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Summary

Problem In a representative democracy, citizens elect representatives to act in their inter-
est for shaping public policy. Modern democracies face a critical issue of declining citizen
participation, leading to a disconnect between citizens and their elected officials. Deliber-
ative democracy, which emphasizes open dialogue and encourages wider participation, is
one way to address this issue. However, traditional in-person deliberation methods face
challenges, such as including participants with a diverse set of perspectives and backgrounds,
and ensuring all voices in a discussion are considered equally. Online social media platforms
offer an alternative venue for large-scale deliberation, allowing for discussions with a wider
audience and rapid access to information. However, concerns exist about whether these plat-
forms can foster truly inclusive and diverse discussions. For instance, locating contributions
of relevant perspectives can be difficult due to the large amounts of scattered content. Fur-
ther, interactions on platforms lead to echo chambers that drive polarization, threatening
the egalitarian basis of the discussions. Artificial Intelligence (AI), and Natural Language
Processing (NLP) in particular, for facilitating text-based online discussions have become
attractive as a solution. However, its impact on the diversity of perspectives in online delib-
eration is unexplored.

Methods This dissertation (1) identifies the challenges involved in facilitating large-scale
online discussions with NLP, (2) suggests solutions to these challenges by incorporating hy-
brid human–AI technologies, and (3) investigates what these technologies can reveal about
individual perspectives in online discussions. We propose a three-layered hierarchy for rep-
resenting perspectives that can be obtained by a mixture of human intelligence and Large
Language Models (LLMs). This combination is known as Hybrid Intelligence (HI). We il-
lustrate how these representations can draw insights into the diversity of perspectives and
allow us to investigate interactions in online discussions.

• In Part I of this dissertation, we show that existing opinion analysis methods, particularly
those involving LLMs, are limited in understanding the perspectives expressed by minori-
ties. Nonetheless, the models’ capabilities of processing text-based data at scale make
them attractive in analyzing online discussions. Despite the complexity of understanding
free-form opinionated texts, we can effectively use models in low-resource settings. In
particular, LLMs can address abstract tasks fluently and interpolate missing information.
However, the sensitivity of, e.g., zero-shot prompting procedures for LLMs underscores
how they still need human oversight to perform well across contexts. Further, LLMs be-
have differently from humans, failing to align with human disagreement and making er-
rors different from us, thus necessitating careful supervision.

• In Part II, we harness the potential of HI systems for opinion analysis. By strategically
incorporating human input with LLMs and fostering a back-and-forth process between
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humans and AI, HI systems can be designed to capture diverse opinions precisely and
efficiently. HI requires careful task allocation and balancing. Our methods use human
annotators to provide a nuanced understanding of e.g. arguments while using NLP tech-
niques for sampling interesting opinions from a large dataset. Through repeated interac-
tion, both sides continuously adjust and learn from each other. Our hybrid setup paves the
way for a future where humans and NLP technology can join forces to cultivate a deeper
understanding of the multifaceted nature of online discussions.

• In Part III, we show that HI systems can extract an individual’s Perspective Hierarchy based
on the tasks used in Part I. To extract the perspective hierarchy, we leverage the comple-
mentary abilities of humans and NLP models. We show how arguments, next to stances
and personal values, are a core component of the hierarchy by experimenting with extract-
ing a direct relation between values and stance.

Findings We find that there are fundamental issues to fostering diversity when analyzing
online discussions on social media platforms. These issues include: (1) ensuring that minor-
ity andmarginalized voices are participating on the platforms, (2) an emphasis on frequently
repeated opinions that fail to bridge political divides, and (3) an aggravation of this problem
by the straightforward application of LLMs for opinion analysis. HI can help alleviate these
problems. In our approach to HI, we encourage more explicit communication between hu-
mans through repeated interaction with LLMs. All of this feeds improvements on two ends:
humans benefit from explicit communication and closely considering each other’s point of
view, while the rationales provided by them are useful resources for AI to learn from.

In this dissertation, we provide one of the first demonstrations of how HI can be used
to integrate humans and AI, mixing human collaborative capacity with LLMs. Nonetheless,
showing that HI leads to improved and diverse discussions remains difficult. Existing evalua-
tion paradigms are insufficient formeasuring howHI leads to improvements over AI-only or
manual approaches, indicating the need for more dynamic and context-sensitive evaluation
approaches.
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Samenvatting

Probleem In een representatieve democratie kiezen burgers vertegenwoordigers die in hun
belang handelen bij het vormgeven van overheidsbeleid. Moderne democratieën kampen
met een kritiek probleem van afnemende burgerparticipatie, wat leidt tot een kloof tussen
burgers en hun gekozen vertegenwoordigers. Een mogelijke aanpak voor dit probleem is
via een deliberatieve democratie, waarin open dialogen en wijdere participatie wordt aange-
moedigd. Traditionele fysieke deliberatiemethoden kennen echter aanzienlijke uitdagingen,
zoals het betrekken van deelnemers met verschillende perspectieven en achtergronden, en
het waarborgen van gelijkwaardige inspraak in de discussies. Als alternatief bieden online
social-mediaplatformen een mogelijkheid voor grootschalige deliberatie, omdat het discus-
sies met een groter publiek en met snelle toegang tot informatie mogelijk maakt. Er bestaan
echter zorgen over de vraag of deze platformen inclusieve en diverse discussies kunnen be-
vorderen. Het kan bijvoorbeeld moeilijk zijn om bijdragen van relevante perspectieven te
vinden vanwege de grote hoeveelheden versnipperde informatie. Bovendien kunnen inter-
acties op platformen tot echokamers leiden die polarisatie opdrijven, wat vervolgens de egali-
taire basis van de discussies bedreigt. Het gebruik van Kunstmatige Intelligentie (KI), enmet
name Natural Language Processing (NLP), voor het faciliteren van online tekstgebaseerde
discussies is aantrekkelijk geworden als oplossing hiervoor. De impact van deze technologie
op de diversiteit van perspectieven bij online deliberaties is tot dusver nog niet onderzocht.

Methoden Dit proefschrift (1) identificeert de uitdagingen die komen kijken bij het facili-
teren van online discussies op grote schaal met behulp van NLP, (2) suggereert oplossingen
voor deze uitdagingendoor het bewerkstelligen vanhybridemens–KI-technologie, en (3) on-
derzoekt wat deze technologieën kunnen ophelderen over individuele perspectieven in on-
line discussies. Om perspectieven te representeren stellen wij een drielaagse hiërarchie voor
die kan worden verkregen door een combinatie van menselijke intelligentie en Large Lan-
guage Models (LLM’s). Deze combinatie noemen wordt ook wel Hybride Intelligentie (HI)
genoemd. We illustreren hoe deze representaties ons inzicht kunnen bieden in de diversiteit
van perspectieven, en hoe ze ons toestaan interacties in online discussies te karakteriseren.

• In Deel I van dit proefschrift laten we zien hoe bestaande methoden voor het analyseren
van meningen, specifiek wanneer ze gebruikmaken van LLM’s, beperkt zijn in het begrij-
pen van de perspectieven die geuit worden door minderheden. Desalniettemin maakt de
kracht van deze modellen om tekstgebaseerde data op grote schaal te verwerken ze aan-
trekkelijk voor het analyseren van online discussies. We dezemodellen effectief toepassen
wanneer we weinig brondata tot onze beschikking hebben ondanks de complexiteit van
het interpreteren van ongestructureerde meningen. LLM’s zijn, in het bijzonder, in staat
om abstracte taken effectief te voltooien en missende informatie zelfstandig aan te vullen.
Hun gevoeligheid benadrukt daarentegen wel dat LLM’s menselijk toezicht nodig hebben
omgoed te presteren in verschillende contexten. LLM’s gedragen zich anders danmensen:
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ze kunnen menselijke meningsverschillen vaak niet begrijpen, en maken andere soorten
fouten dan mensen. Dit maakt dat ze zorgvuldige menselijke begeleiding nodig hebben.

• In Deel II gebruiken we de potentie van HI-systemen voor het analyseren van meningen.
Door middel van het strategisch combineren van menselijke input met dat van LLM’s,
en door het bevorderen van een heen-en-weer proces tussen mensen en KI, kunnen HI-
systemen ontworpen worden die diverse meningen op een precieze en efficiënte manier
kunnen vatten. HI vereist een zorgvuldige taakverdeling. Onzemethodenmaken gebruik
van menselijke annoteerders die een genuanceerd begrip van bijvoorbeeld argumenten
kunnen leveren. Tegelijkertijd kunnen we NLP-technieken gebruiken voor het selecteren
van interessante meningen uit een grote dataset. Beide kanten kunnen door herhaalde
interactie continu aanpassen en van elkaar leren. Onze hybride opzet baant de weg voor
een toekomst waarin mensen en NLP-technologie de handen ineenslaan om een dieper
begrip over de veelzijdige aard van online discussies te cultiveren.

• In Deel III laten we zien dat HI-systemen de Perspectief Hiërarchie van een individu kun-
nen extraheren, gebaseerd op de taken uit Deel I. Voor het extraheren van deze hiërar-
chieën gebruiken we de complementaire kracht van mensen en NLP-modellen. We tonen
aan dat hoe de houding, argumenten, en persoonlijke waarden van een individu kerncom-
ponenten zijn van de hiërarchie door een directe relatie tussen waarden en houdingen te
onderzoeken.

Bevindingen We constateren dat er fundamentele problemen zijn voor het bevorderen van
diversiteit in de analyse van social media platformen. Deze problemen omvatten (1) het
waarborgen dat gemarginaliseerde standpunten deel nemen op de platformen, (2) een na-
druk op vaak herhaalde meningen die de politieke kloof verergeren, en (3) een verergering
van dit probleem door de gemakkelijke toepassing van LLM’s voor het analyseren van me-
ningen. HI kan helpen om deze problemen te verlichten. In onze aanpak voor HI moedigen
wij explicietere communicatie tussen mensen aan door middel van herhaaldele interactie
met LLM’s. Dit alles voedt verbeteringen aan twee kanten: mensen profiteren van expliciete
communicatie en kunnen elkaars uitgangspunten nauwgezet overwegen terwijl hun redene-
ringen gebruikt kunnen worden om betere KI-modellen te trainen.

Dit proefschrift biedt een van de eerste demonstraties van de integratie van mensen en
KI door het samenwerkingsvermogen van mensen te combineren met LLM’s. Toch blijft
het aantonen dat HI leidt tot een verbeterde en diversere discussie moeilijk. Bestaande eva-
luatieparadigma’s voor dergelijke systemen zijn ontoereikend om te meten hoe HI leidt tot
verbeteringen ten opzichte van alleen KI of handmatige aanpakken, wat de noodzaak voor
meer dynamische en context-specifieke evaluaties onderstreept.
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The essence of democracy is that citizens have a say in how they are governed. From
the public fora of the Ancient Greeks to the European Parliament, reasoning and arguing
form the core of discussions where diverse perspectives are debated. However, modern gov-
ernments struggle with declining citizen engagement [362] and diminished trust in political
institutions [128]. At the same time, our society faces a multitude of complex, interwoven
issues—climate change [181], misinformation [431], vaccination hesitancy [258], and many
others [280]—that require democratic resolution. These societal issues share characteris-
tics: problems are multifaceted and interdependent, they have no clear definite solution,
decisions need to be made under strict time constraints, and solutions require fleshing out
deeply-rooted ethical disagreements. These characteristics are typical for wicked problems
[320]: issues that seemingly have no solutions due to the diverse needs of those involved.

Addressing wicked problems in society requires reshaping citizen participation [325].
Deliberative democracy underpins a wave of democratic transformation, advocating for de-
cisions to be made through fair and reasonable discussion [289]. Central to deliberative
democracy is the process of deliberation, where citizens, not just experts or politicians, are
deeply involved in shaping solutions to societal issues [106]. Deliberation is based on egal-
itarian and rational debate, with expert information freely accessible [155]. Solutions stem-
ming from deliberation benefit from the wisdom of the crowd effect: the collective judgment
of a diverse crowd of humans is more accurate than any individual member in that group.
Humans are good collaborative problem solvers [219], and collective decision-making builds
sustainable solutions [163]. However, deliberations need careful facilitation to sustain the
conditions for productive discussions and safeguard democratic ideals.

The diversity of perspectives is a driving factor in determining the quality of outcomes
in a deliberation [36, 53, 87]. When citizens express their desires and provide insights from
different backgrounds, diversity leads to effective decisions [227]. Diverse perspectives can
spark creative solutions by challenging assumptions and encouraging innovative thinking.
This is echoed in cases of democratic transformation where encouragement of diverse per-
spectives is hailed as a means of stabilizing democracy [114].

Facilitating diversity requires actively steering the deliberation process. First, participa-
tion from a broad group of representatives requires more organizational overhead to ensure
an inclusive recruitment procedure. Second, deliberating the complex needs of individuals
requires active perspective-taking from those involved in the discussion, imparting a signif-
icant cognitive and emotional load [133, 213, 391]. Third, the deliberation process requires
moderators that play a crucial role in setting ground rules for respectful communication,
encouraging participation from all members, managing conflicts constructively, and sum-
marizing discussions to highlight different viewpoints [91, 136].

Existing deliberative practices have inherent limitations, such as a reliance on physical
gatherings and the frequent use of small, supposedly representative, citizen groups [26].
Even small-scale deliberations see issues surrounding organization, effective participation,
and collective decision-making [123]. For instance, gathering people to come together phys-
ically at a specific time is resource-intensive [115]. Further, there is a maximum number of
people that can be feasibly included, limiting the diversity of that group.

Alternatively, contemporary social media platforms enable large-scale communication
and may facilitate large-scale online deliberations [132], fostering citizen engagement [159,
348]. These platforms can serve as a channel for the rational exchange of ideas and opin-



1

3

ions, provide access to a broad range of information sources, and host facilitated discussion
through moderator involvement [118]. Large technical leaps, like recommender systems
[14] and automatic translation [444], can provide opportunities for all citizens to contribute
to the public debate. Lowering the barrier to accessing societal discussions allows global
issues like climate change to be addressed not by a limited group of representatives, but
through engagement across all layers of society. However, whether such platforms serve as
an inclusive public space or not remains debated [297]. Online discussion is fundamentally
different from the conversations in offline deliberation [25]. Online discussions offer wider
andmore free participation but are less regulated and harder tomoderate than offline ones. It
is therefore important to highlight the prerequisites for achieving the wisdom-of-the-crowd
effect in online discussions: the egalitarian participation of a diverse crowd of citizens.

Transitioning to online deliberation adds a new dimension to the challenge of facilitat-
ing diversity: that of scale. Considering the massive user bases online platforms can sup-
port, manual moderation becomes infeasible. Online opinions spread and evolve differently
from guided offline deliberations [441, 447]. In offline deliberation, diverse participation is
attained by representative sampling according to demographics. However, ubiquitous par-
ticipation from online users leads to open questions on how to foster the development of
diverse perspectives when such a strategy is infeasible. Since poorly designed online discus-
sions can lead to polarized outcomes [437], this challenge needs to be considered carefully.

To effectively facilitate online discussions at scale, it is essential to have tools that can an-
alyze these discussions. In this dissertation, we consider these interactions to be text-based
exchanges of opinions. On social media platforms, humans engage with one another by
communicating their viewpoints through written text. We turn to Natural Language Pro-
cessing (NLP) and create new methods for harvesting insights from opinions. While investi-
gating humanbehavior has long been the domain of social sciences, combining social science
methodologies with NLP models has barely passed its infancy [454]. This emerging interdis-
ciplinary approach offers new avenues for understanding large-scale human interactions. To
uphold democratic ideals, it is essential to develop responsible tools [455], which requires
a thorough understanding of the shortcomings of existing NLP techniques. We create an
overview of these limitations and propose a strategy to overcome them in the form of Hy-
brid Intelligence (HI). HI refers to integrating human and machine intelligence, enhancing
human capabilities instead of replacing them [5]. We dive into how we can create HI that
combines citizens and NLP methods to facilitate diversity in online societal discussions.

Improving citizen engagement through deliberation requires effective collaboration be-
tween citizens and stakeholders, such as politicians or industry parties. The institutional
uptake and implementation of deliberation efforts have thus far remained unfocused and
scattered [140, 360]. One reason for the hesitant uptake of online deliberation is that legiti-
mate deliberative processes need to account for non-included individuals to be considered
representative [298]. Enhancing citizen participation by designing and implementing tech-
nical solutions for addressing societal issues at scale can help in achieving legitimacy [148].
This dissertation contributes to this goal by proposing to engage with a diverse public di-
rectly through NLP-supported facilitation. Focusing on finding wide-ranging perspectives
in society-wide conversations leads to inclusive and informed decision-making. An inte-
grated view of the humans involved in online discussions should limit adverse effects such
as echo chambers [77], polarization [392], and other negative external and internal effects
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[251, 263, 370]. In the long run, the positive effects of promoting diversity in online discus-
sions can lead to the empowerment of citizens.

Structure The rest of this chapter is structured as follows: We provide an overview of the
problem of facilitating online discussions with NLP based on the ideals of deliberation and
introduce our Research Questions (RQs) in Section 1.1. We continue with a description
of the relevance of each RQ in Section 1.2. We define the scope of this dissertation in Sec-
tion 1.3, and finally provide an outlook on the findings of our work in Section 1.4.

1.1 Research Questions
Online discussions generate vast amounts of content, which is challenging to manage and
navigate [88] because content is scattered across time and threads, and contains frequently
repeating or unconnected arguments. This makes it difficult for users to know where to add
new contributions, resulting in low-quality content [204]. These issues can be addressed by
employing moderators, e.g., to structure the content of a discussion or to steer user interac-
tions [390]. However, given the amount of data, manual moderation is not feasible.

Instead, we turn to NLP for interpreting text-based opinions at scale [374], powered by
the recent surge of Large Language Models (LLMs) [20, 266]. LLMs have shown a remark-
able ability to code novel texts with limited adaptation requirements [385]. Central to our
approach to facilitation is extracting structured perspectives from users in a discussion. Per-
spectives provide high-level insights into the arguments employed by citizens [414] or the
motivations underlying the opinions in a community [429]. These representations influence
the facilitation strategies [121] and shape policies following the discussion [274].

Using NLP for analyzing perspectives sourced from online discussions is challenging.
For instance, social media platforms have been centered onmanaging large volumes of infor-
mation, e.g., through personalized recommendations [3] or argument structuring [178] but
have neglected inclusive design aspects [352]. This can cause majority opinions to be heard
while suppressing dissent voices [282], or lead to filter bubbles [392]. Similarly, we see that
LLMs capturemajority opinions well, but do not distill all voices equally [e.g., 278, 405]. Fur-
ther, LLMs lack deep social reasoning [232], may be biased [162, 333], and make mistakes in
ways humans cannot anticipate [175]. LLMs can be readily applied in new contexts, but they
remain fickle and inconsistent depending on the exact prompts used [254]. Straightforward
automated discussion analysis runs the danger of ignoring diverse opinions, which under-
mines the wisdom-of-the-crowd effect [250]. To find out the nature of these challenges and
whether they can be resolved, we ask our first research question:

Q1 What are the fundamental issues in using NLP to analyze perspectives?

Next, our goal is to obtain structured perspectives from online societal discussions that
provide insights into the opinions involved. In particular, we aim to improve the degree to
which diverse perspectives can be obtained. This requires us to combat the limitations of
NLP by adopting a “hybrid” mindset, i.e., incorporating humans-in-the-loop to address di-
versity directly. We leverage LLMs and humans jointly, with their complementary capacities
for interpreting opinions from text. This leads to our second research question:
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Q2 How to combine human intelligence and NLP to effectively capture diverse perspectives?

Finally, in practice, analyzing opinions is modeled by different task formulations, all
aimed at extracting various types of information based on language input. We propose a
perspective hierarchy that incorporates stance, arguments, and personal values to represent
perspectives at different levels of abstraction. We base our model on the complementary
skills of humans and NLP methods, in which we mix higher-order abstractions with surface-
level extraction tasks. Each task has been investigated separately, but little is known about
their interaction in online discussions. We, therefore, ask our third research question:

Q3 How to construct a perspective hierarchy based on diverse opinions in a discussion?

1.2 Research Methodology
We introduce the methods for answering the research questions step by step.

1.2.1 Fundamental Issues (Q1)
There is an increasing interest [e.g., 84, 183, 440] in usingNLP to facilitate online societal dis-
cussions. Existing work is focused on (1) using NLP tools, in particular few-shot prompted
LLMs, to analyze the discussions [e.g., 377, 440], and (2) using discussion data to bench-
mark the capabilities of NLP tools [e.g., 124]. In the next two sections, we provide related
work to the research methodologies adopted in this dissertation, highlighting fundamental
techniques and applications.

Discussion Analysis
Using NLP to analyze large amounts of text in online interaction is studied under the broad
umbrella of opinion mining [244]. Discussions happen in various contexts, such as climate
change [249], pandemics [160], and others [49] . The scale of these discussions, combined
with their pertinence, makes analyzing them interesting. Analyzing what humans express
through text is the core task in many NLP areas, e.g., Opinion Summarization [244], Argu-
ment Mining [224], Sentiment Analysis [424], and Value Classification [237]. These tasks
lie at the heart of creating insights into online (political) discourse. They can be used e.g.,
for estimating the quality of discussions [368], extracting the arguments involved [220], or
reasoning over inconsistencies between choices and their justifications [243]. In the age of
LLMs, these tasks have seen considerable performance improvements [186], although new
challenges such as dealingwith shortcut learning [138] ormitigating social biases [232] arise.

Extracting diverse views from online discussions is challenging for three reasons. First,
data from social media platforms inherits biases present on these platforms, including fake
news, trolling, and polarization [77]. This impacts how opinions are shaped [167] and the
distribution of opinions [441]. Second, when analyzing the opinions about societal issues,
not all citizens have equal access due to the digital divide [86] or differences in tech-literacy
[206]. This makes the users in online discussions biased and less diverse. Third, since users
are free to join in discussions of their choosing, there are undesired echo chambers or self-
selection effects among the messages seen by users [363].
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Despite these challenges, we can use NLP to investigate questions about human behavior
at scale [225]. Analyses about behavior may lead to insights at both individual and group
levels. This can be useful for improving democratic processes [80], but also applies in other
areas, such as faithfully interpreting product feedback [34], service improvement [358], or
course management for education purposes [233].

Approach
We can employ discussion analysis to benchmark how well NLP approaches understand
opinionated text. In benchmarking, we test the analysis procedure, and models used, for
possible mistakes and biases. Representing subjectivity is difficult since LLMs do not faith-
fully capture the full range of opinions [108, 166, 405]. Whether LLMs can learn to repre-
sent them in the future remains unclear [337, 427], but research suggests that they cannot
[20, 124]. Therefore, we work with the assumption that this is a fundamental limitation of
LLMs, and we have to find other approaches for improving diversity.¹

Creating diversity-enhancing techniques is gaining traction in NLP, but there are several
aspects of diversity. For instance, creating more diverse news recommender systems is a
common goal [216, 438] for shaping an individual’s perspective [29]. Others strive to make
LLMs better represent a diverse group of annotators based on their labeling behavior and
demographics [28, 217]. In such approaches, models rely on annotated data. Labels are
obtained from a few human annotators per instance and are often aggregated by majority
voting, painting an incomplete picture of the true range of interpretations of opinionated
text [302]. The role of subjectivity in these tasks remains unclear [21, 61]. This holds for
traditional supervised learning, but also for the latest trends in instruction-tuning [393, 422].

Contributions
In Part I of this dissertation, we dive into the application of LLMs to analyze the opinions in
online discussions. Our work centers on argumentation: the rationales behind human opin-
ions. In Chapter 2, we begin by examining the diversity of the opinions in LLM-generated
summaries of argumentative content. We find that automated methods for summarizing
arguments struggle to represent arguments shared by few people, and such error cases usu-
ally go unnoticed using standard NLP evaluation practices. By examining how LLMs fare
on complex argument quality assessment tasks under strong data constraints in Chapter 3,
we aim to further investigate how we can best deal with low-resource settings. Here, we ob-
serve that zero-shot models can drive the state-of-the-art, but come with significant cost and
data requirements to work well out of context. Overall, significant challenges remain when
applying LLMs to tasks of analyzing opinionated data at scale.

1.2.2 Hybrid Intelligence (Q2)
In Part II, we argue that the aforementioned challenges can be overcome by using LLMs
to assist humans in mining opinionated text, rather than replacing humans. This notion
of Hybrid Intelligence [5, 97, 98] is central to our approach to uncovering diverse perspec-
tives in online discussions. In Hybrid Intelligent Systems (HISs), Artificial Intelligence (AI)
agents are collaborators that enhance human abilities such as reasoning, decision-making,

¹Although linguistic diversity generally refers to the diversity of language proficiencies [103, 190], we are specif-
ically interested in diversity in arguments, communication styles, and values in online discussions.
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Figure 1.1: Feedback loops in Hybrid Intelligence.

and problem-solving [383]. Hybrid intelligence aims to augment intellect, creating a synergy
between humans and NLP. For supporting online discussions, we combine the strengths of
human intelligence with AI, highlighting bidirectional gains, as shown in Figure 1.1.

The application of AI to understanding human written language has had a profound im-
pact on how researchers analyze human behavior at scale. To do so responsibly, we must en-
sure that our methods uphold democratic values, especially considering the pressing need
to represent diverse perspectives. Previous work on hybrid approaches for NLP includes
user adaptation [256], human-in-the-loop computing [423], human-AI interaction [164]
and others [e.g., 82, 102]. Recent interest in explainable AI has focused on human under-
standing of NLP models [230]. Specifically for NLP, much focus is on approaches that mix
crowd, expert, and automated decision-making, which have been applied to analyzing dis-
cussion content [208, 295]. However, these approaches have a one-way interaction between
the NLP model and humans, as we will describe in the next section.

Approach
We observe that LLMs have many challenges to overcome in representing diverse perspec-
tives (Section 1.2.1). Discussions are deeply human, who can adapt to incomplete and infor-
mal argumentation, behave flexibly, and provide empathic responses to foster collaboration.
Thus, humans and NLP can benefit from each other. In the next paragraphs, we examine
each benefit in either direction (humans aiding NLP or NLP aiding humans) separately, and
lastly illustrate how both can be incorporated into an overall hybrid method.

Humans aiding NLP Humans provide the data that the NLP tools perform their analysis
on, as gathered from interactions between different stakeholders, including casual and
advanced users, moderators, or even site admins [336]. They provide text and behav-
ioral data, such as likes or post-votes, which we, in turn, can use to analyze their attitude.
Furthermore, NLP approaches learn from labeled data, obtained from annotators who ob-
serve a given text and draw labels from a predefined set of classes. Humans can be flexibly
employed in such procedures, dealing with expanding label sets [396], free-form text re-
sponse [294], asking a crowd of annotators rather than individuals [286], and more [e.g.,
302, 334]. Humans contribute their opinions, either through text or by labeling, based on
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lived experiences or professional expertise, and are capable of empathizing with others.
While crowd annotators are usually uninformed lay users, they are assumed to adapt to
tasks quickly given a set of instructions and examples. Since annotators adapt differently,
addressing the problem of diverse opinion understanding requires selecting an appropri-
ate set of annotators, to capture the human label variation [302].

NLP aiding humans NLP aids humans in online discussions in multiple ways. While we
have mostly discussed the analysis of large-scale discussion data, there is a broader po-
tential impact of NLP technologies in online deliberations [384]. First, NLP may enable,
rather than restrict, access to certain services, for example by summarizing large amounts
of content through summarization or using automatic translation to account for different
language proficiencies. Second, since humans suffer from cognitive biases, NLP models
may offer an alternative interpretation of the content. Machines do not get bored and treat
each sample with equal consideration. Third, NLP models mirror biases captured in the
data, which allows for obtaining synthetic opinion data or exposing biases in discussions.
Lastly, since their scale, speed, and accessibility to researchers are advancing quickly, we
can experiment with them rapidly.

Combination Existingworkmostly offers one-directional benefits, eithermachine- or human-
oriented. By constructing hybrid approaches, we aim to improve both humans and AI
through an iterative process. We see that NLP methods are biased, leading to questions
about the soundness of the analysis. Humans can repair biases and provide deeper inter-
pretations, contexts, and explanations. Furthermore, we see that there are many opportu-
nities for NLP to aid humans. Completing the loop allows bootstrapping: traversing the
two feedback loops shown in Figure 1.1, iteratively refining the analysis procedure while
performing discussion analyses. In this procedure, a human interprets opinions shown
from the output from a model and possibly corrects it in a human-in-the-loop fashion
[273]. However, to guide the human through a large amount of data, the NLP models will
steer it through what content to observe. Through this collaborative approach, we hope
to synthesize bidirectional gains. Bidirectional gains in hybrid intelligence refer to the
mutual increase in capabilities achieved when human and artificial intelligence work to-
gether. We emphasize the synergistic nature of human-AI collaboration, where each side
strengthens the other, leading to more powerful, efficient, and reliable intelligence than
either could achieve alone. Hybrid approaches combine the strengths of humans and ma-
chines, offering immediate and long-term benefits. By keeping humans in the loop, their
task proficiency improves, and additional data is generated to develop the hybrid collab-
oration. Further, advancements in NLP models can be integrated into the framework.
However, doing so effectively requires broad contextual understanding.

Developing hybrid approaches necessitates a new evaluation paradigm. We must assess
the effectiveness of ourmethod by comparing it against both human-only andmachine-only
baselines. In the field of NLP, test sets are typically compiled manually and with hidden
data issues [99, 154, 329], which might introduce an unfair advantage to the upper bound
of performance [56, 200]. Initial work shows that there are considerable performance gaps
between hybrid and manual approaches [127, 443].
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Contributions
We present our approach to incorporating humans and NLP methods for analyzing opin-
ionated text data. First, we introduce a method for mining diverse arguments from citizen
feedback in Chapter 4. Our method, HyEnA, finds more diverse arguments and improves
the precision of the argument analysis by efficiently querying human annotators across three
distinct phases. In Chapter 5, we further investigate how differences between annotators in
subjective tasks, such as interpreting texts for extraction of arguments or personal values, can
be modeled more efficiently. Our approach steers models to learn diverse label distributions
by picking from a large pool of annotators. Central to our work, we create discussion analy-
sis approaches that (1) select samples for human inspection that are interesting to annotate,
(2) account for diversity (e.g., leveraging contextualized embeddings [314]), and (3) seek la-
bels from multiple annotators. The hybrid nature of our methodology leads to bidirectional
gains, serving the NLP system as well as the humans involved. For instance, we create ap-
proaches to capture more diverse interpretations of the arguments in discussions using a
crowd of annotators. After the annotation, our method outputs a summary of the high-level
argument involved, while annotators were able to develop their understanding of controver-
sial discussions. We achieve a cost-effective crowd annotation, while actively engaging with
the annotators, and developing their perspective. Moreover, we can also actively diversify
which annotator we query an annotation from. We observe that an active selection of diverse
annotators can inform a model more quickly of the label distribution underlying subjective
tasks in cases where the annotator pool is large.

1.2.3 Perspective Hierarchy (Q3)
Given that NLP can process large amounts of discussion data, but is limited in its capabilities
(Section 1.2.1) and that we may construct hybrid procedures to account for these limits (Sec-
tion 1.2.2), we address the challenge on how to capture perspectives. Uncovering perspec-
tives from online societal discussions requires a representation for identifying how people
feel about potential decisions, how the considerations are communicated in the discussions,
and the motivations underlying preferences held by individuals. There is a large amount
of literature concerned with addressing these questions through separate NLP tasks. We at-
tempt to integrate these tasks and find out how they model various aspects of perspectives.
We propose a hierarchy to structure our approach to facilitating online discussions at scale.

Few attempts to comprehensively represent perspectives exist [71, 412]. These works
focus on annotating utterances for low-level claim information [272], or investigating the
reasoning behind the views held in discussions [104]. Stances and arguments are inherently
linked in argumentation models [386, 408], and form the basis of frameworks for represent-
ing perspectives [72, 432]. Existing work on mapping deliberative discussions has focused
extensively on capturing this reasoning and using it for facilitation [158, 205].

However, stances and arguments do not represent opinions at a deeper personal level.
A fundamental concept for explaining the motivations underlying opinions is personal val-
ues [344]. There are various theories of personal values [e.g., 143, 321, 344]. Preferences
among values describe the attitude of individuals and groups [304], and can be extracted
from behavioral cues to investigate political affiliation [326], perform moral reasoning [271]
or positively influence lifestyle [95]. Values are abstract and need to be interpreted inside
their context, making it difficult for both humans and NLP methods to measure them reli-
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Figure 1.2: The perspective hierarchy. The higher the level of abstraction, the more human intelligence is required
for interpreting the component.

ably [241]. One way to contextualize them is to connect values to argumentation, focusing
on how choices are justified [201]. Using this insight, we incorporate personal values into
our perspective representation and aim to obtain them using a hybrid approach.

Approach
We propose a perspective hierarchy to represent a person’s perspective at different levels of
abstraction, shown in Figure 1.2. Our perspective hierarchy is composed of stances, argu-
ments, and values. We adopt the following definitions:

Stance Whether, or how much, support or opposition is expressed to a claim. Stance detec-
tion has been studied extensively and remains a popular NLP task [214].

Arguments The reasons given for adopting a stance towards a claim. In real-world contexts,
argumentation manifests in many forms and is predominantly informal [146]. Mining
arguments from text works well within known contexts [112], but suffers from implicit
reasoning [157]. Hence, we requiremore human guidance to correct for possiblemistakes
in automated methods.

Values The motivations underlying opinions and actions [344]. Values are communicated
implicitly through actions or written motivations. Estimating values automatically re-
mains difficult even within their context [202]. Only through iterative hybrid procedures
can we accurately reason about preferences among human values.

We combine the three components into a layered hierarchy, to indicate a tradeoffwith respect
to (1) the capabilities of NLP models to capture information from text, and (2) the level of
abstraction that the component captures. Higher-order abstraction requires “filling in”more
implicit knowledge. For instance, for stance detection, one or a couple of sentences can
be enough to determine the stance of an individual concerning a topic [31]. However, for
estimating value preferences, we need continued interaction over time to infer how values
are prioritized within their context [240].

We illustrate how we used data from large online social media platforms to investigate
perspective hierarchies for individuals [400]. Our main objective is to investigate whether
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we can connect stances and values directly, omitting arguments to challenge their inclusion
in the hierarchy.

Given a societal discussion on an online platform [305], we first identify relevant contro-
versial topics and apply our automated methods for obtaining stances and value preferences.
Because of the aforementioned limitations, we utilize the human-in-the-loop approach to
uncover possible mistakes from the extraction pipeline. In particular, we compare human-
provided self-reported value preferences to those estimated from behavioral data. Using
this data, we can (1) compare how well the automated approaches work versus manual ones,
(2) mix information from self-reported and behavior-based value preferences, and (3) inves-
tigate the relationship between components of the perspective hierarchy.

Contributions
In Part III, we make use of our hybrid setup to investigate the perspectives of participants
in online discussions at scale. In Chapter 6, we investigate connections between value con-
flicts and disagreements in online discussions on societally relevant topics. Our experiments
show that only when values are diverse, automatically-identified conflicts in values can cor-
relate to stance disagreement. No strong evidence points towards a consistent and context-
independent link between disagreement and value conflicts. However, when we incorpo-
rate human-provided self-reports, the evidence becomes stronger, showing that the hybrid
approach is crucial to performing a meaningful analysis. When strong value diversity is ab-
sent, we cannot correlate disagreement and value conflict directly at all. A lack of a direct link
means we require a more complete picture, and thus we incorporate arguments to complete
the perspective hierarchy.

1.3 Dissertation Scope
The topic of this dissertation lies in the intersection of computer science, natural language
processing, social science, and political theory. It is, therefore, inherently interdisciplinary
and therefore can be approached from multiple angles. We provide a scope of the research
involved before we dive into the description of how we address each research question.

In our work, we consider online discussions as text-based user interactions that happen
on contemporary online platforms such as Twitter/X² or Reddit. Furthermore, we include
data from specific questionnaires that gather citizen responses on proposed policy. We focus
on topics that are societally relevant, such as climate change, due to the difficulty of addressing
them. Lastly, we concern ourselves with deliberation among a group of people, as opposed
to individual deliberation for self-reflection purposes.

Core to our work is diversity of perspectives. Depending on the context, the definition
of diversity encompasses differences in various attributes, including social categories (e.g.,
gender, age, race) and informational or functional attributes (e.g., functional background,
educational background) [30, 168, 409]. Research on group deliberation and diversity has
primarily focused on a limited set of dimensions within these categories, or on the interplay
between these two dimensions. In this work, we adopt diversity of perspectives as the full
range of beliefs, opinions, stances, and values held by a given group of people. For any two
people, these components might be in conflict at arbitrary levels, requiring extensive deliber-
ation to uncover common ground. Our definition is similar to those adopted in other work

²Starting from July 2023, Twitter was renamed to “X.”
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Figure 1.3: The deliberation cycle, annotated with the three parts addressed in this dissertation.

in group deliberation, often referred to as cognitive diversity [194], or viewpoint diversity
[105]. It is distinct from demographic diversity [221] since we target the opinions and not
the opinion holders, or linguistic diversity [190], which focuses on language proficiency.

This dissertation is focused on developing hybrid approaches to analyzing discussions
from a technological perspective, with hybrid indicating human–AI cooperation [5, 97, 312].
We make modifications to computational artifacts (such as NLP models and datasets) and
design processes for discussion analysis. Other strategies for improving discussion analy-
sis, such as teaching humans analytical skills or implementing interventions for behavioral
change, are left as future work but are compatible with our setup.

Lastly, our work is concerned with creating AI methods that focus on understanding hu-
man opinions based on digital text. Neural approaches from Natural Language Processing,
in particular Transformer-based models, are the workhorse in the experiments performed
in this dissertation. Other behavioral information, such as direct polling, referenda, post-
voting, and others may provide different and possibly conflicting information for interpret-
ing an individual’s perspective. Consolidating such information with text-based opinions is
nontrivial and requires careful prioritization of signals [354].

1.4 Outlook
Our goal is to augment the diversity of the opinions present in online societal discussions.
These discussions are rooted in deliberative ideals, aiming to foster inclusive, informed, and
respectful exchanges that lead to collective decision-making and problem-solving. We en-
hance the discussion analysis process by considering discussion analysis a hybrid undertak-
ing, bringing HI to aid the deliberative cycle as shown in Figure 1.3. We separate our work
into three parts as follows. First, we identify the strengths and weaknesses of using NLP to
analyze discussions with diverse perspectives in Part I. Second, we see how HI can improve
the capture of diverse perspectives in societal discussions in Part II. Our work proposes hy-
brid methods to sustain a high degree of diversity in discussions with a large crowd. Third,
in Part III, we propose a perspective hierarchy to guide the investigation of human opinions
in online societal discussions at scale.

The outlook of using HI, where we augment human intellect with AI, particularly sup-
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ports deliberative discussions and decision-making processes. Our approach can democra-
tize access to information and enhance the quality of public discourse by providing struc-
tured data analysis, fact-checking, and summarization pipelines, enabling more informed
and evidence-based conversations. HI also facilitates inclusivity by assisting individuals with
different abilities and backgrounds, ensuring a broader range of voices are heard. It aids
in navigating complex societal challenges, such as climate change or public health crises,
by integrating diverse data sources and perspectives. However, it is crucial to ensure that
these technologies are developed and deployed ethically, mitigating biases and maintaining
transparency to foster trust and acceptance in society. Ultimately, HI has the potential to
empower communities, strengthen democratic processes, and drive more effective problem-
solving for societal issues.
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Introducing Part I: NLP for Online Discussion Analysis
In Part I of this dissertation, we dive into the application of LLMs to analyze the perspec-
tives in online societal discussions. Our work centers on argumentation: the rationales be-
hind human opinions. In Chapter 2, we begin by examining the diversity of the opinions in
LLM-generated summaries of argumentative content. We find that automated methods for
summarizing arguments struggle to represent arguments shared by few people, and such er-
ror cases usually go unnoticed using standard NLP evaluation practices. By examining how
LLMs fare on complex argument quality assessment tasks under strong data constraints in
Chapter 3, we aim to further investigate how we can best deal with low-resource settings.
Zero-shot prompting of LLMs can drive the state-of-the-art under realistic data constraints
but still incur significant costs and highlight how diverse data improves their effectiveness
in generalization to novel contexts. Overall, numerous challenges emerge when applying
LLMs to tasks of analyzing opinionated data at scale. Later, in Part II, we will argue that
the aforementioned challenges can be overcome by using LLMs to assist humans in mining
opinionated text data, rather than replacing them.

Part I focuses on the following research question:

Q1 What are the fundamental issues in using NLP to analyze perspectives?
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2
An Empirical Analysis of Diversity

in Argument Summarization

Presenting high-level arguments is a crucial task for fostering participation in online societal
discussions. Current argument summarization approaches miss an important facet of this
task—capturing diversity—which is important for accommodating multiple perspectives. We
introduce three aspects of diversity: those of opinions, annotators, and sources. We evaluate
approaches to a popular argument summarization task called Key Point Analysis, which shows
how these approaches are ill-equipped for (1) dealing with data from various sources, (2) repre-
senting arguments shared by few people, and (3) aligning with subjectivity in human-provided
annotations. We find that both general-purpose LLMs and dedicated Key Point Analysis mod-
els vary along these three criteria, but have complementary strengths. Further, we observe that
diversification of training data may ameliorate generalization. Addressing diversity in argu-
ment summarization requires a mix of strategies to deal with subjectivity.

 Michiel van der Meer, Piek Vossen, Catholijn M. Jonker, and Pradeep K. Murukannaiah. 2024. An Em-
pirical Analysis of Diversity in Argument Summarization. In Proceedings of the 18th Conference of the European
Chapter of the Association for Computational Linguistics, pages 2028–2045, St. Julian’s, Malta. Association for
Computational Linguistics.
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2.1 Introduction
Getting an overview of the arguments concerning controversial issues is often difficult for
those participating in ongoing discussions. In these discussions, many points are being com-
municated, there is no way to track which arguments were already encountered, and partic-
ipants engage in haphazard miscommunication or conflicts. Automatic summarization is a
way to provide a comprehensible overview of the opinions [15, 281]. However, generating
summaries representative of the arguments involved in a discussion is difficult [32]. Argu-
ment summarization extends beyond text summarization because it separates argumenta-
tive and non-argumentative content, preserves the argumentative structure, and provides
explicit stances on a central claim or hypothesis.

Summarizing arguments is challenging in many contexts, but the potential impact is
high. For instance, after summarizing the arguments from societal discussions, the extracted
arguments may shape new policies and may be used to justify decision-making [17, 153].
Similarly, businesses depend on review data to find customer feedback, which can steer prod-
uct design [18].

Although arguments are often summarized by hand in practice [e.g., 264, 274, 279], re-
cent developments in Argument Mining (AM) allow automatic analysis of argumentative
text [224]. Obtaining summaries that faithfully represent open-ended opinions requires care-
ful evaluation, especially in sensitive contexts, e.g., summarizing citizen feedback [109, 267].

One approach for generating comprehensive summaries of arguments is Key Point Anal-
ysis [KPA, 32]. In KPA, a corpus of opinions is analyzed for the key points, those arguments
that are salient and repeated multiple times. However, some aspects of the KPA experimen-
tal designmisalign with respect to real-world applications. We illustrate these blind spots, in
particular, when applied to summarizing online societal discussions. We highlight three di-
mensions of diversity that are central to empowering citizens’ opinions at scale [352]: (1) in-
corporating the long tail of opinions, (2) including diverse perspectives from annotators, and
(3) being robust in handling data from multiple sources.

How current KPA approaches deal with the above dimensions of diversity is unexplored.
We incorporate the standardized benchmark and two other datasets to experiment with dif-
ferent approaches. We develop specific analyses to uncover how KPA approaches fare on
each dimension of diversity. In addition to the existing approaches, we use LLMs by prompt-
ing them to perform KPA, as they may be an attractive alternative to current models.

Applying KPA approaches across several datasets that vary in how they address diversity
leads to mixed results. KPA approaches generalize poorly across data sources when used in
transfer learning settings, though approaches reveal complementarymerits across tasks. Fur-
ther, their performance degrades when dealing with low-frequency opinions, i.e., opinions
repeated by relatively few individuals. Finally, we observe that KPA approaches disregard
subjective interpretations among individual annotators.

Contributions (1) We critically examine three dimensions of diversity—of opinions, an-
notators, and sources—in the KPA setup. (2) We analyze the behavior of existing metrics
on one existing and two novel datasets. (3) We analyze multiple methods, including promp-
t-based LLMs, broadening the scope of methods that can perform KPA.
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2.2 Related Work
2.2.1 Key Point Analysis
KPA serves to separate argumentative from non-argumentative content, and condense ar-
gumentative content by matching arguments to key points [32]. Key points can be seen as
high-level arguments that capture the gist of a set of arguments. While most work on KPA
selects high-quality arguments as representatives, generating novel key points has been pro-
posed as an alternative [376]. KPA has been applied across topics using data from discussion
portals or online reviews [33, 34]. KPA is usually divided into Key Point Generation and Key
Point Matching steps (see Section 2.3.1).

Multiple approaches exist for KPA [131]. Modeling choices consist of popular Trans-
former models such as BERT [301], enhanced representational quality using contrastive
learning [10], and the incorporation of clustering techniques [231]. Our work aims to in-
vestigate some of the modeling choices employed in these works. For instance, in Li et al.
[231], the authors discarded unmapped arguments, which may hurt the ability the represent
minority opinions.

2.2.2 Opinion Summarization
Opinion summarization aims to generate summaries of an individual’s subjective opinions
[48, 180], often applied to product reviews [75]. Leveraging Transformer models is popular
for opinion summarization [13, 16], though generic extractive summarization techniques
are strong baselines [373]. Measuring bias in generated summaries has seen recent interest,
specifically acknowledging that diverse opinions should be taken into account [176, 355] or
postulating that diversity is a desirable trait when generating opinions [12, 420]. Our work
applies these techniques to argumentation to obtain a high-level summary of opinions, and
analyses differences in behavior for (in-)frequent viewpoints.

2.2.3 Diversity in Societal Decision Making
Sensitive decision-making contexts call for responses rooted in reason that serve social good
rather than specific interests. One way of obtaining such responses is through evidence-
based policymaking, which involves stakeholders and the broader public to strike decisions
[64]. Citizen participation improves the support of the decisions when some requirements
are met [260]. A key factor among those requirements is the involvement of a diverse group
of citizens, independently voicing opinions [375]. Approaches to summarizing arguments
in such citizen feedback face similar requirements.

In Argument Mining, we find recent work that aligns with these views, e.g., by a strong
focus on the diverging perspectives among annotators in AM tasks [322]. Further, some
preliminary work adjusts visualization forminority opinions [38]. However, in terms of data
sources, most work is still centered on English-speaking content, with few multi-lingual or
multi-cultural resources available [414].

2.3 Method
We formulate theKPA subtasks—KeyPointGeneration (KPG) andKeyPointMatching (KPM).
We then introduce the three dimensions of diversity and consider themwhen applying KPA.
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Dataset Data Source Filter
low freq.

Key Point
source

Non-aggregated
annotation IRR

ArgKP Human annotation 3 Expert 7 0.50-0.82 (κ)
PVE Citizen consultation 7 Crowd 3 0.35 (κ†)
Perspectrum Debate platforms 7 Crowd 7 0.61 (κ)

Table 2.1: Datasets and their diversity characteristics when considering the KPA task. The inter-rater reliability
(IRR) is measured via Cohen’s κ scores or prevalence and bias-adjusted Cohen’s κ† [PABAK, 357].

2.3.1 Task setup
We outline the two subtasks that constitute KPA, as originally introduced by [131].

Key Point Generation (KPG) focuses on generating key points K given a corpus of argu-
ments D on a particular claim. Key points are high-level arguments that capture the gist
of a collection of arguments. Key points oppose or support the claim.

Key Point Matching (KPM) matches arguments to key points. An argument matches a key
point if the key point directly summarizes the argument, or if the key point represents the
essence of the argument. We ensure that the stance of the key point (pro or con) matches
the stance of the argument. Formally, given a set of key pointsK and a corpusD, we score
the match between an argument d ∈ D and a key point k ∈ K with a matching model
M(d,k). Assigning arguments to key points using match scores is flexible, and multiple
strategies can be taken to reach a final decision (e.g. imposing a match score threshold)
[33]. Since the assignment strategy is largely context-dependent, we evaluate the scoring
mechanism itself, instead.

2.3.2 Modeling Diversity in Key Point Analysis
We focus on three main aspects of diversity.

Long tail opinions Several NLP models imitate biases that exist in datasets [51]. For argu-
ment summarization, focusing on majority arguments is one such form of bias, as it leads
to possible misrepresentations. Failing to capture low-frequency arguments runs the dan-
ger of further estranging underrepresented viewpoints [204]. These methods need active
correction from humans to account for this “long tail of opinions” [397]. For the KPA task,
approaches have largely unknown behavior on capturing the long tail of opinions [278]. Ad-
ditionally, LLMs struggle with learning long-tail knowledge [193], aggravating this issue.
We experiment with subsampling the datasets to investigate the imbalanced data settings,
which are representative of real-world use cases.

Annotators Datasets are labeled using a mix of crowd and expert annotators. Querying
experts for key points may leave the impacted users (e.g., lay citizens) out of consideration
[60]. Similarly, labels stemming from crowd annotation that are filtered for high agreement
may disregard controversial or diverse opinions. Disagreement is a complex signal that in-
cludes subjective views, task understanding, and annotator behavior [21]. Having access to
non-aggregated annotations would, e.g., allow for further modeling of patterns [89] or the
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reasons [241] underlying opinions. We investigate whether models trained on such annota-
tions can identify disagreement.

Data sources Existing works investigate cross-domain generalization of KPA methods us-
ing data stemming from a single dataset, focusing on a cross-topic setting [33, 231, 330]. This
dataset is gathered at a specific time. As discussions evolve, more nuanced positions may be-
come relevant, and new real-world events impact the opinions. Further, these discussions
usually take place on a single platform (e.g., Reddit threads, Twitter discussions), inheriting
biases from the source [170]. Measuring the performance of KPA approaches should rely on
diverse datasets, based on data gathered from different sources at different points in time.
There have been some efforts in applyingKPA across different contexts [34, 66, 145], but they
apply approaches to a single dataset at a time, making direct comparison difficult. Our work
examines the cross-dataset performance of these approaches to assess their relative strengths
and weaknesses.

Table 2.1 shows the current datasets, and how they relate to the dimensions discussed
above. In all three datasets, the arguments stem from user-submitted content. In one dataset
(ArgKP), low-frequency arguments (i.e., opinions repeated by few individuals) are disre-
garded. Further, the ArgKP benchmark relies on expert-generated key points and does
not include annotator-specific match labels. Perspectrum contains aggregated counts of
match labels, but due to aggregation, we cannot identify annotator-specific patterns. Lastly,
the inter-rater reliability differs for each dataset, with wide ranges, showing that the tasks
are fundamentally subjective. We employ these three datasets for evaluating various KPA
approaches and dive deeper into the three aspects of diversity.

2.4 Experimental Setup
We describe the data, KPA methods, and metrics involved in our experiments. The source
code will be publicly available upon publication.

2.4.1 Data
Most work on KPA has used ArgKP, the dataset introduced by Friedman-Melamed et al.
[131] in a shared task. We add two new datasets that match the KPA subtasks but have
different characteristics.

ArgKP We adopt the shared task dataset, keeping the same split across claims as the original
data. The ArgKP dataset contains claims taken from an online debate platform, together
with crowd-generated arguments and expert-generated key points [32]. The arguments
were produced by asking humans to argue for and against a claim, followed by filtering
on high-quality and clear-polarity arguments. Key points were generated by an expert
debater, who generated the key points without having access to the arguments. The final
test set was collected after the initial dataset and has been curated to match some of the
distributional properties of the training and validation sets.

PVE We use the crowd-annotated data stemming from a human-AI hybrid key argument
analysis [397] based on a Participatory Value Evaluation (PVE), a type of citizen consul-
tation. In this consultation process, citizens were asked to motivate their choices for new
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Dataset Train Val Test
ArgKP 24 (21K) 4 (3K) 3 (3K)
PVE – – 3 (200)
Perspectrum 525 (6K) 136 (2K) 218 (2K)

Table 2.2: Number of claims (and arguments) when splitting the dataset into training, validation, and test sets.

COVID-19 policy through text, which formed a set of comments for each proposed pol-
icy option. The performed key argument analysis resulted in crowd-generated key points,
matching individual comments to key points per option. Since this is a small dataset, we
only use it for evaluation.

Perspectrum Similar to ArgKP, Perspectrum contains content from online debate plat-
forms. It extracts claims, key points, and arguments from the platform directly [71].
Part of the dataset is further enhanced by crowdsourcing paraphrased arguments and key
points. The Perspectrum dataset is ordered into claims, which are argued for or against
by perspectives, with evidence statements backing up each perspective. We use perspec-
tives as key points, and evidence as arguments. We retain the same split over claims as the
original data. The authors provide aggregated annotations on the match between argu-
ments and key points. While this allows us to compute the agreement scores per sample,
we cannot distill individual annotator patterns.

2.4.2 Approaches
We investigate different approaches with respect to their performance on the aspects of di-
versity. Appendix A.1 includes a detailed overview of the setup, parameters, and prompts.
Similar to summarization techniques, most KPG methods are either extractive, taking sam-
ples as representative key points, or abstractive, formulating new key points as free-form text
generation [113].

ChatGPT We use the OpenAI Python API [290] to run the KPA task by prompting Chat-
GPT. We differentiate between open-book and closed-book prompts. For the open-book
prompts, we input the claim and a random sequence of arguments up to the maximum
window (given a response size of 512 tokens) in the KPG task. For the closed-bookmodel,
we only input the claim, and the model synthesizes key points. In both approaches, KPG
is abstractive. In KPM, ChatGPT predicts matches for a batch of arguments at a time, all
related to the same claim.

Debater We use the Project Debater API [179], which supports multiple argument-related
tasks, including KPA [35]. This approach uses a model trained on ArgKP and performs
extractive KPG. We query the API for KPG and KPM separately.

SMatchToPR We adopt the approach from the winner of the shared task, which uses a state-
of-the-art Transformer model and contrastive learning [10]. During training, the model
learns to embed matching arguments closer than non-matching arguments. These rep-
resentations are used to construct a graph with embeddings of individual argument sen-
tences as nodes, and the matching scores between them as edge weights. Nodes with the
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maximum PageRank score are selected as key points. In our experiments, the model is
trained using the training set of ArgKP and Perspectrum. Thismethod performs extrac-
tive KPG. We experiment with RoBERTa-base and RoBERTa-large to estimate the effect
of model size [248].

2.4.3 Evaluation Metrics
Weevaluatemodels forKPGandKPMseparately. ForKPG,we adopt the set-level evaluation
approach from Li et al. [231]. For KPM, we reuse the match labels provided by each dataset.

Key Point Generation (KPG)
KPG can be considered as a language generation problem [135] for evaluation. We rely
on a mixture of reference-based and learned metrics, measuring both lexical overlap and
semantic similarity. We use the following metrics:

ROUGE-(1/2/L) to measure overlap of unigrams, bigrams, and longest common subse-
quence, respectively. We average scores for all stance and claim combinations. Additional
details on the ROUGE configuration are in Appendix A.1.3.

BLEURT [347] to measure the semantic similarity between a candidate and reference key
point, which correlates with human preference scores. BLEURT introduces a regression
layer over contextualized representations, trained on a set of human-generated labels.

BARTScore [445] to evaluate the summarization capabilities directly by examining key
point generation. In contrast to BLEURT, BARTScore evaluates the likelihood of the gen-
erated sequence when conditioning on a source.

For each metric S that scores the overlap between two key points, we aggregate scores
into Precision P and Recall R scores using Equations 2.1 and 2.2. For P, we take the maxi-
mum score between a generated key point a and the reference key points B, averaging over
all n = |A| generated key points. We perform the analogous for R. We report F1 scores to
balance precision and recall.

P =
1
n ∑

a∈A
max
b∈B
S(a,b) (2.1)

R =
1
m ∑

b∈B
max
a∈A
S(a,b) (2.2)

Key Point Matching (KPM)
We perform the KPM evaluation by obtaining match scores for key point-argument pairs.
That is, for a key point k and an argument d, we check if a newmodel used in theKPAmethod
would assign d to k. We reuse existing labels and do not use the results from KPG. Since we
do not consider unlabeled examples between arguments and key points, we do not need to
distinguish for undecided labels (as in Friedman-Melamed et al. [131]).

We evaluate each approach using mean average precision (mAP), taking the mean over
average precision scores computed for claimsC. Given a claim, we compute precision Pτ and
recall Rτ for all match score thresholds τ , as in Equation 2.3. In case an approach outputs a
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binary match label instead of scores, we remap the scores to 0 and 1 for non-matching and
matching pairs, respectively.

mAP = ∑
C

∑τ(Rτ −Rτ−1)Pτ
|C|

(2.3)

2.5 Results and Discussion
First, we report on the KPG and KPM evaluation. Then, we analyze how the aspects of di-
versity impact performance beyond a cross-dataset evaluation. We show results when condi-
tioning on the long tail of opinions, look into the connection between annotator agreement
and match score, and how performance changes for diverse data sources.

2.5.1 KPG Performance
Table 2.3 shows the results of KPG evaluation. Overall, no single approach performs best
across all datasets. All models perform best on ArgKP except for closed-book ChatGPT,
which performs the best on the PVE dataset. Thus, by adopting diverse datasets, we demon-
strate that experimenting with a single dataset may inflate KPG performance.

ChatGPT consistently scores well on ROUGE and semantic similarity. This indicates
that the abstractive generation of key points is beneficial. For PVE, we observe a strong
tendency for open-book ChatGPT to adjust the generated key points to the linguistic style
of the arguments. This clashes with the reference key points, which are paraphrased to make
sense without the context of the original arguments. Hence, the closed-book model, which
does not observe the source arguments, performs better, adopting more neutral language.

SMatchToPR performs best for Perspectrum. Although general-purpose LLMs are
strong in zero-shot settings, a dedicated model for representing arguments achieves state-
of-the-art results. The Debater approach is ranked lowest across all datasets, showing that
training on a single dataset generalizes poorly to other datasets.

ROUGE and semantic similarity scores mostly agree, except for BLEURT on ArgKP.
Here, we see that SMatchToPR slightly outperforms ChatGPT. We attribute this to the op-
timized representational qualities of SMatchToPR: it selects key points with high semantic
similarity to many arguments, which is similar to how BLEURT provides scores based on
contextualized representations.

Increasing model size (of SMatchToPR) improves performance for Perspectrum, but
not for ArgKP and PVE. Because PVE is small, the pool of sentences to pick key point can-
didates from is limited, and possible improvements of the model are negligible when extract-
ing the key points. For ArgKP, the ROUGE scores deteriorate, while the semantic similarity
scores improve slightly. Intuitively, this matches expectations: the model can navigate the
embedding space better, selecting key points that may be phrased differently but contain
semantically similar content.

2.5.2 KPM Performance
Table 2.4 shows the results of KPM evaluation. ChatGPT, despite its strong performance
on KPG, does not accurately match arguments to key points. Interestingly, the Debater out-
performs the SMatchToPR model on the ArgKP dataset, but SMatchToPR is stronger on
the PVE and Perspectrum datasets. SMatchToPR’s strong performance on Perspectrum
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Dataset Approach R-1 R-2 R-L BLEURT BART

ArgKP

ChatGPT 34.3 12.5 30.3 0.556 0.540
ChatGPT (closed book) 29.5 7.1 25.6 0.314 0.256
Debater 25.6 5.5 22.5 0.334 0.307
SMatchToPR (base) 31.7 11.1 29.7 0.553 0.494
SMatchToPR (large) 30.5 8.3 26.8 0.563 0.497

PVE

ChatGPT 18.5 3.9 15.3 0.329 0.369
ChatGPT (closed book) 27.1 8.6 21.4 0.376 0.378
Debater 13.3 0.0 13.3 0.294 0.188
SMatchToPR (base) 21.3 3.7 16.6 0.351 0.344
SMatchToPR (large) 21.3 3.7 16.6 0.351 0.344

Perspectrum

ChatGPT 21.3 5.7 18.2 0.355 0.322
ChatGPT (closed book) 17.1 3.8 15.0 0.291 0.258
Debater 9.4 0.4 8.5 0.197 0.210
SMatchToPR (base) 22.5 6.5 19.3 0.257 0.232
SMatchToPR (large) 22.7 6.7 19.4 0.403 0.363

Table 2.3: ROUGE scores and semantic similarity scores for the Key Point Generation task.

mAP
Name ArgKP PVE Perspectrum

ChatGPT 0.17 0.27 0.46∗
Debater 0.82 0.51 0.51
SMatchToPR (base) 0.76 0.53 0.80
SMatchToPR (large) 0.80 0.61 0.82

Table 2.4: Results for the Key Point Matching task. Closed-book ChatGPT scores are not available, since its KPA is
made without observing arguments. The scores for ChatGPT on Perspectrum (∗) were estimated on a subset of
the test set to cut down costs.

and ArgKP is expected–they were included in its training. However, its good performance
on PVE is interesting and it suggests that generalization is aided by more diverse data in
training.

2.5.3 Analysis
Long tail diversity Most key points and claims are heavily skewed in the number of data
points, except for PVE. Even for ArgKP, where key points with few matching arguments
were removed, there is a strong imbalance across claims and key points in terms of associated
arguments (see Figure 2.1).

Following this imbalance, we sort key points by the number of associated arguments such
that the least frequent key points are considered first. Then, we introduce a cutoff parameter
f to include arguments from a fraction of key points, starting with the least frequent. Using
this parameter we perform matching only on low-frequency key point–arguments matches.
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Figure 2.1: Number of arguments matched per claim (upper row) and key point (bottom row), sorted by frequency.
The red dashed line shows the average number of arguments.
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Figure 2.2: KPM performance when limiting data usage to a fraction f , starting with long tail first.

This allows us to investigate the approaches’ performance in the long tail.
Whenwe limit data usage by taking long tail arguments first, the performance of the KPA

approaches, mainly on ArgKP and Perspectrum, decreases as shown in Figure 2.2. This
shows that the ability to correctly match arguments is contingent on the frequency of the ar-
guments. In some cases, the arguments associated with key points with the fewest matches
can bematched, but there is a strong performance loss for low values of f . Across all datasets,
ChatGPT suffers consistently in mAP when conditioning on low-frequency key points. For
SMatchToPR on Perspectrum, there is almost no effect, showing that representation learn-
ing may positively impact the matching of key points to arguments even with low amounts
of data. Performing the same experiment for KPG results in similar results: key points with
a low number of matched arguments are harder to represent well.

Next, we investigate whether the arguments in the long tail are different from the ma-
jority. Here, the long tail consists of arguments for key points that see less than the median
number of arguments per key point. We examine whether the sets of lexical items—noun
phrase chunks (NPs) and entities—mentioned in the long tail arguments are included in the
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NP Entity

Left (long tail) Right (majority) left−right right−left left−right right−left NP-τ Ent-τ

ArgKP ArgKP 0.168 0.234 0.191 0.273 0.216∗ 0.373∗
PVE PVE 0.638 0.787 0.719 0.809 0.521∗ 0.389
Perspectrum Perspectrum 0.397 0.807 0.401 0.797 0.361∗ 0.427∗

Table 2.5: Fraction ofNPs and Entities in Left that are not inRight&vice-versa. ∗ indicates Kendall τ with p< 0.05.

PVE Perspectrum

Approach r p r p

ChatGPT 0.030 0.687 0.039 0.469
Debater 0.163 0.029 -0.051 0.013
SMatch-base 0.097 0.195 0.093 0.215
SMatch-large 0.207 0.005 -0.03 0.123

Table 2.6: Pearson r correlation scores between predicted match scores and the annotator agreement per sample.

majority and vice versa. We also inspect the relative frequency of the shared lexical items
via Kendall τ correlation on the NP and entity frequency rankings. Table 2.5 shows these
results.

We see a large overlap of NPs and entities for ArgKP between the long tail and the fre-
quent key points. We attribute this to the filtering of low-frequency data during dataset con-
struction. For the other two datasets, we observe much less overlap—in most cases, more
than half of the noun phrases and entities are unique to either part of the dataset. The only
exception here is Perpectrum, where roughly 40% of the NPs and entities in the long tail
are unique. When comparing the ranks of the intersecting lexical items, we observe mod-
erate (but significant) rank correlation scores. Thus, the overlapping NPs and entities may
not be in different frequencies in the two parts of the datasets. However, there is a strong
indication of unique items in the long tail, in at least two of our datasets, showing that the
long tail may contain novel insights.

Annotator agreement Due to subjectivity in the annotation procedures, we expect anno-
tators to rate argument–key point matches differently. We investigate whether the perfor-
mance of KPA models reflects this subjectivity. That is, we test if match scores x correlate
with the agreement between annotators. Intuitively, when annotators agree, an argument
and key point should be considered to match more objectively and thus may be easier to
score for a model. From the two datasets that have a per-sample agreement score, we mea-
sure the Pearson r correlation between the annotator agreement percentage (as obtained
from data) and each approach’s match score M(d,k). Results are shown in Table 2.6.

For all approaches, the correlations are negligible or weak at best [339]. This shows that
the predictions made by the models fail to identify which matches are interpreted differently
among annotators. Hence, these models are not able to represent the diversity stemming
from annotation accurately [302].
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Figure 2.3: KPM performance for all approaches on the different data sources in Perspectrum.

Data sources The KPG and KPM evaluations (Sections 2.5.1 and 2.5.2) indicate how the
methods perform when applied to different datasets. The performance is dataset- and task-
specific; no single approach performs both tasks best on any dataset. We further investigate
the data sources in the Perspectrum dataset, which was constructed using three distinct
sources. Figure 2.3 shows the performance on each source separately. Although ArgKP
and Perspectrum share a data source, we find no overlapping claims and little repetition
in content between the two (App. A.1.1). The SMatchToPR and Debater approaches are not
sensitive to data source shift, but ChatGPT performance differs depending on the source
data used, dropping considerably for the procon source. We find two factors that influence
why these arguments are harder to match: (1) procon contains about 10 times fewer claims
than the other two sources, and (2) procon’s arguments are copied verbatim from various
cited sources, leading to large stylistic and argumentative differences.

2.6 Conclusion
We perform a novel diversity exploration of different KPA approaches on three distinct
datasets. By splitting KPA into two subtasks (KPG and KPM), we investigate each subtask,
independently.

First, we find that an LLM-based approach works well for generating key points, but
fails to match arguments to key points reliably. Conversely, smaller fine-tuned models are
better at matching arguments to key points but struggle to find good key points consistently.
Second, using a single training set yields poor generalization across datasets, showing that
data source impacts a KPA approach’s ability to generalize. Diversification of training data
leads to promising results. Third, across all datasets, we see that existing methods for KPA
are insensitive to long tail diversity, decreasing performance for key points supported by few
arguments. Finally, all models are insensitive to differences between individual annotators,
disregarding subjective interpretations of arguments and key points.

We showed how multiple aspects of diversity, a core principle when interpreting opin-
ions, are not evaluated using the standard set of metrics. Our analysis revealed interesting
complementary strengths of the KPA approaches. Future efforts could focus on address-
ing diversity, either by mining for minority opinions directly [425], or by identifying pos-
sibly subjective instances using socio-demographic information [43]. Further, models can
be enhanced with subjective understanding [322], or work together with humans to jointly
address some of the diversity issues [19, 397].
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Limitations
We identify five limitations of our work.

Diversity definition Our definition of diversity is specific to three dimensions, but there
may be additional dimensions. For example, our unit of analysis is at the argument level.
Diversity may also be analyzed for the opinion holders or those affected by decisions in
policy-making contexts.

Novel key points Our evaluation of KPG and KPM employs existing key points. However,
KPA methods may generate novel or unseen key points. Evaluating such novel key points
is nontrivial and it may require experiments involving human subjects.

Resource limitations KPA approaches are resource intensive. We limited some approaches
where (1) it would become too expensive to run KPA because of the complexity of the
number of comparisons (e.g., Debater approach), or (2) the models do not support a big
enough window to fit all arguments (e.g., ChatGPT context window is limited). While
there are alternatives (e.g., GPT-4), they drastically increase the cost.

Dataset diversity The arguments in our data are in English, and limited to data gathered
from online sources. Further, the users involved in collecting the datasets we employ
may not be demographically representative of the global population. We conjecture that
increasing the diversity of the data sources would make our conclusions stronger. How-
ever, publicly available datasets, especially non-English sources, for this task are scarce.
We make our code and experimental data public to incentivize further research in this
direction.

Data exposure We cannot verify whether the data from the test sets have been used when
training the LLMs. This would make the model familiar with the vocabulary and have a
more reliable estimation of the arguments’ semantics. That likelihood is the smallest for
PVE since it is the most recent dataset, gathered with new crowd workers.

Ethical Considerations
There are growing ethical concerns about NLP (broadly, AI) technology, especially, when
the technology is used in sensitive applications. Argument summarization can be used in
sensitive applications, e.g., to assist in public policy making. An ethical scrutiny of such
methods is necessary before their societal application. Our work contributes toward such
scrutiny. The outcome of our analysis shows how KPA methods fail to handle diversity.
Potential technological improvementsmay lead to better results, but due diligence is required
before applying such methods to real-world use cases.

We do not collect new data or involve human subjects in this work. Thus, we do not
introduce any ethical considerations regarding data collection beyond those that affect the
original datasets. A potential concern is that reproducing our results may involve using (pos-
sibly paid) services for running KPA. However, we aimed to make the analyses feasible with
limited budget and resources.
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3
Will It Blend? Mixing Training

Paradigms & Prompting for
Argument Quality Prediction

This Chapter describes our contributions to the Shared Task of the 9th Workshop on Argu-
ment Mining (2022). Our approach uses Large Language Models for the task of Argument
Quality Prediction. We perform prompt engineering using GPT-3 and investigate the train-
ing paradigms of multi-task learning, contrastive learning, and intermediate-task training. We
find that a mixed prediction setup outperforms single models. Prompting GPT-3 works best for
predicting argument validity, and argument novelty is best estimated by a model trained using
all three training paradigms.

Michiel van derMeer, Myrthe Reuver, Urja Khurana, Lea Krause, and Selene Báez Santamaría. 2022. Will It
Blend? Mixing Training Paradigms & Prompting for Argument Quality Prediction. In Proceedings of the 9th Work-
shop on Argument Mining, pages 95–103, Online and in Gyeongju, Republic of Korea. International Conference on
Computational Linguistics.
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3.1 Introduction
As debates are moving increasingly online, automatically processing and moderating argu-
ments becomes essential to further fruitful discussions. The research field of automatic ex-
traction, analysis, and relation detection of argument units is called Argument Mining [AM,
224]. The shared task of the 9th Workshop on Argument Mining (2022) focuses on argu-
ment quality [416]. Argument quality can be broken down into multiple dimensions, each
with its own purpose, or be extended to deliberative quality [414]. In this work, we consider
two aspects of the logical argument quality dimension: validity and novelty. Given a premise
and a conclusion, a valid relationship indicates that sound logical inferences link the premise
and conclusion. A novel relationship indicates that new information was introduced in the
conclusion that was not present in the premise.

Prediction of an argument’s validity and novelty can be either through binary classifi-
cation (Task A) or by explicit comparison between two arguments (Task B). We focus on
Task A. A system that is able to estimate validity and novelty could be a building block in
AM for online deliberation. For instance, in assisting humans to detect arguments in online
deliberative discussions [121, 398] or presenting diverse viewpoints to users in a news rec-
ommendation system [318]. We address the task of validity and novelty prediction through a
variety of approaches ranging from prompting, contrastive learning, intermediate task train-
ing, and multi-task learning. Our best-performing approach is a mix of a GPT-3 model
(through prompting) and a contrastively trained multi-task model that uses NLI as an inter-
mediate training task. This approach achieves a combined Validity and Novelty F1-score of
0.45.

3.2 Related Work
Given the two related argumentation tasks (novelty and validity), a Multi-Task Learning
(MTL) setup [83] is a natural approach. Multi-taskmodels use training signals across several
tasks, and have been applied before in argument-related work with Large Language Models
(LLMs) [73, 222, 389]. We use shared encoders followed by task-specific classification heads.
The training of these encoders was influenced by the following two lines of work.

First, intermediate task training [309, 430] fine-tunes a pre-trained LLM on an auxiliary
task before moving on to the final task. This can aid classification performance, also in AM
[351]. Second, contrastive learning is shown to be a promising approach [10, 301] in a pre-
vious AM shared task [131]. Contrastive learning is used to improve embeddings by forcing
similar data points to be closer in space and dissimilar data points to be further away. Such an
approach may cause the encoder to learn dataset-specific features that help in downstream
task performance.

In addition to MTL, we look at prompt engineering for LLMs, which has shown remark-
able progress in a large variety of tasks in combination with [58] or without few-shot learn-
ing [364]. For this task we draw inspiration from ProP [8], an approach that ranked first in
the “Knowledge Base Construction from Pre-trained Language Models” challenge at ISWC
2022.¹ ProP reports the highest performance with (1) larger LLMs, (2) shorter prompts,
(3) diverse and complete examples in the prompt, (4) task-specific prompts.

¹LM-KBC, https://lm-kbc.github.io/

https://lm-kbc.github.io/
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Figure 3.1: The two argument quality prediction setups used in our approach. At inference time, predictions from
different setups may be mixed.

Split Size Distribution Topics Topic Overlap
w. train w. dev

train 750 331/18/296/105 22 – 0
dev 202 33/44/87/38 8 0 –
test 520 110/96/184/130 15 0 8

Table 3.1: Shared task data overview. Distribution indicates the class distribution of {non-valid, non-novel}/{non-
valid, novel}/{valid, non-novel}/{valid,novel} counts. The red count indicates a severe data imbalance in the train-
ing set.

3.3 Data and Training Paradigms
3.3.1 Data
The task data is in American English and consists of Premise, Conclusion, Topic, and aNovel
and Validity label. As highlighted in Table 3.1, arguments that are both non-valid and novel
are underrepresented in the data. We use the original training and validation distribution as
provided and do not use any over- or undersampling strategies. Instead, we opt to resolve
the data imbalance by adopting different training paradigms (see Section 3.3.2).

The content included in the dataset concerns common controversial issues popular on
debate portals [144], with topics varying from “TV Viewing is Harmful to Children” to
”Turkey EU Membership.” The training data also contains classes labeled “defeasibly” valid
and “somewhat” novel, which are not in the development or test set. We map these to nega-
tive labels (i.e. not novel or not valid) to refrain from discarding data. However, we do not
measure the effect of this decision on performance.

3.3.2 Training Paradigms
In our work, we mix different training paradigms to obtain our final approach. A schematic
overview is given in Figure 3.1. Below, we outline each of the paradigms individually.
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Multi-task Learning Since both validity and novelty are related, a shared encoder is used
to process the text input into an embedding, which is fed to task-specific layers. We do not
use any parameter freezing, allowing gradients from either task to pass through the entire en-
coder. During training, a single task is sampled uniformly at random, and a batch is sampled
containing instances for that task.

Intermediate task training In our case, we use two related tasks for intermediate task train-
ing: Natural Language Inference (NLI) and argument relation prediction. For NLI, we use a
released RoBERTa model [248] trained on the MNLI corpus [433], predicting whether two
sentences show logical entailment. This is related because making sound logical inferences
plays a role in validity. The released argument relation RoBERTa model [327] was trained
on the relationship (inference, contradiction, or unrelated) between two sentences in a de-
bate [415]. This is related to novelty and validity. For instance, unrelated arguments may be
novel but not valid, and vice versa.

Contrastive Learning We use SimCSE’s [134] supervised setting to further fine-tune the
previously mentioned RoBERTa MNLI model in a contrastive manner. To train the model
we take triples of premises and conclusions in the form of premise, conclusionwith a positive
novelty rating, and conclusion with a negative novelty rating.

3.4 Approach
Approach 1: GPT-3 Prompting In our prompt-engineering approach, we use OpenAI’s
GPT-3² [58] for few-shot classification of novelty and validity labels. We construct a prompt
by concatenating the topic, premise, and conclusion in a structured format, and request ei-
ther a validity or novelty label in separate prompts. In addition, we show four static examples
before asking for a label from the model, selected from short, difficult examples (i.e. those
with the lowest annotation agreement) in the training dataset.

Approach2: NLIas Intermediate-task, Contrastive learningandMulti-TaskLearning This
model consists of a shared encoder with task-specific classification heads. We initialize the
shared encoder using a pretrained RoBERTa model on the MNLI corpus. We then perform
contrastive learning with a triplet loss. Afterward, themodel is fine-tuned usingMTL on the
shared task training data. During training, we switch uniformly at random during training
between the novelty and validity tasks.

Approach 3: Mixing Approach 1 (GPT-3) & Approach 2 (NLI+contrastive+MTL) Our
Mixed Approach uses Approach 1 (prompt engineering) for validity labels, and Approach 2
(fine-tuned model) for novelty labels.

Approach4: ArgRel as Intermediate-task andMulti-TaskLearning Thismodel uses intermediate-
task training on the argument relation prediction task followed by Multi-Task Learning in
the same set-up as in Approach 1, but without contrastive learning.

²https://beta.openai.com/playground

https://beta.openai.com/playground
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Model F1
Validity Novelty Combined

SVM (TF-IDF + stemming) 0.60 0.08 0.21
GPT-3 (CLTeamL-1) 0.75 0.46 0.35
NLI+contrastive+MTL (CLTeamL-2) 0.65 0.62 0.39
GPT-3 & NLI+contrastive+MTL (CLTeamL-3)* 0.75 0.62 0.45
ArgRel+MTL (CLTeamL-4) 0.57 0.59 0.33
GPT-3 & ArgRel+MTL (CLTeamL-5) 0.75 0.59 0.43

Table 3.2: Test set performance. CLTeamL-n indicates an official submission to the Shared Task with n correspond-
ing to the Approach number also in Section 3.4. Bold scores indicate the best-performing approach in the shared
task. ”Combined” indicates the Shared Task organizer’s scoring metric for both tasks.

Approach 5: Mixing Approach 1 (GPT-3) & Approach 4 (ArgRel+MTL) This approach
uses Approach 1 (prompt engineering) for validity and Approach 4 (ArgRel+MTL) for nov-
elty labels.

Baseline: SVM Support Vector Machines (SVMs) are strong baselines for argument min-
ing tasks with relatively small multi-topic datasets [319]. We train an SVM separately for
validity and novelty as a competitive baseline.

3.4.1 Implementation details
Weuse Python3 and theHuggingFace transformers [436] framework for training ourmod-
els. The SVM baseline instead uses sklearn [299]. Our code is publicly available.³ All mod-
els trained use RoBERTa (large) [248] as the base model, and the intermediate task trained
models are obtained directly from the HuggingFace Hub.⁴ We provide hyperparameters for
fine-tuned trained models in Appendix B.1. Model selection was done based on the com-
bined (validity and novelty) F1 performance on the development set. All experiments were
run for 10 epochs, after which the best-performing checkpoint was selected for use in cre-
ating predictions on the test set. The training was performed on machines including either
two GTX2080 Ti GPUs, or four GTX3090 GPUs.

3.5 Experiments and Results
We compare our approaches’ performance on the test set with the shared task’s metric: Com-
bined F1 of Validity and Novelty [165]. This combined score is the macro F1 for predicting
validity and novelty in four combinations (valid and novel, valid and not novel, not valid and
novel, not valid and not novel). Additionally, we analyze our approaches’ errors and their
connection to labels, annotator confidence, and topic. See Table 3.2 for performance on the
test set. We also present an SVM-based approach as a baseline.

³https://github.com/m0re4u/argmining2022
⁴https://huggingface.co/

https://github.com/m0re4u/argmining2022
https://huggingface.co/
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Model F1 Validity F1 Novelty
valid non-valid novel non-novel

GPT-3 0.81 0.68 0.26 0.66
MTL 0.80 0.50 0.48 0.75

Table 3.3: Per-label performance on the test set.

Predicted
- +

Tr
ue - 237 57

+ 184 42

(a) GPT-3

Predicted
- +

Tr
ue - 265 29

+ 145 81

(b) MTL

Table 3.4: Confusion matrices for the novelty labels.

3.5.1 Error Analysis
Weperform additional error analysis on three approaches (Approach 1, 2, and 3). We analyze
errors in terms of (1) label-specific performance, (2) annotator confidence, and (3) topics.
Additional results are in Appendix B.2.

Per-label performance We observe complementary strengths for the GPT-3 model and
our MTL approach in Tables 3.3. The MTL model is remarkably stronger than GPT-3 at
identifying novel arguments, even when considering this is a low-frequency class. We see a
similar trend in terms of misclassifications (Table 3.4), as the MTL model has a 40% lower
error rate for the novelty label.

Annotator confidence See Figure 3.2 for the relationship between annotator confidence
and classification error. Surprisingly, examples labeled as very confident (easy for human
annotators) are not consistently correctly classified by any approach. For novelty, GPT-3
gets about half of these examples wrong.

Topics The 3 topics with the highest error rates differ between approaches and tasks. For
validity, GPT-3 struggles with “Was the IraqWarWorth it?” (44.8%), while MTL with “Vege-
tarianism” (40%). For novelty, GPT-3 also struggles with ”Vegetarianism” (60%), and MTL
with “Withdrawing from Iraq” (44.7%) and “Vegetarianism” (44%).
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Figure 3.2: Relative accuracy rates divided over label confidence scores.

3.6 Conclusion
We highlight two main conclusions. First, different models have different strengths relating
to the two tasks. A prompting approach with a generative model worked best for validity,
while contrastive supervised learning worked best for novelty. The two tasks are related
enough to be able to effectively use one multi-task learning model, but merging predictions
from multiple heterogeneous models leads to the best score. Second, specific intermedi-
ate tasks before fine-tuning work well for low-resource argument mining tasks. NLI seems
clearly related to validity prediction. For the novelty tasks, other tasks related to argument
similarity [315] might be equally informative.

3.7 Access and Responsible Research
A core consideration in NLP research when sharing results is the accessibility and repro-
ducibility of the solution. While our code is openly available, the approaches including
GPT-3 require access to commercially trained models. We used free trial OpenAI accounts
(allowing $18 of free GPT-3 credit), but larger datasets and additional tasks can quicklymake
this approach infeasible. We also considered the freely accessible BLOOM model.⁵ BLOOM
does not require payment but does require more GPUmemory than what was available to us
– making it inaccessible. Ultimately, GPT-3 and related LLMs have several biases and risks
of use, including the generation of false information [379] and the fact that their training
on internet language leads to a very limited set of language, ideas, and perspectives repre-
sented [46], with even racist, sexist, and hateful views [137]. This is especially important to
mention, as the task description mentions a future use case of generating new arguments.

⁵https://huggingface.co/bigscience/bloom

https://huggingface.co/bigscience/bloom
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Introducing Part II: Hybrid Intelligence for NLP
Wehave seen how automated approaches to analyzing online discussions suffer from various
limitations when applying them to realistic analysis scenarios. We saw how the generaliza-
tion of LLMs is contingent on the diversity of training data, and how opinion frequency dic-
tates how well a model can capture it, endangering alienating minority opinions. In Part II
of this dissertation, we present our approach to incorporating humans andNLPmethods for
analyzing opinionated text data to address these limitations. First, we introduce amethod for
mining diverse arguments from citizen feedback in Chapter 4. Our method, HyEnA, finds
more diverse arguments and improves the precision of the argument analysis compared to a
manual and an automated approach. HyEnA guides human annotators across three distinct
phases supported by LLMs for efficient selection of which opinions to analyze.

In Chapter 5, we further investigate how differences between annotators in subjective
tasks, such as interpreting texts for extraction of arguments or personal values, can be mod-
eled more efficiently. Our approach, Annotator-Centric Active Learning (ACAL), steers
models to learn diverse label distributions by picking from a large pool of annotators. Cen-
tral to our work, we create discussion analysis approaches that (1) select samples for human
inspection that are interesting to annotate, (2) account for diversity, and (3) seek labels from
multiple annotators. The hybrid nature of our methodology leads to bidirectional gains,
serving the NLP system as well as the humans involved. For instance, we create approaches
to capture more diverse interpretations of the arguments in discussions using a crowd of
annotators. We observe that an active selection of diverse annotators can inform a model
more quickly of the label distribution underlying subjective tasks in cases where the anno-
tator pool is large. In Part III, we will apply our hybrid approach to capturing perspectives,
and investigate the role of argumentation in constructing faithful opinion representations.

Part II focuses on the following research question:

Q2 How to combine human intelligence and NLP to effectively capture diverse perspec-
tives?
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4
A Hybrid Intelligence Method for

Argument Mining

Large-scale survey tools enable the collection of citizen feedback in opinion corpora. Extracting
the key arguments from a large and noisy set of opinions helps in understanding the opinions
quickly and accurately. Fully automated methods can extract arguments but (1) require large
labeled datasets that induce large annotation costs and (2) work well for known viewpoints, but
not for novel points of view. We propose HyEnA, a hybrid (human + AI) method for extract-
ing arguments from opinionated texts, combining the speed of automated processing with the
understanding and reasoning capabilities of humans. We evaluate HyEnA on three citizen feed-
back corpora. We find that, on the one hand, HyEnA achieves higher coverage and precision
than a state-of-the-art automated method when compared to a common set of diverse opinions,
justifying the need for human insight. On the other hand, HyEnA requires less human effort
and does not compromise quality compared to (fully manual) expert analysis, demonstrating
the benefit of combining human and artificial intelligence.

Michiel vanderMeer, Enrico Liscio, Aske Plaat, PiekVossen, CatholijnM. Jonker, andPradeepK.Murukan-
naiah. 2024. A Hybrid Intelligence Method for Argument Mining. In Journal of Artificial Intelligence Research 80,
pages 1187–1222.
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4.1 Introduction
Tomake decisions on large public issues, such as combating a pandemic and transitioning to
green energy, policymakers often turn to the citizens for feedback [215, 226]. This feedback
provides insights into public opinion and contains viewpoints from many individuals with
different perspectives. Involving the public in the decision-making process helps in gain-
ing their support when the decisions are to be implemented, fostering the legitimacy of the
process [292].

In the face of crises, decisionsmust bemade swiftly. Thus, collecting feedback, analyzing
it, andmaking recommendations ought to be performedunder tight time constraints. For ex-
ample, when deciding on relaxing COVID-19 measures in the Netherlands, researchers had
onemonth to design the experiment, collect public feedback, andmake recommendations to
the government [274]. The time constraint limits the amount of information researchers can
analyze, potentially painting an incomplete picture of the opinions. In the scenario above,
researchers processed data manually and they could only analyze less than 8% of the quali-
tative feedback provided by more than 25,000 participants.

ArgumentMining (AM) [224]methods can assist in increasing the efficiency of feedback
analysis by, e.g., locating and interpreting argumentative feedback and classifying statements
as supporting or opposing a decision. However, applying automated AM methods for feed-
back analysis poses three main challenges. First, AM methods generalize poorly across do-
mains [367, 382, 405]. Thus, they require large amounts of domain-specific training data,
which is often not available. The use of pretrained language models, with the pre- or fine-
tuning paradigm, mitigates but does not solve the reliance on large domain-specific training
datasets [112, 315]. Second, although AM methods can identify argumentative content,
they often do not compress the information [68, 93, e.g.]. That is, they struggle to recog-
nize whether two arguments describe the same point of view, leaving the policymakers with
the significant manual labor of aggregating arguments [209, 210]. Finally, naively relying
on a small sample of labeled data might cause minority opinions to be ignored as they are
not well represented [204], creating a bias toward popular (repeated) arguments, which can
perpetuate echo chambers and filter bubbles [307, 342].

The key point analysis (KPA) task [32] seeks to automatically compress argumentative
discourse into unique key points, which can be matched to arguments. However, synthe-
sizing key points is a significant challenge. In the ArgKP dataset, domain experts (skilled
debaters) were asked to generate key points. Subsequently, a model was trained to take over
the task [33]. However, the reliance on a few human expert annotators introduces biases of
the human experts and may not be representative of the opinions of the larger population.
This defeats the purpose of engaging the larger public in a bottom-up deliberative decision-
making process.

We argue for a crowd-sourced human-machine approach for argument extraction, com-
bining the scalability of automated methods and the human understanding of others’ per-
spectives. We propose HyEnA (Hybrid Extraction of Arguments), a hybrid (human + AI)
method for extracting a diverse set of key arguments from a textual opinion corpus. HyEnA
breaks down the argument extraction task into argument annotation, consolidation, and se-
lection phases. HyEnA employs human (crowd) annotators and supports them via intelligent
algorithms based on natural language processing (NLP) techniques for analyzing opinions
provided by a large audience, as shown in Figure 4.1.
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Figure 4.1: In a democratic cycle, citizens provide their opinions on options for governmental decision-making and
their opinions need to be interpreted. Insights into the arguments embedded in their comments can be provided
by Key Point Analysis (KPA). To perform KPA, most analysis is performed either manually or automatically. In our
work, we propose HyEnA, a hybrid method.

HyEnA is evaluated on three corpora, each containing more than 10K public opinions
on relaxing COVID-19 restrictions [274]. We compare HyEnAwith an automated approach
[33] performing the KPA task. In addition, we compare the key arguments generated by
HyEnA with manually obtained insights identified by experts [274]. We find that HyEnA
outperforms the automated baseline in terms of precision and diversity, specifically when
confronted with a set of varied perspectives. HyEnA also yields better results than manual
analysis, as fewer opinions needed to be analyzed in order to obtain a wider set of key argu-
ments.

Contributions (1) We present a hybrid method for key argument extraction, which gener-
ates a diverse set of key arguments from a collection of opinionated user comments. (2) We
evaluate ourmethod on real-world corpora of public feedback on policy options. Compared
to an automated baseline, HyEnA increases the precision of the key arguments produced
and improves coverage over diverse opinions. Compared to the manual baseline, HyEnA
identifies a large portion of arguments identified by experts as well as new arguments that
experts did not identify. (3) We extensively discuss the implications of incorporating recent
advances in NLP, such as Large Language Models (LLMs), into the workflow of our hybrid
method.

Extension In thisChapter, we provide details on an extended version of theHyEnAmethod
[398, 403]. The original HyEnA method outputs argument clusters, and leverages manual
annotations from the first two phases to select arguments from argument clusters. The ex-
tension introduces a method for selecting the most representative argument from each clus-
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ter through argument selection. The need to summarize argument clusters is not specific
to HyEnA, as previous AM applications also retrieve clusters instead of singular arguments
[54, 93, 417]. We compare various techniques to accomplish this task, including generative
large language models. Furthermore, we run additional experiments to demonstrate how
the new argument selection step can be incorporated into the HyEnA pipeline, and rerun
the original evaluation to compare between HyEnA with and without the inclusion of ar-
gument selection. Finally, we perform additional analyses to derive further insights from
annotators in HyEnA. We also provide our code, annotation guidelines, and experimental
details in the supplementary materials [404].

Structure Section 4.2 provides background on Argument Mining for public opinions, and
Section 4.3 introduces the HyEnA method for extracting arguments. We outline the experi-
mental setup in Section 4.4 and provide extensive results in Section 4.5. A discussion of our
work is given in Section 4.6 and we conclude with Section 4.7.

4.2 Related work
We describe related work on Argument Mining, methods for summarizing arguments, and
their application to opinion analysis.

4.2.1 Computational Argument Analysis
Argument Mining (AM) methods [62, 224] focus on the recognition, extraction, and com-
putational analysis of arguments presented in natural language. They seek to discover argu-
ments brought forward by speakers and identify connections between them. Typically, AM
techniques concern themselves with finding the structure of arguments [407], with the goal
of finding premises for supporting or refuting conclusions.

AM is a challenging problem. The ability to recognize and extract arguments from text
(for humans and machines, alike) is dependent on the argumentativeness of the underly-
ing data. Often, significant effort is required by human annotators to reach moderate inter-
rater agreementwhen annotating arguments [381]. Given argumentative texts, modernNLP
models are reasonably good at recognizing argumentative discourse within specific contexts
[110, 285, 315].

Typically, the first step of AM is to identify the elemental components of arguments (e.g.,
claims and premises) in text [296]. The combination of such components forms a structured
argument. However, there is currently no consensus on the exact linguistic notion of such
elemental components, with multiple levels of granularity being proposed [47, 92, 129, 418].
Nonetheless, a few characteristics have been recognized as important for recognizing argu-
ments, namely that arguments (1) contain (informal) logical reasoning [365], (2) address
a why question [50], and (3) have a non-neutral stance towards the issue being discussed
[365].

HyEnA is a novel AM method that combines human annotators and automated NLP
models. By splitting up the argument extraction task into distinct phases, we take advantage
of the diverse human perspectives, while addressing scalability through automation.
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4.2.2 Summarization of Arguments
Automated methods have been proposed to derive high-level insights from large-scale argu-
mentative content. For instance, these approaches focus on indexing and searching through
arguments [366, 439], or creating visual overviews of argument structures [63, 197]. While
these may provide access to argumentative content, they are limited in providing a single
high-level overview of the arguments on a topic of discussion. Instead, we turn our focus
to approaches that create a comprehensible text-based summary from a large corpus of in-
dividual comments [33, e.g.]. In this paradigm, comments are filtered by a manually tuned
selection heuristic, resulting in a list of key point candidates. The candidates are matched
against all comments, based on a classifier trained for the argument–key pointmatching task
[32]. Such approaches have been applied in multiple domains, showcasing their applicabil-
ity across context [34] at varying levels of granularity [66]. While these approaches present
high-level arguments, they struggle to capture diversity in opinions, which is important for
accommodating multiple perspectives [405]. In this work, we evaluate the performance of
these approaches on a novel domain of COVID-19measures and compare it against HyEnA.

Additionally, there exists an extended body ofwork onNatural Language Inference (NLI)
and Semantic Textual Similarity (STS). In these works, models are trained to indicate se-
mantic similarity or logical entailment between two sentences [81, 314]. They have made
a significant impact across a range of tasks [442, 453]. However, downstream applications
often need additional fine-tuning [172] in order to perform a task well. They also capture
generic aspects of semantic similarity and entailment, which may not be applicable to argu-
ments [314], or overfit to spurious patterns in the data [262]. Thus, such methods require
significant adaptation to effectively compress information in particular domains. Recently,
Large Language Models (LLMs) have been shown to perform well on inference tasks with
out-of-distribution data [419]. However, we argue that a plurality of (human) perspectives is
necessary to perform sensitive tasks such as the summarization of arguments, which may in
turn be used to inform policy-makers about the sentiment of a population [378]. Yet, LLMs
might be adequate for specific subtasks, as we showcase in the third phase of the HyEnA
method.

4.3 Method
HyEnA is a hybrid method since it combines automated techniques and human judgment
[5, 97]. HyEnA guides human annotators in synthesizing key arguments (i.e., high-level se-
mantically distinct arguments that describe relevant aspects of the topic under discussion)
from an opinion corpus composed of individual opinions (textual comments) on a topic. Key
arguments are high-level and summarize a group of arguments, similar to key points as intro-
duced by [32]. We adopt the term key argument, to emphasize their argumentative nature,
as opposed to more generic extractive summarization [346, e.g.].

HyEnA consists of three phases (Figure 4.2). In the first phase (Key Argument Annota-
tion), an intelligent sampling algorithm guides human annotators individually through an
opinion corpus to extract high-level information from the opinions. In the second and third
phases, HyEnA aims to reduce the subjectivity in the first phase annotations by combining
and rewriting arguments that were individually annotated. In the second phase (Key Argu-
ment Consolidation), an intelligent merging strategy supports a new group of annotators in
merging the results from the first phase into clusters of arguments, combining manual and
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Figure 4.2: Overview of the HyEnA method.

automatic labeling. In the third phase (Key Argument Selection), HyEnA employs an auto-
mated method to synthesize a single argument that represents the arguments belonging to
the same merged argument cluster. The final output of HyEnA is a list of key arguments
grounded on the opinions in the corpus.

4.3.1 Opinion Corpora
Our opinion corpora are composed of citizens’ feedback on COVID-19 relaxationmeasures,
a contemporary topic. The feedback was gathered in April andMay 2020 using the Participa-
tory Value Evaluation (PVE) method [274]. In a PVE, participants are offered a set of policy
options and asked to select their preferred portfolio of choices. Then, the participants are
asked to explain why they picked certain options (pro stance) and not pick the other options
(con stance) via textual comments. Pro- and con-opinions together form the opinion corpus.
The data used in our experiments concerns the COVID-19 regulations in the Netherlands
during the height of the pandemic, in May 2020. We chose this scenario because (1) we had
access to a unique dataset of citizen-provided comments on COVID-19 regulations, (2) we
were able to run the study while the topic was still relevant, making it interesting for crowd
workers, (3) a manual analysis had been performed over the exact same data, allowing for
comparison to a human-only baseline, and (4) the data is reflective of real-world conditions,
e.g. feedback was obtained in a matter of days but contains input from a broad group of cit-
izens encompassing broad demographics. We analyze feedback from 26,293 Dutch citizens
on three policy options, treating comments on each option as an opinion corpus. Table 4.1
shows examples of opinions provided for each different policy option. In our experiments,
the HyEnA method is applied to one corpus at a time. Since we use data from a publicly run
citizen feedback experiment, we observe that some options attracted more pro comments
than others. We picked these three options with different pro/con ratios to investigate their
impact on the key argument extraction task. The opinions in these corpora are similar to
noisy user-generated web comments [156], may span multiple sentences, and contain more
than one argument at a time. For each policy option, we use the keyword in uppercase as
the option identifier in the remainder of the chapter.

The original opinions were provided in Dutch. To accommodate a diverse set of anno-
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Policy option Example opinion Num.
Opinions

Pro/Con
Ratio

young people may come to-
gether in small groups

Then they can go back to
school (Pro)

13400 0.66/0.34

All restrictions are lifted for
persons who are immune

Encourages inequality (Con) 10567 0.17/0.83

reopen hospitality and en-
tertainment industry

The economic damage is too
high (Pro)

12814 0.55/0.45

Table 4.1: Example opinions in the COVID-19 corpora. The collection of opinions for a policy option forms an
opinion corpus.

tators in our experiments, we translated all comments to English using the Microsoft Azure
Translation service. All experiments are performed with the translated opinions. Mixing
(pretrained) embeddings andmachine-translated comments has aminimal impact on down-
stream task performance [94, 111, 349]. Although all experiments are conducted in English,
the link to the original Dutch text is preserved for future applications.

4.3.2 Key Argument Annotation
In the first phase of HyEnA, human annotators extract individual key argument lists by an-
alyzing the opinion corpus. Since a realistic corpus consists of thousands of opinions, it is
unfeasible for an annotator to read all opinions. Thus, HyEnA proposes a fixed number of
opinions to each annotator. HyEnA employs NLP and a sampling technique to select diverse
opinions to present to an annotator.

Intelligent Opinion Sampling Each annotator is presented, one at a time, with a fixed num-
ber of opinions. To sample the next opinion, we embed all opinions and arguments observed
thus far using the S-BERT model (MS) [314]. S-BERT converts sentences into fixed-length
embeddings, which can be used to compute semantic similarities between pairs of sentences.

Then, we select a pool of candidate opinions using the Farthest-First Traversal (FFT)
algorithm [37]. FFT selects the candidate pool as the f farthest opinions in the embedding
space from the previously read opinions and annotated arguments (in our experiments, we
empirically select f = 5). Next, we use an argument quality classifier trained on the ArgQ
dataset [144] to select one single clearest opinion related to the policy option. In this way, we
aim to increase both the diversity and quality of the opinions presented to each annotator.

Annotation Upon reading an opinion, the annotator is asked, first, to identify whether the
opinion contains an argument or not. If so, the annotator is asked to check whether the
argument is already included in their current list of key arguments. If it is not, the annotator
should extract the argument into a standalone expression (i.e., into a key argument), and
add it to the list of key arguments. When adding a new argument, the annotator is asked to
indicate the stance of the opinion (i.e., whether it is in support or against the related policy
option). To facilitate this task, HyEnA highlights the most probable stance for the user as a
label suggestion [42, 341].
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Measure Description

s1
i j =

i·j
∥i∥∥j∥ Cosine similarity between embeddings i = MS(ai) and j = MS(a j)

s2
i j =

1
d(T (ai),T (a j))

Inverse of the Euclidean distance d between manual topic assign-
ments T of ai and a j

Table 4.2: The similarity scores between key argument pairs used to create the pairwise dependency graph.

Topic Assignment We use a BERTopic [147] model T to extract clusters of topics from the
corpus. We train T on all opinions in the corpus and select the most frequent topics found
by T , with duplicates and unintelligible topics manually removed by two experts. We ask
a new set of human annotators, different from those in argument extraction, to associate
the topics from the generated shortlist with each argument, resulting in an n-hot vector for
each argument a per annotator. We obtain the final topic assignment T by summing over
all annotators. This topic assignment T is used in the second phase to compute argument
similarity. Thus, in the first phase, HyEnA yields multiple key argument lists (one per anno-
tator), each containing key arguments and their stances, and an assignment of pre-selected
topics to key arguments.

4.3.3 Key Argument Consolidation
In the first phase, (1) the annotators are exposed to a small subset of the opinions in the
corpus, and (2) the interpretation of arguments is subjective. In the second phase, HyEnA
seeks to consolidate the key argument lists generated in the first phase. Our goal is to increase
the diversity of the resulting arguments and compensate for individual biases.

First, we create the union of all lists of key arguments generated in the first phase of
HyEnA. Then, we ask the annotators to evaluate the similarity of the key argument pairs
in the union list. Based on the similarity labels, we employ a clustering algorithm to group
similar key arguments, producing a consolidated list of key arguments.

Pairwise Annotation To simplify the consolidation task, the annotators are presented with
one pair of key arguments at a time and asked whether the concepts described by the key ar-
guments in the pair are similar. To reduce human effort, we select only the most informative
key argument pairs for manual annotation and automatically annotate the remaining pairs.
To select the most informative pairs, we adopt a Partial-Ordering approach, Power [67], as
described below.

Let pi j be a pair of key arguments ⟨ai,a j⟩. The similarity between the two key arguments
in the pair is described by two similarity scores, s1

i j and s2
i j . By using multiple scores, we seek

to make the similarity computation robust. For each pi j , we compute the two similarity
scores described in Table 4.2. We use cosine similarity for s1

i j since the angular distance de-
scribes the semantic textual similarity between two arguments. In contrast, we use Euclidean
distance for s2

i j since the absolute values of the topic assignment are relevant.
Given the similarity scores, we construct a dependency graph G (as in the top-left part

of Figure 4.3), where each key argument pair is a vertex in G and the edges indicate a Pareto
dependency (≻) between two pairs—the direction of the edge points to the argument pair
with greater similarity. A Pareto dependency holds if one of the two scores is strictly greater,
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Figure 4.3: Pairwise annotation of the dependency graph, combining human and automatic judgments. Vertices
indicate argument pairs; the edge direction points to the argument pair with greater similarity. The highlighted blue
edges are a disjoint path selected by the Power algorithm. Iteratively, vertices are annotated as similar (green) or
non-similar (red).

with all others being at least equal between two arguments. We define the dependency as
follows:

pi j ⪰ pi′ j′ if ∀n sn
i j ≥ sn

i′ j′ (4.1)

pi j ≻ pi′ j′ if pi j ⪰ pi′ j′ and ∃n sn
i j > sn

i′ j′ (4.2)

Next, we follow Power to extract disjoint paths from G. The highlighted path in the
bottom-left part of Figure 4.3 is an example disjoint path. For every path, we perform a pair-
wise annotation as in the right part of Figure 4.3. We select the vertex at the middle of the
unlabeled portion of the path and ask up to seven humans to indicate whether the concepts
described by the two arguments in the pair are similar on a binary scale. The arguments are
similar when they are essentially bringing up the same point, i.e. provide the same reason-
ing. We select the label with the majority vote. Given the annotation, we can automatically
label (1) all following pairs in the path as similar (yellow) in case the vertex is labeled as sim-
ilar or (2) all preceding pairs in the path as non-similar (red) in case the vertex is labeled
as non-similar. In essence, using the Pareto dependency, we search for threshold similarity
scores for each path, above which all pairs are considered similar, and below which all pairs
are non-similar. Because this is a local threshold, we prevent over-generalization. To anno-
tate the complete graph efficiently, we employ the parallel Multi-Path annotation algorithm
[67].

Clustering Given a similarity label for each key argument pair, our goal is to identify
groups of similar key arguments. However, the similarity among key arguments may not
be transitive—given ⟨a1,a2⟩ as similar and ⟨a2,a3⟩ as similar, ⟨a1,a3⟩may be labeled as dis-
similar. This can happen because (1) the interpretation of similarity can be subjective (for
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manually labeled pairs), and (2) the automatic approach is not always accurate (for automat-
ically labeled pairs). Thus, we employ a clustering algorithm for identifying a consolidated
list. First, we construct a similarity graph, where each key argument is a vertex and there is
an edge between two arguments if they are labeled as similar. Then, we employ out-of-the-
box graph clustering algorithms for constructing argument clusters. These clusters form the
key argument lists.

4.3.4 Key Argument Selection
In the third step ofHyEnA,we extract a single argument fromeach cluster, obtaining the final
list of key arguments for the opinion corpus. Formally, for every cluster k ∈ K, we create
an argument ak that is representative of that cluster. Argument selection methods can be
extractive (select an argument from the cluster) or abstractive (generate a new argument that
summarizes the cluster). Since there aremanymethods available for selecting arguments, we
can experiment with multiple, and pick the best-performing method. In that case, we again
pick an intermediate evaluation metric, which we use to select the best selection method.
While there is no human annotation involved in this step, we still consider this higher-level
algorithmic design a hybrid process, and thus a collaboration between humans and AI. For
the task of selecting relevant arguments, we compare the following four types of approaches.

Centroids For every cluster k, we compute a sentence embedding of every argument ak
using MS. Then, we compute pairwise distances between all arguments inside the same
cluster. We select the argument with the lowest average distance, measured using cosine
similarity, to all other arguments.

Argument Quality We use a model that measures argument quality to select the argument
from each cluster with the highest quality. We use the same argument classifier as in the
Key Argument Annotation phase, trained on the ArgQ dataset [144].

Prompting We prompt an LLM to synthesize a single argument out of the arguments pro-
vided in the argument cluster [58]. We experiment with an open-source and a closed-
source model.

Random As a baseline, we randomly select an argument from the cluster to represent the
entire argument cluster.

4.4 Experimental Setup
We involve 378 Prolific (www.prolific.co) crowdworkers as annotators to evaluateHyEnA.
We required the workers to be fluent in English, have an approval rate above 95%, and have
completed at least 100 submissions. Our experiment was approved by an Ethics Committee
and we received informed consent from each subject. We provide supplemental material,
containing instructions provided to the annotators, experiment protocol, experiment data,
analysis code, and additional details on the experiment [404].

Table 4.3 shows an overview of the tasks in the experiment. First, we ask annotators
to perform the HyEnA method to generate key argument lists for three corpora. Then, we
compare the quality of the obtained lists with lists generated for the same corpora via two
baselines. All tasks except topic generationwere performed by the crowdworkers, withmost

www.prolific.co


4.4 Experimental Setup

4

55

Task Option Num. Items Num.
Annotators

Num.
Annotators
per item

Key argument annotation
young 255 (O) 5

1immune 255 (O) 5
reopen 255 (O) 5

Topic generation all 45 (T) 2† 2

Topic assignment
young 91 (A) 10

5immune 66 (A) 5
reopen 69 (A) 5

Key argument consolidation
young 1538 (A+A) 99

3immune 824 (A+A) 57
reopen 940 (A+A) 87

Key argument evaluation
young 248 (O+A) 42

7immune 193 (O+A) 29
reopen 221 (O+A) 29

Table 4.3: Overview of the tasks in the experiment. Items to be annotated can be opinions (O), arguments (A),
topics (T), or combinations. † denotes expert annotators.

of the task instances annotated by multiple annotators to investigate the agreement between
annotators.

4.4.1 Phase 1: Key Argument Annotation
In the first phase of HyEnA, each annotator extracts a key arguments list from an opinion
corpus. In each corpus, five annotators annotated 51 opinions each, for a total of 255 opin-
ions per corpus. Of the 51 opinions, the first is selected randomly, and the following 50
are selected by FFT. This number of opinions was empirically selected to make the annota-
tion feasible within a maximum of one hour. We instantiate the S-BERT model MS using
the Huggingface Model Hub¹. Since our opinion corpus stems from the PVE procedure, we
have explicit labels denoting whether a comment was left in favor (pro) or opposing (con) a
proposed policy, which we leverage for the argument stance label suggestion. For obtaining
argument quality scores, we use the IBM API [35] to avoid having to retrain a new model.

Topics We train a BERTopicmodel on each opinion corpus, generating 59, 56, and 72 topics
for the young, immune, and reopen corpora, respectively. Since the number of resulting
topics is too high for the manual assignment of arguments to topics, we curate a short list
of topics per corpus. We select the 15 most frequent topics in a corpus and ask two experts,
the first two authors, to remove duplicates (i.e., topics covering the same semantic aspect)
and rate the clarity (i.e., how well the topic describes a relevant aspect of the discussion in

¹https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2

https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
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Method Model Type Open Size
Random – extractive – –
Centroid S-BERT extractive yes 22M
Prompting ChatGPT abstractive no 175B

Llama abstractive yes 7B
Quality ArgQ extractive no 125M

Table 4.4: Argument selection algorithms.

the corpus) of each topic. Unique topics with an average clarity score above 2.5 compose
the shortlist of topics. Then, we ask crowd annotators to assign topics to each key argument
generated in the first phase of HyEnA.

4.4.2 Phase 2: Key Argument Consolidation
In the second phase of HyEnA, we obtain similarity labels y(ai,a j) (1 if similar, 0 if not)
for all key argument pairs ⟨ai,a j⟩—some pairs are labeled by the annotators and others are
automatically labeled. Given the similarity labels, we construct an argument similarity graph
and cluster the graph to identify a consolidated list of key arguments.

Clustering We experiment with two well-known graph clustering algorithms: (1) Louvain
clustering [52] uses network modularity to identify groups of vertices based on a resolution
parameter r. (2) Self-tuning spectral clustering [446] uses dimensionality reduction in com-
bination with k-means to obtain clusters, where k is the desired number of clusters. We se-
lect the parameters of these algorithms to minimize the error metric E shown in Eq. 4.3.The
metric penalizes clusters having dissimilar argument pairs. That is, for a cluster k ∈ K and
∀ai,a j ∈ k, if y(ai,a j) = 1, the error for that cluster is 0. If a cluster contains only a single el-
ement, we manually set the error for that cluster to 1, to discourage creating single-member
clusters. We base E on the homogeneity metric [323], although we do not have access to the
ground truth cluster assignments for each argument. Instead, we assume that if all manually
labeled arguments are considered similar, they would have been assigned to a single cluster,
resulting in a homogenous cluster.

E =
1
|K|∑

k∈K

∑
ai,a j∈k

1y(ai,a j)=0(|k|
2

) (4.3)

4.4.3 Phase 3: Key Argument Selection
In the third phase, we use a mechanism for selecting single arguments per argument cluster.
We experiment with multiple methods and different models for selecting arguments. An
overview of the methods used is given in Table 4.4. Below, we explain the setup for each
method, and how we select the best-performing method to be used in the final output for
HyEnA.
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Prompts We construct different prompts for the two models to extract the desired argu-
ment selection output. ChatGPT is an instruction-tuned model and can be prompted to
answer questions or follow instructions [293]. Llama lacks instruction-tuning, and thus
requires prompts designed for next-token generation [387]. For the ChatGPT model, we
instruct it with Prompt 1. For Llama, we use Prompt 2.

Prompt 1: ChatGPT

Consider the context of the COVID-19 pandemic and the following arguments:
- Argument 1
...
- Argument k

Write a key argument that summarizes the above arguments, and make it short and concise.

Prompt 2: Llama

Consider the context of the COVID-19 pandemic and the following arguments:
- Argument 1
...
- Argument k

A short and concise key argument that summarizes the above arguments is:

Testing Cluster Coherence First, we investigate the coherence of the clusters generated in
Phase 2 according to each argument selectionmethod, with the intent ofmeasuring how each
(automated) method aligns with the results of the first two phases of the (hybrid) HyEnA
process. In cases of low coherence, semantically different arguments may end up together.
Vice versa, in highly coherent clusters, only arguments that are the same are actually put
together. While the error metric E (Equation 4.3) gives an error rate, it is mostly a compara-
tivemethod, designed to select the best clusteringmethod. Whether or not the clustersmake
sense to a human interpreter remains unclear. As such, we devise a so-called odd-one-out
task, in which we use the Argument Selection methods for selecting arguments from a triple
of arguments. In this triple, two arguments stem from the same cluster, and the third from
a different cluster. The task for each argument selection method is to select which is the
deviating argument. Here, we expect an adequate method to succeed well beyond random
performance. Because Argument Quality is not intended for pairwise comparisons of argu-
ments, we omit it in the odd-one-out task. We evaluate the remaining methods on a sample
of 1K triples uniformly chosen from all possible triple combinations.

Evaluating Argument Selection We use different methods and different models for exper-
imenting with the argument selection phase. As before, we employ an error metric to select
the best-performing method, which we then inspect through a human evaluation. We use
BERT score [449], a metric designed for model selection that uses a trained BERT model to
compare the semantic similarity between the selected argument and the original opinions.
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Specifically, BERT score recall correlates well with human consistency judgments, the factual
alignment between selected argument and references (original opinions) [120]. We pick the
best-performing method for argument selection based on this metric. This way, we penalize
any possible effect of hallucinations of LLMs on the HyEnA method. We take the argument
selected by each approach in the Key Argument Selection phase of the HyEnA procedure.
As references, we take all comments that were involved in the creation of the cluster. We
compute BERTScore and compare it across our approaches.

4.4.4 Baselines
We compare the output of HyEnA to the results of an automated and a manual approach to
key argument extraction.

Comparison to Automated Baseline
We use the ArgKP argument matching model [33] to automatically extract key points from
the corpus. ArgKP selects candidate key points fromopinions using amanually-tunedheuris-
tic, which filters opinions on their length, form, and predicted argument quality [144]. The
original approach suggests relaxing heuristic parameters such that 20% of the opinions are
selected as candidates. However, this caused overly specific arguments as candidates. In-
stead, we departed from the parameters used for the ArgKP dataset [33], and only relax
them slightly such that∼10% of opinions are selected as key point arguments.

Candidate key points and opinions are assigned a match score using a model trained for
matching arguments based on RoBERTa [248]. Opinions only match the highest-scoring
candidate key points if their match score exceeds a threshold θ , corresponding to the best
match and threshold (BM+TH) approach. After deduplication, this results in a single list of
key arguments per option. We use three metrics, coverage (C), precision (P), and diversity
(D) to compare HyEnA and ArgKP.

Coverage (C) is defined as the fraction of opinions mapped to an argument out of all the
processed opinions [33]. To compute C, first, we extract the set of key arguments AH from
HyEnA based on opinions Oobs

H (⊂ O) observed by the annotators. Further, if an argument
is extracted from an observed opinion oi ∈ Oobs

H , we add oi to the set of annotated opinions
Oann

H . Similarly, we extract the set of key arguments AA from ArgKP based on its observed
set of opinions Oobs

A (≡ O), producing a set of annotated opinions Oann
A . Then, the coverage

with respect to all observed opinions is:

CH =
|Oann

H |
|Oobs

H |
(4.4)

CA =
|Oann

A |
|Oobs

A |
(4.5)

Comparing the coverage scores as defined above naively may not be fair since the set
of observed opinions (i.e., the denominators of Equations 4.4 and 4.5) are not the same for
HyEnA and ArgKP. Thus, we also compute coverage with respect to a set of common opin-
ions, Oobs

H ∩Oobs
A , observed by both methods, as:
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Ccommon
H =

|Oann
H ∩Oobs

A |
|Oobs

H ∩Oobs
A |

(4.6)

Ccommon
A =

|Oann
A ∩Oobs

H |
|Oobs

H ∩Oobs
A |

(4.7)

We add the same term to both denominator and numerator in Equations 4.6 and 4.7 so that
the coverage stays in the range [0, 1]. Note thatCcommon

H =CH since Oobs
H ,Oann

H ⊂Oobs
A (≡O).

Precision (P) is the fraction of mapped opinions for which the mapping is correct [33].
Thus, we must map a set of opinions to arguments in order to compute precision. For this
mapping, we select the common opinions, Oann

H ∩Oann
A , that are annotated in both HyEnA

andArgKP.Then for each oi ∈Oann
H ∩Oann

A , we create two pairs ⟨oi,AH(oi)⟩ and ⟨oi,AA(oi)⟩,
where AH(oi) and AA(oi) are the arguments associated with oi by HyEnA and ArgKP, re-
spectively. Then, we ask annotators to label z(oi,ai) = 1 for all matching pairs and z(oi,ai) =
0 for all non-matching pairs, and keep the majority consensus from multiple annotators.
Given the opinion-argument mapping, we compute precision as:

Pcommon
H =

∑
oi∈Oann

H ∩Oann
A

z(oi,AH(oi))

|Oann
H ∩Oann

A |
(4.8)

Pcommon
A =

∑
oi∈Oann

H ∩Oann
A

z(oi,AA(oi))

|Oann
H ∩Oann

A |
(4.9)

Diversity (D) is defined as the ratio of key arguments and the number of comments seen
by the method. We use diversity to signify how well our method is able to preserve the per-
spectives present in the opinions seen by the method. In order to compare across methods,
we take (1) only correct mappings (z(oi,ai) = 1) using the labels from P and (2) take the
opinions seen by both A and H . We define diversity as follows:

DH =
AH

|Oobs
H ∩Oobs

A |
(4.10)

DA =
AA

|Oobs
H ∩Oobs

A |
(4.11)

Comparison to Manual Baseline
A manual analysis involving six experts examined a portion of the feedback stemming from
the PVE procedure. This analysis included a sample of participants (2,237 out of 26,293)
for whom key arguments were identified [274]. Each expert generated a list of arguments
for and against each of the relaxation measures based on the opinion text. A single partic-
ipant could leave multiple opinions, and the analysis does not report the exact number of
opinions analyzed. Since we have access to 36,781 opinions for the three options (Table 4.1),
we estimate the number of opinions the six experts would have analyzed to be 3,129 across
the three options (following each participant entering±1.4 opinions), and at least 2,237 (at
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least one opinion per participant). In contrast, HyEnA annotators analyze 765 intelligently
selected opinions across the three options.

HyEnA reduces the number of opinions analyzed. Further, we investigate the extent to
which the key argument lists generated by HyEnA and the manual baseline have compara-
ble insights. To do so, we report the number of HyEnA key arguments that are overlapping,
missing, and new compared to the expert-identified key arguments. We cannot compute pre-
cision and coverage for the manual baseline because it does not include a mapping between
key arguments and opinions.

4.5 Results
First, we analyze the inter-rater reliability of annotations. Then, we analyze the intermediate
results of the three phases of HyEnA. Finally, we compare our hybrid approach with the
automated and manual baselines.

4.5.1 Annotator Agreement
Table 4.5 shows the inter-rater reliability (IRR) for four steps with overlapping human anno-
tations. We didn’t obtain IRR ratings for the argument extraction task in Phase 1 since the
annotation is designed to be disjoint, and raters had little to no overlap in their extractions.
In the Topic Generation phase (Section 4.1), we use the intraclass correlation coefficient
ICC(3,k) [353] since it involves ordinal ratings. In the other three tasks, multiple binary la-
bels are obtained for the same subjects. In these tasks, we use prevalence- and bias-adjusted
κ (PABAK) [357], which adjusts Fleiss’ κ for prevalence and bias resulting from small or
skewed distribution of ratings.

In Topic Generation, the main source of the disagreement stems from a single option:
reopen. Here, the annotators rated two topics almost inverted (rating 4 versus rating 2) out
of a 1–5 Likert scale, resulting in an ICC score of 0.46. The two topics contained the words
“mental health income decrease,” and “measures rules these should”. For the other two options,
young and immune, a higher score of 0.71 and 0.80 were obtained respectively.

We obtained the lowest reliability scores for the last two annotation tasks, Key Argument
Consolidation and Key Argument Evaluation. The obtained scores may be due to the diffi-
culty of the task—for instance, lay annotators are asked to characterize the similarity between
two arguments, and they may not stick to the provided definition of argument similarity.
However, task difficulty may not be the only factor at play here. Argument comparisons
are made with limited context, and the personal perspective or background of the annotator

Task ICC3k PABAK
Topic Generation 0.66 (0.14) –
Topic Assignment – 0.81 (0.10)
Key Argument Consolidation – 0.34 (0.03)
Key Argument Evaluation – 0.36 (0.04)

Table 4.5: IRR scores per task in HyEnA. We show the average (and standard deviation) over the three option
corpora.
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Figure 4.4: Disagreement analysis for the Key Argument Evaluation phase. On the left, argument lengths are the
same whether annotators agree or disagree. However, on the right, annotators disagree on match labels in long
opinions.

may influence their judgment. Thus, the low IRR scores may indicate a combination of task
difficulty and the relatively subjective nature of the task [21]. Similar reasoning holds for the
task of evaluating the match between the extracted argument and the original opinions.

Focusing on the evaluation phase, we compare argument–opinion pairs where large dis-
agreement was observed (disagree) to pairs with low disagreement (agree) in Figure 4.4.
Specifically, we compared the lengths of the arguments and opinions. We find that the
lengths of the arguments–opinion pairs with large inter-rater disagreement did not differ
from those with low disagreement. However, we found considerably longer opinions on
average when annotators disagreed. Possibly, long opinions contain multiple arguments,
which in turn may cause the annotator to fail to identify the provided argument.

Prolific annotators were generally young (M=29.2, SD=7.8) and typically active users
with a median of over 300 tasks completed (M=404, SD=418). A little over half of our an-
notators were male (58.8%), another 38.6% reported as female, and the rest had no data
available. 76.7% reported a language other than English as their native language (we did
require all annotators to be fluent in English). Annotators mostly resided in European coun-
tries, with the UK, Mexico, and the US being the only non-EU countries with more than
10 annotators. 23.8% reported as being a full-time student, with the rest either reporting as
not being a student or having no data available. Further work is required in order to investi-
gate the impact of demographic factors on the subjective interpretation of the opinions and
arguments involved [352].

4.5.2 Phase 1: Key Argument Annotation
In Phase 1, individual annotators were guided through 51 opinions each and asked to anno-
tate the observed arguments. Table 4.6 shows the number of different operations annotators
perform over the 51 opinions. On average, the annotators identified 15 unique key argu-
ments per option. About half of the opinions were skipped, mainly because the opinion
lacked a clear argument. Since the opinions had been automatically translated, we also pro-
vided annotators with the option to skip an opinion due to an unclear translation. Out of 51
actions, annotators reported mistranslations in 6, 7, and 2 opinions on average for young,
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Phase 1 Phase 2
Option # Args # Skip # Already ∆ τ

young 18.0 (5.5) 23.4 (5.4) 11.4 (9.0) -61.6% 0.34
immune 12.8 (2.6) 31.4 (4.5) 8.6 (4.4) -59.1% 0.42
reopen 13.8 (7.6) 29.2 (11.5) 10.2 (7.6) -59.8% 0.41

Table 4.6: The average annotation operations (and their standard deviation) in Phase 1, and obtained statistics for
Phase 2.

0 0.2 0.4 0.6 0.8 1

reopen (N=69)

immune (N=66)

young (N=90)

Overlap ratio

Figure 4.5: Distribution of argument overlap ratio for arguments generated by Key Argument Annotation in Phase
1.

immune, and reopen, respectively.
This is a positive result since the noise (i.e., irrelevant or non-argumentative opinions) in

public feedback can bemuch higher. Thus, the argument quality classifier we incorporate for
opinion sampling is effective in filtering noise. Further, the annotators marked only about
15% of the encountered opinions as already annotated key arguments, which shows that the
FFT approach is effective in sampling a diverse set of opinions for annotation.

Our instructions did not include an explicit mention of whether copying from the opin-
ion text was allowed, but we observed that annotators often paraphrased arguments from
opinions. To examine the behavior of the annotators, we measured the amount of text that
was literally copied from the opinions. To do so, we take the largest common substring on
the character level between opinion text and argument and divide it by the length of the
argument. In Figure 4.5, we show the distribution of overlap ratios across all extracted argu-
ments. While some arguments do get copied verbatim (overlap ratio of 1), across all three
corpora annotators generally rephrase the arguments. This shows that, in HyEnA, human
intervention acts in shaping the arguments extracted from the opinions, rather than sim-
ply copying part of an opinion (as automated methods would do). Table 4.7 shows some
examples of arguments extracted with different overlap ratios.

The topic models for each option generated a large variety of topics. After the generation
of the topicmodels T , we retain only the top-15most frequent topics tomake the annotation
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Option Opinion Text Extracted Argument Overlap
Ratio

young Our daughter misses her friends so
much and I notice that she really
needs it

Positive for the psychological
health of children

0.060

immune Keep one system, keep it simple.
Not too many deviations.

Everyone should be subject
to the same set of rules/re-
strictions.

0.091

immune Too little research has been done to
limit the measures for people who
are immune and too few opportuni-
ties to test it. In addition, it is diffi-
cult to control.

It is difficult to control.
1.000

reopen These measures are quite easy to
take compared to the unselected
measures.

Measures are easy to take com-
pared to the unselected mea-
sures

0.820

Table 4.7: Examples of extracted arguments in Phase 1 of HyEnA. Overlapping character sequences are highlighted
in green.

Option |T |
Number of
duplicates Kept

Average
rating

young 59 1 12 4.4
immune 56 2 12 4.4
reopen 72 0 14 4.0

Table 4.8: Expert topic generation statistics in Phase 1.

feasible. Our experts eliminated one, two, and zero topics as duplicates in the three options
(Table 4.8). On average, the coherence scores—ranging from 1 (low) to 5 (high)—are high.
This suggests that these topics were suitable for assignment to the arguments stemming from
the crowd-extracted arguments. Table 4.9 shows examples from the final list of topics, with
low-scoring topics removed.

4.5.3 Phase 2: Key Argument Consolidation
In Phase 2, HyEnA uses the Power algorithm to guide human annotations on arguments
similarity, with the intent of creating clusters of similar arguments across all arguments
individually annotated in Phase 1. Table 4.6 (right side) shows the benefit of the Power
algorithm—the number of pairs requiring human annotation (∆) was on average reduced by
60%. The transitivity scores τ [283] measure the extent to which transitivity holds among
the similarity labels of argument pairs. The low τ scores indicate the need for subsequent
clustering, given that there are no clear graph components in which all arguments are simi-
lar.

Figure 4.6 compares Louvain and spectral clustering for extracting argument clusters.
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Option Clarity Rating Topic words

young 4.5 immune entertainment hospitality restrictions
4 infection immunity risk infected
4 virus susceptible spread transmit
4.5 schools reopen education students
5 risk limited low dangerous
5 group risk target least

immune 4.5 homes nursing care vulnerable
4 netherlands country provinces dutch
5 risk contamination danger dangerous
4.5 work companies home economy
5 entertainment hospitality catering industry

reopen 5 homes nursing care vulnerable
4 netherlands friesland groningen dutch
5 risk hospitality entertainment dangerous
3 mental health income decrease
3 measures rules these should

Table 4.9: Examples of topics generated in Phase 1, including the top 4 words and the average clarity rating. Option-
specific topics are emphasized.

Generally, both methods show a clear minimum for obtaining the final argument clusters.
Louvain clustering yields the smallest error for the young and immune corpora, and spectral
clustering for reopen corpus. These methods create 20, 14, and 18 clusters respectively. We
pick these clusters as input to the argument selection phase.

Not all arguments inside the same cluster are constrained to have the same stance (pro or
con) towards the policy option. We count what proportion of arguments in the cluster do not
adhere to the majority stance. The distribution of stances scores is visualized in Figure 4.7.
While we see that the upper limit is that half the arguments in each cluster are not agree-
ing with the majority label, the average ratio denotes that only a small fraction of argument
stances do not agree with the majority stance label. This shows that the clusters generally
represent a coherent distribution of arguments with similar stances to each policy option.
The ratio on average is lowest for immune, which is the option with the highest ratio of con
opinions.

4.5.4 Phase 3: Key Argument Selection
In Phase 3, we compare five Argument Selection methods for extracting a representative
argument for each of the clusters obtained in Phase 2. We first perform an odd-one-out task
to evaluate the coherence of the clusters according to each testedArgument Selectionmethod
(see Section 4.4.3 for additional details). Then, we evaluate the quality of the arguments that
are selected to represent clusters.

Odd-one-out task Figure 4.8 shows the results of the odd-one-out evaluation. We perform
pairwise statistical analysis by employing McNemar’s test [101] with Holm-Bonferroni cor-
rection on multiple tests [4]. The test results indicate whether methods significantly differ
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Figure 4.6: Error rate E for different parameters per clustering method (resolution parameter r for Louvain, k
clusters for spectral) for each corpus in Phase 2.

in their misclassifications. We observe that only Llama–random does not have a significant
difference in error proportions and can thus be assumed to perform similarly to each other.
Conversely, two out of three methods outperform the random baseline. This indicates that
thesemethods identify clustermembership relatively consistently with the results of HyEnA,
although with considerable error rates. For Llama, we encountered a strong position bias
with respect to the ordering of the triple: independently of which was the odd-one-out argu-
ment, the model primarily picks arguments at a specific index. This causes its performance
to be similar to random picking. We attribute this to the lack of instruction tuning for the
Llama model.

EvaluatingArgument Selection To select the best-performingArgument Selectionmethod,
we compare BERTScores in Figure 4.9. We use the Kruskal-Wallis test (a non-parametric al-
ternative to ANOVA since the scores are not normally distributed) to test whether all me-
dians are equal at a 5% significance level [212]. Since we obtain a score well below our
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Figure 4.8: Accuracy on the odd-one-out task per method. Key Argument Selection methods marked with = do
not significantly differ (p < 0.05) in their error proportions.

threshold, we conduct a post-hoc follow-up to identify pairs of significantly different Key
Argument Selection methods. We employ Dunn’s multiple comparisons of mean rank sums
[107] with Holm-Bonferroni correction on multiple tests [4].

All extractive methods have a higher standard deviation than the generative methods.
Some selected representative arguments likely caused the high maxima for extractive meth-
ods, since they are copied verbatim from opinions in the corpus. Conversely, the low min-
ima are due to the extractivemethods’ inability to find representatives from the cluster (since
there may be noisy clusters, see Figure 4.8). For the abstractive methods, the lower bound
is higher, showing how rephrasing the selected argument makes it more related to all ar-
guments inside a cluster. Between the abstractive methods, ChatGPT has a higher standard
deviation than Llama. Sincewe did not perform extensive prompt engineering, there is room
for improvement in both methods with better-crafted prompts.

The only significantly different method is Llama, with all others achieving similar BERT-
Score performance. Surprisingly, none of the approaches on average performs considerably
better than random. This suggests that selecting a representative argument from the cluster
is relatively simple in practice because the argument clusters are sufficiently coherent. How-
ever, in the final evaluation, humans will be judging the match between selected arguments
and individual opinions. Here, we strive for a better worst-case performance—we care less
about having perfect matches, but rather wish to have fewer misrepresentation errors. Thus,
given the comparable averages, we opt for the method with the highest lower boundary (the
abstractive methods) and higher median score (ChatGPT outperforms Llama significantly),
which we use for the remainder of the experiments.

Finally, we compare the output of Phase 3 ofHyEnA against a versionwhere the selection
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Figure 4.9: Aggregated BERTScore for the different Key Argument Selection methods across all corpora and argu-
ment clusters (Phase 3). Method pairs indicated by ** differ significantly from each other in median performance
(p < 0.05).

Method young immune reopen Overall
HyEnA 0.816 0.833 0.641 0.765
HyEnA w/o Phase 3 0.787 0.848 0.739 0.789

Table 4.10: Comparing Precision (P) scores with and without Phase 3 (Key Argument Selection phase).

was manual. In particular, we take the extractions from Phase 1 and re-evaluate them using
a new set of annotators. In Table 4.10, we show the difference in Precision (Equation 4.8).

We find that the addition of Argument Selection on average has a slight negative impact
on the ability of annotators to match opinions and arguments. Most interestingly, when
comparing argument matches for the same set of opinions before and after the addition of
Argument Selection, we find that there is only fair agreement between the re-matched labels
(Cohen κ = 0.255). This indicates that the argument selection phase makes annotating the
match for someopinions to selected key arguments easierwhilemaking othersmore difficult.
Selecting arguments using ChatGPT generates key arguments that are representative of the
entire cluster, which can be more general than the arguments extracted by annotators from
individual opinions. On the one hand, this can cause external annotators to not recognize
the specific argument from a given opinion. On the other hand, it may result in annotators
matching opinions and arguments on a more abstract level.

4.5.5 Comparison with Automated Baseline
Figure 4.10 compares the coverage, precision, and diversity scores of HyEnA and ArgKP.
The low coverage (for both methods) indicates that a large number of opinions do not map
to a key argument. This is not surprising since real-world opinions are noisy.

Considering all observed opinions (CH and CA), HyEnA yields slightly higher coverage
than ArgKP in the young and reopen corpora. In contrast, ArgKP yields higher coverage
than HyEnA in the immune corpus. We attribute this to the repeated arguments in the im-
mune corpus. As 83% of opinions are con-opinions, the immune policy option (Table 4.1)
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Figure 4.10: Comparing HyEnA and ArgKP.

was highly opposed and its corpus contains many repeated arguments. Since the set of all
observed opinions is the entire corpus for ArgKP, the repeated arguments inflate its cover-
age. However, since HyEnA is designed to observe only a small subset of diverse opinions
from the corpus, the repeated arguments do not influence its coverage significantly. This is
corroborated in the diversity scores, where we observe HyEnA to consistently output a set
of arguments that is more diverse than the ones produced by ArgKP.

In addition to comparing coverage over observed opinions, we compare the coverage of
HyEnA and ArgKP with respect to a common set of diverse opinions. In this comparison
(Ccommon

H and Ccommon
A ), HyEnA yields consistently higher coverage (0.34 on average) than

ArgKP (0.16 on average) in all three corpora. ArgKP often fails to recognize the key argu-
ments in the diverse set of opinions included by HyEnA.

ArgKP yields a larger number of key arguments (around 30 for each option) thanHyEnA.
However, these arguments lead to an average precision of 0.56. In contrast, HyEnA extracts
fewer argument clusters (on average 17 per option), but with higher precision (0.80).

4.5.6 Comparison with Manual Baseline
Table 4.11 shows counts of overlapping (yes, yes), missing (no, yes), and new (yes, no) key
arguments between HyEnA and the manual baseline. HyEnA required an analysis of 765
opinions, compared to the estimated 3,000 opinions seen in the manual baseline. Despite
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Manual baseline
young immune reopen

yes no yes no yes no

HyEnA yes 8 7 7 2 10 1
no 1 – 0 – 4 –

Table 4.11: A confusion matrix comparing the key argument lists generated by HyEnA and manual baseline. The
complete mapping is given in Appendix C.3.

the lower human effort, the HyEnA lists largely overlap with the expert lists.
HyEnA missed some key arguments that the experts identified, e.g., a key argument

about building herd immunity was not in the HyEnA list for the reopen option. We con-
jecture that increasing the number of opinions annotated in HyEnA would subsequently
yield the missing insights. HyEnA also led to new insights that experts missed, e.g., an argu-
ment about the physical well-being of young people was not on the expert list for the young
option. Likely, the larger (random) sample of opinions experts analyzed did not include
opinions supporting this argument, whereas the smaller (intelligently selected) set sampled
in HyEnA did.

4.6 Discussion
We find that HyEnA exploits the strengths of automated methods and the insights from hu-
man annotation. HyEnA outperformed an automated KPA model in terms of precision and
diversity, and on a diverse set of opinions, can capture more nuanced arguments. Further,
HyEnA expanded beyond an expert analysis, showing how a fully manual procedure may
also be limited. In the remainder of this section, we expand on three specific aspects.

Limitations Our experimental setup and comparisons are limited in their scope in mul-
tiple ways, thus making our conclusions hard to generalize. Our choice of baseline is the
ArgKP model, which was optimized for the task of extracting Key Arguments from a corpus
of opinions. However, other automated baselines are conceivable, especially with the intro-
duction of the current generation of flexible LLMs (e.g., ChatGPT, Llama). Those models
may be employed for KPA by using prompting techniques [245]. The capabilities of these
models seem to imply that they have access to higher order argumentation knowledge [223],
and thus would fare better than the basic ArgKP model. However, having such LLMs reli-
ably process large amounts of citizen feedback without hallucinations is a nontrivial task,
and the danger of models synthesizing ungrounded arguments exists [185]. In this process,
due diligence to preserve a variety of perspectives is required (e.g., by optimizing for a range
of opinions instead of single-annotator labels, Bakker et al. [28], Van Der Meer et al. [402])
in order to prevent rampant misrepresentation of marginalized demographics.

Instead of relying solely on the judgment of an LLM for the task of KPA, we opted to
include one in the final step of HyEnA. While some of the criticism for using an LLM for
end-to-end KPA still holds for the Argument Selection step as well, our method investigated
amore controlled setup, supported by an objective task definition. Through our comparisons
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with random and human-generated labels, we aim to show where, how, and to what extent
LLMs may aid in the KPA process. As ever, the choice of metrics remains important for
measuring the effect size.

BalancingTaskAllocation Thepairwise comparison in the consolidation phase is themost
human-intensive task in HyEnA, and the effort increases with the number of analyzed opin-
ions. Also, comparing arguments is cognitively demanding, partly evidenced by the low IRR.
While HyEnA reduced the number of comparisons required in the consolidation phase by
60%, wemay experiment with different setups or other techniques for comparing arguments
to remove this overhead. For example, first clustering the key arguments and then consoli-
dating the arguments within these clusters (reverse order as HyEnA) may drastically reduce
the number of judgments required in the second phase. Furthermore, future versions of
HyEnA could benefit from investigating why annotators disagreed on labels in each phase,
as it can lead to possible improvements in the annotation task.

We place human efforts in places where there are multiple bidirectional benefits possi-
ble stemming from performing the task. For instance, the Argument Annotation task both
serves the purpose of analyzing the opinions to progress ourmethod, as well as actively mak-
ing annotators perform perspective-taking. On multiple occasions, annotators noted their
increase in sympathy and recognition of the issues raised in the comments, showcasing how
the task could further help bring understanding to a group of citizens.

Ablations studies All parts of the HyEnA pipeline are open to adjustment and can be per-
formed by humans, machines, or a combination. In this work, we presented a specific ver-
sion of this pipeline, but other ways of combining humans and AI are possible. However, the
impact of choosing specific components remains unclear for parts of the pipeline, since we
experimentedwith a single algorithm in some cases (e.g., the use of Power in KeyArgument
Consolidation, or the LLMs in Key Argument Selection).

HyEnA presents a general framework that allows individual phases to be supported by
different types of technologies and different groups of crowd/expert annotators. Within this
hybrid framework, we considered the following criteria when deciding to allocate tasks to
humans or AImethods: (1) let humans read other’s opinions to promote perspective-taking,
(2) use humans to solve taskswhereAImethodsmay incur considerable error, (3) leverageAI
methods for routine tasks, and (4) use task-specific intrinsic evaluation metrics for selecting
the right method.

In each phase, we perform both intrinsic evaluation (e.g., observe error rates for partic-
ular tasks or annotator behavior) and extrinsic evaluation against two baselines. This fits a
standardized machine learning pipeline, except that we are now able to (1) evaluate annota-
tor behavior and model performance jointly, and (2) make decisions on which techniques
to use based on some intermediate statistic. We believe this setup to be generalizable for Hy-
brid Intelligence systems, as it makes the role of the designer and their decisions explicit [5].
Furthermore, the results remain interpretable, as any decision made by either annotators or
models can be traced from opinion to selected key argument.

Different configurations of the HyEnA framework are possible, and the one we have
presented is an instance that tackles the problem of policy feedback analysis. HyEnA is a
complex combination of AI methods and human annotation. Our main objective was to
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present the HyEnA framework, as well as a real-world use case to show the benefit of using
a Hybrid Intelligent methodology. However, other choices for individual components of
HyEnA can be used, or parts of the method can be performed solely by humans or AI meth-
ods. We leave this open for future work, as swapping out components is not straightforward
and requires considerable amounts of work. We envision research to come up with similar
use cases where HI can make a significant impact.

4.7 Conclusion and Future Directions
We develop and evaluate HyEnA, a hybrid method that combines human judgments with
automated methods to generate a diverse set of key arguments. HyEnA extracts key ar-
guments from noisy opinions and achieves consistent coverage, whereas the coverage of a
state-of-the-art automated method drops by 50% when switching from all (containing re-
peated) opinions to diverse opinions. Moreover, the key arguments extracted by HyEnA are
more precise than those extracted by the automated baseline. Additionally, HyEnA provides
important insights that were not included in an expert-driven analysis of the same corpus,
despite requiring fewer opinions to be analyzed.

Finding arguments in a discourse is only one aspect that constitutes the perspectives in a
discussion. Future work can incorporate analysis of other perspective factors, such as values
[238, 400], sentiment, emotion, and attribution [411]. By combining these rich aspects with
arguments, we canmerge the logical basis of the discussionwith other semantic and syntactic
information, allowing close scrutiny of the perspectives in opinions.

Ethical Considerations
This chapter develops and evaluates a hybrid (human and AI) approach to extracting key
arguments from an opinion corpus. The intended use case for our method is synthesizing
key arguments that are grounded in opinionated policy-related comments, by using a pool
of annotators. We identify two main aspects of risk in our method.

First, we aim tomitigate the effect of individual biases by grounding the key arguments in
general public user opinions. However, the key argument extraction is ultimately performed
by individual annotators. We address the influence of subjectivity and noise by combining
multiple annotators in the consolidation phase. Further, as our method is transparent, the
complete annotation process (from opinions to consolidated key arguments) is traceable.
One could implement additional checks on annotator behavior as a bias-mitigating factor,
which is a significant research challenge on its own.

Second, the diversity of the opinion embeddings is contingent on the representational
quality of the S-BERTmodel. Underlying biases in its representationmay influence the opin-
ions sampled. However, we use FFT to actively sample diverse opinions, which can reduce
the impact of inaccurate embeddings.
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5
Annotator-Centric Active Learning

for Subjective NLP Tasks

Active Learning (AL) addresses the high costs of collecting human annotations by strategically
annotating the most informative samples. However, for subjective NLP tasks, incorporating a
wide range of perspectives in the annotation process is crucial to capture the variability in hu-
man judgments. We introduce Annotator-Centric Active Learning (ACAL), which incorporates
an annotator selection strategy following data sampling. Our objective is two-fold: (1) to effi-
ciently approximate the full diversity of human judgments, and (2) to assess model performance
using annotator-centric metrics, which value minority and majority perspectives equally. We
experiment with multiple annotator selection strategies across seven subjective NLP tasks, em-
ploying both traditional and novel, human-centered evaluation metrics. Our findings indicate
that ACAL improves data efficiency and excels in annotator-centric performance evaluations.
However, its success depends on the availability of a sufficiently large and diverse pool of anno-
tators to sample from.

 Michiel van der Meer, Neele Falk, Pradeep K. Murukannaiah, Enrico Liscio. 2024. Annotator-Centric
Active Learning for Subjective NLP Tasks. In Proceedings of the 2024 Conference on Empirical Methods in Natural
Language Processing, pages 18537–18555, Miami, Florida, USA. Association for Computational Linguistics.
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5.1 Introduction
A challenging aspect of natural language understanding (NLU) is the variability of human
judgment and interpretation in subjective tasks (e.g., hate speech detection) [302]. In a sub-
jective task, a data sample is typically labeled by a set of annotators, and differences in anno-
tation are reconciled via majority voting, resulting in a single (supposedly, true) “gold label”
[393]. However, this approach has been criticized for treating label variation exclusively as
noise, which is especially problematic in sensitive subjective tasks [21] since it can lead to
the exclusion of minority voices [228].

Subjectivity can be addressed by modeling the full distribution of annotations for each
data sample instead of employing gold labels [302]. However, resources for such approaches
are scarce, as most datasets do not (yet) make fine-grained annotation details available [61],
and representing a full range of perspectives is contingent on obtaining costly annotations
from a diverse set of annotators [28].

Oneway to handle a limited annotation budget is to useActive Learning [350, AL]. Given
a pool of unannotated data samples, AL employs a sample selection strategy to obtain max-
imally informative samples, retrieving the corresponding annotations from a ground truth
oracle (e.g., a single human expert). However, in subjective tasks, there is no such oracle.
Instead, we rely on a set of available annotators. Demanding all available annotators to an-
notate all samples would provide a truthful representation of the annotation distribution,
but is often unfeasible, especially if the pool of annotators is large. Thus, deciding which
annotator(s) should annotate is as critical as deciding which samples to annotate.

Inmost practical applications, annotators are randomly selected. This results in an anno-
tation distribution insensitive to outlier annotators—most annotations reflect the majority
voices and fewer reflect the minority voices. This may not be desirable in applications such
as hate speech, where the opinions of the majority and minority should be valued equally.
In such cases, a more deliberate annotator selection is required. To ensure a balanced repre-
sentation of majority andminority voices, we leverage strategies inspired by Rawls’ principle
of fairness [313], which advocates that a fair society is achieved when the well-being of the
worst-off members of society (the minority annotators, in this case) is maximized.

We introduceAnnotator-CentricActive Learning (ACAL) to emphasize and control who
annotates which sample. In ACAL (Figure 5.1), the sample selection strategy of traditional
AL is followed by an annotator selection strategy, indicating which of the available annotators
should annotate each selected data sample.

Contributions (1) We present ACAL as an extension of the AL approach and introduce
three annotator selection strategies aimed at collecting a balanced distribution of minority
and majority annotations. (2) We introduce a suite of annotator-centric evaluation met-
rics to measure how individual and minority annotators are modeled. (3) We demonstrate
ACAL’s effectiveness in three datasets with subjective tasks—hate speech detection, moral
value classification, and safety judgments.

Our experiments show that the proposed ACAL methods can approximate the distri-
bution of human judgments similar to AL while requiring a lower annotation budget and
modeling individual and minority voices more accurately. However, our evaluation shows
how the task’s annotator agreement and the number of available annotations impact ACAL’s
effectiveness—ACAL is most effective when a large pool of diverse annotators is available.
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Figure 5.1: Active Learning (AL) approaches (left) use a sample selection strategy to pick samples to be annotated
by an oracle. The Annotator-Centric Active Learning (ACAL) approach (right) extends AL by introducing an an-
notator selection strategy to choose the annotators who annotate the selected samples.

Importantly, our experiments show how the ACAL framework controls howmodels learn to
represent majority and minority annotations. This is crucial for subjective and sensitive ap-
plications such as detecting human values and morality [203, 239], argument mining [405],
and hate speech [198].

5.2 Related work
5.2.1 Learning with annotator disagreement
Modeling annotator disagreement is garnering increasing attention [21, 61, 302, 393]. Chang-
ing annotation aggregation methods can lead to a fairer representation than simple majority
[171, 380]. Alternatively, the full annotation distribution can be modeled using soft labels
[79, 277, 300]. Other approaches leverage annotator-specific information, e.g., by includ-
ing individual classification heads per annotator [89], embedding annotator behavior [269],
or encoding the annotator’s socio-demographic information [44]. Yet, modeling annotator
diversity remains challenging. Standard calibration metrics under human label variation
may be unsuitable, especially when the variation is high [24]. Trade-offs ought to be made
between collecting more samples or more annotations [149]. Further, solely measuring dif-
ferences among sociodemographic traits is not sufficient to capture opinion diversity [291].
Instead, we represent diversity based on which annotators annotated what and how. We ex-
periment with annotator selection strategies to reveal what aspects impact task performance
and annotation budget.

5.2.2 Active Learning
AL enables a supervised learning model to achieve high performance by judiciously choos-
ing a few training examples [350]. In a typical AL scenario, a large collection of unlabeled
data is available, and an oracle (e.g., a human expert) is asked to annotate this unlabeled
data. A sampling strategy is used to iteratively select the next batch of unlabeled data for
annotation [316]. AL has found widespread application in NLP [451]. Two main strategies
are employed, either by selecting the unlabeled samples on which the model prediction is
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most uncertain [450], or by selecting samples that are most representative of the unlabeled
dataset [116, 452]. The combination of AL and annotator diversity is a novel direction. Exist-
ing works propose to align model and annotator uncertainties [39], adapt annotator-specific
classification heads in AL settings [421], or select texts to annotate based on annotator pref-
erences [192]. These methods ignore a crucial part of learning with human variation: the
diversity among annotators. We focus on selecting annotators such that they best inform us
about the underlying label diversity.

5.3 Method
First, we define the soft-label prediction task we use to train a supervised model. Then, we
introduce the traditional AL and the novel ACAL approaches.

5.3.1 Soft-label prediction
Consider a dataset of triples {xi,a j,yi j}, where xi is a data sample (i.e., a piece of text) and
yi j ∈C is the class label assigned by annotator a j . The multiple labels assigned to a sample
xi by the different annotators are usually combined into an aggregated label ŷi. For training
with soft labels (i.e. non-binary class assignment), the aggregation typically takes the form
of maximum likelihood estimation [393]:

ŷi(x) =
∑N

i=1[xi = x][yi j = c]

∑N
i=1[xi = x]

(5.1)

In our experiments, we use a passive learning approach that uses all available {xi, ŷi} to
train a model fθ with cross-entropy loss as a baseline.

5.3.2 Active Learning
AL imposes a sampling technique for inputs xi, such that the most informative sample(s) are
picked for learning. In a typical AL approach, a set of unlabelled data points U is available.
At every iteration, a sample selection strategy S selects samples xi ∈U to be annotated by
an oracle O that provides the ground truth label distribution ŷi. The selected samples and
annotations are added to the labeled data D, with which the model fθ is trained. Alg. 1
provides an overview of the procedure.

Algorithm 1: AL approach.
input: Unlabeled data U , Data sampling strategy S , OracleO
D0←{}
for n = 1..N do

sample data points xi from U using S
obtain annotation ŷi for xi fromO Dn+1 = Dn +{xi, ŷi}
train fθ on Dn+1

end

In the sample selection strategies, a batch of data of a given size B is queried at each
iteration. Our experiments compare the following strategies:
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Random (SR) selects a B samples uniformly at random from U .
Uncertainty (SU ) predicts a distribution over class labels with fθ (xi) for each xi ∈U , and
selects B samples with the highest prediction entropy (the samples the model is most uncer-
tain about).

5.3.3 Annotator-Centric Active Learning
ACAL builds on AL. In contrast to AL, which retrieves an aggregated annotation ŷi, ACAL
employs an annotator selection strategy T to select one annotator and their annotation for
each selected data point xi. Alg. 2 describes the ACAL approach.

Algorithm 2: ACAL approach.
input: Unlabeled data U , Data sampling strategy S , Annotator sampling strategy T
D0←{}
for n = 1..N do

sample data points xi from U using S
sample annotators a j for xi using T
obtain annotation yi j from a j for xi
Dn+1 = Dn +{xi,yi j}
train fθ on Dn+1

end

We propose three annotator selection strategies to gather a distribution that uniformly
contains all possible (majority and minority) labels, inspired by Rawls’ principle of fairness
[313]. The strategies vary in the type of information used to represent differences between
annotators, including what or how the annotators have annotated thus far. Our experiments
compare the following strategies:
Random (TR) randomly selects an annotator a j .
Label Minority (TL) considers only information on how each annotator has annotated so
far (i.e., the labels that they have assigned). The minority label is selected as the class with
the smallest annotation count in the available dataset Dn thus far. Given a new sample, xi, TL
selects the available annotator that has the largest bias toward the minority label compared
to the other available annotators, i.e., who has annotated other samples with the minority
label the most.
Semantic Diversity (TS) considers only information on what each annotator has annotated
so far (i.e., the samples that they have annotated). Given a new sample xi selected through S ,
TS selects the available annotator for whom xi is semantically the most different from what
the annotator has labeled so far. To measure this difference for an annotator a j , we employ
a sentence embedding model to measure the cosine distance between the embeddings of xi
and embeddings of all the samples annotated by a j . We then take the average of all semantic
similarities. The annotator with the lowest average similarity score is selected.
Representation Diversity (TD) selects the annotator that has the lowest similarity on aver-
age with all other annotators available for that item. We create a representation for each
annotator by averaging the embeddings of samples annotated by a j together with their re-
spective labels, followed by computing the pair-wise cosine similarity between all annotators.
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5.4 Experimental Setup
We describe the experimental setup for the comparisons between ACAL strategies. In all
our experiments, we employ a TinyBERT model [187] to reduce the number of trainable
parameters. Appendix D.1 includes a detailed overview of the computational setup and hy-
perparameters. We make the code for the ACAL strategies and evaluation metrics available
via GitHub.¹

5.4.1 Datasets
We use three datasets which vary in domain, annotation task (in italics), annotator count,
and annotations per instance.
The DICES Corpus [22] is composed of 990 conversations with an LLM where 172 annota-
tors provided judgments on whether a generated response can be deemed safe (3-way judg-
ments: yes, no, unsure). Samples have 73 annotations on average. We perform a multi-class
classification of the judgments.
The MFTC Corpus [169] is composed of 35K tweets that 23 annotators annotated with any
of the 10moral elements from theMoral FoundationTheory [142]. We select the elements of
loyalty (lowest annotation count), care (average count), and betrayal (highest count). Sam-
ples have 4 annotations on average. We create three binary classifications to predict the
presence of the respective elements. As most tweets were labeled as non-moral (i.e., with no
moral element), we balanced the datasets by subsampling the non-moral class.
The MHS Corpus [328] consists of 50K social media comments on which 8K annotators
judged three hate speech aspects—dehumanize (low inter-rater agreement), respect (medium
agreement), and genocide (high agreement)—on a 5-point Likert scale. Samples have 3 anno-
tations on average. We perform a multi-class classification with the annotated Likert scores
for each task.

Thedatasets and tasks differ in levels of annotator agreement,measured via entropy of the
annotation distribution. DICES and MHS generally have medium entropy scores, whereas
the MFTC entropy is highly polarized (divided between samples with very high and very
low agreement). Appendix D.1.5 provides details of the entropy scores.

5.4.2 Evaluation metrics
The ACAL strategies aim to guide the model to learn a representative distribution of the
annotator’s perspectives while reducing annotation effort. To this end, we evaluate themodel
both with a traditional evaluation metric and a metric aimed at comparing predicted and
annotated distributions:
Macro F1-score (F1) For each sample in the test set, we select the label predicted by the
model with the highest confidence, determine the golden label through amajority agreement
aggregation, and compute the resulting macro F1-score.
Jensen-Shannon Divergence (JS) The JS measures the divergence between the distribu-
tion of label annotation and prediction [286]. We report the average JS for the samples
in the test set to measure how well the model can represent the annotation distribution.

¹https://github.com/m0re4u/acal-subjective

https://github.com/m0re4u/acal-subjective


5.5 Results

5

79

Further, since ACAL shifts the focus to annotators, we introduce novel annotator-centric
evaluation metrics. First, we report the average among annotators. Second, in line with
Rawls’ principle of fairness, the result for the worst-off annotators:
Per-annotator F1 (Fa

1 ) and JS (JSa) We compute the F1 (or JS) for each annotator in the
test set using their annotations as golden labels (or target distribution), and average it.
Worst per-annotator F1 (Fw

1 ) and JS (JSw) We compute the F1 (or JS) for each annotator
in the test set using their annotations as golden labels (or target distribution), and report the
average of the lowest 10% to mitigate noise.

These metrics allow us to measure the trade-offs between modeling the majority agree-
ment, a representative distribution of annotations, and accounting for minority voices. In
the next section, we describe how we obtained the results.

5.4.3 Training procedure
We test the annotator selection strategies proposed in Section 5.3.3 by comparing all combi-
nations of the two sample selection strategies (SR and SU ) and the four annotator selection
strategies (TR, TL, TS, and TD). At each iteration, we use S to select B unique samples from
the unlabeled data poolU . We select B as the smallest between 5% of the number of available
annotations and the number of unique samples in the training set. For each selected sample
xi, we use T to select one annotator and retrieve their annotation yi j .

We split each dataset into 80% train, 10% validation, and 10% test. We start the training
procedure with a warmup iteration of B randomly selected annotations [451]. We proceed
with the ACAL iterations by combining S and T . We select the model checkpoint across all
AL iterations that led to the best JS performance on the validation set and evaluate it on the
test set. We repeat this process across three data splits and model initializations. We report
the average scores on the test set.

We compareACALwith traditional oracle-basedAL approaches (SRO andSUO), which
use the data sampling strategies but obtain all possible annotations for each sample as in
Alg. 1. Further, we employ a passive learning (PL) approach as an upper bound by training
the model on the full dataset, thus observing all available samples and annotations. Similar
to ACAL, the AL and PL baselines are averaged over three seeds.

5.5 Results
We start by highlighting the benefits of ACAL over AL and PL (Section 5.5.1). Next, we
closely examine ACAL on efficiency and fairness (Section 5.5.2). Then, we select a few cases
of interest and dive deeper into the strategies’ behavior during training (Section 5.5.3). Fi-
nally, we investigate ACAL across varying levels of subjectivity (Section 5.5.4).

5.5.1 Highlights
Our experiments show that ACAL can have a beneficial impact over using PL and AL. Fig-
ure 5.2 highlights twomain findings: (1)ACAL strategies canmore quickly learn to represent
the annotation distributionwith a large pool of annotators, and (2) when agreement between
annotators is polarized, ACAL leads to improved results compared to learning from aggre-
gated labels. In the next sections, we provide a deeper understanding of the conditions in
which ACAL works well.
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Figure 5.2: Learning curves showing model performance on the validation set. On DICES (upper), ACAL ap-
proaches are quicker than AL in obtaining similar performance to passive learning. On MHS (lower), ACAL sur-
passes passive learning in F1 when data has high disagreement.

5.5.2 Efficiency and Fairness
Table 5.1 presents the results of evaluating the best models (those with the highest JS scores
on the validation set) on the test set. We analyze the results along two dimensions: (a) ef-
ficiency: what is the impact of the different strategies on the trade-off between annotation
budget and performance? (b) fairness: do the selection strategies that aim for a balanced con-
sideration of minority and majority views lead to better performance in the human-centric
evaluationmetrics? ForMFTCwe focus on care because it has an average number of samples
available, and for MHS we focus on dehumanize because it has high levels of disagreement.
Appendix C.3 presents the remainder of the results.

Efficiency We discuss the performance on F1 and JS to measure how well the proposed
strategies model label distributions and examine the used annotator budget. Across all tasks
and datasets, ACAL andAL consistently yield comparable or superior F1 and JS with a lower
annotation budget than PL. When comparing ACAL with AL, the results vary depending on
the task and dataset. For DICES, there is a significant benefit to using ACAL, as it can save
up to ∼40% of the annotation budget while yielding better scores across all metrics than
AL. With AL, we observe only a small reduction in annotation cost. For MFTC, AL with
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Average Worst-off
App. F1 JS Fa

1 JSa Fw
1 JSw ∆%

D
IC

ES

SRTR 53.2 .100 43.2 .186 16.7 .453 -36.8
SRTL 55.5 .101 42.4 .187 15.5 .450 -32.7
SRTS 61.0 .103 44.2 .186 16.4 .447 -35.5
SRTD 58.9 .142 43.1 .203 16.9 .370 -30.0
SUTR 53.2 .100 43.2 .186 16.7 .453 -36.8
SUTL 55.5 .101 42.4 .187 15.5 .450 -32.7
SUTS 63.1 .098 43.9 .187 18.4 .447 -38.2
SUTD 58.9 .142 43.1 .203 16.9 .370 -30.0

SRO 59.1 .112 41.4 .191 13.3 .425 -0.1
SUO 46.2 .110 38.4 .192 11.7 .427 -0.1
PL 59.0 .105 37.1 .211 12.3 .479 –

M
FT

C
(c

ar
e)

SRTR 78.9 .038 61.1 .141 37.7 .247 -1.6
SRTL 78.5 .037 61.6 .142 39.2 .249 -0.4
SRTS 78.1 .039 60.0 .145 35.1 .248 -1.7
SRTD 76.6 .040 60.4 .144 35.7 .243 -1.7
SUTR 79.4 .038 61.2 .143 37.7 .252 -5.6
SUTL 80.7 .037 58.9 .142 42.3 .248 -2.5
SUTS 79.1 .037 60.8 .143 39.9 .258 -1.1
SUTD 78.1 .040 58.6 .145 35.7 .253 -2.5

SRO 79.0 .037 58.6 .141 39.2 .255 -0.2
SUO 79.4 .037 58.3 .144 35.7 .253 -12.7
PL 81.1 .032 51.2 .179 37.7 .251 –

M
H

S
(d

eh
um

an
iz
e)

SRTR 33.6 .081 31.5 .394 0.0 .489 -50.0
SRTL 33.1 .081 32.2 .397 0.0 .478 -62.5
SRTS 30.5 .079 31.3 .397 0.0 .480 -62.5
SRTD 32.4 .081 31.8 .398 0.0 .479 -62.5
SUTR 32.4 .080 32.2 .389 0.0 .508 -7.8
SUTL 33.1 .080 32.8 .388 0.0 .507 -7.8
SUTS 33.6 .080 32.6 .388 0.0 .506 -7.8
SUTD 33.0 .079 32.6 .384 0.0 .513 -3.0

SRO 32.8 .077 33.9 .387 0.0 .496 -60.1
SUO 33.3 .080 33.1 .390 0.0 .497 -24.7
PL 28.0 .075 20.2 .424 0.0 .547 –

Table 5.1: Test set results on the DICES, MFTC (care), and MHS (dehumanize) datasets. Results report the average
test scores from the best-performing model checkpoint on the validation set (lowest JS), evaluated across three
data splits and model initializations. ∆% denotes the reduction in the annotation budget with respect to passive
learning. In bold, the best performance per column and per dataset (higher F1 are better, lower JS are better).

SU leads to the largest cost benefits (∼12% less annotation budget), but at a cost in terms
of absolute JS and F1. ACAL slightly outperforms AL but does not lead to a decrease in
annotation budget. For MHS, both AL and ACAL significantly reduce the annotation cost
(∼60%) while yielding better scores than PL—however, AL and ACAL do not show substan-
tial performance differences. Overall, when looking at F1 and JS which are aggregated over
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the whole test set, we conclude that ACAL is most efficient when the pool of available anno-
tators for one sample is large (as with the DICES dataset), whereas the difference between
ACAL and AL is negligible with a small pool of annotators per data sample (as with MFTC
and MHS).

Fairness We investigate the extent to which the models represent individual annotators
fairly and capture minority opinions via the annotator-centric evaluation metrics (Fa

1 , JSa,
Fw

1 , and JSw). We observe a substantial improvement when using AL or ACAL over PL.
Further, we observe no single winner-takes-all approach: high F1 and JS scores do not con-
sistently co-occur with high scores for the annotator-centric metrics. This highlights the
need for a more comprehensive evaluation to assess models for subjective tasks. Yet, we ob-
serve that ACAL slightly outperforms AL in modeling individual annotators (JSa and Fa

1 ).
This trend is particularly evident with DICES, again likely due to the large pool of annotators
available per data sample. Lastly, ACAL is best in the worst-off metrics (JSw and Fw

1 ), show-
ing the ability to better represent minority opinions as a direct consequence of the proposed
annotator selection strategies on DICES and MFTC. However, all approaches score 0 for Fw

1
on MHS. This is due to the high disagreement in this dataset: the 10% worst-off annotators
always disagree with a hard label derived from the predicted label distribution. In conclu-
sion, our experiments show that, when a large pool of annotators is available, a targeted
sampling of annotators requires fewer annotations and is fairer. That is, minority opinions
are better represented without large sacrifices in performance compared to the overall label
distribution.
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Figure 5.3: Selected plots showing the Fa
1 and JSw performance on the validation set during the ACAL and AL

iterations for DICES, MFTC (care), and MHS (dehumanize). Higher Fa
1 is better, lower JSw is better. Y-axes are

scaled to highlight the relative performance to PL.
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5.5.3 Convergence
Theevaluation on the test set paints a general picture of the advantage of usingACALoverAL
or PL. In this section, we assess how different ACAL strategies converge over iterations. We
describe themajor patterns across our experiments by analyzing six examples of interest with
Fa

1 and JSw (Figure 5.3). We select Fa
1 because it reveals how well individual annotators are

modeled on average, and JSw to measure how strategies deviate from modeling the majority
perspective. Appendix D.2.2 provides an overview of all metrics.

First, we notice that the trends for Fa
1 and JSw are both increasing—the first is expected,

but the second requires an explanation. As the model is exposed to more annotations over
the training iterations, the predicted label distribution starts to fit the true label distribu-
tion. However, here we consider each annotator individually: JSw reports the average of
the 10% lowest JS scores per annotator. The presence of disagreement implies the existence
of annotators that annotate differently from the majority. Since our models predict the full
distribution, they assign a proportional probability to dissenting annotators. Thus, learning
to model the full distribution of annotations leads to an increase in JSw.

Second, we notice a difference between ACAL and AL. On MFTC and MHS, ACAL,
compared to AL, yields overall smaller JSw at the cost of a slower convergence in Fa

1 , show-
ing the trade-off between modeling all annotators and representing minorities. However,
with DICES the trend is the opposite. This is due to AL having access to the complete label
distribution: it can model a balanced distribution, leading to lower worst-off performance.
With a large number of annotations, ACAL requiresmore iterations to get the same balanced
predicted distribution.

Third, we observe differences among the annotator selection strategies (T ). TD shows
the most differences—both JSw and Fa

1 increase slower than for the other strategies. This
suggests that selecting annotators based on the average embedding of the annotated content
strongest emphasizes diverging label behavior.

Finally, we analyze the impact of the sample selection strategies (S , dotted vs. solid lines
in Figure 5.3). For DICES, SR and SU lead to comparable results, likely due to the low num-
ber of samples. Using SU in MFTC leads to Fa

1 performance decreasing at the start of train-
ing. The strategy prioritizes obtaining annotations for already added samples to lower their
entropy, while the variation in labels is irreconcilable (since there are limited labels available,
and they are in disagreement). We see a similar pattern for MHS.

These results further underline our main finding that ACAL is effective in representing
diverse annotation perspectives when there is a (1) heterogeneous pool of annotators, and
(2) a task that facilitates human label variation.

5.5.4 Impact of subjectivity
We further investigate ACAL strategies on (1) label entropy, and (2) cross-task performance.

Alignment of ACAL strategies during training We want to investigate how well the ACAL
strategies align with the overall subjective annotations: do they drive the model entropy in
the right direction? Wemeasure the entropy of the samples in the labeled training set at each
iteration and compare it to the entropy of all annotations of those samples. Higher entropy
in the labeled training set than the actual entropy suggests that the selection strategy over-
estimates uncertainty. Lower entropy indicates that the model may not sufficiently account
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Figure 5.4: Proportion of data samples that result in higher or lower entropy than the target label distribution per
ACAL strategy.

for disagreement. When the entropy matches the true entropy, the selection strategy is well-
calibrated to strike a healthy middle ground between sampling diverse labels and finding
the majority class. We focus on DICES as a case study due to the wide range of entropy
scores. We group each sample based on the true label entropy into low (< 0.43), medium
(0.43−0.72), and high (> 0.72). We apply the same categorization at each training iteration
for samples labeled thus far. Subsequently, we plot the proportion of data points for which
the selection strategy results in excessively high or excessively low entropy.

Figure 5.4 visualizes the proportions. At the beginning of training, entropy is generally
low because samples have few annotations. Over time, the selected annotations better align
with the true entropy. At the start (at 10K unique annotations), roughly only a third of the
samples have aligned entropy scores (TR = 27%,TS = 27%,TL = 33%,TD = 32%). Further
towards the end of the ACAL iterations, this has increased for all ACAL strategies except TD
(TR = 64%,TS = 62%,TL = 57%,TD = 17%). When and howmuch the strategies succeed in
matching the true label distribution differs: TS and TR take longer to increase label entropy
than the other two strategies. They are conservative in adding diverse labels. TL and TD
increase the proportion of well-aligned data points earlier in the training process, achieving
a balanced entropy alignment sooner. However, both strategies start to overshoot the target
entropy, whereas the others show amore gradual alignment with the true entropy. This effect
is strongest for TD. This finding suggests that minority-aware annotator-selection (TL and
TD) strategies achieve the best results in the early stages of training—that is, they are effective
for quickly raising entropy but can lead to overrepresentation.

Cross-task performance Figure 5.5 compares the two annotator-centric metrics on the
three tasks of MFTC and MHS—the datasets for which we have seen the least impact of
ACAL over AL and PL. We select a data sampling (SR) and annotator sampling strategy
(TS), based on its strong performance on DICES for comprehensive comparison.

When evaluating MFTC loyalty, which has the highest disagreement, JSw is more ac-
curately approximated with PL. Similarly, ACAL is outperformed by AL on Fa

1 for the de-
humanize (high disagreement) task. However, for the less subjective task genocide, ACAL
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Figure 5.5: Comparison of ACAL, AL, and PL across different MFTC and MHS tasks. Higher Fa
1 is better, and

lower JSw is better.

leads to higher Fa
1 . This suggests that the effectiveness of annotation strategies varies de-

pending on the task’s degree of subjectivity and the available pool of annotators. The more
heterogeneous the annotation behavior, indicative of a highly subjective task, the larger the
pool of annotators required for each sample selection. We also observe that there is a trade-
off between modeling the majority of annotators equally (Fa

1 ) and prioritizing the minority
(JSw).

5.6 Conclusion
We present ACAL as an extension of AL to emphasize the selection of diverse annotators.
We introduce three novel annotator selection strategies and four annotator-centric metrics
and experiment with tasks across three different datasets. We find that the ACAL approach is
especially effective in reducing the annotation budget when the pool of available annotators
is large. However, its effectiveness is contingent on data characteristics such as the number
of annotations per sample, the number of annotations per annotator, and the nature of dis-
agreement in the task annotations. Furthermore, our novel evaluation metrics display the
trade-off between modeling overall distributions of annotations and adequately accounting
for minority voices, showing that different strategies can be tailored to meet different goals.
Especially early in the training process, strategies that are aggressive in obtaining diverse la-
bels have a beneficial impact in accounting for minority voices. However, we recognize that
gathering a distribution that uniformly contains all possible (minority and majority) labels
can be overly sensitive to small minorities or noise. Future work should integrate methods
that account for noisy annotations [426]. Striking a balance between utilitarian and egali-
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tarian approaches, such as between modeling aggregated distributions and accounting for
minority voices [229] is crucial for inferring context-dependent values [242, 400].

Limitations
The main limitation of this work is that the experiments are based on simulated AL which
is known to bear several shortcomings [261]. In our study, a primary challenge arises with
two of the datasets (MFTC, MHS), which, despite having a large pool of annotators, lack
annotations from every annotator for each item. Consequently, in real-world scenarios, the
annotator selection strategies for these datasets would benefit fromaccess to amore extensive
pool of annotators. This limitation likely contributes to the underperformance of ACAL on
these datasets compared to DICES. We emphasize the need for more datasets that feature a
greater number of annotations per item, as this would significantly enhance research efforts
aimed at modeling human disagreement.

Since we evaluate four different annotator selection strategies and two sample selection
strategies across three datasets and seven tasks, the amount of experiments is high. This did
not allow for further investigation of other methods for measuring uncertainty such as en-
semblemethods [218], different classificationmodels, the extensive turning of hyperparame-
ters, or even different training paradigms like low-rank adaptation [173]. Lastly, a limitation
of our annotator selection strategies is that they rely on a small annotation history. This is
why we require a warmup phase for some of the strategies, for which we decided to take a
random sample of annotations. Incorporating informed warmup strategies, incorporating
ACAL strategies that do not rely on annotator history, or making use of more elaborate hy-
brid human–AI approaches [403] may positively impact its performance and data efficiency.

Ethical Considerations
Our goal is to approximate a good representation of human judgments over subjective tasks.
We want to highlight the fact that the performance of the models differs a lot depending on
which metric is used. We tried to account for a less majority-focussed view when evaluating
the models which is very important, especially for more human-centered applications, such
as hate-speech detection. However, the evaluation metrics we use do not fully capture the
diversity of human judgments, but just that of labeling behavior. The selection of metrics
should align with the specific goals andmotivations of the application, and there is a pressing
need to develop more metrics to accurately reflect human variability in these tasks.

Our experiments are conducted on English datasets due to the scarcity of unaggregated
datasets in other languages. In principle, ACAL can be applied to other languages (given the
availability of multilingual models to semantically embed textual items for some particular
strategies used in this work). We encourage the community to enrich the dataset landscape
by incorporatingmore perspective-oriented datasets in various languages, ACAL potentially
offers a more efficient method for creating such datasets in real-world scenarios.
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Introducing Part III: Social Science with Hybrid Intelligence
In Part III, we make use of our hybrid setup described in Part II to investigate the perspec-
tives of participants in online discussions at scale. We leverage insights into how to strategi-
cally incorporate human input with LLMs and design a collaborative process where humans
can contribute to the discussion analysis. We make use of human annotators to provide a
nuanced understanding of their motivations behind online opinions while using LLMs for
processing large-scale data. The HI setup enables us to obtain a deeper understanding of
the multifaceted nature of online discussions, and also explore the different capabilities of
humans and LLMs when extracting high-level insights from discussions. In Chapter 6, we
acquire deep representations using the Perspective Hierarchy from online social media com-
ments and examine the connection between value conflicts and disagreements on societally
relevant topics. We observe that value conflicts lead to disagreements in cases where values
are likely to be relevant and diverse. In other cases, we need additional information to cre-
ate a complete perspective. Our approach shows that arguments are a crucial component in
productively revealing the rationale behind opinions.

Part III focuses on the following research question:

Q3 How to construct a perspective hierarchy based on diverse opinions in a discussion?
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6
Do Differences in Values Influence

Disagreements in Online
Discussions?

Disagreements are common in online discussions. Disagreement may foster collaboration and
improve the quality of a discussion under some conditions. Although there exist methods for rec-
ognizing disagreement, a deeper understanding of factors that influence disagreement is lacking
in the literature. We investigate a hypothesis that differences in personal values are indicative
of disagreement in online discussions. We show how state-of-the-art models can be used for esti-
mating values in online discussions and how the estimated values can be aggregated into value
profiles. We evaluate the estimated value profiles based on human-annotated agreement labels.
We find that the dissimilarity of value profiles correlates with disagreement in specific cases. We
also find that including value information in agreement prediction improves performance.

 Michiel van der Meer, Piek Vossen, Catholijn M. Jonker, and Pradeep K. Murukannaiah. 2023. Do Differ-
ences in Values Influence Disagreements in Online Discussions? In Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing, pages 15986–16008, Singapore. Association for Computational Linguis-
tics.
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6.1 Introduction
A large number of users participate in online deliberations on societal issues such as climate
change [45] and vaccination hesitancy [428]. Disagreement is an important aspect of a de-
liberation [303] since it can (1) drive novel ideas, (2) incentivize evaluation of the proposed
ideas, (3) avoid echo chambers, and (4) cancel out individual biases [204]. Discussions with
disagreement help users understand the opposing viewpoints [234, 335]. Further, discus-
sions having adequate disagreement have been associated with a higher quality deliberation
[119]. Ensuring that participants express a sufficient level of disagreement in a discussion
is hard. We do not know the nature of disagreement in online platforms [372]. Further,
questions arise on how to control for disagreement to enhance reciprocity [117], and how
too much exposure to opposing views drives polarization [27]. Analysis methods for online
discussions currently cannot accurately represent such diverse perspectives [61, 398], and
measuring deliberative quality is an open challenge [352, 414].

We want to ensure that a discussion incorporates many perspectives and that those are
actively communicated. For this reason, we turn to value conflicts, a potential root cause for
disagreement. We consider the hypothesis that when users with conflicting values engage
in a discussion, diverging views come up. Perspective and value clashes are at the heart of
disagreement [371]. In collaborative teams, value conflicts are linked to disagreement [182].
Specifically, values are said to be an effective way to make conflict explicit among partici-
pants in a discussion [41]. To evaluate our hypothesis, we construct value profiles based on
user comments on Reddit, a social media platform. A value profile captures the relative im-
portance a user ascribes to values. We employ ten values, e.g., stimulation, universalism, and
security, from the well-known Schwartz theory of basic values [344]. Then, we compare the
similarities among profiles to the disagreement among users on different topics. This allows
us to investigate the association between value conflict (low similarity) and disagreement.
Figure 6.1 shows an overview of our approach.

We gather 11.4M comments from 19K users on Reddit to construct value profiles. We
perform up to 200 tests with different settings to investigate our hypothesis. We further ex-
periment with replacing estimated value profiles with self-reported ones. To do so, we collect
572 judgments from 26 annotators in combination with self-reported value profiles. Select-
ing conversation partners based on their profile to manage value conflicts and influence the
level of disagreement in a discussion could be a tool formoderators to balance conversations.
To provide support for moderators, we investigate the impact of adding profile information
to the agreement analysis task [305]. Since the contextual implications of values are usually
unknown, connecting user concerns to values [11] opens up human-machine collaboration
opportunities for a more constructive conversation [5, 158, 238].

Contributions (1) We experiment with methods for value estimation from text to obtain
value profiles from an online discourse (Reddit comments). (2) We investigate how value
conflicts affect disagreement in discussions by showing that low-profile similarity can co-oc-
cur with disagreement under specific conditions for estimated and self-reported value pro-
files. (3)Wemake first steps in using the value-laden background information for predicting
user disagreement and comparing it to other user-specific contextual information.
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Figure 6.1: Setup of measuring value conflicts by means of Value Profile Estimation (VPE).

6.2 Related Work
Although there is existing work on analyzing agreement in online discussions, very few
works focus on examining the reasons for disagreement. We review the existing work on
agreement analysis, introduce two popular value theories, and outline previous research on
value estimation.

6.2.1 (Dis)-agreement and discussion analysis
Detecting whether people agree or disagree with given statements is commonly framed as
stance classification [e.g., 7]. Recently, more effort has been put into exploring various as-
pects of the task [9, 161, 246]. However, little work is done in adjusting the task to detect
stances among users within online discussions. To this end, agreement analysis focuses on
detecting (dis-)agreement in data that (1) represents realistic online discussions, (2) provides
contextual information (post authors, timestamps, etc.), (3) contains diverse writing styles,
(4) touches on multiple topics [305].

Existing work on agreement analysis is aimed at (1) identifying language that indicates
disagreement [e.g., 126, 284, 434], (2) leveraging stylistic choices like sarcasm for detecting
disagreement [139], (3) finding stance and target pairs, followed by the traditional stance
classification [e.g., 71, 96], and (4) mixing detailed opinion information using e.g., logic of
evaluation [104]. Recently, adding social role context to textual comments was shown to
have a positive impact on the agreement analysis task [255], which indicates the usefulness
of background information. In this work, we focus on capturing the implicit motivations
underlying opinions using personal values, which have been known to drive individual opin-
ions and actions across cultures [344].
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6.2.2 Value models
Values explain ideological beliefs underlying actions and opinions and may guide the design
of applications [130]. Two leading value models have been used in NLP research: Moral
Foundations [143] and the Schwartz Value model [344]. Each of these models includes a set
of general values. The Moral Foundation Theory (MFT) includes five foundations, each a
vice–virtue dichotomy (e.g., harm–care). However, MFT does not stipulate any relationship
among the foundations. In contrast, the Schwartz model includes ten basic values organized
as a circumplex (right-hand side of Figure 6.1), where similar values are placed close to each
other. Further, Schwartz values can be grouped into four classes: openness to change, conser-
vation, and self-transcendence, self-enhancement. Since the Schwartz model has more values
and a structure among the values, it is better suited than MFT for comparing the value pro-
files of individuals. Thus, we employ Schwartz values in our work.

6.2.3 Value estimation
Most works based on representing an individual’s value priorities (value profiles) use ex-
plicit preference elicitation, such as self-reporting and questionnaires [e.g., 57]. However, a
promising behavior-based approach focuses on analyzing textual motivations [70]. To this
end, dictionary-based approaches can be used for finding value mentions in texts [141, 304].
Using such lexicons shows promising results in large-scale value estimation applications
[356].

Recently, datasets annotated with personal values for training NLP methods have been
released. In this chapter, we use two recent datasets annotated with Schwartz values: (1) Val-
ueNet [311] is a dataset containing textual scenarios related to moral decision-making that
have been annotated with relevant Schwartz values. (2) ValueArg [201] contains user-sub-
mitted arguments that relate to specific Schwartz values. There are some datasets on MFT
values, e.g., [169, 253, 388]. These datasets include value annotations for messages but do
not include a link between themessages and users. Thus, estimating value profiles from such
datasets is not possible.

Applications include dialogues aboutmoral scenarios [311], review texts [288], and value-
laden arguments [11, 207]. However, both the annotation and extraction of values remain
difficult, with specific questions relating to the granularity of the value labels [201], their
transfer to new domains [237], and how classifiers understand morality in language [239].
Moreover, large variances exist between the frequency of values across domain [196], and
even the relevance of values differs depending on the domain [55, 235]. However, users
can still be represented inside each domain by examining relative frequencies inside value
profiles, as stipulated by Schwartz [344].

6.3 Method
Figure 6.1 shows an overview of our method. We collect posts from users in online discus-
sions. Using a trained value estimation model, we aggregate predictions over the collection
to form a value profile. Then, to evaluate our hypothesis, we compare the value profiles for
users known to be in disagreement based on an existing dataset. Our code¹ and data [401]
is available online.

¹https://github.com/m0re4u/value-disagreement

https://github.com/m0re4u/value-disagreement
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Subcorpus # users # found # comments
Brexit 722 543 372K
Climate 4580 3778 2.2M
BLM 2516 2121 1.1M
Democrats 6925 5646 3.8M
Republican 8832 6839 3.9M

Table 6.1: List of subcorpora gathered in Debagreement.

6.3.1 Data
We use Debagreement [305] as the dataset containing (dis-)agreement labels. This dataset
contains user-submitted post pairs in English from five topics (Table 6.1), with post pairs
annotated as {agree, neutral, disagree} by at least three crowd annotators.

We gather additional posts through the Reddit API using the usernames available in the
Debagreement dataset. For each user still active, we collect up to 1000 most recent posts,
which can be in any subreddit. The resulting posts range from September 2015 to April
2022. Subreddits host content on a variety of topics, not all of which encourage users to pro-
vide opinions based on their values. We are interested in finding preferences among values
with respect to widespread societal issues, such as climate change. Thus, we filter out posts
that are not likely to be of relevance to such issues. We (1) exclude Not Safe For Work and
entertainment-related subreddits, removing 1.4M posts, (2) filter out noisy low-frequency
subreddits (those with less than 50 collected posts), removing an additional 850K posts, and
(3) retain only English text posts, removing 377K posts. Table 6.1 shows the amount of data
collected after filtering.

6.3.2 Value Extraction
We formulate the value estimation task as recognizing whether a comment is related to a
value by means of binary classification per value, matching the setup of Qiu et al. [311]. Our
training data comprises general texts annotated for the presence of values across multiple
domains. We combine data from two sources.

(1) ValueNet [311]: We collapse non-neutral labels (1 and -1) into a single positive class
and take the neutral labels (0) as a negative class. A non-neutral utility means that
annotators considered the value to be relevant to the scenario, whereas the neutral
class indicates that the value plays no apparent role.

(2) ValueArg [201]: Their annotation scheme uses an updated (20) Schwartz values [345],
which we map back to the original 10 Schwartz values to allow joint training with the
ValueNet dataset.

We train all models with 10 seeds on random splits of learning data into train and val-
idation sets to observe training stability. For both datasets, we split data into predefined
learning (training and validation) and evaluation (test) sets. We ensure that all ten values
occur equally frequently in the evaluation set. Each text sample is presented to ourmodel ten
times, once for each value by prepending a value-specific token. We describe the additional
hyperparameters in the Appendix.
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6.3.3 Value Profile Estimation
Using a trained model, we construct a value profile v per user by summing over value esti-
mations of all individual messages. We assume relative frequencies of value mentions to be
indicative of value preference similar to Siebert et al. [354].

To measure value conflicts, we introduce a lower limit l on the total value mentions in
each profile, i.e., requiring that each user has at least l posts related to at least one value.
Further, we normalize profile mention count by dividing it by the total number of value
mentions per user. After this preprocessing, we compute the similarity S between two value
profiles v and w in multiple ways.

Kendall τ Wesort valuementions by frequency and assign a rank label to each value. Kendall’s
rank correlation metric τ is a robust measure of correlation [85], and considers the ranks
of all pairs of values. If a pair of values is ranked differently in v than in w, the pair is
considered discordant. Low scores indicate value conflict.

Sτ(v,w) = 1− 2× (# discordant pairs)(n
2

) (6.1)

Manhattan Distance (MD) Wecompute the absolute difference between two profiles. High
scores indicate value conflict.

SMD(v,w) =
n

∑
i=1
|vi−wi| (6.2)

Cosine (CO) We compute traditional cosine similarity, low scores indicate conflict.

SCO(v,w) =
v ·w
||v|| ||w||

(6.3)

Weighted-cosine (WC) We compute a weighted cosine similarity that weighs similarities
between values using the Schwartz Value Circumplex Model. For computing the simi-
larity between value vi and v j , we use a similarity matrix B constructed using a normal
distribution with σ = 1 centered on each value. Low scores indicate conflict.

SWC(v,w) =
∑n

i=1Biviwi√
∑n

i=1Biv2
i

√
∑n

i=1Biw2
i

(6.4)

6.4 Experiments and Results
We train models for value extraction and use those models to estimate value profiles. We
check the consistency of our results with previous work, investigate differences in value pro-
files of disagreeing users, and perform qualitative analyses.

6.4.1 Training Models for Value Estimation
We experiment with two popular BERT-based models, BERT [100] and RoBERTa [247], for
value estimation. Further, we employ multiple baselines: (1) always predict all values for a
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Method Training Test
ValueNet ValueArg Both

All-ones – 0.40 0.11 0.26
Value Dict. – 0.45 0.64 0.57
Kiesel et al. [201]∗ ValueArg 0.15 0.37 0.28
Qiu et al. [311]∗ ValueNet 0.59 0.52 0.57
BERTVE ValueNet 0.66 0.57 0.65

ValueArg 0.46 0.76 0.67
Both 0.63 0.81 0.79

RoBERTaVE ValueNet 0.62 0.59 0.63
ValueArg 0.46 0.76 0.67

Both 0.63 0.78 0.78

Table 6.2: Macro-averaged F1 scores of the value estimation approaches on the value datasets. Methods marked
with * are adapted for our comparison.

comment (“All-ones”) to examine label imbalance, (2) predict values based on mentions of
value words from the Schwartz Value Dictionary [304], (3) the multi-label approach from
Kiesel et al. [201], which uses an expanded label set, and (4) the utility model from Qiu et al.
[311]. The latter two baselines are BERT-based models. For Kiesel et al. [201], we use their
multi-label setup to make predictions and map to the 10 Schwartz values at inference time
(humility and face are not mapped to any value). Similarly, we map the rounded ternary
utility labels from Qiu et al. [311] into binary value relevance labels at inference.

Table 6.2 shows the F1 scores for the value extractionmethods for different combinations
of training and test datasets. We outperform all our baselines, including those from previous
work. BERTVE and RoBERTaVE yield similar F1 scores, and they perform best when trained
on both datasets. We use our best-performing BERTVE model, trained on both datasets, to
construct the value profiles in the rest of the experiments.

6.4.2 Value Profile Estimation
Table 6.3 shows the top two frequent values in each domain. We observe that the distribution
of values is specific to discussion contexts. For example, although stimulation is a common
and frequent value, it is not the most frequent value in the Brexit subcorpus. We aggregate
the values extracted for each user into their value profile. Table 6.3 (last column) shows
the mean pairwise τ distance (Equation 6.1) among the value profiles in each domain. We
observe that the BLM subcorpus has the most diversity among the five subcorpora.

Next, to qualitatively assess the estimated value profiles, we normalize profiles (by the
total number of value mentions) and compute covariance between profiles. Then, we per-
form metric Multi-Dimensional Scaling (MDS) of the covariance matrix similar to Poni-
zovskiy et al. [304]. Figure 6.2 shows a visualization of the first two dimensions after MDS.
We observe that values that are close to each other in the Schwartz circumplex [344], e.g.,
achievement and power, also tend to be closer in the MDS visualization.
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Subcorpus Top Two Values Avg. τ

Brexit Security, Stimulation 0.260
climate Stimulation, Security 0.308
BLM Self-direction, Stimulation 0.343
democrats Stimulation, Self-direction 0.319
Republican Stimulation, Security 0.315

Table 6.3: Frequent values, and the mean similarity among value profiles in each domain.
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Figure 6.2: Visualization of the covariance between values in estimated profiles.

6.4.3 Value Conflicts and Disagreement
We aim to analyze whether value conflicts influence disagreement in online discussions, us-
ingmeasurements of similarity between value profiles. We evaluate the following alternative
hypothesis (Ha) against a null hypothesis (H0).

H0 The mean value profile similarity score between user pairs that disagree is equal to the
mean value profile similarity score between user pairs that agree.

Ha The mean value profile similarity score between user pairs that disagree is lower than
the mean value profile similarity score between user pairs that agree.

We report the Bayes’ Factor (BF10) ² to assess the relative increase in odds for assuming
the alternative over the null hypothesis after observing data [23]. BF10 scores in [3−1,3] are
considered to indicate evidence for neither hypothesis, whereas more extreme values favor
one hypothesis over the other, allowing us to make conclusions in either direction [195].

We perform two experiments. First, we test the hypothesis for profiles constructed using
the Value Profile Estimation (VPE) method. In the second experiment, we replace one of
the profiles in each pair with a self-reported profile and agreement label. Thus, the second
experiment removes some of the noise stemming from the VPE method.

²BF hypothesis tests are sensitive to the choice of prior. We use the implementation of pingouin [395], which
includes a Jeffreys-Zellner-Siow prior, an objective prior for two-sample cases [324]
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Figure 6.3: BF10 scores obtained for the combinations of data, value estimation methods, and scoring metrics.

Profiles from VPE
We split Debagreement based on agree and disagree labels (and drop all pairs with a neutral
label), obtaining respectively G+ and G−. For each group, we compute the profile similarity
scores using each method mentioned in Section 6.3.2. We do this per subreddit and observe
the differences in score distributions. The alternative hypothesis is defined as the mean sim-
ilarity scores in G− being lower³ than the mean for G+:

θG =
1
|G| ∑

{p,c}∈G
S(p,c) (6.5)

H0 : θG− = θG+ (6.6)
Ha : θG− < θG+ (6.7)

We report the BF10 for all combinations of similarity methods and parameters. We run
100 tests, considering 5 subreddits, 4 similarity scores, and 5 value profile thresholds l =
{1,10,50,200,500}. Figure 6.3 provides an overview of the BF10 scores.

First, we observe that amajority of the combinations show stronger support for accepting
the null hypothesis over the alternative hypothesis (i.e., most scores fall inside the leftmost
blue bin). This indicates that value conflicts may not be directly correlated to disagreement
in many cases. Possibly, other content-related factors play a stronger role in these discus-
sions. However, there are some tests that still show evidence for rejecting the null hypothesis
(BF10 > 3).

Thus, given specific settings and domains, we can trace disagreement between users to
value conflicts. Table 6.4 shows the tests where BF10 > 3. In all cases, the filter l was 10
or more, stipulating that populated value profiles are required for measuring value conflicts
reliably. We observe that BLM, the subcorpus with the highest profile diversity (Table 6.3), is
frequent among these positive cases. Thus, having diverse profiles increases the likelihood of
finding a link between values and disagreement. One positive test result is observed for the
Brexit subcorpus for a high profile threshold (500). Brexit includes the smallest number of

³Higher for the MD metric, which flips the sign in Eqn. 6.7.
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BF10 Subreddit Similarity
score

Profile
threshold

17.451 BLM CO 10
12.485 BLM WC 10
10.504 BLM τ 250
4.223 BLM MD 10
3.442 Brexit WC 500
3.159 BLM WC 50

Table 6.4: The six tests between two VPE-constructed profiles with BF10 > 3.

user profiles; the high profile threshold further removes several profiles. Thus, the positive
result for Brexit, based on a low number of profile comparisons, may not be reliable.

Mixing with Self-reported Profiles
Given that we use a novel method for estimating value profiles, we compare the results from
the previous experimentwith one that uses self-reported value profiles. Self-reported profiles
mitigate the noise stemming from the value estimation step. The setup is identical to Sec-
tion 6.4.3, but now we compute similarities between an estimated profile and a self-reported
profile, obtained from a value survey.

We run a user study to obtain (1) self-reports of value profiles using an established value
survey [PVQ-21, 343], and (2) agreement labels on posts in Debagreement. We obtained an
IRB approval (exempt status) for our study.

We collected annotations from 26 Prolific (prolific.co) users. We selected five task
instances for each subreddit from Debagreement posts with populated value profiles, ren-
dering testing on multiple profile thresholds unnecessary. We removed three task instances,
which obtained a majority of neutral and not-enough-information judgments, leaving 22
rated instances. Thus, our analyses include a total of 572 judgments.

The results are shown in Figure 6.4. We observe that deciding between the two hypothe-
ses is not possible, in a majority of cases, as most evidence attributed both as equally likely.
However, it is interesting to notice that using self-reported value profiles shifts the major-
ity of results from favoring the null hypothesis to the undecidable range. In combination
with the results from the previous section, this indicates that VPE methods need careful
evaluation with respect to self-reported profiles as both may contain errors stemming from
different sources and may have complementary merits. VPE suffers from errors made by
the value estimation model but has the potential to use large amounts of data. In contrast,
although self-reports yield a profile directly, they may be prone to biases.

Two tests still show evidence in favor of accepting Ha (see Table 6.5). They are on two
task instances in the same domain, democrats, and are measured for the τ and MD met-
rics. Here, our results differ from the previous experiment, and different subreddits result
in high BF10 scores. In this case, one user’s value profile is constructed using self-reports,
which are obtained without reference to discussions (i.e. not estimated from posts on Red-
dit). This may cause other factors to influence the diversity of profiles stemming from the
PVQ. Furthermore, the task instances contained a call for action (e.g., Please just vote [..]

prolific.co
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Figure 6.4: BF10 scores for all similarity scores and task instances comparing VPE and self-reported profiles.

BF10 Subreddit Similarity score
6.490 democrats τ
3.066 democrats MD

2.543 Brexit MD
2.407 Brexit CO
2.230 climate CO

Table 6.5: The top-five BF10 scores, when comparing a VPE-constructed profile and a self-reported profile.

and The gloves should come off [..]). The values embedded in the call to action may be one of
the reasons why annotators felt inclined to disagree or agree.

Qualitative Assessment
To better understand when value conflicts influence disagreement, we perform a qualitative
analysis of some instances (comment pairs) from the dataset that follow our hypothesis and
some that do not (Figure E.6 in Appendix E.2 shows such examples).

We identify five trends in misaligned instances. (1) Not enough information in a value
profile (i.e., low-frequency valuementions). Thismeans that the user posted little value-laden
content or that the value extraction method erroneously ignored some value-laden com-
ments. (2) No apparent value-based reasoning involved in the comments, e.g., factual an-
swers to a question. (3) (Dis-)agreement happens on a content level since profiles do not
dictate individual utterances. This occurs when users disagree that a decision is “for good,”
but fail to motivate their motivations for what is “good.” (4) The target of disagreement can
be partial, whereas value conflicts are measured between two users. (5) In a few cases, the
label given in Debagreement is faulty (e.g., annotators misinterpreting sarcasm or the text
is vague).
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6.4.4 Use Case: Predicting (Dis-)agreement
We assume that users’ value profiles (in addition to the content of users’ posts) play a role
in predicting the agreement between users. We adopt the setup from Pougué-Biyong et al.
[305], where an agreement label is predicted between parent p and child comments c. We
add extra information to p and c using four methods.

Random noise (ε) Random noise to test for spurious correlations.

User centroids (z) Centroids of all posts from a single user by constructing TF-IDF vectors
for each post and then taking an average.

Explicit user features (u) Nine features commonly extracted for representing users on Red-
dit (e.g., [74, 184]) to add extra contextual information.

Value profile (v) Value estimation on user posts to extract an explicit value profile for the
ten Schwartz values.

We create embeddings (TF-IDF or BERT) for p and c and concatenate them to the user-
specific context [151]. We standardize the user-specific context information to avoid raw
values having a large impact, similar to the value profiles (v). When training with user pro-
files, we subsample Debagreement to include only those (p,c) pairs in which we have back-
ground data for both p and c. This leaves 65% of the data (28K samples). We train our
classifier on an 80/10/10 split, retaining the most recent 20% as validation and test sets to
reflect a real-world training scenario on historical data [361].

Figure 6.5 shows the results. Classifiers using TF-IDF embeddings fail to use the infor-
mation effectively. BERT outperforms both our baselines, in line with the results for [305].
In this setting, none of the additional information causes major changes in performance,
but we see an improvement using the value profiles and centroids. Compared to other work,
using user-specific information is surprisingly difficult [6]. Further inspection for BERT in-
dicates that the neutral class is hard to predict, as information from the value profiles may
not be relevant. Mixing background information using, e.g., GNNs [255] may make more
effective use of the profile information.
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6.5 Conclusion
Our results on the role of value conflicts in disagreements are mixed. On the one hand,
we mostly note negative evidence of a correlation between profile similarity and disagreeing
userswhenusing theVPEmethods. Whenusing self-reported profiles, the negative evidence
reduces and results become inconclusive for a majority of the cases. This suggests that the
nature of the profiles differs, and further investigation is necessary.

On the other hand, we observe that value conflicts were found to lead to disagreements
in specific cases. When values are likely to be relevant and diverse, we find evidence for a cor-
relation between value conflict and disagreement. While value conflicts may not be directly
related to disagreement, they do signal diversity with respect to the underlying motivations
of participants.

Using value profiles in combination with BERT performs marginally better than a text-
only baseline in predicting agreement. Yet, VPE can be valuable for characterizing and en-
hancing diversity in discussions. Further, making participants value-aware could enhance
the discussion quality.

Constructing profiles from behavioral cues, such as written opinions, is noisy. For future
work, we hope to see the creation of resources that allow end-to-end evaluation by combin-
ing text posts with a consistent set of users that allows aggregation to ground truth profiles
or self-reported profiles. However, gathering such profile information outside controlled lab
settings is highly complex. Future experiments may incorporate more judgments and pro-
vide stronger evidence for one hypothesis. These can be retrofitted with our results through
Bayesian updating [268].

Limitations
We outline four limitations of our work related to the experimental setup and the interpre-
tation of results that are specific to the modeling of value conflicts in online discussions.

First, the value extraction methods we employ (see Table 2) may have unknown errors.
Our work is not focused on optimizing value extraction, which is an emerging research di-
rection [202]. Adding more annotated Reddit data would allow us to judge the performance
of value extraction models better. A future direction is to employ other training paradigms
like Multi-task Learning [e.g., 122] or techniques for mixing in general-purpose language
models [e.g., 399].

Second, we obtain the self-reported value profiles with the PVQ-21 questionnaire (see
Section 4.4). Since we run the questionnaire before starting an annotation experiment to
obtain agreement labels, there may be ordering bias in the obtained labels. The experiments
could be enhanced by swapping the order of PVQ-21 and the annotation tasks to estimate
the effect of answering the questionnaire on the agreement labels.

Third, the reporting of our results is limited to the Bayes Factor (BF). Further, most of
our results fall inside the neutral category (“cannot decide between H0 and Ha”). We require
more data to decide which of the hypotheses is more likely. An estimation of the posterior
odds of the hypotheses e.g., in the form of Highest Density Intervals (HDI) might yield more
insights, and would involve deciding on a region of practical equivalence (ROPE), as well as
picking a thus far unknown prior distribution over the values for S in our two hypotheses
[211]. However, BF and HDI interpretations can be seen as complementary, respectively
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quantifying evidence or beliefs [410].
Lastly, our qualitative findings are derived from examining online interactions with lim-

ited context. To obtain amore complete picture, both the values and the interpretation of the
author’s role in discussions should be verified by the authors themselves. However, running
such experiments in controlled lab settings is beyond the scope of our work since we focus
on disagreements in online discussions.

Ethical Considerations
First, the dataset used to model online discussions, Debagreement, was sourced from on-
line interactions between users on Reddit. Research conducted on Reddit data is biased to
a WEIRD (Western, Educated, Industrialized, Rich, Democratic) demographic, and results
may not generalize to a broader set of users [308]. However, ourmethod outlines which data
is required for performing the same analysis given the availability of richer data, not neces-
sarily stemming from Reddit. Second, models for predicting values may be wrong, they may
lead to harmful outcomes for particular groups or populations [265]. In any application,
the incorporation of control mechanisms (i.e., providing users a way to influence the con-
struction of their own value profile) is a requirement for making sure the value profiling is
conducted in a transparent and accountable manner. Broadly, this work should further be
situated in a system containing checks and balances, making sure any output stemming from
automated classification is verified by human agents before having an effect on actual users.
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Diversity is an important factor in achieving high-quality outcomes from deliberations.
Current Natural Language Processing (NLP) approaches for supporting deliberations fail
to facilitate diversity, especially in the range of perspectives involved. Hybrid Intelligence
(HI)—a synergistic approach that augments human intelligence with AI techniques—offers
effective analysis methods that align with deliberative ideals. Our HI approaches require nu-
anced insights from humans but exploit the processing capacity of NLP for mining diverse
perspectives to facilitate online dialogue at scale. We experiment with extracting perspec-
tive hierarchies to derive deep insights into human opinions on contemporary topics. We ex-
plore howmodeling arguments in discussions can lead to bidirectional gains by connecting
underlying motivations and expressed agreement. Structuring the opinions in a discussion
in terms of evidence-based and argumentative discourse encourages participants to articu-
late their perspectives more clearly, support their claims with relevant evidence, and engage
critically with counterarguments. Fostering a culture of reasoned debate promotes a deeper
understanding of complex issues while revealing the connection between deeply rooted per-
sonal values and the stance a person might adopt in a discussion.

UsingNLP to analyze online discussions is a lively research area. The surge of LLM-based
techniques has given a significant boost to understanding text-based human opinions across
contexts. This dissertation critically examines these techniques by applying them to inves-
tigate how humans deliberate online. Our results reveal three error cases for existing LLM-
based approaches to summarizing arguments: (1) generating and matching high-level ar-
guments remains difficult for LLMs, (2) performance is dataset-dependent, and (3) low-fre-
quency arguments are often missed in the summary. Thus, mining human subjective opin-
ions with LLMs remains an open challenge, especially for sensitive and controversial topics.
Further, aiming for a single ground truth in a discussion defeats the purpose of engaging
with an opinionated audience. Being sensitive to the pluralistic nature of the opinions and
values involved is a core capacity for making responsible NLP methods.

We also identify a strength of LLMs, that of continued interaction, as a spearhead for
driving insights into the deliberative process at scale. Continuous interaction leads to itera-
tive refinement, where users steermodel responses and obtain desired outcomes. Interaction
with models and other humans in a discussion requires active participation from the users.
We offer a first step in this direction: leveraging large-scale feedback from individuals com-
binedwith input from languagemodels. Nonetheless, measuring bidirectional gains remains
challenging, as established benchmarks typically rely on large manual annotation studies.

Structure
The rest of this Chapter is structured as follows. In Section 7.1, we dive into the concrete
findings related to the individual research questions. We summarize our cross-cutting find-
ings and outline the contributions to the field in Section 7.2. We describe the limitations of
our research in Section 7.3. Lastly, we provide an outlook for future work in Section 7.4.

7.1 Research Findings
We set out to investigate the practical issues of interpreting large-scale opinionated feedback
from citizens with LLMs, and how to create hybridmethods to improve the diversity of opin-
ion representations. We divided this goal into three research questions and examined each
question separately. What follows is a description of our findings per question.
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7.1.1 NLP for Perspective Analysis

Q1 What are the fundamental issues in using NLP to analyze perspectives?

Our work provides insights into the behavior of state-of-the-art NLP models for discussion
analysis. LLMs are becoming a core tool for such purposes, and are capable of extracting
high-level insights from large-scale text data. However, we empirically observe numerous
error cases for LLMs, including poor out-of-domain generalization performance and an in-
ability to saliently represent infrequent opinions. These error cases impose practical limits
on how to design and use LLMs in sensitive situations, such as interpreting citizen feedback
[287, 394]. In this section, we further break down our findings on the fundamental limita-
tions of using NLP for discussion analysis along four main threads.

Heterogeneous models Deciding which model out of the rapidly developing number of
models to use has become increasingly difficult [65]. Our findings show that for analyzing
perspectives, no clear dominant NLP model or approach exists. Choosing between zero-
shot LLMs and fine-tuned classification setups relies on context-specific knowledge and ex-
tensive experimentation. Our work shows that all parts of the NLP pipeline, including the
scraping, preprocessing, and annotation of data, as well as model training and evaluation
setup, greatly impact how a model behaves for downstream tasks. Creating an NLP tool
for capturing diverse perspectives in online discussions requires considering every aspect of
this pipeline carefully. Much like how humans utilize their diverse skills and perspectives to
achieve optimal outcomes, we can rely on empirical approaches that recognize and leverage
the complementary strengths of different methodologies. This paves the way for robust, in-
clusive, and nuanced NLP solutions, but puts considerable strain on the experimental setup
used for assessing the efficacy of the developed approaches. This is exacerbated by stochastic
behavior from LLMs, leading to uncertainty in the reproducibility of results [254].

Out-of-context generalization A key factor informing us on which model to use is the
ability of an NLP model to learn from data in one domain and generalize to another [177].
Even complex tasks under severe data constraints, like argument quality prediction, can be
modeled effectively. The diversity of the data used during training drives cross-domain per-
formance. Most opinionated data stems from online platforms, which is hampered by their
fundamental deficits outlined in Chapter 1, in particular in the limited inclusion of under-
represented voices. Therefore, we stipulate that improved representation of diverse users, as
is the goal in this dissertation, can ultimately lead to greater model performance: through
improved representation, we promote participation from those users previously alienated
from discussions, which in turn drives the data diversity of the training data for our models.

Level of abstraction This dissertation encompasses different tasks for extracting informa-
tion from an individual’s opinion. Generally, tasks that capture low-level linguistic phenom-
ena are easier to model, making approaches to such tasks easier to interpret and evaluate
by humans. However, low-level constructs only reveal crude information about a person’s
opinion. Hence, we shift focus to tasks of a higher level of abstraction. Our work shows
that NLP models are capable of performing highly abstract tasks like argument extraction
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but do so with considerable error. For instance, models can miss up to 50% of arguments
with low frequency. Extracting perspectives requires reasoning over implicit and common-
sense knowledge [71]. While LLMs seem to fluently deal with abstract tasks by interpolating
missing information, even the largest models struggle with theory of mind tasks [406], a key
capacity for performing perspective-taking [306]. We use this observation as a guide to de-
velop our hybrid approaches by incorporating tasks of various levels of abstraction into the
Perspective Hierarchy. The higher the level of abstraction, the more difficult the task, and
the more human oversight we require. This strategy not only accounts for failures of the
model but also allows us to deal with implicit signals that are involved in reasoning over
high-level abstract information. By involving humans in the loop, the abstract information
can be made more explicit, which we can, in turn, leverage as additional training data.

Human disagreement alignment Our experiments show that the errorsmade by LLMs are
often unlike those of humans and that NLP models do not always align with human uncer-
tainty. This misalignment means that models require calibration before they can accurately
reflect human judgment. Therefore, reasoning over LLM capabilities according to human
standards is unwarranted. This problem is further compounded by the rampant anthropo-
morphization of AI models in modern applications, which can lead to unrealistic expecta-
tions of their abilities [1]. We see that current benchmarks for evaluating the performance
of LLMs often fail to capture the diversity of perspectives, instead prioritizing the majority
opinion. This is problematic as it can lead to the marginalization of minority voices and the
perpetuation of biased viewpoints. To address this, we adopt a perspectivist approach, learn-
ing from a distribution of subjective interpretations instead of aiming for a single ground
truth [61]. LLMs are highly sensitive to context and will vary depending on the prompt. By
exploring the variance of LLM responses, we can start to uncover some of the disagreements
in how opinions may be perceived between humans, too. This brings about the integration
of machine and human judgments to create systems that can accurately and fairly represent
the full range of perspectives present in a given discussion.

7.1.2 Hybrid Intelligence for NLP

Q2 How to combine human intelligence and NLP to effectively capture diverse perspectives?

Our experiments focus on improving the representation of infrequent voices in online dis-
cussions when using NLP to extract perspectives. We do so by incorporating humans in the
loop and designing pipelines that lead to an increase in the diversity of arguments. In this
section, we highlight our three main contributions to designing HI using NLP.

Sample efficiency A significant challenge for discussion analysis is the human inability to
manually examine the entirety of the data in-depth, due to time and cognitive constraints.
While automated tools are an attractive solution that can process entire datasets quickly, we
show that tools often fail to extract all perspectives from the data, particularly in the case of
nuanced human opinions. To address these limitations, we develop a novel approach that
leverages the sample efficiency of human understanding. Humans have the unique ability
to extract a wealth of information from a single stated opinion and require fewer examples
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than modern NLP models to derive meaningful insights into diverse perspectives. How-
ever, this human involvement may introduce biases, as they may fill in implicit information,
project their personal views when interpreting others, and have biased background knowl-
edge. Therefore, the task of selecting which data samples should be examined, and who to
choose for annotation, becomes a critical one. We show the adoption of active sampling
strategies can dynamically assign diverse opinions to humans. The analysis of large-scale
data necessitates a balance between the speed of automation and the depth of human insight,
which is answered by our integration of sampling diverse opinions (HyEnA) for diverse an-
notators (ACAL).

Advancing benchmark-based evaluation The integration of human and artificial intelli-
gence in hybrid approaches presents a new challenge for evaluation. Traditional methods of
measuring the performance ofNLP systems obtain gold labelsmanually. For hybrid systems,
this is insufficient, as hybrid systems can provide important insights that may be missed in
manual analyses, such as in Chapter 4. Instead, a three-way setup, where a hybrid approach
is pitched against manual and automated ones directly provides a fairer comparison. Fur-
ther, common high-level performance statistics, such as a single F1 score per benchmark, do
not provide information about how the model behaves for particular samples and annota-
tors. This information is essential for designing context-specific hybrid approaches, creating
user-specific instructions in using LLMs, and setting realistic expectations [189]. Instead,
fine-grained evaluation metrics such as those focusing on individual annotators, are crucial
for understanding how various approaches deal with diversity for different types of anno-
tators. These findings show the importance of considering fair evaluation setups and the
characteristics of the data when creating context-specific applications. Using humans in a
hybrid approachmay offer additional benefits beyond the primary task. For instance, the an-
notation procedure can foster understanding and empathy among annotators, as they report
an increase in sympathy and recognition of the issues raised in the comments they annotate.
Capturing this in a multi-objective evaluation setup presents an interesting avenue for fu-
ture research, where the goal is to create synergy between the different parts of the hybrid
approach, such that the cumulative gain outweighs the sum of its parts.

Measuring diversity A core goal of the approaches developed in this dissertation is to im-
prove the representation of diverse perspectives. To measure diversity, we often assume that
a fixed pool of opinions is at our disposal for analysis. Within this pool, diversity can be
well-defined and measurable, for instance, by counting all unique items in a collection of
arguments. The use of HI systems, such as those developed in this dissertation, can be par-
ticularly effective in this context, as they have been shown to achieve higher coverage and
precision than state-of-the-art automated methods when compared to a common set of di-
verse opinions. Similarly, annotator-centric evaluation provides valuable insights into how
different methods deal with disagreement and diversity on an individual level. For instance,
large gaps between average, individual, and worst-off evaluations hint toward tradeoffs be-
tween representing the majority versus focusing on the minority. However, fixed pools of
opinions obtained from online social media platforms already contain skewed opinion dis-
tributions. This underscores how data and annotation characteristics are key factors in mea-
suring diversity, even when benchmark data is available.
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7.1.3 Perspective Hierarchy

Q3 How to construct a perspective hierarchy based on diverse opinions in a discussion?

Our Perspective Hierarchy model illustrates how different levels of abstraction interplay
when interpreting diverse opinions with Hybrid Intelligence. We discuss our experiments,
showing that argumentation forms a core ingredient of the hierarchy, and highlight that ob-
taining perspectives from text should be done using hybrid intelligence approaches.

Importance of argumentation Our analysis reveals a nuanced relationship between value
profile similarity and disagreement in online discussions. While a general lack of correla-
tion is observed, specific cases emerge where value dissimilarity aligns with disagreement.
The lack of a general correlation points towards the importance of incorporating arguments
in our perspective hierarchy and the relevance of creating HI approaches to capturing argu-
ments. This uncovers how values drive opinions. The cases that revealed a strong correlation
were those where values matter most and were diverse. This suggests that value conflicts,
though not directly correlated, signal underlying motivational diversities that contribute to
disagreements. Such signals can be leveraged to find opinions that differ from the majority.

Hybrid hierarchies Constructing value profiles based on automated judgments over texts
is noisy. Involving a human in the loop helps infer values relevant in a context [240]. In
our experiments, we estimate value profiles by analyzing text-based opinions and through
self-reporting. Our findings show that these two approaches differ considerably, indicating
that a mix of methods is required to represent individuals’ perspectives. Hybrid approaches
support such combinations of methods. Through interaction, misrepresentations can be
corrected [332]. How individuals correct models may also drive further insights into the
difference between behavior-based opinion analysis and self-reported preferences.

7.2 Contributions
Each Part of this dissertation provides an answer to an individual research question. In this
section, we combine our findings to provide answers to the question of how humans and
NLP can improve their understanding of diverse perspectives in online discussions.

7.2.1 Scientific Relevance
Deliberation process In most of our experiments, we lack access to the original partici-
pants of a discussion to further probe their perspective, since we primarily rely on historical
user-generated data. This makes it impossible to verify the original intent with the author.
Traditional NLP often relies on ad-hoc annotation procedures that combine interpretations
from a crowd of annotators for creating training and evaluation data. During the execution
of our hybrid approaches, we also employ crowds of annotators but invite them to provide
more productive information. We actively account for the annotator’s point of view when
requesting additional labels. This provides insights for the formation and diversity of opin-
ions in subjective tasks beyond investigating demographic characteristics post-hoc. Further-
more, by making annotators observe diversified opinions we encourage the exploration of
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novel ideas from a multitude of viewpoints. We find that this approach is beneficial to the
faithful representations of opinions, and improves the facilitation of a constructive and in-
clusive discussion. Hence, we conclude that hybrid approaches can play a crucial role in
facilitating deliberative discussions by promoting active perspective-taking.

Interactive AI for HI Hybrid methods are effective because they iterate. It is crucial to
engage in an interactive and continuous process of correction, particularly when seeking
to acquire opinions from a diverse range of individuals. The conventional approach in the
fields of NLP often involves single isolated interactions, such as a human providing a set of
labels at a specific point in time, or a model providing a single prediction. However, it is im-
portant to consider NLP methods within the respective contexts they are applied. Designers
and developers constantly refine their algorithms to enhance performance, while improving
the evaluation procedures to obtain a more accurate assessment of the model capabilities.
Similarly, instructing humans is not a one-time event, but rather a continuous process of
receiving and integrating multimodal feedback from the environment. The interaction be-
tween AI and developers, or AI and users, is complex and rich, and by turning to HI we can
guide this interaction inmutually beneficial ways. Our work demonstrates this by leveraging
LLMs to sample from large pools of data but letting humans read them, thereby uncovering
unique perspectives from a large and imbalanced set of opinions.

Fundamental limits for representing minorities We find that LLMs are suited for repre-
senting majority opinions since these constitute frequent and salient signals in training data.
Further, LLMs can be steered in their alignment, rendering objectivity problematic. The sen-
sitivity of LLMs to prompts and the lack of a faithful representation of the dynamic context
of real-world applications leads to irreproducible research. Carefully crafting experimental
designs and training procedures can mitigate this behavior, but LLMs remain brittle when
confronted with novel infrequent opinions. HI addresses this shortcoming by exploiting the
complementary strengths of humans and LLMs in interpreting opinions.

Explicit communication and deliberation The elicitation of explicit communication is a
critical aspect of the development of HI for analyzing online discussions. NLP methods can
benefit from explicit communication from humans since it leads to additional training data
or labels. Humans can also benefit from amore rationale-based discussion since engagement
in a discussion develops the understanding among participants. Coaching the argumenta-
tive motivation of opinions is an effective facilitation move that encourages individuals to
articulate the reasoning behind their beliefs and opinions. This approach can be particularly
effective in situations where there is likely to be consensus on a particular issue, but where
disagreement arises due to conflicts in values. For instance, in a discussion about vaccina-
tion, there is often agreement on the need to protect children from harm, but disagreement
arises due to differing beliefs about the safety and efficacy of vaccines, and the trustworthi-
ness of the scientific and medical establishments. Explicit communication can acknowledge
the common ground, and progress a discussion by shifting focus to the underlying beliefs.
Furthermore, while both NLP methods and human annotators can deal with implicit infor-
mation, they do so differently. NLP methods are likely to insert majority opinions based
on their training data, while humans are likely to contribute their personal opinions. This
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underscores the importance of a hybrid approach that combines the strengths of both NLP
methods and human annotators: promoting more explicit, rationale-based communication
ensures that a diversity of perspectives is represented.

HI benchmarks The development of new benchmarks is a critical aspect of the evaluation
of HI systems (HIS). However, experimenting with and evaluating LLM predictions can be
resource-intensive. Obtaining labels from crowdworkers requires annotation guidelines, an-
notation platforms, and monetary compensation. Even after spending such resources, there
is a significant strain on the reproducibility of experiments. All this makes it attractive to
reuse existing datasets. However, benchmarking hybrid approaches requires careful consid-
eration of the task context. Measuring additional behavioral signals that objectively capture
the interaction in theHIS, or breaking apart overall performance into the contributions of its
components through ablations can, either quantitatively or qualitatively, reveal why meth-
ods are effective. This dissertation proposes a mechanism for benchmarking HI using an
iterative approach. We break apart tasks into elementary phases, which we can evaluate
both intrinsically and extrinsically. We capture performance on an overall task (e.g., Argu-
ment Extraction), but also evaluate smaller steps in the procedure (e.g., Pairwise Argument
Similarity Scoring). Such a breakdown allows for the flexible reuse of data across tasks to
investigate their interaction.

7.2.2 Societal Relevance
Our findings show that it is possible to address the fundamental limitation of capturing di-
versity with NLP approaches using Hybrid Intelligence. In this section, we highlight how
our approach to opinion analysis might achieve broader societal impact.

Citizen feedback data Our work is focused on interpreting textual comments in the form
of citizen feedback for deriving insights into their opinions. In particular, we do so on con-
temporary topics, such as COVID-19 regulation [236, 274, 403]. Our work can be extended
to feedback on other issues, such as transportation [275] or environmental issues [276]. Next
to interpreting direct citizen feedback, numerous existing online platforms are already pack-
aged as datasets, such as theWikipedia Discussion Pages [125], UN debate corpus [340], and
Kialo [359]. Mining the insights from them by, e.g., extracting the key arguments can help
in furthering the discussion. Cross-topic application of the hybrid analysis procedures can
lead to higher-level insights into opinion formation. For instance, in helping to distinguish
what aspects of facilitating a diversity of perspectives are related to the discussion contexts,
and what aspects transcend a particular topic.

Enhancing participation Incorporating diversity is a driving factor of the quality of discus-
sions online, but also a requirement for legitimate policy-making. By making the analysis
hybrid, we actively involve humans in the process, enhancing participation. For instance,
requesting citizens to participate in analysis procedures such as HyEnA offers them the op-
portunity to contribute to the analysis while developing their personal views on the subject.
After, the annotators can be approached for inclusion in future deliberation, as they have had
the opportunity to familiarize themselves with the most important arguments in the matter.
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This would progress the deliberation where ideas are based on each other’s arguments. Tar-
geted recruitment campaigns can help in finding a representative demographic, taking care
to create inclusive samples of the population.

Other application areas The analysis of opinionated text has a wide range of potential ap-
plications beyond the interpretation of citizen feedback for policy-making purposes. For
instance, a broader thematic analysis for qualitative data with HyEnA could be useful for
deriving insights for product feedback [188] or education [90]. Uncovering the main con-
cerns using argument extraction, and distinguishing them from deeper value-driven criteria
is useful for all organizations looking to improve their products or services.

7.3 Limitations
Since we conduct empirical research, it is important to underline the limitations involved
in the experiments, data, and analysis. In addition to the limitations mentioned in each
Chapter, this section highlights cross-cutting aspects that influence the generalizability and
conclusions derived in the previous sections. Addressing these limitations paves the way for
future research that could contribute to a more nuanced understanding of our findings.

PerspectiveHierarchy In the construction of the perspective hierarchy, we emphasized the
reasoning behind the stances that individuals adopt, both at the communicative (arguments)
and motivational (values) levels. The extracted hierarchy representations are specific to a
particular human-generated opinion or proposed action, making it challenging to compare
hierarchies across different claims or contexts. There are alternative approaches to modeling
the target of a perspective. For instance, others extract perspectives for high-level claims [71],
short free-form viewpoints [104], or events [412]. These alternatives can be ways to compare
perspective representations across different discussions. Beyond the levels included in our
hierarchy, other expressions or behavioral signals can be captured from text-based opinion
data. Examples include sentiment [244], and emotion [2]. Incorporating these additional
dimensions of human expression can provide valuable insights into an individual’s feelings in
a discussion. However, a high degree of analysis of these feelingsmay lead to a focus on affect
over content or chilling effects, as individuals may feel monitored [59]. Furthermore, the
introduction of additional levels increases the likelihood of generating incorrect predictions.
Extracting further content-specific information may be beneficial for providing high-level
overviews of the content in a discussion, such as resolving attribution of who holds what
opinion, or the entities related to the topic of discussion.

Experimental constraints Empirical research is inevitably constrained by experimental
conditions and design limitations. For instance, the participant sample that provides opin-
ions in some of our experiments and the annotators we employ in them often reflect a
WEIRD (Western, Educated, Industrialized, Rich, and Democratic) demographic. The con-
cept of an ideal participant group is complex and multifaceted, but it is crucial to consider
the potential biases that may arise from it, especially in the context of facilitating diverse
perspectives. When humans provide their opinions in a discussion, we rely heavily on self-
reporting, with the underlying assumption that participants are reporting their interpreta-
tions faithfully. We also assume that the discussion is largely free of malicious behavior,
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such as trolling or other types of misconduct. These assumptions do not always hold in
real-world use cases, and the potential for intentional misinformation or disruption in the
discussion must be acknowledged. Further, as is standard practice NLP research, we often
rely on third-party annotators to interpret opinions that they did not originally author. This
approach missed the information the original author could provide, e.g., the context and in-
tent of theirmessage, which the third-party raters cannot provide. Improvements in LLMs or
prompting techniques can directly benefit our work, but the need to rerun experiments can
be costly. The choice of the LLMmodel can significantly impact the performance of a hybrid
approach, but finding the bestmodel for the task at hand requires extensive experimentation,
incurring both human and computational costs. This feeds into the broader benchmarking
problem, where the lack of standardized evaluation metrics can make it difficult to compare
and contrast different versions of the same approach. A similar reasoning holds for the use
of data in our experiments, which limits our ability to investigate how changes to dataset
characteristics, e.g., increasing the number of annotations per sample, impacts our results.

Repeated interaction We emphasized the benefits of repeated interaction between NLP
models and humans in the creation of high-level overviews of opinions and developed hy-
brid approaches that construct high-level overviews of opinions, such as summarizing argu-
ments into key points. The main focus in these approaches has been collaboration between
people and NLP models to iteratively refine the overview. However, our current efforts have
not focused on continued deep interaction with a single human, which could be taken as an
alternative design to HI.While we have not yet conducted experiments with continued inter-
actions, we acknowledge that this approach could lead to complementary outcomes for the
hybrid analysis of online discussions. For example, iteratively refining the perspective hier-
archy through a conversation between LLM and a human could facilitate perspective-taking
and improve the accuracy of the analysis. To demonstrate such improvements orthogonal
experimentation is necessary. Some work has already begun in this direction, with research
indicating that deliberation among annotators can be beneficial for reaching consensus on
labels, although it depends on the characteristics of the discussion [338].

7.4 Future Work
In this final section, we present our vision for the future of research at the intersection of HI,
NLP, and online deliberation. Through these suggestions, we hope to advance the state of
the art in HI, NLP, and online deliberation, and to inspire contribution to the development
of more inclusive, productive, and democratic online discussions. We outline four avenues.

Design of Hybrid Intelligence Integrating human and artificial work requires careful task
balancing. In developing our hybrid approaches, we have cast this in a fixed process. How-
ever, dynamic task allocation and balancing are core capacities of effective teams. Knowing
when and whom to ask, such as obtaining an automated judgment from an LLM or querying
a pool of diverse human annotators enables successful collaboration [199]. Frameworks like
learning to defer [259] or other active learning approaches [40] can be used to facilitate this.
These examples touch on the integration of humans and AI, but a broader understanding of
how to design HISs is lacking. There are general guidelines [413], but how to develop HIS
for the field of NLP remains unclear. In our work, we identified that specific designs can
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reshape human–AI interactions significantly. For instance, swapping the order in which
humans and LLMs collaborate in HyEnA may decrease the precision but increase efficiency.

EvaluatingHI Evaluation ofHISs requires novel benchmarking paradigms. Existing bench-
marks are usually annotatedmanually and composed out ofmany individual existing datasets,
and therefore lack a faithful representation of the dynamic context of real-world applications
[69]. Alternative approaches can instead incorporate interactive crowd-sourced benchmarks
that develop over time [200], or turn to use-case-specific evaluation, leveraging objective be-
havioral cues to assess our methods. To target the desired capacities of language models, we
identify them based on context and judge whether LLMs fulfill our requirements. This leads
to the creation of a sort of “unit-test” for our use cases [369]. Versions of this context-specific
evaluation for facilitating online discussions can directly target diverse opinions [425], or
measure interaction structure to reveal the quality of a conversation [331].

Contextualizing HI for online deliberation We suggest several approaches for bringing
HI to online deliberation. First, we suggest that the analysis of online deliberations results
from amix of self-reporting, machine interpretations of opinions, and crowd-sourced labels.
This can result in a thorough understanding of the differences in interpretation between the
intention of an author, and how it is perceived in an analysis. Second, we looked into how
people conduct discussions but refrain from committing to a particular topic of discussion.
However, context impacts the strategy for facilitation. Future work can start by taking a real-
world use case, and design interventions based on the hybrid approaches developed in this
work. The true impact of HI may only be known after engaging in long-term interaction be-
tween humans and AI. Lastly, our hybrid approach represents the citizens’ preferences from
a societal discussion in one iteration. Nonetheless, societal problems are not solved with a
single decision, and citizen consultation processes take place continually. In the long run,
perspective hierarchies can support negotiations [317] among societal stakeholders, e.g., on
which portfolio of choices to make to combat a pandemic [274].

Opinion shift We have adopted a hybrid approach to modeling perspectives, which in-
volves the extraction of stances, arguments, and values based on human-provided opinions.
First, it is important to consider that opinions are not formed in a vacuum, but are rather
shaped by a myriad of factors, including the political, social, and personal context of the
opinion holder. Consequently, the temporal aspect of when an opinion is expressed is an
important aspect that enriches the understanding of a perspective [152]. However, extract-
ing and placing events based on text-based opinion expressions is complex [310]. Hybrid
approaches facilitate the engagement and interaction between participants, causing opin-
ions to shift. Insights into how opinions change over time, for instance in the frequency of
certain topics or arguments can subsequently serve as an indicator of changing consensus.
Finally, the relevance of an analysis is often confined to a specific time frame, as opinions
and perspectives change in response to world events. Therefore, to accurately contextualize
and interpret perspectives for deriving insights into public opinion, it is essential to consider
the state of the world at the time opinions were expressed.
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A
An Empirical Analysis of Diversity

in Argument Summarization

A.1 Detailed Experimental Setup
We describe our experimental setup, starting with the data we use for conducting our analy-
sis. We follow with a detailed description of each approach and finally present a description
of the metrics used.

A.1.1 Data

Dataset Num.
arguments

Num.
Key Points

Num.
claims

Avg.
arguments
per claim

Avg.
arguments
per KP

ArgKP 10717 277 31 245 20
PVE 269 185 3 67 4
Perspectrum 10927 3804 905 12 3

Table A.1: Quantitative statistics of the datasets used in the experiments.

We provide some quantitative statistics on the three datasets used in our work in Ta-
ble A.1. In addition, we show some qualitative examples of the content in our datasets in
Table A.3. Since Perspectrum and ArgKP listed the same debate platforms as sources, we
investigate the overlap between the claims and arguments between pairs of datasets. In terms
of claims, there is no direct overlap between any two datasets. To rule out that the same ar-
guments were scraped from the debate platforms, we also measure n-gram overlap [78]. We
show the overlap in unigrams, bigrams, and trigrams in Table A.2. The overlap scores report
the ratio of n-grams from one dataset that is found in the other.

For PVE, since the key point analysis was performed using a mixture of crowd and AI
techniques, we take only the correctly matched key point–motivation pairs. That is, we take
only those pairs that were deemed matching according to the final evaluation performed.
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Target
ArgKP PVE Perspectrum

Source
ArgKP – 0.40/0.08/0.01 0.70/0.21/0.14
PVE 0.41/0.16/0.06 – 0.66/0.24/0.10
Perspectrum 0.17/0.04/0.02 0.22/0.03/0.01 –

Table A.2: Maximum uni-/bi-/trigram overlap between datasets.

Dataset Claim Key Point Argument

ArgKP We should subsi-
dize journalism

Journalism is impor-
tant to information-
spreading/accountability.

Journalism should be subsi-
dized because democracy can
only function if the electorate
is well informed.

PVE Young peoplemay
come together in
small groups

Young people are at low
risk of getting infected with
COVID-19 and therefore
can benefit from gathering
together with limited risk
and potential profit.

Risks of contamination or
transfer have so far been
found to be much smaller.

Perspectrum The threat of Cli-
mate Change is ex-
aggerated

Overwhelming scientific
consensus says human
activity is primarily respon-
sible for global climate
change.

The biggest collection of spe-
cialist scientists in the world
says that the world’s climate is
changing as a result of human
activity. The scientific com-
munity almost unanimously
agrees that man-caused global
warming is a severe threat, and
the evidence is stacking.

Table A.3: Qualtitative examples of claims, key points, and arguments across our dataset.

A.1.2 Per-approach Specifics
See Table A.4 for the language models used in each approach. We further outline any details
depending on the approach used.

Debater TheDebater API allowsmultiple parameters when running the KPA analysis. We
manually tuned the parameters separately for KPG andKPM. For both tasks, we started with
themost permissive configuration to optimize for recall first, and graduallymade parameters
more strict to improve precision without lowering recall scores. Once recall scores started
dropping, we fixed the parameters. The final configuration is shown in Table A.5.

ChatGPT We strive to make our results as reproducible as possible, but due to the nature
of the OpenAI API results may be specific to model availability. We conducted the exper-
iments between July and August 2023, using the gpt-3.5-turbo and gpt-3.5-turbo-16k
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Approach name Model
ChatGPT gpt-3.5-turbo-16k
ChatGPT (closed book) gpt-3.5-turbo
Debater closed-source
SMatchToPR (base) RoBERTa-base
SMatchToPR (large) RoBERTa-large

Table A.4: Models used for each KPA approach. Model choice is independent of subtask.

Subtask Parameter Value
KPG mapping_policy LOOSE

kp_granularity FINE
kp_relative_aq_threshold 0.5
kp_min_len 0
kp_max_len 100
kp_min_kp_quality 0.5

KPM min_matches_per_kp 0
mapping_policy LOOSE

Table A.5: API Configuration for Debater approach.

models. We provide a template for the prompts below, in Prompts 1, 2, and 3. Open-book
ChatGPT for KPG uses up to BKPG = 600,100,100 for ArgKP, PVE, Perspectrum respec-
tively. ChatGPT uses a batch size of BKPM = 10 when making match predictions for KPM.
Interpreting the responses was done by prompting themodel to output valid JSON, and writ-
ing a script that parses the generated response. Invalid JSON responses are considered errors
on the model’s side, resulting in an empty string for KPG and a ‘no-match’ label for KPM. In
order to cut down on costs, we subsampled the test set for Perspectrum, taking a random
15% of the claims in order to drive down the costs further.

Prompt 1: ChatGPT closed book, KPG prompt

Give me a JSON object of key arguments for and against the claim: {claim}. Make sure the reasons
start with addressing themain point. Indicate per reason whether it supports (pro) or opposes (con)
the claim. Rank all reasons from most to least popular. Make sure you generate a valid JSON object.
The object should contain a list of dicts containing fields: ’reason’ (str), ’popularity’ (int), and ’stance’
(str).
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Prompt 2: ChatGPT open book, KPG prompt

Extract key arguments for and against the claim: {claim}. You need to extract the key arguments
from the comments listed here: {up to BKPG arguments} Give me a JSON object of key arguments
for and against the claim. Make sure the reasons start with addressing the main point. Indicate
per reason whether it supports (pro) or opposes (con) the claim. Rank all reasons from most to
least popular. Make sure you generate a valid JSON object. The object should contain a list of dicts
containing fields: ’reason’ (str), ’popularity’ (int), and ’stance’ (str).

Prompt 3: ChatGPT open book, KPM prompt

For the claim of {claim}, indicate for each of the following argument/key point pairs whether the ar-
gument matches the key point. Return a JSON object with just a ”match” boolean per argument/key
point pair.

ID: {pair id} Argument: {argument} Key point: {key point} (up to BKPM times) …

SMatchToPR We preprocess the Perspectrum dataset analogously to the ArgKP dataset.
We train the SMatchToPR model using contrastive loss for 10 epochs and a batch size of
32. The training has a warmup phase of the first 10% of data. The base and large variants
use the same parameters. See Table A.6 for the hyperparameters when executing KPG and
KPM. The computing infrastructure used contained two RTX3090 Ti GPUs. Training the
RoBERTa large variant takes around 30 minutes.

Parameter Value
PR d 0.2
PR min quality score 0.8
PR min match score 0.8
PR min length 5
PR max length 20
filter min match score 0.5
filter min result length 5
filter timeout 1000

Table A.6: Hyperparameters for SMatchToPR approach. Parameters are independent of subtask.

A.1.3 Evaluation metrics
For Key Point Generation, we resort tomeasuring lexical overlap and semantic similarity. To
make our results reproducible we provide further details on the configuration of the ROUGE
metrics [150]. Our evaluation uses the sacrerouge package that wraps the original ROUGE
implementation¹. The full evaluation parameters can be seen in Table A.7.

Furthermore, we use two learned metrics (BLEURT and BARTScore) to report the se-
mantic similarity of generated key points and reference key points. For BLEURT, we use

¹https://github.com/danieldeutsch/sacrerouge

https://github.com/danieldeutsch/sacrerouge
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Parameter Value
Porter Stemmer yes
Confidence Interval 95
Bootstrap samples 1000
α 0.5
Counting unit sentence

Table A.7: Configuration parameters for the ROUGE evaluation of KPG.

the publicly available BLEURT-20model, which is a RemBERT [76] model trained on an aug-
mented version of the WMT shared task data [257]. BARTScore uses a BART model trained
on ParaBank2 [174].

A.2 Additional results
We present two additional results: we provide fine-grained ROUGE results for KPG, and
provide examples of key points generated by ChatGPT.

A.2.1 Detailed ROUGE scores for Key Point Generation
Earlier, we provided aggregated F1 scores for the KPG evaluation. Here, we also show Pre-
cision and Recall scores in Table A.8. We see that the models that perform best in terms
of F1 score are consistently scoring well in terms of precision and recall across all datasets.
For instance, open-book ChatGPT performs best on ArgKP in terms of F1 (see Table 2.3),
achieving consistently high precision and recall scores. Other approaches may score higher
on individual metrics (e.g. SMatchToPR large scores higher in terms of ROUGE-1 recall),
but this pattern is not consistent across all metric types.

A.2.2 Additional BERTScores for Key Point Generation
Next to BLEURT and BARTScore, we report BERTScore [448] for the approaches in the
KPG evaluation, to examine the relation between the various learned metrics. See Table A.9
for an overview.

A.2.3 Long-tail experiment for KPG
We perform the long-tail analysis for Key Point Generation, adopting the same cutoff pa-
rameter f from the KPM analysis. Figure A.1 shows the results when including a fraction of
key points f , starting from the least frequent (i.e. the key points with the lowest amount of
arguments matched to them). The figure shows that for a low fraction of data, all approaches
perform considerably worse. Note that due to the evaluation setup in Li et al. [231], scores
may be lower due to a smaller pool of key points. Since we report averages of the maximum
scoring match between any given generated and reference key points, this smaller pool may
lead to overall lower scores. We still report these results to show the impact of making the
evaluation set smaller, next to focusing on infrequent opinions.
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Precision Recall

Data Approach R-1 R-2 R-L R-1 R-2 R-L

ArgKP

ChatGPT 29.1 10.6 25.6 45.2 16.1 41.2
ChatGPT (closed book) 30.8 6.8 26.9 32.0 8.6 27.3
Debater 25.3 5.5 23.1 28.2 5.3 23.4
SMatchToPR (base) 24.5 9.3 23.2 44.5 11.2 41.5
SMatchToPR (large) 22.0 6.4 19.4 53.0 13.0 47.5

PVE

ChatGPT 25.1 6.4 21.1 19.1 3.9 15.8
ChatGPT (closed book) 30.1 9.8 22.6 26.4 8.1 21.6
Debater 33.3 0.0 33.3 13.3 7.1 13.3
SMatchToPR (base) 28.8 5.6 22.6 18.0 2.9 14.4
SMatchToPR (large) 27.8 5.6 22.6 18.0 2.9 14.4

Perspectrum

ChatGPT 17.5 4.7 14.8 35.0 10.2 30.5
ChatGPT (closed book) 14.8 3.1 12.8 25.4 6.3 22.7
Debater 8.6 0.4 7.6 25.5 6.3 22.7
SMatchToPR (base) 18.8 5.5 15.9 32.0 9.2 27.8
SMatchToPR (large) 19.0 5.7 16.1 32.3 9.8 28.3

Table A.8: ROUGE Precision and Recall scores for the Key Point Generation task.

A.2.4 ChatGPT generated key points for PVE
See Table A.10. A cursory search for the content of the open-book key points shows the key
points are directly taken from arguments in PVE. While ChatGPT performs conditioned
language generation, it behaves like extractive summarization when using the open-book
approach for the arguments in PVE. This leads to potentially incomplete or subjective key
points. For the closed-book approach, we observe that ChatGPT generates independent and
objective key points.
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BERTScore

Data Approach Precision Recall F1

ArgKP

ChatGPT 0.412 0.470 0.422
ChatGPT (closed book) 0.322 0.336 0.324
Debater 0.406 0.367 0.379
SMatchToPR (base) 0.362 0.463 0.394
SMatchToPR (large) 0.361 0.482 0.402

PVE

ChatGPT 0.184 0.157 0.153
ChatGPT (closed book) 0.386 0.280 0.324
Debater 0.523 0.146 0.301
SMatchToPR (base) 0.339 0.210 0.257
SMatchToPR (large) 0.339 0.210 0.257

Perspectrum

ChatGPT 0.208 0.308 0.252
ChatGPT (closed book) 0.244 0.274 0.243
Debater 0.228 0.274 0.246
SMatchToPR (base) 0.231 0.297 0.258
SMatchToPR (large) 0.235 0.296 0.260

Table A.9: BERTScore Precision, Recall, and F1 scores for the Key Point Generation task.
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Figure A.1: KPG performance when limiting data usage to a fraction f , starting with the long tail first.
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Claim Stance KP (open-book) KP (closed-book)

All restrictions are
lifted for persons
who are immune

con The coronavirus is an assassin,
let’s really learn more about this
first

There may still be unknown
long-term effects of the virus,
even in those who have recov-
ered.

Re-open hospitality
and entertainment
industry

pro Economy needs to start run-
ning again

Reopening the hospitality and
entertainment industry will
help stimulate the economy
and create job opportunities.

Young people may
come together in
small groups

con The spread will then come back
in all its intensity.

Small group gatherings may
pose a risk of spreading conta-
gious diseases.

Table A.10: Examples of generated key points from the open-book and closed-book ChatGPT approach.
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B
Will It Blend? Mixing Training

Paradigms & Prompting for
Argument Quality Prediction

B.1 Hyperparameters
GPT-3 Prompt We used the model text-davinci-002 with a temperature of 0 and no
penalties on frequency and presence. We experimented with various prompt designs (e.g.
dynamic or longer examples, more/fewer examples, joint prompting of novelty and valid-
ity) but manual inspection showed the best results for the setup described in Chapter 3 (i.e.
separate prompts, static prompt style).

Transformers We report the hyperparameters for each approach in Table B.1 that differ
from the default. In all Transformer models, we used the AdamW optimizer [252].

Model LR epochs g.acc.
CLTeamL-2 1e-05 9 1
CLTeamL-3 (novelty) 1e-05 9 1
CLTeamL-4 5e-06 6 4
CLTeamL-5 (novelty) 5e-06 6 4

Table B.1: Hyperparameters for our approaches that involve gradient-based learning.

SVM Thebest performingmodel on the validation set is one with a C parameter of 0.09 for
validity and 4.7 for novelty. The text representation concatenates the two texts, in a TF-IDF
and stemmed (with the SnowBall stemmer as implemented in NLTK) representation.
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Prec. Rec. F1 Support
non-valid 0.732 0.636 0.681 179
valid 0.780 0.847 0.812 341

non-novel 0.563 0.806 0.663 421
novel 0.424 0.186 0.259 99

Table B.2: Performance statistics for approach CLTeamL-1.

Prec. Rec. F1 Support
non-valid 0.364 0.806 0.502 93
valid 0.943 0.693 0.799 427

non-novel 0.901 0.646 0.753 410
novel 0.358 0.736 0.482 110

Table B.3: Performance statistics for approach CLTeamL-2.

B.2 Additional results
For every analysis, we show the results for approaches CLTeamL-1 and CLTeamL-2, which
can be combined into CLTeamL-3 by merging their results (take validity and novelty, respec-
tively for 1 and 2).

B.2.1 Per-label Performance
See Tables B.2 and B.3.

B.2.2 Label confusion
See Tables 3.4 and B.4.

B.2.3 Seed Variance
While the results for the task were obtained using a single model, we investigate training
stability over multiple seeds. We show the results and variance from five different seeds for
our best-performingMTLmodel. The results can be seen in Figure B.1. Training is relatively
stable, but individual models may have small performance differences on the test set.

Predicted
- +

Tr
ue - 131 75

+ 48 266

(a) GPT-3

Predicted
- +

Tr
ue - 75 131

+ 18 296

(b) MTL

Table B.4: Confusion matrices for the validity labels.
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Figure B.1: Training loss and combined F1 score for multiple training runs of CLTeamL-2 with different seeds.

B.2.4 Topics
The three most error-prone topics were different for approaches. Notable is that “Vegetari-
anism” is an error-prone topic across tasks and approaches.

GPT-3 - Validity “Was the Iraq War Worth it?” (unseen) with 44.8% errors, “Year Round
School” (unseen), 39.7% errors, and “Withdrawing from Iraq” (unseen), 38.1% errors.

GPT-3 -Novelty “YuccaMountain nuclearwaste” (62.5%error rate), “Vegetarianism” (60%
error rate), “Wiretapping in the U.S. (59.2% error rate).

MTL-Validity “ZeroTolerance Law” (42.1%), “Vegetarianism” (40%error rate) and “Yucca
Mountain nuclear waste” (37.5% error rate).

MTL - Novelty “Withdrawing from Iraq” (44.7% error rate), “Vegetarianism” (44% error
rate), “Wiretapping in the United States” (44% error rate)

Topics not in dev, only in test “Video games’, “Zero tolerance law’, “Was the War in Iraq
worth it?’, “Withdrawing from Iraq’, “Year-round school’, “Veal’, “Water privatization’.
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C
A Hybrid Intelligence Method for

Argument Mining

C.1 Experiment Protocol & Description
In order to reproduce the experiments performed in this research, we provide a complete
overview of the guidelines, preliminaries, data, and technical artifacts created. This overview
contains additional information about how the experiments were conducted. The texts pre-
sented to the annotators, such as the informed consent, the annotation introduction, and
instructions are provided in the supplementary material as well. In addition, we provide
details on the average run times per experiment, as well as any other auxiliary details here.

C.1.1 Preliminaries
Before starting the experiments, annotators were required to familiarize themselves with the
annotation procedure and web interface. Upon entering the web platform, they were pro-
videdwith an informed consent form and instructions for their task. The instructions consist
of a short introduction to the context of the task, followed by detailed instructions about the
components they would be annotating (opinions, arguments, topics, etc.). In addition, they
were provided example annotations, both in writing and by means of a video.

After having seen all these, annotators were asked to fill in a short exercise annotation.
This exercise consisted of 3 or 4 items, applicable to a hypothetical policy option, each with
a predefined correct answer. Annotators were required to get the answers correct but had
unlimited tries to perform the exercise. Completing the exercise enabled the actual anno-
tation task, which in all cases was upper-bounded by a fixed number of items. Annotators
were paid 7,50 per hour which is considered an ethical monetary reward on Prolific.

C.1.2 Phase 1: Argument Annotation
This first phase of HyEnA consists of three stages. We provide some additional details per
stage. For the interpretation of the results, we refer to Chapter 4.

Argument Annotation Five annotators were given one hour to explore 51 opinions from
the corpus for a single option. On average, they took 44, 31, and 43 minutes respectively for
the options of young, immune and reopen.
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Topic Generation Two experts worked to generate a short list of topics from the 15 most
frequent BERTopic generated topics, with the short list containing only coherent and unique
topics. Two experts worked for 23 minutes on average to rate all topics across all three op-
tions.

Topic Assignment In the topic assignment, each argument from the argument annotation
stage had to be provided with a manual topic assignment. Topics are assigned by five over-
lapping annotators. For young, immune and reopen, they took 26, 30, and 33 minutes
respectively on average.

C.1.3 Phase 2: Argument Consolidation
The arguments were consolidated by 99, 57, and 87 annotators for the options of young,
immune and reopen respectively. The median completion time was 20, 20 and 18 minutes.
In theMulti Path algorithm in use by Powermultiple annotators are able to work in parallel,
supported by our annotation platform.

C.1.4 Comparison to Automated Baseline
Lastly, in the comparison between HyEnA and ArgKP, annotators rated a fixed number of
opinions and arguments. For the option young, 28 annotators took 23 minutes on aver-
age. For both immune and reopen, both options saw 21 annotators, which took 25 and 23
minutes on average respectively. In this task, the annotators were asked to assess the match
between arguments and opinions, where matching is defined as “an argument capturing the
gist of the opinion, or directly supports a point made in the opinion.”

C.1.5 Annotation platform
We run the HyEnA experiments by employing workers from Prolific (www.prolific.co).
The support our experiments, we created our own web platform for the phases in HyEnA.
The platform allows annotators to work in parallel and is equipped with control mechanisms
for conducting the experiments. Furthermore, we run an evaluation study on the Prodigy
annotation platform (https://prodi.gy/).

Where possible, computations are performed offline, which is possible for all phases with
the exception of the Parallel Pairwise Annotation method, Power. For this phase, we pre-
computed the dependency graph G, and extracted the disjoint paths containing the pairs
to be annotated. Following the annotator’s decisions, we then make automated judgements
over sections of these paths. We add screenshots of the pages as presented to the annotators
in the screenshots/ directory.

The ArgKP baseline was run using two RTX 3090 Ti GPUs, which took around 30 hours
per opinion corpus. ForHyEnA, the opinion corpuswas transformed into embeddings using
the same device within 4 hours. Training the BERTopic models took less than an hour. All
web-based experiments were hosted on a single server with 16GB RAM, without access to a
GPU.

www.prolific.co
https://prodi.gy/
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C.2 Method Details
C.2.1 Parallel Pairwise Annotation Algorithm
To accommodate annotators performing asynchronous annotation, we take an incremental
procedure for pairwise annotation. As soon as a pair has seen three annotations, the auto-
matic labeling procedure is run, and the next pair to be annotated in the same path is opened
up for annotation. When all pairs are (either manually or automatically) labeled, the algo-
rithm is complete. See Algorithm 3 for computational description of the parallel pairwise
annotation algorithm [67]. Since the paths are annotated through a binary traversal method,
we can also obtain an upper bound of number of annotations required, which is the number
of paths |P|multiplied by themaximumnumber of annotations required for the longest path
g, P×⌈log2(| g |)⌉.

Algorithm 3: Parallel Pairwise annotation
Input: Dependency graph G = {V,E}
Output: Labeled vertices V
B = create bipartite graph (G)
Y = find maximal matching (B)
P = find disjoint paths (Y)
while !fully labeled(G) do

for p ∈ P do
v = find middle(p)
label vertex(v) ; ▷ N humans

end
automatically label paths(P, label)

end

C.2.2 Hyperparameters
HyEnA
An overview of hyperparameters for HyEnA is given in Table C.2.

ArgKP
Table C.3 shows the hyperparameters for the ArgKP baseline. The hyperparameters for the
ArgKP baseline were picked such that they are balanced between the ones used for the Argu-
ment dataset [33], but also would increase (up to∼10%) the ratio of comments picked as key
point candidates. While this is lower than the recommended 20%, we avoided relaxing the
heuristic hyperparameters to prevent picking overly specific arguments as candidates. In Fig-
ure C.1, we show the ratio of number of candidates extracted out of all opinions depending
on the hyperparameters.

Running ArgKP does not come cheap. The number of comparisons required to be made
(forward passes through the matching model) is O(NM) where N is the number of candi-
dates and M the number of opinions. Table C.1 shows the number of comparisons made by
the model in use in our experiments.
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Option Stance # Opinions # Candidates # Comparisons
young pro 8804 1307 12M
young con 4596 463 2M
immune pro 1760 369 649K
immune con 8807 657 6M
reopen pro 7027 690 5M
reopen con 5787 457 3M

Table C.1: Quantative descriptive information for running ArgKP.

Parameter Option Value Description
MSBERT all paraphrase-MiniLM-L6-v2 Model used to transform opinions

and arguments into a numerical rep-
resentation.

T all paraphrase-MiniLM-L6-v2 Model in use by BERTopic.
f all 5 Number of farthest opinions to sam-

ple using FFT.

clustering
method

young louvain Clustering method used to extract
argument clusters per option.immune louvain

reopen spectral
r young 0.449 Resolution parameter for Louvain

clustering.
r immune 0.449 Resolution parameter for Louvain

clustering.
k reopen 18 Number of desired clusters for spec-

tral clustering.

Table C.2: Hyperparameters used by HyEnA.

Parameter Value Baseline
Values Description

min_words 1 1 Minimum number of words in an opinion to be
considered a key point candidate.

max_words 15 10, 12 Maximum number of words in an opinion to be
considered a key point candidate.

Q 0.5 0.4, 0.5, 0.7 Minimum argument quality according to a
model trained on the ArgQ dataset [144].

θ 0.9 0.856, 0.999 Threshold value formatch scores for (1) assigning
opinions to key point candidates and (2)merging
similar key point candidates.

Table C.3: Hyperparameters for the ArgKP baseline used in the comparison against HyEnA. We also show the
originally proposed baseline values from Bar-Haim et al. [33]. Parameters are the same across options.
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Figure C.1: Hyperparameter sweep for ArgKP (max_words and Q) and its impact on the ratio of candidates picked.
The indicated red dot shows the chosen parameter settings.
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C.3 Detailed Results
C.3.1 Unclear Translation Actions
In the argument annotation phase of HyEnA, when extracting arguments from opinions,
annotators had the option to skip the opinion if they could not extract any argument from
the opinion. Since opinions were automatically translated by the Azure translation service,
we alsomade it optional to indicate that the reason for skipping the argument was because of
an unclear translation. Out of 51 actions, annotators indicated mistranslations in 6, 7, and
2 opinions on average for young, immune, and reopen respectively. This shows that the
machine translation caused only some noise, and the majority of the skipped opinions were
skipped because of different reasons (e.g. no argument was present in them).

C.3.2 Clustering Arguments
E = 1 vs E = 0 for single member clusters We also experiment with setting E = 0 for
argument clusters of size 1 (i.e., clusters containing only a single key argument), as opposed
to E = 1. The results are displayed in Figure C.2, overlaid over the previous results where
E = 1 for single-member clusters (Figure 4.6 in Chapter 4). As expected, the error is low
when a large number of clusters are obtained by each method (low r, high k). The optimal
parameter setting chosen in our approach corresponds to the tipping point where E switches
between low E to high E .

C.3.3 Key Arguments
The key arguments extracted by HyEnA are shown in Tables C.4, C.5 and C.6. The results
for the ArgKP automated baseline are shown in Tables C.7, C.8 and C.9. Tables C.10, C.11
and C.12 show the results from the manual expert-driven baseline.
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Figure C.2: Parameter tuning for argument clusteringwith E = 0 for argument clusters of size 1. Results are overlaid
on Figure 4.6.
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Option ID Stance Argument cluster
young 0 pro ⟨ Social contact is essential for development, It will be positive for support

and acceptance, possitive for the psychological health of children, Young
people have already suffered enough and got deprived of so many things
like parties, holidays, sports. They are missing out on the best time of their
lives, Young people’smental health will improve, Removes a lot of annoyance
among the elderly, The lifting of this measure significantly reduces loneli-
ness, while having minimal effects, Young people show more cooperation
and thinking along when the way they live is taken into account, co they
don’t have to maintain distance ⟩

1 pro ⟨ Going back to normality, Second wave, Following research results, this
should be possible ⟩

2 con ⟨There’s a limit to the restrictions, More measures lifted is good, As long as
it can still be controlled ⟩

3 pro ⟨ No risk of contamination , Young people have fewer contamination risks,
It’s not dangerous for the young people, The group is not at risk at dying
of covid, Limited risk, large profit for that group, They’re less likely to be
contagious, and they’re already together anyway. , Young people less infects
⟩

4 con ⟨Maintaining distance between your friends and family is easier than being
locked down and deprived of the change to make a living ⟩

5 con ⟨ Joggers don’t maintain the distance and the effects of such behaviour are
very small and negligible , Maintaining distance while exercising with each
other is very difficult, It is dangerous for young people’s health to don’t keep
the distance ⟩

6 con ⟨ Risk of contamination, The infections will increase, The chances of the sec-
ond peak of corona virus is too high, The risks are too large, The numbers
of the infected have peaked following the holidays, Does not solve the risk
of contamination, Unnecessary risk, Who has better immunity system will
live, who not will die ⟩

7 pro ⟨ Economy is more worth then the young ones, The economy will improve
and companies won’t go bankrupt, They still go to the pub, Life has to go on
regardless of the situation, Young people would be happy about going out
and meeting friends ⟩

Table C.4: All argument clusters from HyEnA for the option of Young people may come together in small groups.
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Option ID Stance Argument cluster
young 8 con ⟨ Exceptions should be considered, Because this cannot be maintained, and

it is already violated everywhere, We should be cautious with making big
changes to the regulations because it might cause us damage, Entertainmen-
t/Events give opportunities to break rules, with this option no longer risk of
breaking rules ⟩

9 con ⟨ People should reasonably decide the distance to maintain, They wouldn’t
switch between 1,5m distanz with old ones and young ones, they would al-
ways be nearer. , People will be more willing to meet and they will do it in
larger groups which will enable the spread of the diseas, It is impossible to
tell the exact age of people or gauge their immunity, Regional measures will
cause problems because people commute between cities. ⟩

10 pro ⟨This measure will not be respected, The average Dutchman is too stupid to
control themselves when out among people, It is impossible to stop it either
way, They don’t do it anyway regardless of the rules, People are not respon-
sible enough for the measure to be dropped, They didn’t keep the distance
before, It is too difficult to follow this rule ⟩

11 con ⟨ Important measure to archive immunity, Nursing homes can open up only
if the measures are followed, Treating all people equally and not just the
young ones ⟩

12 con ⟨ Excessivemesure, It saves a lot of tax for the police because they won’t need
to observe young people so closely, It is not proven yet whether this would
be a good option ⟩

13 con ⟨ To many young ones would gather ⟩
14 con ⟨ One rule for all, The young people can contaminate others, Too early ⟩
15 pro ⟨Many people already dont do the 1,5m distance, Less victims if they use 1.5

meters at home with fam members ⟩
16 con ⟨ Lack of control, Easing encourages spread, Every life is worth more than

the economy, Netherlands has more than enough resources to at least keep
its head above water for a considerable time ⟩

17 pro ⟨ Only the sick people should stay at home, the same as with the regular flu
⟩

18 pro ⟨ Young people can studie again and lern together, Children can go easier to
school, The schools will be open soon anyway, Young people want to see and
socialize with people again, Alternate the students that go to school and the
other half attend classes at home ⟩

19 con ⟨ People will spread the virus more quickly as they will feel more willing to
meet in large groups ⟩

Table C.4 continued: All argument clusters from HyEnA for the option of Young people may come together in small
groups.
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Option ID StanceArgument cluster
immune 0 pro ⟨ it is fair to give immune people freedom of movement ⟩

1 pro ⟨ could lead to a second peak in cases, These measures are easier to follow com-
pared to other measures, This is a relatively easy measure to take, Public trans-
port use would be easier ⟩

2 con ⟨ People who still need to follow restrictions will be less likely to when others are
not, Immune people would have advantages over the non-immune, and this is
unfair, could be seen as discrimination, Everyone should be subject to the same
set of rules/restrictions. , Complacency will make it harder for individuals to
follow the rules, Young people seem to be getting an advantage over older people
⟩

3 pro ⟨ Restrictions are unnecessary for people who are immune, Immune people
should not be constrained ⟩

4 con ⟨ Hard to maintain and/or implement, Too little research has been done, It is
difficult to control, People can lie if they’ve contracted the virus ⟩

5 pro ⟨ People will be able to meet with friends and family members again, It will al-
low things to get back to normal, People will be happier if they’re allowed to go
outside, People will be able to see family again, making them happier. , Family
can visit each other more often, There will be solidarity between groups and re-
gions, It is fair to give people back their freedom, People will be less lonely and
depressed, People want to see their families again, and this measure allows it ⟩

6 con ⟨ it is unclear if it will be helpful or will make things worse, ICU beds will become
more crowded, It’s still too early to relax ⟩

7 con ⟨ It is hard to tell if people are truly immune, Not enough is known about the
coronavirus yet, There are too few opportunities to test it, You can’t tell who is
immune and who isn’t, One can lie about having or not having the virus ⟩

8 pro ⟨ Current restrictions do not really provide any safety, This measure can have a
negative effect on society ⟩

9 con ⟨ It is not clear how people will be able to prove that they are immune, It is hard to
know at a glance if someone is immune or not and this will allow some people to
fake immunity, there could be immune people with other factors thatmake them
vulnerable, immune people are no longer infective, People who are immune are
not dangerous to others, Immunity has not been proven ⟩

10 con ⟨will funnel people in certain areas, Risks of transmitting the virus in gatherings
⟩

11 con ⟨ Infection numbers are still increasing, It risks causing a spike in case numbers,
Could lead to the misunderstanding that the situation is safe, Lifting restrictions
will cause another wave of Covid, Lifting restrictions will cause people to stop
following other rules related to Covid like social distancing. , Too much risk of
another spike in cases, By taking this measure, health care would become very
pressured ⟩

12 con ⟨ Infections and morality will increase ⟩
13 pro ⟨ Advantages to the economy from having immune people working again, This

will be beneficial to the economy, People in high-risk of contact jobs will be
allowed to return to work, Lifting restrictions will cause economic and social
damage. , Lifting restrictions will allow people to feel like things are returning to
the pre-Covid normal. , People can go back to work, People who work in contact
professions can go back to work, Immune people are, well immune, and can help
getting the economy back up ⟩

Table C.5: Argument clusters from HyEnA for the option All restrictions are lifted for persons who are immune.
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Option ID Stance Argument cluster
reopen 0 pro ⟨This will bring improvement in employment rate, This will improve the

economy,Thiswill help these industries recover, to support these sectors and
to entertain and please us all, Killing the industry, This helps the economy ⟩

1 con ⟨ will end up in another confinment, will end with a spike of infections, It is
too early, There are less cases now than before ⟩

2 con ⟨The difference is we must first protect ourselves from this sickness to then
adapt,This will help people satisfy their cravings, People will not benefit a lot
from this, This can help people create social interaction and build resistance
against COVID ⟩

3 con ⟨ Leads to more COVID cases , Leads to better moral While keeping Covid
cases down, If people die business will still suffer , Things aren’t normal yet,
Keep sick people away, This will bring more new cases and deaths ⟩

4 pro ⟨ This can be done only on open spaces, It’s already being done in other
countries, There are more important industries that needs to be re-opened.
, This will help people earn enough to support basic necessities, Tests can be
previously made ⟩

5 con ⟨ will gather a lot of people together, Better moral less infection , This will
bring about chaos and lack of control ⟩

6 con ⟨These industries are very risky, Risk of spread increases significantly, Cater-
ing is a distance of 1.5 meters impossible which leads to great chance of con-
tamination, This increases the chances for the virus to be spread ⟩

7 pro ⟨will decrease the number of people with breakdowns, will decrease the con-
tact between people, Keeping group small helps ⟩

8 pro ⟨ will increase the attendes in the shows, will be controlled environment,
With the necessary restrictive measures, cultural events must be able to be
visited again as they are an important part of human life, Workers are well
protected ⟩

9 pro ⟨No evidence that the lockdownworks, A distinction should bemade, some
contact professions are basic service and others are not, Restriction of liberty
is a violation of human rights ⟩

10 pro ⟨ Excited to do things as before for preservingmental health,This will ensure
freedom for the people, In order to save people´s lives, we should be very
careful and not relax too quickly, To support the churches and meet fellow
believers again and pray and sing together ⟩

11 con ⟨ It’s not worth getting people sick, It’s not safe yet , These are not vital in-
dustries ⟩

12 pro ⟨ People need to let out pressure , People are tired and bored , Culture and
entertainment is important in life, This will make people feel better ⟩

13 pro ⟨ It will help everyone tremendously, This will help people go back to work,
This will motivate people to be more active and healthy ⟩

14 pro ⟨ Need freedom, It is best to know more of the virus before reopening these
industries, This can be done following certain conditions, This will support
small businesses recover ⟩

15 pro ⟨This will empower the people to be more responsible ⟩
16 pro ⟨ Cannot be maintained, These places can’t be maintained ⟩
17 pro ⟨ It is easy to maintain social distancing in these industries. ⟩

Table C.6: All argument clusters from HyEnA for the option of Re-open hospitality and entertainment industry.
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Option Stance Arguments
young pro in the long term, this measure is not sustainable in any case

pro Low risk group. Easing also gives more space for parents/families.
pro if it is not necessary then it is desirable. Also saves on enforcement
pro Easing at 1.5mmayprovide bettermotivation to complywith othermeasures
pro Youth has the future, it pays a lot for what it ’costs’
pro This is hard to maintain. Let’s put time into more urgent matters.
pro young people are not going to last , a lot of fighting in home situation
pro Young people need to support the economy again by getting to work
pro Young people need freedom, encourage their own responsibility
pro Schools can open 100% again, so parents can also work 100% again
pro Can’t be stopped. Maintaining this leaves society in a state of cramp.
pro Up to the age of 18, this must be the responsibility of parents.
pro Relatively little extra pressure on care. Easing this measure benefits educa-

tion.
pro they already had a lot of trouble with it, making it better official
pro Untenable for that group, but appeal to solidarity with at-risk groups
pro young people do not have the full support to risk
pro Help for parents to work better at home
con Immunity has not yet been proven. Young people can also transmit the virus.
con The rules must remain uniform, otherwise there will be confusion
con Young people are better at fighting the Coronavirus
con see previous answer Health is for economic importance
con young people don’t care much about the same problem
con We must all stand in solidarity. Moreover, enforcement is easier
con Groups with relatively small economic impact if the measures continue to

exist for longer.
con That way you distinguish between people. This is not advisable for maintain-

ing support.
con Young people can easily transfer. No physical/mental distinction between

people.
con no exceptions for subgroups. Together we get corona under control.
con In fact, my motivation is: Equal monks, equal caps.
con I don’t want to be responsible for the deaths of fellow human beings.
con Risk hedging in the near future. Adds nothing
con because I amnot convinced thatwell-considered visionary decisions are now

being taken
con Companies are always at the forefront. Now health comes first No genera-

tional differences
con Everything is making choices
con based on the effects in the explanatory statement, I make that choice.

Table C.7: All arguments from ArgKP for the option of Young people may come together in small groups.
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Option Stance Arguments
immune pro Partly rekindling the economy Better availability of healthcare staff Less pro-

tective equipment needed
pro that can be used in crucial places
pro If you maintain it, I think this is a logical choice.
pro Positive effect on loss of income for large group of people.
pro Why restrict people’s freedom when there’s no very urgent reason for it?
pro No, it just has to be suffering.
pro people are perfectly capable of using their common sense
pro The psychological benefits seem much greater than the physical disadvan-

tages.
pro they can be deserving of people who are sick
pro You can decide what you want. Some feel deprived of their freedom.
pro This makes travelling in public transport easier, for example
pro These people can therefore reduce the uneaten of the elderly
pro Everyone has to be free, but living in a dictatorship very sad
pro Survival of the fittest. Reward is in order
pro That should be possible n arithmetic could not predict a future
pro This seems like a good start to moving for the new world name corona virus
con Immunity has not yet been proven. Young people can also transmit the virus.
con Immunity has not been established Opening certain provinces gives much

more travel
con Creates inequality that is not good for social cohesion. Possible source of

polarization.
con this reduces the willingness of the rest of the netherlands
con Too much risk people don’t have a size if they are allowed again
con Because young people don’t stick to it now so it won’t matter much
con see previous answer Health is for economic importance
con In my opinion, the selected items are less urgent than the other
con This gives a high degree of inequality within the population
con It’s way too early for that. R values must remain well below 1
con Don’t reward groups for already having a problem with the rules.
con Because we want to live a normal life again
con no exceptions for subgroups. Together we get corona under control.
con Enforceability is complicated, keeps simple rules. Moreover, these measures

undermine solidarity.
con This is uncheckable, you have to show proof everywhere.
con because I amnot convinced thatwell-considered visionary decisions are now

being taken

Table C.8: All arguments from ArgKP for the option of All restrictions are lifted for persons who are immune.
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Option Stance Arguments
reopen pro Catering under certain conditions. entertainment as late as possible

pro Empower citizens’ own responsibilities
pro I think those at high risk can be advised to avoid hospitality.
pro Hospitality but not entertainment. Catering reasonably similar to shops.
pro Only when you’re sick do you stay at home, otherwise you don’t
pro visitors are usually under 50 years of age, can handle this
pro Especially lower risk groups use these facilities.
pro Everyone can decide for themselves whether they want to go here.
pro people are perfectly capable of using their common sense
pro People know how to do this. Sufficiently alert to allow this.
pro restriction of liberty is violation of human rights
pro Make sure the drug is widely available, then the percentages will be even

lower
pro Who else is going to pay the extra care costs?
pro Have seen so many good ideas on media to open responsibly
pro Income is also important. Over-50s don’t have to participate.
pro These companies are also on the rise.
con liftingmeasures northern provinces suffer fromhospitalitymigrationwithin

the Netherlands
con These options can cause other problems, are uncheckable or easy to bypass.
con Too much risk. People will then travel to those regions.
con Risk of spreading is far too great. Measure 1.5 meters is impracticable
con No distinction between areas in NL Entertainment is less important.
con Too dangerous for too little added value.
con Somewhere we have to start slowly with normal life again, but with limita-

tions.
con Equal treatment of the population
con I believe that public support for safety will be greatly reduced.
con People are well able to weigh up themselves
con people have common sense
con A personal choice is not one of the government’s.
con This is uncheckable, you have to show proof everywhere.
con because I amnot convinced thatwell-considered visionary decisions are now

being taken
con Restaurants also cause addiction damage

Table C.9: All arguments from ArgKP for the option of Re-open hospitality and entertainment industry.
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Option ID Stance Arguments Mapped
to

young 0 pro Young people play a minor role in the spread of the virus and their
risk of getting sick is low

3

1 pro Social contact is relatively important for young people (to develop
themselves)

0

2 pro For young people it is difficult not to violate the rules 10
3 pro Reduction of problematic psychological symptoms 0
4 pro Reduces the pressure on parents –
5 pro Possibility to build up herd immunity 11
6 pro Increases support among young people for other lockdown mea-

sures
1

7 con Constitutes age discrimination which results in a dichotomy in so-
ciety

14

8 con Measures are difficult to enforce. Young people will also get in con-
tact with other people

8

Table C.10: All arguments from the expert-drivenmanual analysis for the option of Young people may come together
in small groups. Arguments are mapped to argument clusters from HyEnA, showing the cluster ID taken from
Table C.4.

Option ID Stance Arguments Mapped
to

immune 0 pro These people pose no danger to their environment 3
1 pro These people can keep society and the economy going again 13
2 pro It is pointless to demand solidarity from these people if they are

already immune. Doing so will lead to fierce protests
8

3 con Tests for immunity are not foolproof, and this increases the risk of
new infections

11

4 con Creates a dichotomy in society. People who are not immune can
get annoyed by the behaviour of those who are allowed to resume
normal life

2

5 con Difficult to enforce 4
6 con Potential confusion as immunity is not outwardly apparent 7

Table C.11: All arguments from the expert-driven manual analysis for the option of All restrictions are lifted for
persons who are immune. Arguments are mapped to argument clusters from HyEnA, showing the cluster ID taken
from Table C.5.
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Option ID Stance Arguments Mapped
to

reopen 0 pro This is good for our economy and business 0
1 pro It is good for people’s well-being 12
2 pro This relaxation option will increase support for the continuation

of the other measures
–

3 pro It is enforceable 4
4 pro People can take responsibility for themselves by staying away if

they wish
15

5 pro We should preserve our cultural heritage and cannot risk
bankruptcies in the cultural sector

12

6 pro Keeping these businesses closed is too big of a sacrifice for young
people

–

7 pro In this way, we can build up herd immunity –
8 pro If the hospitality industry is not re-opened people will do other

things to relax which is also risky
9

9 con Risk of too many people gathering together, which helps to spread
the virus

3

10 con It is not necessary at the moment 11
11 con When alcohol is consumed, people are more likely to underesti-

mate risks and are less likely to comply with distancing measures
–

12 con Opening up the hospitality and entertainment sectors should only
be considered in the next phase if it appears that other adjustments
have worked

14

13 con Hospitality industry has a bad impact on society. Please keep it
closed

16

Table C.12: All arguments from the expert-driven manual analysis for the option of Re-open hospitality and enter-
tainment industry. Arguments are mapped to argument clusters from HyEnA, showing the cluster ID taken from
Table C.6.
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D.1 Detailed Experimental Setup

Dataset Task (dimension) Num.
Samples

Num.
Annotators

Num.
Annotations

Num.
Annotations

per item

DICES Safety Judgment 990 172 72,103 72.83
MFTC Morality (care) 8,434 23 31,310 3.71
MFTC Morality (loyalty) 3,288 23 12,803 3.89
MFTC Morality (betrayal) 12,546 23 47,002 3.75

MHS Hate Speech (dehumanize,
genocide, respect) 17,282 7,807 57,980 3.35

Table D.1: Overview of the datasets and tasks employed in our work.

D.1.1 Dataset details
We provide an overview of the datasets used in our work in Table D.1. We split the data on
samples, meaning that all annotations for any given sample are completely contained in each
separate split.

D.1.2 Hyperparameters
Wereport the hyperparameters for training passive, AL, andACAL inTablesD.2,D.3, andD.4,
respectively. For turning the learning rate for passive learning, on each dataset, we started
with a learning rate of 1e-06 and increased it by a factor of 3 in steps until the model showed
a tendency to overfit quickly (within a single epoch). All other parameters are kept on their
default setting.
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Parameter Value
learning rate 1e-04 (constant)
max epochs 50
early stopping 3
batch size 128
weight decay 0.01

Table D.2: Hyperparameters for the passive learning.

Parameter Dataset (task) Value
learning rate all 1e-05
batch size all 128
epochs per
round all 20

num iterations all 10
sample size DICES 79
sample size MFTC (care) 674
sample size MFTC (betrayal) 1011
sample size MFTC (loyalty) 263
sample size MHS (dehumanize), MHS (genocide), MHS (respect) 1728

Table D.3: Hyperparameters for the oracle-based active learning approaches.

D.1.3 Training details
Experiments were largely run between January and April 2024. Obtaining the ACAL results
for a single run takes up to an hour on a Nvidia RTX4070. For large-scale computation, our
experiments were run on a cluster with heterogeneous computing infrastructure, including
RTX2080 Ti, A100, and Tesla T4 GPUs. Obtaining the results of all experiments required a
total of 231 training runs, combining: (1) two data sampling strategies, (2) four annotator
sampling strategies, plus an additional Oracle-based AL approach, (3) a passive learning
approach. Each of the above were run for (1) three folds, each with a different seed, and
(2) the seven tasks across three datasets. For training all our models, we employ the AdamW
optimizer [252]. Our code is based on the Huggingface library [435], unmodified values are
taken from their defaults.

D.1.4 ACAL annotator strategy details
Some of the strategies used for selecting annotators to provide a label to a sample

TS uses a sentence embedding model to represent the content that an annotator has an-
notated. We use all-MiniLM-L6-v2¹. We select annotators that have not annotated yet
(empty history) before picking from thosewith a history to prioritize filling the annotation
history for each annotator.

¹https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2

https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
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Parameter Dataset Value
learning rate all 1e-05
num iterations DICES 50
num iterations MFTC (all), MHS (all) 20
epochs per
round DICES, MHS (all) 20

epochs per
round MFTC (all) 30

sample size DICES 792
sample size MFTC (care) 1250
sample size MFTC (betrayal) 1894
sample size MFTC (loyalty) 512
sample size MHS (dehumanize), MHS (genocide), MHS (respect) 2899

Table D.4: Hyperparameters for the annotator-centric active learning approaches.

TD creates an average embedding for the content annotated by each annotator and selects
the most different annotator. We use the same sentence embedding model as TS. To avoid
overfitting, we perform PCA and retain only the top 10 most informative principal com-
ponents for representing each annotator.

D.1.5 Disagreement rates
We report the average disagreement rates per dataset and task in Figure D.1, for each of the
dataset and task combinations.
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Figure D.1: Histogram of entropy score over all annotations per sample for each dataset and task combination.

D.2 Detailed results overview
D.2.1 Annotator-Centric evaluation for other MFTC and MHS tasks
We show the full annotator-centric metrics results for MFTC betrayal and MFTC loyalty in
Table D.5, and MHS genocide and MHS respect in Table D.6. This follows the same format
as Table 5.1. The results in this table also form the basis for Figure 5.5.

D.2.2 Training process
In Chapter 5, we report a condensed version of all metrics during the training phase of the
active learning approaches. Below, we provide a complete overview of all approaches for all
metrics. The results can be seen in Figures D.2 through D.8.
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Figure D.2: Validation set performance across all metrics for DICES during training.
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Figure D.3: Validation set performance across all metrics for MFTC (care) during training
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Figure D.4: Validation set performance across all metrics for MFTC (loyalty) during training
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Figure D.5: Validation set performance across all metrics for MFTC (betrayal) during training
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Figure D.6: Validation set performance across all metrics for MHS (dehumanize) during training
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Figure D.7: Validation set performance across all metrics for MHS (genocide) during training
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Average Worst-off
App. F1 JS Fa

1 JSa Fw
1 JSw ∆%

M
FT

C
(b

et
ra

ya
l)

SRTR 71.5 .047 57.8 .147 42.0 .199 -1.6
SRTL 71.2 .046 58.1 .149 43.3 .212 -1.6
SRTS 71.2 .051 59.3 .161 43.0 .239 -5.0
SRTD 71.0 .046 58.3 .148 42.9 .199 -1.6
SUTR 72.6 .042 59.4 .150 41.9 .203 -2.5
SUTL 73.6 .045 58.4 .148 43.4 .200 -1.3
SUTS 74.0 .045 58.8 .149 43.5 .204 -1.0
SUTD 73.2 .044 59.1 .149 42.8 .194 -2.6

SRO 72.1 .046 58.9 .147 43.1 .195 -48.6
SUO 71.8 .047 58.9 .149 43.0 .200 -0.0
PL 75.2 .037 48.1 .199 36.0 .290 0.0

M
FT

C
(b

et
ra

ya
l)

SRTR 66.9 .034 56.4 .177 22.2 .372 -0.4
SRTL 68.9 .032 56.3 .176 22.2 .374 -0.3
SRTS 67.1 .031 57.3 .176 22.2 .370 -0.3
SRTD 68.4 .031 55.1 .175 22.2 .373 -0.3
SUTR 61.3 .032 55.7 .177 21.7 .357 -1.1
SUTL 66.5 .032 54.1 .177 22.2 .355 -0.8
SUTS 62.4 .033 55.6 .177 22.2 .358 -0.9
SUTD 64.4 .031 55.8 .177 22.2 .358 -1.3

SRO 71.5 .030 56.0 .176 22.2 .361 -29.1
SUO 66.5 .033 55.9 .177 22.2 .366 -0.1
PL 62.5 .029 51.2 .183 26.1 .309 0.0

Table D.5: Test set results on the MFTC (betrayal) and MFTC (loyalty) datasets. ∆% denotes the reduction in the
annotation budget with respect to passive learning.
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Average Worst-off
App. F1 JS Fa

1 JSa Fw
1 JSw ∆%

M
H

S
(g

en
oc

id
e)

SRTR 26.5 .050 70.0 .227 0.0 .560 -6.3
SRTL 28.2 .051 69.8 .225 0.0 .565 -1.7
SRTS 28.1 .051 70.0 .224 0.0 .566 -1.7
SRTD 28.3 .050 70.2 .224 0.0 .565 -1.7
SUTR 32.8 .077 71.1 .229 0.0 .549 -12.6
SUTL 27.7 .048 70.7 .231 0.0 .548 -7.9
SUTS 26.7 .048 70.9 .231 0.0 .548 -7.9
SUTD 27.3 .048 71.2 .229 0.0 .547 -12.6

SRO 28.0 .048 33.9 .387 0.0 .496 -60.1
SUO 33.3 .080 33.1 .390 0.0 .497 -24.7
PL 21.6 .044 70.0 .245 0.0 .570 –

M
H

S
(r
es

pe
ct
)

SRTR 41.4 .086 46.0 .331 0.0 .528 -18.8
SRTL 40.8 .087 45.6 .331 0.0 .530 -18.8
SRTS 41.2 .086 46.1 .331 0.0 .529 -18.8
SRTD 40.6 .086 46.0 .331 0.0 .528 -18.8
SUTR 32.8 .077 46.6 .323 0.0 .533 -4.9
SUTL 41.0 .085 46.3 .323 0.0 .532 -4.9
SUTS 41.8 .084 45.9 .324 0.0 .531 -4.9
SUTD 40.6 .085 46.2 .324 0.0 .532 -4.9

SRO 41.7 .085 33.9 .387 0.0 .496 -60.1
SUO 33.3 .080 33.1 .390 0.0 .497 -24.7
PL 41.0 .080 25.9 .405 0.0 .587 –

Table D.6: Test set results on the MHS (genocide) and MHS (respect) datasets. ∆% denotes the reduction in the
annotation budget with respect to passive learning.
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Figure D.8: Validation set performance across all metrics for MHS (respect) during training
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E.1 Methodological details
E.1.1 Training Value extraction methods
For training ourTransformer-basedNLPmodels, we turned to theHuggingface transformers
Python package [436]. See Table E.1 for the hyperparameters used for training value extrac-
tionmodels. All computational experiments were run onmachines containing up to 2x 3090
Nvidia RTX GPUs. Training a single value extraction model takes around 3 hours. Running
VPE on background data takes significantly longer due to the number of inferences made,
up to 7 days of computation.

Hyperparameter Value
train epochs 10
learning rate 5e−05
model bert-base-uncased
batch size 256

Table E.1: Hyperparameters used for training models for value extraction

Filtering Reddit data We construct value profiles from the data scraped fromReddit, from
whichwe filter posts not likely to be of relevance to discussingwidespread societal issues. We
remove posts from (1) NSFW subreddits¹, (2) gaming subreddits², (3) image-related subred-
dits³, (4) user subreddits, all subreddits starting with “u_”, (5) non-English posts (as detected

¹https://www.reddit.com/r/ListOfSubreddits/wiki/nsfw
²https://www.reddit.com/r/gaming/wiki/faq
³https://www.reddit.com/r/ListOfSubreddits/wiki/sfwporn

https://www.reddit.com/r/ListOfSubreddits/wiki/nsfw
https://www.reddit.com/r/gaming/wiki/faq
https://www.reddit.com/r/ListOfSubreddits/wiki/sfwporn
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using the FastText [191] Language Identification model⁴), (6) and subreddits for which we
could extract less than 50 posts.

Using Value Dictionary for VPE We use the following pipeline for constructing value pro-
files using the Schwartz Value Dictionary.

1. Load words from Ponizovskiy et al. [304]. Some values have more words in the dic-
tionary, and thus we introduce a weighting scheme to normalize over the number of
words, such that a value v inside the profile with relatively few dictionary words has a
higher weight wv.

2. Replace URLs with a special [URL] token.

3. Apply lemmatization to all comments from a single user.

4. Classify individual comments for values. If a comment contains at least one term from
the VD, classify the comment as being relevant for that value.

5. Aggregate over all comments.

6. Apply weighting z = count(v)×wv.

7. Apply normalization over the profile so it sums to 1.

E.1.2 Annotator experiment
We separated our annotator experiment into two phases: (1) the filling in of the PVQ-21,
and (2) providing judgments on posts from Debagreement. The first phase was performed
through Qualtrics questionnaire software. We provide screenshots of all steps (informed
consent, annotation instructions) below. The second phase is hosted on Prodigy [270].

• Informed consent See Figure E.1. Shown to users before starting the experiment out-
lining the data protection and disclaimers of any risks.

• Value Survey See Figure E.2. Users fill in 21 items on a Likert scale.

• Annotation instructions See Figure E.3.

• Annotation interface See Figure E.4. Users were asked to fill in 25 task instances (five
per subcorpus) on the annotation platform.

Annotators were recruited from the Prolific (prolific.co) crowd worker platform. All
participants were paid at least the recommended £9/h wage, and on average spent 20 min-
utes on the two tasks combined. This payment is considered an ethical reward according to
Prolific.

⁴https://fasttext.cc/docs/en/language-identification.html

prolific.co
https://fasttext.cc/docs/en/language-identification.html
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Figure E.1: Informed consent shown to users before starting the experiment.

Transforming survey responses into profiles Weadopt the suggestions fromSchwartz [344]
for constructing a numerical value profile that reflects preferences among values. We create
the following pipeline:

1. Gather Likert-scale answers on all 21 items.

2. Check if two attention check items were correctly answered. Participants were asked
to fill in a given score. Disregard participant results otherwise.

3. Compute Mean Rating for each participant (MRAT).

4. Subtract the mean score from all other scores to obtain centered response scores.

5. Normalize the profile by dividing by the sum of all scores.
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Figure E.2: Screenshot of the PVQ-21 survey.

E.1.3 Training agreement analysis models
Training models for agreement analysis takes around 4 hours for the BERT models on the
subsampled Debagreement dataset. See Table E.2 for the hyperparameters used. Debagree-
ment may be reused under the CC BY 4.0 license. For the implementation of the TF-IDF, we
used the sklearn [299] Python package. All training involving TF-IDF embeddings takes
under 1 hour.

Hyperparameter Value
train epochs 7
learning rate 5e−05
model bert-base-uncased
batch size 64

Table E.2: Hyperparameters used for training models for agreement analysis

We constructed three types of extra user information for the agreement analysis task:
Random noise We sample a vector of size 768 from a random uniform distribution over
[0,1).
User centroids We stem the posts from users that contain at least one value term according
to the value dictionary and transform comments to TF-IDF vectors. We restrict the vocab-
ulary to the 768 most frequent terms. We then compute the average over all vectors for a
single user.
Explicit user features Weconstruct user feature vectors for Reddit users through theReddit
PRAW API. See Table E.3 for the features used.



E.1 Methodological details

E

163

Figure E.3: Instructions shown to users for the annotation experiment.
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Figure E.4: Annotation interface.

Feature Explanation
comment_karma Total amount of upvotes minus downvotes on comments.
link_karma Total amount of upvotes minus downvotes on link submissions.
date_created Timestamp of account creation.
gold_status Whether the user is a gold member.
mod_status Whether the user is a mod of any subreddit.
employee_status Whether the user is an employee of Reddit.
num_gilded Number of gilded items.
num_comments Number of comments posted by user.
num_links Number of links submitted by user.

Table E.3: Features used to represent a user from Reddit
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E.2 Additional Results
E.2.1 Value Extraction
For a complete overview of the performance of the value extraction models, including the
standard deviation over 10 random seeds for the V E models, see Table E.4.

Method Training
data P(VN) R(VN) F1(VN) P(VA) R(VA) F1(VA)

All-ones – 0.34 0.50 0.40 0.11 0.50 0.18
VD – 0.56 0.55 0.45 0.64 0.58 0.59
Kiesel et al. [201]∗ VA 0.20 0.21 0.15 0.47 0.34 0.37
Qiu et al. [311]∗ VN 0.64 0.65 0.59 0.53 0.52 0.52
BERT VN 0.66±0.00 0.68±0.00 0.66±0.00 0.57±0.02 0.60±0.02 0.57±0.03

VA 0.57±0.00 0.56±0.00 0.46±0.00 0.79±0.02 0.74±0.01 0.76±0.01
Both 0.63±0.00 0.64±0.00 0.63±0.00 0.84±0.02 0.79±0.00 0.81±0.01

RoBERTa VN 0.61±0.15 0.66±0.05 0.62±0.12 0.58±0.02 0.61±0.02 0.59±0.02
VA 0.57±0.00 0.56±0.00 0.46±0.00 0.79±0.02 0.74±0.01 0.76±0.01
Both 0.63±0.00 0.64±0.00 0.63±0.00 0.83±0.02 0.78±0.01 0.80±0.01

Table E.4: Macro-averaged performance of the value estimation approaches on the value datasets, showing averages
and standard deviation for our own models over 10 different seeds. VN denotes ValueNet, VA denotes ValueArg.
Methods marked with * are trained on a different objective than our VE task.

E.2.2 Value Survey
Demographics We received a total of 27 responses, one of which was ignored because of a
failed attention check. Different ages were represented in our sample (M=28.0, SD=8.7), and
annotators originated from Europe (18 annotators), South Africa (8 annotators), the UK (1),
and the US (1). About half (13) were registered students.

Reliability Since the PVQ has two questions for each personal value, we are able to com-
pute internal consistency using Cronbach α per value. See the results in Table E.5. We
observe a wide range of reliability scores, of which only conformity reaches above a score
of 0.7. Most interestingly, we see that tradition is of very low reliability, possibly due to the
demographic of some of our participants (students). Three task instances received mostly
neutral or not-enough-information labels, and were disregarded in our analysis.

E.2.3 Qualitative Examples of Value Conflicts and (Dis-)agreement
We perform a qualitative analysis of some instances (comment pairs) from the dataset that
follow our hypothesis and some that do not to gain a better understanding of when value
conflicts influence disagreement. Table E.6 shows examples of the types of pairs we analyze.

E.2.4 Decomposition of BF10 results
We create overviews of the different tests performed in Sections 6.4.3 and 6.4.3. We decom-
pose the aggregated scores into three separate figures, each showing how a single variable
(either subreddit, similarity score, or profile threshold) impacts the obtained results. We
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Value α 95% CI
conformity 0.717 (0.514,0.835)
tradition 0.051 (-0.627,0.447)
benevolence 0.336 (-0.138,0.613)
universalism 0.407 (-0.016,0.654)
self-direction 0.641 (0.384,0.790)
stimulation 0.589 (0.295,0.760)
hedonism 0.618 (0.345,0.777)
achievement 0.504 (0.149,0.711)
power 0.371 (-0.078,0.633)
security 0.388 (-0.050,0.643)

Table E.5: Internal consistency scores (Cronbach’s α) for the values in the PVQ-21 questionnaire.

show the decomposition for the BF10 scores obtained for comparisons between two VPE-
estimated profiles in Figures E.5 and for the comparison between VPE and self-reports in
Figure E.6. In the latter case, since we picked samples fromDebagreement with authors with
populated value profiles, we do not need to test over multiple profile thresholds.

We show the highest and lowest BF10 scores and the test parameters in Tables E.7 and E.8
between two VPE profiles, and in Tables E.9 and E.10 for the experiments comparing VPE
and self-reported profiles.

E.2.5 Kendall τ vs. Spearman ρ
We include a comparative overview of the tests that use the Kendall τ and add the BF10 scores
for the same tests conducted with Spearman ρ . See Figure E.7. We see that generally, the ρ
scores are similarly distributed as the τ scores. Two tests that for τ fall into the undecidable
range, for ρ favor the null hypothesis H0. We attribute this to the size of our value profiles:
since we have only 10 entries, ties are likely, and Spearman ρ does not explicitly account for
them.

E.2.6 Agreement Analysis
For additional results (Precision,Recall, F1 scores, accuracy, and the changew.r.t. a text-only
baseline), see Table E.11.
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Disagree Agree

N
o
Va

lu
eC

on
fli

ct

This is NOT a public statue. It’s a
privately owned statue on private
property.. the government has
zero right to take it down.

Not so sure. A crime on
private property is still
a crime, and defending
racism is a crime.

Climate justice has waited too
long to be served. The time is
now!

Guys, get out there and
support people, politi-
cians, businesses, com-
panies, and local stores
who support climate jus-
tice and sustained efforts
to promote sustainability
and eco-friendliness alike!!

Va
lu

eC
on

fli
ct

The EU moves very slowly.. Don’
t blame the UK if the EU is so
slow.

So you’re saying the EU
should make the UK its
priority? Why should the
UK have priority over an-
other issue?

Brexit is a symptom, not a prob-
lem in itself. Don’t just make the
symptom go away, treat the many
underlying problems first

I agree, but you have a
parliament that took con-
trol from May then did
the dumbest thing it could
do by not voting for any
of the proposals.

Table E.6: Confusion matrix of qualitative examples of the match between value conflict and (dis-)agreement.

BF10 Subreddit Similarity
score

Profile
threshold

17.451 BLM CO 10
12.485 BLM WC 10
10.504 BLM τ 250
4.223 BLM MD 10
3.442 Brexit WC 500

Table E.7: The five tests between two VPE-constructed profiles with the highest BF10 scores.
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Figure E.5: BF10 scores when testing between two VPE-constructed profiles, obtained for all combinations of sub-
reddits (top figure), similarity scores (middle figure) and profile thresholds (bottom figure).

BF10 Subreddit Similarity
score

Profile
threshold

0.079 Brexit MD 50
0.081 Brexit τ 50
0.083 Brexit τ 10
0.085 Brexit τ 1
0.086 Brexit MD 10

Table E.8: The five tests between two VPE-constructed profiles with the lowest BF10 scores.
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Figure E.6: BF10 scores when testing between a VPE-constructed profile and a self-reported profile, split into dif-
ferent subreddits (top figure) and different similarity scores (bottom figure).

BF10 Subreddit Similarity
score

6.490 democrats τ
3.066 democrats MD
2.543 Brexit MD
2.407 Brexit CO
2.230 climate CO

Table E.9: The five tests between a VPE-constructed profile and a self-reported profile with the highest BF10 scores.
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BF10 Subreddit Similarity
score

0.087 republican τ
0.108 Brexit MD
0.247 Brexit CO
0.273 Brexit WC
0.359 repulican MD

Table E.10: The five tests between a VPE-constructed profile and a self-reported profile with the highest BF10 scores.
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Figure E.7: BF10 scores when testing between two VPE-constructed profiles, obtained for the similarity scores
Kendall τ and Spearman ρ .

Model P R F1 Acc. ∆ F1
Majority 0.12 0.33 0.18 0.37
Only context (ε) 0.21±0.10 0.34±0.01 0.24±0.07 0.36±0.00
Only context (z) 0.42±0.00 0.41±0.00 0.41±0.00 0.43±0.00
Only context (u) 0.33±0.01 0.35±0.00 0.31±0.00 0.38±0.00
Only context (v) 0.27±0.00 0.37±0.00 0.31±0.00 0.40±0.00
TF-IDF + Logistic Regression 0.48±0.01 0.47±0.02 0.46±0.03 0.48±0.01 –

+ ε 0.38±0.01 0.37±0.01 0.33±0.05 0.36±0.03 -0.12
+ z 0.51±0.02 0.47±0.04 0.43±0.09 0.45±0.06 -0.03
+ u 0.37±0.00 0.36±0.00 0.36±0.01 0.36±0.01 -0.12
+ v 0.51±0.01 0.45±0.02 0.41±0.05 0.45±0.04 -0.04

BERT(-base-uncased) 0.62±0.00 0.62±0.01 0.62±0.01 0.63±0.01 –
+ ε 0.63±0.00 0.62±0.00 0.62±0.00 0.64±0.00 0.00
+ z 0.63±0.00 0.63±0.00 0.63±0.00 0.63±0.00 0.01
+ u 0.62±0.00 0.62±0.01 0.62±0.01 0.63±0.00 0.00
+ v 0.64±0.01 0.64±0.01 0.64±0.01 0.65±0.01 0.02

Table E.11: Performance of the agreement classification on a subset of Debagreement (sentence pairs for which both
users were available on Reddit).
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