraction as
described previously.41 Ω-3/6 LM content of the samples was
measured using a targeted HPLC-MS/MS method.41 LMs
were detected using their relative retention times (RRTs)
together with characteristic mass transitions. These and
other individually optimised parameters can be found in
Supplementary table 1.

Data handling and statistical analysis

LMs were excluded from the dataset if missing values were
found in > 25% of the samples. Remaining missing values
were imputed with 1/5th of the lowest value for each LM
and data were normalised using total area (TA)
normalisation to obtain relative values as previously
described.42 In total, 32 LMs were used for statistical
analyses which consisted of three parts, all of which were
performed in Rstudio (version 4.2.2). Normality of the data
was checked by visual inspection of histograms combined
with Kolmogorov–Smirnov testing. A P-value ≤ 0.05 was
considered statistically significant.

First, a two-way hierarchical cluster analysis
(ComplexHeatmap package) was performed on all subject
samples and data were clustered using a Euclidean distance
method.43 Clinical characteristics of both SC were compared
using Chi-squared or Fisher’s exact tests and relative LM
levels were compared between SC using a non-parametric
Mann–Whitney U-test. P-values were corrected for multiple
testing using an FDR correction.

Second, non-normally distributed parameters (BALF %
Neu and PRAGMA %Dis) were log transformed and all LMs
were transformed with a Box–Cox transformation before
partial correlation analyses. The relation between LMs and
lung disease progression, expressed as BALF %Neu or
PRAGMA %Dis, was assessed using Pearson correlations in
which age, sex, residual CFTR function, culture positivity
and lumacaftor/ivacaftor treatment were used as covariates.

Lastly, significant correlates of either BALF %Neu or
PRAGMA %Dis were fed into respective multivariate linear
regression models using a backward selection procedure
with a removal P-value of > 0.10. Age, sex, residual CFTR
function, culture positivity and lumacaftor/ivacaftor
treatment were included as covariates.
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