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Annotator-Centric Active Learning
for Subjective NLP Tasks

Active Learning (AL) addresses the high costs of collecting human annotations by strategically
annotating the most informative samples. Howevet, for subjective NLP tasks, incorporating a
wide range of perspectives in the annotation process is crucial to capture the variability in hu-
man judgments. We introduce Annotator-Centric Active Learning (ACAL), which incorporates
an annotator selection strategy following data sampling. Our objective is two-fold: (1) to effi-
ciently approximate the full diversity of human judgments, and (2) to assess model performance
using annotator-centric metrics, which value minority and majority perspectives equally. We
experiment with multiple annotator selection strategies across seven subjective NLP tasks, em-
ploying both traditional and novel, human-centered evaluation metrics. Our findings indicate
that ACAL improves data efficiency and excels in annotator-centric performance evaluations.

However, its success depends on the availability of a sufficiently large and diverse pool of anno-
tators to sample from.

[3) Michiel van der Meer, Neele Falk, Pradeep K. Murukannaiah, Enrico Liscio. 2024. Annotator-Centric
Active Learning for Subjective NLP Tasks. In Proceedings of the 2024 Conference on Empirical Methods in Natural
Language Processing, pages 18537-18555, Miami, Florida, USA. Association for Computational Linguistics.
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5.1 Introduction

A challenging aspect of natural language understanding (NLU) is the variability of human
judgment and interpretation in subjective tasks (e.g., hate speech detection) [302]. In a sub-
jective task, a data sample is typically labeled by a set of annotators, and differences in anno-
tation are reconciled via majority voting, resulting in a single (supposedly, true) “gold label”
[393]. However, this approach has been criticized for treating label variation exclusively as
noise, which is especially problematic in sensitive subjective tasks [21] since it can lead to
the exclusion of minority voices [228].

Subjectivity can be addressed by modeling the full distribution of annotations for each
data sample instead of employing gold labels [302]. However, resources for such approaches
are scarce, as most datasets do not (yet) make fine-grained annotation details available [61],
and representing a full range of perspectives is contingent on obtaining costly annotations
from a diverse set of annotators [28].

One way to handle a limited annotation budget is to use Active Learning [350, AL]. Given
a pool of unannotated data samples, AL employs a sample selection strategy to obtain max-
imally informative samples, retrieving the corresponding annotations from a ground truth
oracle (e.g., a single human expert). However, in subjective tasks, there is no such oracle.
Instead, we rely on a set of available annotators. Demanding all available annotators to an-
notate all samples would provide a truthful representation of the annotation distribution,
but is often unfeasible, especially if the pool of annotators is large. Thus, deciding which
annotator(s) should annotate is as critical as deciding which samples to annotate.

In most practical applications, annotators are randomly selected. This results in an anno-
tation distribution insensitive to outlier annotators—most annotations reflect the majority
voices and fewer reflect the minority voices. This may not be desirable in applications such
as hate speech, where the opinions of the majority and minority should be valued equally.
In such cases, a more deliberate annotator selection is required. To ensure a balanced repre-
sentation of majority and minority voices, we leverage strategies inspired by Rawls principle
of fairness [313], which advocates that a fair society is achieved when the well-being of the
worst-off members of society (the minority annotators, in this case) is maximized.

We introduce Annotator-Centric Active Learning (ACAL) to emphasize and control who
annotates which sample. In ACAL (Figure 5.1), the sample selection strategy of traditional
AL is followed by an annotator selection strategy, indicating which of the available annotators
should annotate each selected data sample.

Contributions (1) We present ACAL as an extension of the AL approach and introduce
three annotator selection strategies aimed at collecting a balanced distribution of minority
and majority annotations. (2) We introduce a suite of annotator-centric evaluation met-
rics to measure how individual and minority annotators are modeled. (3) We demonstrate
ACALs effectiveness in three datasets with subjective tasks—hate speech detection, moral
value classification, and safety judgments.

Our experiments show that the proposed ACAL methods can approximate the distri-
bution of human judgments similar to AL while requiring a lower annotation budget and
modeling individual and minority voices more accurately. However, our evaluation shows
how the task’s annotator agreement and the number of available annotations impact ACALs
effectiveness—ACAL is most effective when a large pool of diverse annotators is available.
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Figure 5.1: Active Learning (AL) approaches (left) use a sample selection strategy to pick samples to be annotated
by an oracle. The Annotator-Centric Active Learning (ACAL) approach (right) extends AL by introducing an an-
notator selection strategy to choose the annotators who annotate the selected samples.

Importantly, our experiments show how the ACAL framework controls how models learn to
represent majority and minority annotations. This is crucial for subjective and sensitive ap-
plications such as detecting human values and morality [203, 239], argument mining [405],
and hate speech [198].

5.2 Related work

5.2.1 Learning with annotator disagreement

Modeling annotator disagreement is garnering increasing attention [21, 61, 302, 393]. Chang-
ing annotation aggregation methods can lead to a fairer representation than simple majority
[171, 380]. Alternatively, the full annotation distribution can be modeled using soft labels
[79, 277, 300]. Other approaches leverage annotator-specific information, e.g., by includ-
ing individual classification heads per annotator [89], embedding annotator behavior [269],
or encoding the annotator’s socio-demographic information [44]. Yet, modeling annotator
diversity remains challenging. Standard calibration metrics under human label variation
may be unsuitable, especially when the variation is high [24]. Trade-offs ought to be made
between collecting more samples or more annotations [149]. Further, solely measuring dif-
ferences among sociodemographic traits is not sufficient to capture opinion diversity [291].
Instead, we represent diversity based on which annotators annotated what and how. We ex-
periment with annotator selection strategies to reveal what aspects impact task performance
and annotation budget.

5.2.2 Active Learning

AL enables a supervised learning model to achieve high performance by judiciously choos-
ing a few training examples [350]. In a typical AL scenario, a large collection of unlabeled
data is available, and an oracle (e.g., a human expert) is asked to annotate this unlabeled
data. A sampling strategy is used to iteratively select the next batch of unlabeled data for
annotation [316]. AL has found widespread application in NLP [451]. Two main strategies
are employed, either by selecting the unlabeled samples on which the model prediction is
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most uncertain [450], or by selecting samples that are most representative of the unlabeled
dataset [116, 452]. The combination of AL and annotator diversity is a novel direction. Exist-
ing works propose to align model and annotator uncertainties [39], adapt annotator-specific
classification heads in AL settings [421], or select texts to annotate based on annotator pref-
erences [192]. These methods ignore a crucial part of learning with human variation: the
diversity among annotators. We focus on selecting annotators such that they best inform us
about the underlying label diversity.

5.3 Method

First, we define the soft-label prediction task we use to train a supervised model. Then, we
introduce the traditional AL and the novel ACAL approaches.

5.3.1 Soft-label prediction

Consider a dataset of triples {x;,a;,y;;}, where x; is a data sample (i.e., a piece of text) and
yij € C is the class label assigned by annotator a;. The multiple labels assigned to a sample
x; by the different annotators are usually combined into an aggregated label §;. For training
with soft labels (i.e. non-binary class assignment), the aggregation typically takes the form
of maximum likelihood estimation [393]:

i = [yij = ]
Zi'vzl [xi = x|

Filx) = (5.1)
In our experiments, we use a passive learning approach that uses all available {x;,;} to
train a model fy with cross-entropy loss as a baseline.

5.3.2 Active Learning

AL imposes a sampling technique for inputs x;, such that the most informative sample(s) are
picked for learning. In a typical AL approach, a set of unlabelled data points U is available.
At every iteration, a sample selection strategy S selects samples x; € U to be annotated by
an oracle O that provides the ground truth label distribution J;. The selected samples and
annotations are added to the labeled data D, with which the model fy is trained. Alg. 1
provides an overview of the procedure.

Algorithm 1: AL approach.

input: Unlabeled data U, Data sampling strategy S, Oracle O
Doy {}
forn=1..N do
sample data points x; from U using S
obtain annotation §; for x; from O D,,.| = D, + {x;, 9}
train fg on D41
end

In the sample selection strategies, a batch of data of a given size B is queried at each
iteration. Our experiments compare the following strategies:
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Random (Sg) selects a B samples uniformly at random from U.

Uncertainty (Sy) predicts a distribution over class labels with fg(x;) for each x; € U, and
selects B samples with the highest prediction entropy (the samples the model is most uncer-
tain about).

5.3.3 Annotator-Centric Active Learning

ACAL builds on AL. In contrast to AL, which retrieves an aggregated annotation y;, ACAL
employs an annotator selection strategy 7 to select one annotator and their annotation for
each selected data point x;. Alg. 2 describes the ACAL approach.

Algorithm 2: ACAL approach.

input: Unlabeled data U, Data sampling strategy S, Annotator sampling strategy 7
Do «+ {}
forn=1..N do
sample data points x; from U using S
sample annotators a; for x; using 7
obtain annotation y;; from a; for x;
Dy 1 =Dy +{xi,yij}
train fg on Dy
end

We propose three annotator selection strategies to gather a distribution that uniformly
contains all possible (majority and minority) labels, inspired by Rawls’ principle of fairness
[313]. The strategies vary in the type of information used to represent differences between
annotators, including what or how the annotators have annotated thus far. Our experiments
compare the following strategies:

Random (7z) randomly selects an annotator a;.

Label Minority (7z) considers only information on how each annotator has annotated so
far (i.e., the labels that they have assigned). The minority label is selected as the class with
the smallest annotation count in the available dataset D,, thus far. Given a new sample, x;, 71,
selects the available annotator that has the largest bias toward the minority label compared
to the other available annotators, i.e., who has annotated other samples with the minority
label the most.

Semantic Diversity (7s) considers only information on what each annotator has annotated
so far (i.e., the samples that they have annotated). Given a new sample x; selected through S,
Ts selects the available annotator for whom x; is semantically the most different from what
the annotator has labeled so far. To measure this difference for an annotator a;, we employ
a sentence embedding model to measure the cosine distance between the embeddings of x;
and embeddings of all the samples annotated by a;. We then take the average of all semantic
similarities. The annotator with the lowest average similarity score is selected.
Representation Diversity (7p) selects the annotator that has the lowest similarity on aver-
age with all other annotators available for that item. We create a representation for each
annotator by averaging the embeddings of samples annotated by a; together with their re-
spective labels, followed by computing the pair-wise cosine similarity between all annotators.
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5.4 Experimental Setup

We describe the experimental setup for the comparisons between ACAL strategies. In all
our experiments, we employ a TinyBERT model [187] to reduce the number of trainable
parameters. Appendix D.1 includes a detailed overview of the computational setup and hy-
perparameters. We make the code for the ACAL strategies and evaluation metrics available
via GitHub.!

5.4.1 Datasets

We use three datasets which vary in domain, annotation task (in italics), annotator count,
and annotations per instance.

The DICES Corpus [22] is composed of 990 conversations with an LLM where 172 annota-
tors provided judgments on whether a generated response can be deemed safe (3-way judg-
ments: yes, no, unsure). Samples have 73 annotations on average. We perform a multi-class
classification of the judgments.

The MFTC Corpus [169] is composed of 35K tweets that 23 annotators annotated with any
of the 10 moral elements from the Moral Foundation Theory [142]. We select the elements of
loyalty (lowest annotation count), care (average count), and betrayal (highest count). Sam-
ples have 4 annotations on average. We create three binary classifications to predict the
presence of the respective elements. As most tweets were labeled as non-moral (i.e., with no
moral element), we balanced the datasets by subsampling the non-moral class.

The MHS Corpus [328] consists of 50K social media comments on which 8K annotators
judged three hate speech aspects—dehumanize (low inter-rater agreement), respect (medium
agreement), and genocide (high agreement)—on a 5-point Likert scale. Samples have 3 anno-
tations on average. We perform a multi-class classification with the annotated Likert scores
for each task.

The datasets and tasks differ in levels of annotator agreement, measured via entropy of the
annotation distribution. DICES and MHS generally have medium entropy scores, whereas
the MFTC entropy is highly polarized (divided between samples with very high and very
low agreement). Appendix D.1.5 provides details of the entropy scores.

5.4.2 Evaluation metrics

The ACAL strategies aim to guide the model to learn a representative distribution of the
annotator’s perspectives while reducing annotation effort. To this end, we evaluate the model
both with a traditional evaluation metric and a metric aimed at comparing predicted and
annotated distributions:

Macro Fj-score (F1) For each sample in the test set, we select the label predicted by the
model with the highest confidence, determine the golden label through a majority agreement
aggregation, and compute the resulting macro Fj-score.

Jensen-Shannon Divergence (/S) The JS measures the divergence between the distribu-
tion of label annotation and prediction [286]. We report the average JS for the samples
in the test set to measure how well the model can represent the annotation distribution.

'https://github.com/m@redu/acal-subjective
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Further, since ACAL shifts the focus to annotators, we introduce novel annotator-centric
evaluation metrics. First, we report the average among annotators. Second, in line with
Rawls’ principle of fairness, the result for the worst-off annotators:

Per-annotator F; (F{") and JS (J$“) We compute the Fj (or JS) for each annotator in the
test set using their annotations as golden labels (or target distribution), and average it.
Worst per-annotator Fy (F}") and JS (JS*) We compute the Fj (or JS) for each annotator
in the test set using their annotations as golden labels (or target distribution), and report the
average of the lowest 10% to mitigate noise.

These metrics allow us to measure the trade-offs between modeling the majority agree-
ment, a representative distribution of annotations, and accounting for minority voices. In
the next section, we describe how we obtained the results.

5.4.3 Training procedure

We test the annotator selection strategies proposed in Section 5.3.3 by comparing all combi-
nations of the two sample selection strategies (Sg and Syy) and the four annotator selection
strategies (Tr, Tr, Ts, and Tp). At each iteration, we use S to select B unique samples from
the unlabeled data pool U. We select B as the smallest between 5% of the number of available
annotations and the number of unique samples in the training set. For each selected sample
x;, we use 7T to select one annotator and retrieve their annotation y;;.

We split each dataset into 80% train, 10% validation, and 10% test. We start the training
procedure with a warmup iteration of B randomly selected annotations [451]. We proceed
with the ACAL iterations by combining & and 7. We select the model checkpoint across all
AL iterations that led to the best JS performance on the validation set and evaluate it on the
test set. We repeat this process across three data splits and model initializations. We report
the average scores on the test set.

We compare ACAL with traditional oracle-based AL approaches (SgO and Sy O), which
use the data sampling strategies but obtain all possible annotations for each sample as in
Alg. 1. Further, we employ a passive learning (PL) approach as an upper bound by training
the model on the full dataset, thus observing all available samples and annotations. Similar
to ACAL, the AL and PL baselines are averaged over three seeds.

5.5 Results

We start by highlighting the benefits of ACAL over AL and PL (Section 5.5.1). Next, we
closely examine ACAL on efficiency and fairness (Section 5.5.2). Then, we select a few cases
of interest and dive deeper into the strategies’ behavior during training (Section 5.5.3). Fi-
nally, we investigate ACAL across varying levels of subjectivity (Section 5.5.4).

5.5.1 Highlights

Our experiments show that ACAL can have a beneficial impact over using PL and AL. Fig-
ure 5.2 highlights two main findings: (1) ACAL strategies can more quickly learn to represent
the annotation distribution with a large pool of annotators, and (2) when agreement between
annotators is polarized, ACAL leads to improved results compared to learning from aggre-

gated labels. In the next sections, we provide a deeper understanding of the conditions in
which ACAL works well.
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Figure 5.2: Learning curves showing model performance on the validation set. On DICES (upper), ACAL ap-
proaches are quicker than AL in obtaining similar performance to passive learning. On MHS (lower), ACAL sur-
passes passive learning in /1 when data has high disagreement.

5.5.2 Efficiency and Fairness

Table 5.1 presents the results of evaluating the best models (those with the highest JS scores
on the validation set) on the test set. We analyze the results along two dimensions: (a) ef-
ficiency: what is the impact of the different strategies on the trade-off between annotation
budget and performance? (b) fairness: do the selection strategies that aim for a balanced con-
sideration of minority and majority views lead to better performance in the human-centric
evaluation metrics? For MFTC we focus on care because it has an average number of samples
available, and for MHS we focus on dehumanize because it has high levels of disagreement.
Appendix C.3 presents the remainder of the results.

Efficiency We discuss the performance on F; and JS to measure how well the proposed
strategies model label distributions and examine the used annotator budget. Across all tasks
and datasets, ACAL and AL consistently yield comparable or superior F; and JS with a lower
annotation budget than PL. When comparing ACAL with AL, the results vary depending on
the task and dataset. For DICES, there is a significant benefit to using ACAL, as it can save
up to ~40% of the annotation budget while yielding better scores across all metrics than
AL. With AL, we observe only a small reduction in annotation cost. For MFTC, AL with



5.5 Results 81

Average  Worst-off
App. R JS F JS® FY JSY A%

SgTr 53.2 .100 43.2 .186 16.7 .453 -36.8
SgTr 55.5 .101 424 .187 155 .450 -32.7
SrTs 61.0 .103 44.2 .186 164 .447 -355
SrTp 589 .142 43.1 203 169 .370 -30.0

© SyTk 532 .100 432 .186 167 453 -36.8
O SyT. 555 .101 424 .187 155 450 -32.7
A SyTs 63.1 .098 439 .187 18.4 .447 -38.2
SyTp 589 .142 431 203 169 .370 -30.0
SRO  59.1 .112 414 .191 133 425 -0.1
SyO 462 .110 384 .192 117 427 -0.1
PL 590 .105 37.1 211 123 479 -
SrTr 789 .038 61.1 .141 37.7 247 -1.6
SrTL 785 .037 61.6 .142 392 249 -04
SgTs 781 .039 60.0 .145 351 248 -17
<~ SrTp 766 .040 60.4 .144 357 243 -1.7
S SyTr 794 038 612 .143 37.7 252 -56
G SuTL 807 037 589 .142 423 248 25
£ SyTs 791 .037 60.8 .143 39.9 258 -1.1
= SyTp 78.1 .040 58.6 .145 357 253 -2.5
SgO  79.0 .037 58.6 .141 392 255 -0.2
SyO 794 .037 583 .144 357 253 -12.7
PL 811 .032 512 .179 377 251 -
SkTr 33.6 .081 31.5 394 0.0 489 -50.0
SgT. 33.1 .081 322 397 0.0 .478 -62.5
< SrTs 305 .079 313 397 0.0 .480 -62.5
S SgTp 324 .081 318 398 0.0 479 -62.5
S SyTr 324 .080 322 389 00 508 -7.8
£ SyT. 331 080 328 388 00 507 -7.8
S SyTs 33.6 .080 326 388 00 506 -7.8
£ SyTp 330 079 326 .384 0.0 513 -3.0
=

SrO  32.8 .077 339 387 0.0 .496 -60.1
SyO 333 .080 33.1 .390 0.0 .497 -24.7
PL 28.0 .075 20.2 424 0.0 .547 -

Table 5.1: Test set results on the DICES, MFTC (care), and MHS (dehumanize) datasets. Results report the average
test scores from the best-performing model checkpoint on the validation set (lowest JS), evaluated across three
data splits and model initializations. A% denotes the reduction in the annotation budget with respect to passive
learning. In bold, the best performance per column and per dataset (higher F} are better, lower JS are better).

Sy leads to the largest cost benefits (~12% less annotation budget), but at a cost in terms
of absolute JS and F;. ACAL slightly outperforms AL but does not lead to a decrease in
annotation budget. For MHS, both AL and ACAL significantly reduce the annotation cost
(~60%) while yielding better scores than PL—however, AL and ACAL do not show substan-
tial performance differences. Overall, when looking at F; and JS which are aggregated over



82 5 Annotator-Centric Active Learning for Subjective NLP Tasks

the whole test set, we conclude that ACAL is most efficient when the pool of available anno-
tators for one sample is large (as with the DICES dataset), whereas the difference between
ACAL and AL is negligible with a small pool of annotators per data sample (as with MFTC
and MHS).

Fairness We investigate the extent to which the models represent individual annotators
fairly and capture minority opinions via the annotator-centric evaluation metrics (Ff, JS%,
F!", and JS,,). We observe a substantial improvement when using AL or ACAL over PL.
Further, we observe no single winner-takes-all approach: high F; and JS scores do not con-
sistently co-occur with high scores for the annotator-centric metrics. This highlights the
need for a more comprehensive evaluation to assess models for subjective tasks. Yet, we ob-
serve that ACAL slightly outperforms AL in modeling individual annotators (JS* and F}").
This trend is particularly evident with DICES, again likely due to the large pool of annotators
available per data sample. Lastly, ACAL is best in the worst-off metrics (JS" and F}"), show-
ing the ability to better represent minority opinions as a direct consequence of the proposed
annotator selection strategies on DICES and MFTC. However, all approaches score 0 for F}*
on MHS. This is due to the high disagreement in this dataset: the 10% worst-off annotators
always disagree with a hard label derived from the predicted label distribution. In conclu-
sion, our experiments show that, when a large pool of annotators is available, a targeted
sampling of annotators requires fewer annotations and is fairer. That is, minority opinions
are better represented without large sacrifices in performance compared to the overall label
distribution.

—SrTr === SuTr SrTL SuT. —SgrTs “ee SyTs
SrTp SuTp  —S8rO === 5y0 Passive
DICES MEFTC (care) MHS (dehumanize)
T

— 04 f“ .
<—
s

0.3 .

0 20000 40000 O 10000 20000 0 20000 40000
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0.26 ‘ ‘

0.24 ﬂ 105
002
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Figure 5.3: Selected plots showing the F{* and JS" performance on the validation set during the ACAL and AL
iterations for DICES, MFTC (care), and MHS (dehumanize). Higher F|* is better, lower JS" is better. Y-axes are
scaled to highlight the relative performance to PL.
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5.5.3 Convergence

The evaluation on the test set paints a general picture of the advantage of using ACAL over AL
or PL. In this section, we assess how different ACAL strategies converge over iterations. We
describe the major patterns across our experiments by analyzing six examples of interest with
F{" and JS" (Figure 5.3). We select F|* because it reveals how well individual annotators are
modeled on average, and JS" to measure how strategies deviate from modeling the majority
perspective. Appendix D.2.2 provides an overview of all metrics.

First, we notice that the trends for F{* and JS" are both increasing—the first is expected,
but the second requires an explanation. As the model is exposed to more annotations over
the training iterations, the predicted label distribution starts to fit the true label distribu-
tion. However, here we consider each annotator individually: JS" reports the average of
the 10% lowest JS scores per annotator. The presence of disagreement implies the existence
of annotators that annotate differently from the majority. Since our models predict the full
distribution, they assign a proportional probability to dissenting annotators. Thus, learning
to model the full distribution of annotations leads to an increase in JS".

Second, we notice a difference between ACAL and AL. On MFTC and MHS, ACAL,
compared to AL, yields overall smaller JS at the cost of a slower convergence in F{", show-
ing the trade-off between modeling all annotators and representing minorities. However,
with DICES the trend is the opposite. This is due to AL having access to the complete label
distribution: it can model a balanced distribution, leading to lower worst-off performance.
With a large number of annotations, ACAL requires more iterations to get the same balanced
predicted distribution.

Third, we observe differences among the annotator selection strategies (7). Tp shows
the most differences—both JS* and F{* increase slower than for the other strategies. This
suggests that selecting annotators based on the average embedding of the annotated content
strongest emphasizes diverging label behavior.

Finally, we analyze the impact of the sample selection strategies (S, dotted vs. solid lines
in Figure 5.3). For DICES, Sg and Sy lead to comparable results, likely due to the low num-
ber of samples. Using Sy in MFTC leads to F{* performance decreasing at the start of train-
ing. The strategy prioritizes obtaining annotations for already added samples to lower their
entropy, while the variation in labels is irreconcilable (since there are limited labels available,
and they are in disagreement). We see a similar pattern for MHS.

These results further underline our main finding that ACAL is effective in representing
diverse annotation perspectives when there is a (1) heterogeneous pool of annotators, and
(2) a task that facilitates human label variation.

5.5.4 Impact of subjectivity
We further investigate ACAL strategies on (1) label entropy, and (2) cross-task performance.

Alignment of ACAL strategies during training We want to investigate how well the ACAL
strategies align with the overall subjective annotations: do they drive the model entropy in
the right direction? We measure the entropy of the samples in the labeled training set at each
iteration and compare it to the entropy of all annotations of those samples. Higher entropy
in the labeled training set than the actual entropy suggests that the selection strategy over-
estimates uncertainty. Lower entropy indicates that the model may not sufficiently account
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Figure 5.4: Proportion of data samples that result in higher or lower entropy than the target label distribution per
ACAL strategy.

for disagreement. When the entropy matches the true entropy, the selection strategy is well-
calibrated to strike a healthy middle ground between sampling diverse labels and finding
the majority class. We focus on DICES as a case study due to the wide range of entropy
scores. We group each sample based on the true label entropy into low (< 0.43), medium
(0.43 —0.72), and high (> 0.72). We apply the same categorization at each training iteration
for samples labeled thus far. Subsequently, we plot the proportion of data points for which
the selection strategy results in excessively high or excessively low entropy.

Figure 5.4 visualizes the proportions. At the beginning of training, entropy is generally
low because samples have few annotations. Over time, the selected annotations better align
with the true entropy. At the start (at 10K unique annotations), roughly only a third of the
samples have aligned entropy scores (Tg = 27%,Ts = 27%,T;, = 33%,Tp = 32%). Further
towards the end of the ACAL iterations, this has increased for all ACAL strategies except Tp
(Tr =64%,Ts = 62%,T;, = 57%, Tp = 17%). When and how much the strategies succeed in
matching the true label distribution differs: 75 and 7 take longer to increase label entropy
than the other two strategies. They are conservative in adding diverse labels. 77 and 7p
increase the proportion of well-aligned data points earlier in the training process, achieving
a balanced entropy alignment sooner. However, both strategies start to overshoot the target
entropy, whereas the others show a more gradual alignment with the true entropy. This effect
is strongest for 7p. This finding suggests that minority-aware annotator-selection (7, and
7Tp) strategies achieve the best results in the early stages of training—that is, they are effective
for quickly raising entropy but can lead to overrepresentation.

Cross-task performance Figure 5.5 compares the two annotator-centric metrics on the
three tasks of MFTC and MHS—the datasets for which we have seen the least impact of
ACAL over AL and PL. We select a data sampling (Sg) and annotator sampling strategy
(7Ts), based on its strong performance on DICES for comprehensive comparison.

When evaluating MFTC loyalty, which has the highest disagreement, JS" is more ac-
curately approximated with PL. Similarly, ACAL is outperformed by AL on F{ for the de-
humanize (high disagreement) task. However, for the less subjective task genocide, ACAL
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Figure 5.5: Comparison of ACAL, AL, and PL across different MFTC and MHS tasks. Higher F{ is better, and
lower JSY is better.

leads to higher F{*. This suggests that the effectiveness of annotation strategies varies de-
pending on the tasK’s degree of subjectivity and the available pool of annotators. The more
heterogeneous the annotation behavior, indicative of a highly subjective task, the larger the
pool of annotators required for each sample selection. We also observe that there is a trade-
off between modeling the majority of annotators equally (F{*) and prioritizing the minority
(JS™).

5.6 Conclusion

We present ACAL as an extension of AL to emphasize the selection of diverse annotators.
We introduce three novel annotator selection strategies and four annotator-centric metrics
and experiment with tasks across three different datasets. We find that the ACAL approach is
especially effective in reducing the annotation budget when the pool of available annotators
is large. However, its effectiveness is contingent on data characteristics such as the number
of annotations per sample, the number of annotations per annotator, and the nature of dis-
agreement in the task annotations. Furthermore, our novel evaluation metrics display the
trade-off between modeling overall distributions of annotations and adequately accounting
for minority voices, showing that different strategies can be tailored to meet different goals.
Especially early in the training process, strategies that are aggressive in obtaining diverse la-
bels have a beneficial impact in accounting for minority voices. However, we recognize that
gathering a distribution that uniformly contains all possible (minority and majority) labels
can be overly sensitive to small minorities or noise. Future work should integrate methods
that account for noisy annotations [426]. Striking a balance between utilitarian and egali-
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tarian approaches, such as between modeling aggregated distributions and accounting for
minority voices [229] is crucial for inferring context-dependent values [242, 400].

Limitations

The main limitation of this work is that the experiments are based on simulated AL which
is known to bear several shortcomings [261]. In our study, a primary challenge arises with
two of the datasets (MFTC, MHS), which, despite having a large pool of annotators, lack
annotations from every annotator for each item. Consequently, in real-world scenarios, the
annotator selection strategies for these datasets would benefit from access to a more extensive
pool of annotators. This limitation likely contributes to the underperformance of ACAL on
these datasets compared to DICES. We emphasize the need for more datasets that feature a
greater number of annotations per item, as this would significantly enhance research efforts
aimed at modeling human disagreement.

Since we evaluate four different annotator selection strategies and two sample selection
strategies across three datasets and seven tasks, the amount of experiments is high. This did
not allow for further investigation of other methods for measuring uncertainty such as en-
semble methods [218], different classification models, the extensive turning of hyperparame-
ters, or even different training paradigms like low-rank adaptation [173]. Lastly, a limitation
of our annotator selection strategies is that they rely on a small annotation history. This is
why we require a warmup phase for some of the strategies, for which we decided to take a
random sample of annotations. Incorporating informed warmup strategies, incorporating
ACAL strategies that do not rely on annotator history, or making use of more elaborate hy-
brid human-AI approaches [403] may positively impact its performance and data efficiency.

Ethical Considerations

Our goal is to approximate a good representation of human judgments over subjective tasks.
We want to highlight the fact that the performance of the models differs a lot depending on
which metric is used. We tried to account for a less majority-focussed view when evaluating
the models which is very important, especially for more human-centered applications, such
as hate-speech detection. However, the evaluation metrics we use do not fully capture the
diversity of human judgments, but just that of labeling behavior. The selection of metrics
should align with the specific goals and motivations of the application, and there is a pressing
need to develop more metrics to accurately reflect human variability in these tasks.

Our experiments are conducted on English datasets due to the scarcity of unaggregated
datasets in other languages. In principle, ACAL can be applied to other languages (given the
availability of multilingual models to semantically embed textual items for some particular
strategies used in this work). We encourage the community to enrich the dataset landscape
by incorporating more perspective-oriented datasets in various languages, ACAL potentially
offers a more efficient method for creating such datasets in real-world scenarios.



