Universiteit

w4 Leiden
The Netherlands

Opinion diversity through hybrid intelligence
Meer, M.T. van der

Citation

Meer, M. T. van der. (2025, March 26). Opinion diversity through hybrid
intelligence. SIKS Dissertation Series. Retrieved from
https://hdl.handle.net/1887/4209024

Version: Publisher's Version
Licence agreement concerning inclusion of doctoral
License: thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/4209024

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/4209024

45

A Hybrid Intelligence Method for
Argument Mining

Large-scale survey tools enable the collection of citizen feedback in opinion corpora. Extracting
the key arguments from a large and noisy set of opinions helps in understanding the opinions
quickly and accurately. Fully automated methods can extract arguments but (1) require large
labeled datasets that induce large annotation costs and (2) work well for known viewpoints, but
not for novel points of view. We propose HyEnA, a hybrid (human + Al) method for extract-
ing arguments from opinionated texts, combining the speed of automated processing with the
understanding and reasoning capabilities of humans. We evaluate HyEnA on three citizen feed-
back corpora. We find that, on the one hand, HyEnA achieves higher coverage and precision
than a state-of-the-art automated method when compared to a common set of diverse opinions,
justifying the need for human insight. On the other hand, HyEnA requires less human effort
and does not compromise quality compared to (fully manual) expert analysis, demonstrating
the benefit of combining human and artificial intelligence.

[2)Michiel van der Meer, Enrico Liscio, Aske Plaat, Piek Vossen, Catholijn M. Jonker, and Pradeep K. Murukan-
naiah. 2024. A Hybrid Intelligence Method for Argument Mining. In Journal of Artificial Intelligence Research 80,
pages 1187-1222.

46 4 A Hybrid Intelligence Method for Argument Mining

4.1 Introduction

To make decisions on large public issues, such as combating a pandemic and transitioning to
green energy, policymakers often turn to the citizens for feedback [215, 226]. This feedback
provides insights into public opinion and contains viewpoints from many individuals with
different perspectives. Involving the public in the decision-making process helps in gain-
ing their support when the decisions are to be implemented, fostering the legitimacy of the
process [292].

In the face of crises, decisions must be made swiftly. Thus, collecting feedback, analyzing
it, and making recommendations ought to be performed under tight time constraints. For ex-
ample, when deciding on relaxing COVID-19 measures in the Netherlands, researchers had
one month to design the experiment, collect public feedback, and make recommendations to
the government [274]. The time constraint limits the amount of information researchers can
analyze, potentially painting an incomplete picture of the opinions. In the scenario above,
researchers processed data manually and they could only analyze less than 8% of the quali-
tative feedback provided by more than 25,000 participants.

Argument Mining (AM) [224] methods can assist in increasing the efficiency of feedback
analysis by, e.g., locating and interpreting argumentative feedback and classifying statements
as supporting or opposing a decision. However, applying automated AM methods for feed-
back analysis poses three main challenges. First, AM methods generalize poorly across do-
mains [367, 382, 405]. Thus, they require large amounts of domain-specific training data,
which is often not available. The use of pretrained language models, with the pre- or fine-
tuning paradigm, mitigates but does not solve the reliance on large domain-specific training
datasets [112, 315]. Second, although AM methods can identify argumentative content,
they often do not compress the information [68, 93, e.g.]. That is, they struggle to recog-
nize whether two arguments describe the same point of view, leaving the policymakers with
the significant manual labor of aggregating arguments [209, 210]. Finally, naively relying
on a small sample of labeled data might cause minority opinions to be ignored as they are
not well represented [204], creating a bias toward popular (repeated) arguments, which can
perpetuate echo chambers and filter bubbles [307, 342].

The key point analysis (KPA) task [32] seeks to automatically compress argumentative
discourse into unique key points, which can be matched to arguments. However, synthe-
sizing key points is a significant challenge. In the ArgKP dataset, domain experts (skilled
debaters) were asked to generate key points. Subsequently, a model was trained to take over
the task [33]. However, the reliance on a few human expert annotators introduces biases of
the human experts and may not be representative of the opinions of the larger population.
This defeats the purpose of engaging the larger public in a bottom-up deliberative decision-
making process.

We argue for a crowd-sourced human-machine approach for argument extraction, com-
bining the scalability of automated methods and the human understanding of others” per-
spectives. We propose HyEnA (Hybrid Extraction of Arguments), a hybrid (human + AI)
method for extracting a diverse set of key arguments from a textual opinion corpus. HyEnA
breaks down the argument extraction task into argument annotation, consolidation, and se-
lection phases. HyEnA employs human (crowd) annotators and supports them via intelligent
algorithms based on natural language processing (NLP) techniques for analyzing opinions
provided by a large audience, as shown in Figure 4.1.

4.1 Introduction 47

“Young people may come together in small groups”

p\sk(eedbaCk aboyt ol
C]
HyEnA

Manual A Automatic
/ 09\

[3 ~ ~ (Qa-.p \
- 1 m &
-a a — \; -

Citizens Government
Interpretation by
3 Key Point Analysis (KPA)
<
s
©

Collection of I
opinions

Figure 4.1: In a democratic cycle, citizens provide their opinions on options for governmental decision-making and
their opinions need to be interpreted. Insights into the arguments embedded in their comments can be provided
by Key Point Analysis (KPA). To perform KPA, most analysis is performed either manually or automatically. In our
work, we propose HyEnA, a hybrid method.

HyEnA is evaluated on three corpora, each containing more than 10K public opinions
on relaxing COVID-19 restrictions [274]. We compare HyEnA with an automated approach
[33] performing the KPA task. In addition, we compare the key arguments generated by
HyEnA with manually obtained insights identified by experts [274]. We find that HyEnA
outperforms the automated baseline in terms of precision and diversity, specifically when
confronted with a set of varied perspectives. HyEnA also yields better results than manual
analysis, as fewer opinions needed to be analyzed in order to obtain a wider set of key argu-
ments.

Contributions (1) We present a hybrid method for key argument extraction, which gener-
ates a diverse set of key arguments from a collection of opinionated user comments. (2) We
evaluate our method on real-world corpora of public feedback on policy options. Compared
to an automated baseline, HyEnA increases the precision of the key arguments produced
and improves coverage over diverse opinions. Compared to the manual baseline, HyEnA
identifies a large portion of arguments identified by experts as well as new arguments that
experts did not identify. (3) We extensively discuss the implications of incorporating recent
advances in NLP, such as Large Language Models (LLMs), into the workflow of our hybrid
method.

Extension In this Chapter, we provide details on an extended version of the HyEnA method
[398, 403]. The original HyEnA method outputs argument clusters, and leverages manual
annotations from the first two phases to select arguments from argument clusters. The ex-
tension introduces a method for selecting the most representative argument from each clus-

48 4 A Hybrid Intelligence Method for Argument Mining

ter through argument selection. The need to summarize argument clusters is not specific
to HyEnA, as previous AM applications also retrieve clusters instead of singular arguments
[54, 93, 417]. We compare various techniques to accomplish this task, including generative
large language models. Furthermore, we run additional experiments to demonstrate how
the new argument selection step can be incorporated into the HyEnA pipeline, and rerun
the original evaluation to compare between HyEnA with and without the inclusion of ar-
gument selection. Finally, we perform additional analyses to derive further insights from
annotators in HyEnA. We also provide our code, annotation guidelines, and experimental
details in the supplementary materials [404].

Structure Section 4.2 provides background on Argument Mining for public opinions, and
Section 4.3 introduces the HyEnA method for extracting arguments. We outline the experi-
mental setup in Section 4.4 and provide extensive results in Section 4.5. A discussion of our
work is given in Section 4.6 and we conclude with Section 4.7.

4.2 Related work

We describe related work on Argument Mining, methods for summarizing arguments, and
their application to opinion analysis.

4.2.1 Computational Argument Analysis

Argument Mining (AM) methods [62, 224] focus on the recognition, extraction, and com-
putational analysis of arguments presented in natural language. They seek to discover argu-
ments brought forward by speakers and identify connections between them. Typically, AM
techniques concern themselves with finding the structure of arguments [407], with the goal
of finding premises for supporting or refuting conclusions.

AM is a challenging problem. The ability to recognize and extract arguments from text
(for humans and machines, alike) is dependent on the argumentativeness of the underly-
ing data. Often, significant effort is required by human annotators to reach moderate inter-
rater agreement when annotating arguments [381]. Given argumentative texts, modern NLP
models are reasonably good at recognizing argumentative discourse within specific contexts
[110, 285, 315].

Typically, the first step of AM is to identify the elemental components of arguments (e.g.,
claims and premises) in text [296]. The combination of such components forms a structured
argument. However, there is currently no consensus on the exact linguistic notion of such
elemental components, with multiple levels of granularity being proposed [47, 92, 129, 418].
Nonetheless, a few characteristics have been recognized as important for recognizing argu-
ments, namely that arguments (1) contain (informal) logical reasoning [365], (2) address
a why question [50], and (3) have a non-neutral stance towards the issue being discussed
[365].

HyEnA is a novel AM method that combines human annotators and automated NLP
models. By splitting up the argument extraction task into distinct phases, we take advantage
of the diverse human perspectives, while addressing scalability through automation.

4.3 Method 49

4.2.2 Summarization of Arguments
Automated methods have been proposed to derive high-level insights from large-scale argu-
mentative content. For instance, these approaches focus on indexing and searching through
arguments [366, 439], or creating visual overviews of argument structures [63, 197]. While
these may provide access to argumentative content, they are limited in providing a single
high-level overview of the arguments on a topic of discussion. Instead, we turn our focus
to approaches that create a comprehensible text-based summary from a large corpus of in-
dividual comments [33, e.g.]. In this paradigm, comments are filtered by a manually tuned
selection heuristic, resulting in a list of key point candidates. The candidates are matched
against all comments, based on a classifier trained for the argument-key point matching task
[32]. Such approaches have been applied in multiple domains, showcasing their applicabil-
ity across context [34] at varying levels of granularity [66]. While these approaches present
high-level arguments, they struggle to capture diversity in opinions, which is important for
accommodating multiple perspectives [405]. In this work, we evaluate the performance of
these approaches on a novel domain of COVID-19 measures and compare it against HyEnA.
Additionally, there exists an extended body of work on Natural Language Inference (NLI)
and Semantic Textual Similarity (STS). In these works, models are trained to indicate se-
mantic similarity or logical entailment between two sentences [81, 314]. They have made
a significant impact across a range of tasks [442, 453]. However, downstream applications
often need additional fine-tuning [172] in order to perform a task well. They also capture
generic aspects of semantic similarity and entailment, which may not be applicable to argu-
ments [314], or overfit to spurious patterns in the data [262]. Thus, such methods require
significant adaptation to effectively compress information in particular domains. Recently,
Large Language Models (LLMs) have been shown to perform well on inference tasks with
out-of-distribution data [419]. However, we argue that a plurality of (human) perspectives is
necessary to perform sensitive tasks such as the summarization of arguments, which may in
turn be used to inform policy-makers about the sentiment of a population [378]. Yet, LLMs
might be adequate for specific subtasks, as we showcase in the third phase of the HyEnA
method.

4.3 Method

HyEnA is a hybrid method since it combines automated techniques and human judgment
[5, 97]. HyEnA guides human annotators in synthesizing key arguments (i.e., high-level se-
mantically distinct arguments that describe relevant aspects of the topic under discussion)
from an opinion corpus composed of individual opinions (textual comments) on a topic. Key
arguments are high-level and summarize a group of arguments, similar to key points as intro-
duced by [32]. We adopt the term key argument, to emphasize their argumentative nature,
as opposed to more generic extractive summarization [346, e.g.].

HyEnA consists of three phases (Figure 4.2). In the first phase (Key Argument Annota-
tion), an intelligent sampling algorithm guides human annotators individually through an
opinion corpus to extract high-level information from the opinions. In the second and third
phases, HyEnA aims to reduce the subjectivity in the first phase annotations by combining
and rewriting arguments that were individually annotated. In the second phase (Key Argu-
ment Consolidation), an intelligent merging strategy supports a new group of annotators in
merging the results from the first phase into clusters of arguments, combining manual and

50 4 A Hybrid Intelligence Method for Argument Mining

HthA Humans

_—— o —

Individual Individual

Collaborative

Argument
Key Argurr.lent Arouments Key Arg.umt?nt Clusters Key Argument : -—
é Annotation Consolidation Selecti
Opinion (Section 3.2) (Section 3.3) (Section 3.4) Ke

Corpus
(Section 3.1)

Arguments

Intelligent
Merging
(Power)

1

Al

Intelligent
Selection
(LLMs)

Intelligent
Sampling
(FFT)

Figure 4.2: Overview of the HyEnA method.

automatic labeling. In the third phase (Key Argument Selection), HyEnA employs an auto-
mated method to synthesize a single argument that represents the arguments belonging to
the same merged argument cluster. The final output of HyEnA is a list of key arguments
grounded on the opinions in the corpus.

4.3.1 Opinion Corpora
Our opinion corpora are composed of citizens feedback on COVID-19 relaxation measures,
a contemporary topic. The feedback was gathered in April and May 2020 using the Participa-
tory Value Evaluation (PVE) method [274]. In a PVE, participants are offered a set of policy
options and asked to select their preferred portfolio of choices. Then, the participants are
asked to explain why they picked certain options (pro stance) and not pick the other options
(con stance) via textual comments. Pro- and con-opinions together form the opinion corpus.
The data used in our experiments concerns the COVID-19 regulations in the Netherlands
during the height of the pandemic, in May 2020. We chose this scenario because (1) we had
access to a unique dataset of citizen-provided comments on COVID-19 regulations, (2) we
were able to run the study while the topic was still relevant, making it interesting for crowd
workers, (3) a manual analysis had been performed over the exact same data, allowing for
comparison to a human-only baseline, and (4) the data is reflective of real-world conditions,
e.g. feedback was obtained in a matter of days but contains input from a broad group of cit-
izens encompassing broad demographics. We analyze feedback from 26,293 Dutch citizens
on three policy options, treating comments on each option as an opinion corpus. Table 4.1
shows examples of opinions provided for each different policy option. In our experiments,
the HyEnA method is applied to one corpus at a time. Since we use data from a publicly run
citizen feedback experiment, we observe that some options attracted more pro comments
than others. We picked these three options with different pro/con ratios to investigate their
impact on the key argument extraction task. The opinions in these corpora are similar to
noisy user-generated web comments [156], may span multiple sentences, and contain more
than one argument at a time. For each policy option, we use the keyword in uppercase as
the option identifier in the remainder of the chapter.

The original opinions were provided in Dutch. To accommodate a diverse set of anno-

4.3 Method 51

Policy option Example opinion Num. Pro/Con
Opinions Ratio

YOUNG people may come to- Then they can go back to 13400 0.66/0.34

gether in small groups school (Pro)

All restrictions are lifted for Encourages inequality (Con) 10567 0.17/0.83

persons who are IMMUNE

REOPEN hospitality and en- The economic damage is too 12814 0.55/0.45

tertainment industry high (Pro)

Table 4.1: Example opinions in the COVID-19 corpora. The collection of opinions for a policy option forms an
opinion corpus.

tators in our experiments, we translated all comments to English using the Microsoft Azure
Translation service. All experiments are performed with the translated opinions. Mixing
(pretrained) embeddings and machine-translated comments has a minimal impact on down-
stream task performance [94, 111, 349]. Although all experiments are conducted in English,
the link to the original Dutch text is preserved for future applications.

4.3.2 Key Argument Annotation

In the first phase of HyEnA, human annotators extract individual key argument lists by an-
alyzing the opinion corpus. Since a realistic corpus consists of thousands of opinions, it is
unfeasible for an annotator to read all opinions. Thus, HyEnA proposes a fixed number of
opinions to each annotator. HyEnA employs NLP and a sampling technique to select diverse
opinions to present to an annotator.

Intelligent Opinion Sampling Each annotator is presented, one at a time, with a fixed num-
ber of opinions. To sample the next opinion, we embed all opinions and arguments observed
thus far using the S-BERT model (My) [314]. S-BERT converts sentences into fixed-length
embeddings, which can be used to compute semantic similarities between pairs of sentences.
Then, we select a pool of candidate opinions using the Farthest-First Traversal (FFT)
algorithm [37]. FFT selects the candidate pool as the f farthest opinions in the embedding
space from the previously read opinions and annotated arguments (in our experiments, we
empirically select f = 5). Next, we use an argument quality classifier trained on the ArgQ
dataset [144] to select one single clearest opinion related to the policy option. In this way, we
aim to increase both the diversity and quality of the opinions presented to each annotator.

Annotation Upon reading an opinion, the annotator is asked, first, to identify whether the
opinion contains an argument or not. If so, the annotator is asked to check whether the
argument is already included in their current list of key arguments. If it is not, the annotator
should extract the argument into a standalone expression (i.e., into a key argument), and
add it to the list of key arguments. When adding a new argument, the annotator is asked to
indicate the stance of the opinion (i.e., whether it is in support or against the related policy
option). To facilitate this task, HyEnA highlights the most probable stance for the user as a
label suggestion [42, 341].

52 4 A Hybrid Intelligence Method for Argument Mining

Measure Description
s}j = Hi\i\ﬂju Cosine similarity between embeddings i = Ms(a;) and j = Ms(a;)
87 = Inverse of the Euclidean distance d between manual topic assign-

i d(T(a)T(a)))
R ments T of a; and a;

Table 4.2: The similarity scores between key argument pairs used to create the pairwise dependency graph.

Topic Assignment We use a BERTopic [147] model 7 to extract clusters of topics from the
corpus. We train 7 on all opinions in the corpus and select the most frequent topics found
by T, with duplicates and unintelligible topics manually removed by two experts. We ask
a new set of human annotators, different from those in argument extraction, to associate
the topics from the generated shortlist with each argument, resulting in an n-hot vector for
each argument a per annotator. We obtain the final topic assignment 7 by summing over
all annotators. This topic assignment 7' is used in the second phase to compute argument
similarity. Thus, in the first phase, HyEnA yields multiple key argument lists (one per anno-
tator), each containing key arguments and their stances, and an assignment of pre-selected
topics to key arguments.

4.3.3 Key Argument Consolidation

In the first phase, (1) the annotators are exposed to a small subset of the opinions in the
corpus, and (2) the interpretation of arguments is subjective. In the second phase, HyEnA
seeks to consolidate the key argument lists generated in the first phase. Our goal is to increase
the diversity of the resulting arguments and compensate for individual biases.

First, we create the union of all lists of key arguments generated in the first phase of
HyEnA. Then, we ask the annotators to evaluate the similarity of the key argument pairs
in the union list. Based on the similarity labels, we employ a clustering algorithm to group
similar key arguments, producing a consolidated list of key arguments.

Pairwise Annotation To simplify the consolidation task, the annotators are presented with
one pair of key arguments at a time and asked whether the concepts described by the key ar-
guments in the pair are similar. To reduce human effort, we select only the most informative
key argument pairs for manual annotation and automatically annotate the remaining pairs.
To select the most informative pairs, we adopt a Partial-Ordering approach, POWER [67], as
described below.

Let p;; be a pair of key arguments (a;,a;). The similarity between the two key arguments
in the pair is described by two similarity scores, s ; and slzj By using multiple scores, we seek
to make the similarity computation robust. For each p;;, we compute the two similarity
scores described in Table 4.2. We use cosine similarity for s ; since the angular distance de-
scribes the semantic textual similarity between two arguments. In contrast, we use Euclidean
distance for sl-zj since the absolute values of the topic assignment are relevant.

Given the similarity scores, we construct a dependency graph G (as in the top-left part
of Figure 4.3), where each key argument pair is a vertex in G and the edges indicate a Pareto
dependency (>) between two pairs—the direction of the edge points to the argument pair
with greater similarity. A Pareto dependency holds if one of the two scores is strictly greater,

4.3 Method 53

P12 —
P16
P26 — \ \/ P13 P13 P13 P13
l p23 Pis T T T T
Pp(pss) o l’\ v P4 Pia pia Pia
; P34 T T T T
RN
D24 P14 P23 P23 P23 P23
T T T T
\l/ —> (Pur-8- P P34 P34
P12 T T T T
e \ P16 s - s g s
| / P23 3 T 1
& P16 Ple - - >3- - @ @
P25 (P35 N ¢
P13 P34 T T
! /SN P12 P12 @ @
D24 P14

Figure 4.3: Pairwise annotation of the dependency graph, combining human and automatic judgments. Vertices
indicate argument pairs; the edge direction points to the argument pair with greater similarity. The highlighted blue
edges are a disjoint path selected by the POWER algorithm. Iteratively, vertices are annotated as similar (green) or
non-similar (red).

with all others being at least equal between two arguments. We define the dependency as
follows:

Dij - pitj if Vn S;lj > % (41)

Pij = Dijr if Dij = Ditj and dn S?j > sl’-ij/ (4.2)

Next, we follow POWER to extract disjoint paths from G. The highlighted path in the
bottom-left part of Figure 4.3 is an example disjoint path. For every path, we perform a pair-
wise annotation as in the right part of Figure 4.3. We select the vertex at the middle of the
unlabeled portion of the path and ask up to seven humans to indicate whether the concepts
described by the two arguments in the pair are similar on a binary scale. The arguments are
similar when they are essentially bringing up the same point, i.e. provide the same reason-
ing. We select the label with the majority vote. Given the annotation, we can automatically
label (1) all following pairs in the path as similar (yellow) in case the vertex is labeled as sim-
ilar or (2) all preceding pairs in the path as non-similar (red) in case the vertex is labeled
as non-similar. In essence, using the Pareto dependency, we search for threshold similarity
scores for each path, above which all pairs are considered similar, and below which all pairs
are non-similar. Because this is a local threshold, we prevent over-generalization. To anno-
tate the complete graph efficiently, we employ the parallel Multi-Path annotation algorithm
[67].

Clustering Given a similarity label for each key argument pair, our goal is to identify
groups of similar key arguments. However, the similarity among key arguments may not
be transitive—given (a;,a,) as similar and (@, a3) as similar, {a;,as) may be labeled as dis-
similar. This can happen because (1) the interpretation of similarity can be subjective (for

54 4 A Hybrid Intelligence Method for Argument Mining

manually labeled pairs), and (2) the automatic approach is not always accurate (for automat-
ically labeled pairs). Thus, we employ a clustering algorithm for identifying a consolidated
list. First, we construct a similarity graph, where each key argument is a vertex and there is
an edge between two arguments if they are labeled as similar. Then, we employ out-of-the-
box graph clustering algorithms for constructing argument clusters. These clusters form the
key argument lists.

4.3.4 Key Argument Selection

In the third step of HyEnA, we extract a single argument from each cluster, obtaining the final
list of key arguments for the opinion corpus. Formally, for every cluster k € K, we create
an argument gy that is representative of that cluster. Argument selection methods can be
extractive (select an argument from the cluster) or abstractive (generate a new argument that
summarizes the cluster). Since there are many methods available for selecting arguments, we
can experiment with multiple, and pick the best-performing method. In that case, we again
pick an intermediate evaluation metric, which we use to select the best selection method.
While there is no human annotation involved in this step, we still consider this higher-level
algorithmic design a hybrid process, and thus a collaboration between humans and Al For
the task of selecting relevant arguments, we compare the following four types of approaches.

Centroids For every cluster k, we compute a sentence embedding of every argument ay
using Ms. Then, we compute pairwise distances between all arguments inside the same
cluster. We select the argument with the lowest average distance, measured using cosine
similarity, to all other arguments.

Argument Quality We use a model that measures argument quality to select the argument
from each cluster with the highest quality. We use the same argument classifier as in the
Key Argument Annotation phase, trained on the ArgQ dataset [144].

Prompting We prompt an LLM to synthesize a single argument out of the arguments pro-
vided in the argument cluster [58]. We experiment with an open-source and a closed-
source model.

Random As a baseline, we randomly select an argument from the cluster to represent the
entire argument cluster.

4.4 Experimental Setup

We involve 378 Prolific (www. prolific. co) crowd workers as annotators to evaluate HyEnA.
We required the workers to be fluent in English, have an approval rate above 95%, and have
completed at least 100 submissions. Our experiment was approved by an Ethics Committee
and we received informed consent from each subject. We provide supplemental material,
containing instructions provided to the annotators, experiment protocol, experiment data,
analysis code, and additional details on the experiment [404].

Table 4.3 shows an overview of the tasks in the experiment. First, we ask annotators
to perform the HyEnA method to generate key argument lists for three corpora. Then, we
compare the quality of the obtained lists with lists generated for the same corpora via two
baselines. All tasks except topic generation were performed by the crowd workers, with most

www.prolific.co

4.4 Experimental Setup 55

Task Option Num. Items Num. Num.
Annotators Annotators
per item

YOUNG 255 (0) 5

Key argument annotation = IMMUNE 255 (0) 5 1
REOPEN 255 (0) 5

Topic generation all 45 (T) 27 2
YOUNG 91 (A) 10

Topic assignment IMMUNE 66 (A) 5 5
REOPEN 69 (A) 5
YOUNG 1538 (A+A) 99

Key argument consolidation IMMUNE 824 (A+A) 57 3
REOPEN 940 (A+A) 87
YOUNG 248 (0+A) 42

Key argument evaluation =~ IMMUNE 193 (0+A) 29 7
REOPEN 221 (0+A) 29

Table 4.3: Overview of the tasks in the experiment. Items to be annotated can be opinions (0), arguments (A),
topics (T), or combinations. denotes expert annotators.

of the task instances annotated by multiple annotators to investigate the agreement between
annotators.

4.4.1 Phase 1: Key Argument Annotation

In the first phase of HyEnA, each annotator extracts a key arguments list from an opinion
corpus. In each corpus, five annotators annotated 51 opinions each, for a total of 255 opin-
ions per corpus. Of the 51 opinions, the first is selected randomly, and the following 50
are selected by FFT. This number of opinions was empirically selected to make the annota-
tion feasible within a maximum of one hour. We instantiate the S-BERT model M using
the Huggingface Model Hub'. Since our opinion corpus stems from the PVE procedure, we
have explicit labels denoting whether a comment was left in favor (pro) or opposing (con) a
proposed policy, which we leverage for the argument stance label suggestion. For obtaining
argument quality scores, we use the IBM API [35] to avoid having to retrain a new model.

Topics We train a BERTopic model on each opinion corpus, generating 59, 56, and 72 topics
for the YOUNG, IMMUNE, and REOPEN corpora, respectively. Since the number of resulting
topics is too high for the manual assignment of arguments to topics, we curate a short list
of topics per corpus. We select the 15 most frequent topics in a corpus and ask two experts,
the first two authors, to remove duplicates (i.e., topics covering the same semantic aspect)
and rate the clarity (i.e., how well the topic describes a relevant aspect of the discussion in

'https://huggingface.co/sentence-transformers/all-MinilM-L6-v2

https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2

56 4 A Hybrid Intelligence Method for Argument Mining

Method Model Type Open Size
Random - extractive - -
Centroid S-BERT extractive yes 22M
Prompting ChatGPT abstractive no 1758
Llama abstractive yes 7B
Quality ArgQ extractive no 125M

Table 4.4: Argument selection algorithms.

the corpus) of each topic. Unique topics with an average clarity score above 2.5 compose
the shortlist of topics. Then, we ask crowd annotators to assign topics to each key argument
generated in the first phase of HyEnA.

4.4.2 Phase 2: Key Argument Consolidation

In the second phase of HyEnA, we obtain similarity labels y(a;,a;) (1 if similar, 0 if not)
for all key argument pairs (a;,a;)—some pairs are labeled by the annotators and others are
automatically labeled. Given the similarity labels, we construct an argument similarity graph
and cluster the graph to identify a consolidated list of key arguments.

Clustering We experiment with two well-known graph clustering algorithms: (1) Louvain
clustering [52] uses network modularity to identify groups of vertices based on a resolution
parameter r. (2) Self-tuning spectral clustering [446] uses dimensionality reduction in com-
bination with k-means to obtain clusters, where k is the desired number of clusters. We se-
lect the parameters of these algorithms to minimize the error metric E shown in Eq. 4.3.The
metric penalizes clusters having dissimilar argument pairs. That is, for a cluster k € K and
Vaj,a;j € k,if y(aj,a;) = 1, the error for that cluster is 0. If a cluster contains only a single el-
ement, we manually set the error for that cluster to 1, to discourage creating single-member
clusters. We base E on the homogeneity metric [323], although we do not have access to the
ground truth cluster assignments for each argument. Instead, we assume that if all manually
labeled arguments are considered similar, they would have been assigned to a single cluster,
resulting in a homogenous cluster.

]1)(‘11 a/) 0

aj, ujek
=& Z 8 (4.3)

kek

4.4.3 Phase 3: Key Argument Selection

In the third phase, we use a mechanism for selecting single arguments per argument cluster.
We experiment with multiple methods and different models for selecting arguments. An
overview of the methods used is given in Table 4.4. Below, we explain the setup for each
method, and how we select the best-performing method to be used in the final output for
HyEnA.

4.4 Experimental Setup 57

Prompts We construct different prompts for the two models to extract the desired argu-
ment selection output. ChatGPT is an instruction-tuned model and can be prompted to
answer questions or follow instructions [293]. Llama lacks instruction-tuning, and thus
requires prompts designed for next-token generation [387]. For the ChatGPT model, we
instruct it with Prompt 1. For Llama, we use Prompt 2.

Prompt 1: ChatGPT

Consider the context of the COVID-19 pandemic and the following arguments:
- Argument 1

- Argument k

Write a key argument that summarizes the above arguments, and make it short and concise.

Prompt 2: Llama

Consider the context of the COVID-19 pandemic and the following arguments:
- Argument 1

- Argument k

A short and concise key argument that summarizes the above arguments is:

Testing Cluster Coherence First, we investigate the coherence of the clusters generated in
Phase 2 according to each argument selection method, with the intent of measuring how each
(automated) method aligns with the results of the first two phases of the (hybrid) HyEnA
process. In cases of low coherence, semantically different arguments may end up together.
Vice versa, in highly coherent clusters, only arguments that are the same are actually put
together. While the error metric E (Equation 4.3) gives an error rate, it is mostly a compara-
tive method, designed to select the best clustering method. Whether or not the clusters make
sense to a human interpreter remains unclear. As such, we devise a so-called odd-one-out
task, in which we use the Argument Selection methods for selecting arguments from a triple
of arguments. In this triple, two arguments stem from the same cluster, and the third from
a different cluster. The task for each argument selection method is to select which is the
deviating argument. Here, we expect an adequate method to succeed well beyond random
performance. Because Argument Quality is not intended for pairwise comparisons of argu-
ments, we omit it in the odd-one-out task. We evaluate the remaining methods on a sample
of 1K triples uniformly chosen from all possible triple combinations.

Evaluating Argument Selection 'We use different methods and different models for exper-
imenting with the argument selection phase. As before, we employ an error metric to select
the best-performing method, which we then inspect through a human evaluation. We use
BERT score [449], a metric designed for model selection that uses a trained BERT model to
compare the semantic similarity between the selected argument and the original opinions.

58 4 A Hybrid Intelligence Method for Argument Mining

Specifically, BERT score recall correlates well with human consistency judgments, the factual
alignment between selected argument and references (original opinions) [120]. We pick the
best-performing method for argument selection based on this metric. This way, we penalize
any possible effect of hallucinations of LLMs on the HyEnA method. We take the argument
selected by each approach in the Key Argument Selection phase of the HyEnA procedure.
As references, we take all comments that were involved in the creation of the cluster. We
compute BERTScore and compare it across our approaches.

4.4.4 Baselines
We compare the output of HyEnA to the results of an automated and a manual approach to
key argument extraction.

Comparison to Automated Baseline

We use the ArgKP argument matching model [33] to automatically extract key points from
the corpus. ArgKP selects candidate key points from opinions using a manually-tuned heuris-
tic, which filters opinions on their length, form, and predicted argument quality [144]. The
original approach suggests relaxing heuristic parameters such that 20% of the opinions are
selected as candidates. However, this caused overly specific arguments as candidates. In-
stead, we departed from the parameters used for the ArgKP dataset [33], and only relax
them slightly such that ~10% of opinions are selected as key point arguments.

Candidate key points and opinions are assigned a match score using a model trained for
matching arguments based on RoBERTa [248]. Opinions only match the highest-scoring
candidate key points if their match score exceeds a threshold 0, corresponding to the best
match and threshold (BM+TH) approach. After deduplication, this results in a single list of
key arguments per option. We use three metrics, coverage (C), precision (P), and diversity
(D) to compare HyEnA and ArgKP.

Coverage (C) is defined as the fraction of opinions mapped to an argument out of all the
processed opinions [33]. To compute C, first, we extract the set of key arguments Ay from
HyEnA based on opinions 0% (C 0) observed by the annotators. Further, if an argument
is extracted from an observed opinion o; € 02}”, we add o; to the set of annotated opinions
O#". Similarly, we extract the set of key arguments A4 from ArgKP based on its observed
set of opinions 09 (= 0), producing a set of annotated opinions O¢"". Then, the coverage
with respect to all observed opinions is:

|0F"|
= {50 (4.4)
04"
Cy = 4.5
A 09 (4.5)

Comparing the coverage scores as defined above naively may not be fair since the set
of observed opinions (i.e., the denominators of Equations 4.4 and 4.5) are not the same for
HyEnA and ArgKP. Thus, we also compute coverage with respect to a set of common opin-
ions, 0% N O, observed by both methods, as:

4.4 Experimental Setup 59

g N og|

CC()mn’l()n — 4.6
T oo o
b,
Cgommoﬂ _ |02nn ﬂ OOH S| (4‘7)

- |O;Ih\ N OZIJS‘

We add the same term to both denominator and numerator in Equations 4.6 and 4.7 so that
the coverage stays in the range [0, 1]. Note that C§""" = Cy since O3, 04" C 0% (= 0).

Precision (P) is the fraction of mapped opinions for which the mapping is correct [33].
Thus, we must map a set of opinions to arguments in order to compute precision. For this
mapping, we select the common opinions, 0§/ N 0", that are annotated in both HyEnA
and ArgKP. Then for each 0; € O} N O™, we create two pairs (0;, Ax (0;)) and (0;, A4 (0i)),
where Ap (0;) and A4 (0;) are the arguments associated with o; by HyEnA and ArgKP, re-
spectively. Then, we ask annotators to label z(0;,a;) = 1 for all matching pairs and z(0;,a;) =
0 for all non-matching pairs, and keep the majority consensus from multiple annotators.
Given the opinion-argument mapping, we compute precision as:

2(0i, A (07))
peommon _ 0, €08 NOG™ b i B
H - ‘Oannmounn| (‘)
H A
2(0i, A (0))
peommon. _ 01‘60?_,”” QOZ’”’ ! i .
o o (49)

Diversity (D) is defined as the ratio of key arguments and the number of comments seen
by the method. We use diversity to signify how well our method is able to preserve the per-
spectives present in the opinions seen by the method. In order to compare across methods,
we take (1) only correct mappings (z(0;,a;) = 1) using the labels from P and (2) take the
opinions seen by both A and H. We define diversity as follows:

An
Dy=—21 4.10
" oo 10
Dy = Aa (4.11)

o o

Comparison to Manual Baseline

A manual analysis involving six experts examined a portion of the feedback stemming from
the PVE procedure. This analysis included a sample of participants (2,237 out of 26,293)
for whom key arguments were identified [274]. Each expert generated a list of arguments
for and against each of the relaxation measures based on the opinion text. A single partic-
ipant could leave multiple opinions, and the analysis does not report the exact number of
opinions analyzed. Since we have access to 36,781 opinions for the three options (Table 4.1),
we estimate the number of opinions the six experts would have analyzed to be 3,129 across
the three options (following each participant entering 1.4 opinions), and at least 2,237 (at

60 4 A Hybrid Intelligence Method for Argument Mining

least one opinion per participant). In contrast, HyEnA annotators analyze 765 intelligently
selected opinions across the three options.

HyEnA reduces the number of opinions analyzed. Further, we investigate the extent to
which the key argument lists generated by HyEnA and the manual baseline have compara-
ble insights. To do so, we report the number of HyEnA key arguments that are overlapping,
missing, and new compared to the expert-identified key arguments. We cannot compute pre-
cision and coverage for the manual baseline because it does not include a mapping between
key arguments and opinions.

4.5 Results

First, we analyze the inter-rater reliability of annotations. Then, we analyze the intermediate
results of the three phases of HyEnA. Finally, we compare our hybrid approach with the
automated and manual baselines.

4.5.1 Annotator Agreement

Table 4.5 shows the inter-rater reliability (IRR) for four steps with overlapping human anno-
tations. We didn’t obtain IRR ratings for the argument extraction task in Phase 1 since the
annotation is designed to be disjoint, and raters had little to no overlap in their extractions.
In the Topic Generation phase (Section 4.1), we use the intraclass correlation coefficient
ICC(3,k) [353] since it involves ordinal ratings. In the other three tasks, multiple binary la-
bels are obtained for the same subjects. In these tasks, we use prevalence- and bias-adjusted
k (PABAK) [357], which adjusts Fleiss’ k for prevalence and bias resulting from small or
skewed distribution of ratings.

In Topic Generation, the main source of the disagreement stems from a single option:
REOPEN. Here, the annotators rated two topics almost inverted (rating 4 versus rating 2) out
of a 1-5 Likert scale, resulting in an ICC score of 0.46. The two topics contained the words
“mental health income decrease,” and “measures rules these should”. For the other two options,
YOUNG and IMMUNE, a higher score of 0.71 and 0.80 were obtained respectively.

We obtained the lowest reliability scores for the last two annotation tasks, Key Argument
Consolidation and Key Argument Evaluation. The obtained scores may be due to the diffi-
culty of the task—for instance, lay annotators are asked to characterize the similarity between
two arguments, and they may not stick to the provided definition of argument similarity.
However, task difficulty may not be the only factor at play here. Argument comparisons
are made with limited context, and the personal perspective or background of the annotator

Task ICC3k PABAK
Topic Generation 0.66 (0.14) -
Topic Assignment - 0.81 (0.10)
Key Argument Consolidation - 0.34 (0.03)
Key Argument Evaluation - 0.36 (0.04)

Table 4.5: IRR scores per task in HyEnA. We show the average (and standard deviation) over the three option
corpora.

4.5 Results 61

[Disagree []Agree

Arguments Opinions
250 T 1,250 :
S 200 1= 1000} |
£ 50
2150 18 50|]
2 100| 1 £ s00f i
=}
& 50 % % % 1R 250 :
< © 0
0 i L .
G ﬁ G %
‘;ooﬁ wﬂ\o\{ Q,O «{O\YS N\N‘\}ﬁ gO

Figure 4.4: Disagreement analysis for the Key Argument Evaluation phase. On the left, argument lengths are the
same whether annotators agree or disagree. However, on the right, annotators disagree on match labels in long
opinions.

may influence their judgment. Thus, the low IRR scores may indicate a combination of task
difficulty and the relatively subjective nature of the task [21]. Similar reasoning holds for the
task of evaluating the match between the extracted argument and the original opinions.

Focusing on the evaluation phase, we compare argument-opinion pairs where large dis-
agreement was observed (DISAGREE) to pairs with low disagreement (AGREE) in Figure 4.4.
Specifically, we compared the lengths of the arguments and opinions. We find that the
lengths of the arguments—opinion pairs with large inter-rater disagreement did not differ
from those with low disagreement. However, we found considerably longer opinions on
average when annotators disagreed. Possibly, long opinions contain multiple arguments,
which in turn may cause the annotator to fail to identify the provided argument.

Prolific annotators were generally young (M=29.2, SD=7.8) and typically active users
with a median of over 300 tasks completed (M=404, SD=418). A little over half