
Data structures for quantum circuit verification and how to
compare them
Vinkhuijzen, L.T.

Citation
Vinkhuijzen, L. T. (2025, February 25). Data structures for quantum circuit
verification and how to compare them. IPA Dissertation Series. Retrieved from
https://hdl.handle.net/1887/4208911

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis
in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/4208911

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/4208911

Appendix A

Proof that cluster states and
coset states need exponentially
large QMDDs

In this appendix, we show that QMDDs which represent both clusters states, and
coset states, are exponentially large in the worst case (respectively, Theorem 3.2 and
Corollary A.1). On the other hand, in App. B, we will show that these states can be
represented using only O(n) nodes by ⟨X⟩-LIMDDs, showing that they are exponen-
tially more succinct than QMDDs. We first fix notation and definitions, after which
we prove the theorem using two lemmas.

Let G be an undirected graph with vertices VG = {v1, ..., vn} and edge set EG ⊆
VG × VG. For a subset of vertices S ⊆ VG, the S-induced subgraph of G has vertices
S and edge set (S × S) ∩ E. Given G, its graph state |G⟩ is expressed as

|G⟩ =
∑

x⃗∈{0,1}n

(−1)fG(x⃗) |x⃗⟩ (A.1)

where fG(x⃗) is the number of edges in the S-induced subgraph of G.

For a function f : {0, 1}n → C and bit string a⃗ = a1 · · · ak ∈ {0, 1}k, we denote by fa⃗

205

the subfunction of f restricted to a⃗:

fa⃗(xk+1, . . . , xn) := f(a1, . . . , ak, xk+1, . . . , xn) (A.2)

We also say that fa⃗ is a subfunction of f of order |⃗a| = k.

We will also need the notions of boundary and strong matching.

Definition A.1 (Boundary). For a set S ⊆ VG of vertices in G, the boundary of S is
the set of vertices in S adjacent to a vertex outside of S.

Definition A.2 (Strong Matching). Let G = (V,E) be an undirected graph. A
strong matching is a subset of edges M ⊆ E that do not share any vertices (i.e., it is a
matching) and no two edges of M are incident to the same edge of G, i.e., an edge in
E \M . Alternatively, a strong matching is a matching M s.t. G[V (M)] =M . We say
that M is an (S, T)-strong matching for two sets of vertices S, T ⊂ V if M ⊆ S × T .
For a strong matching M and a vertex v ∈ V (M), we let M(v) denote the unique
vertex to which v is matched by M .

Using these definitions and notation, we prove Theorem 3.2.

Theorem 3.2. Denote by |Gn⟩ the two-dimensional cluster state, defined as a graph
state on the n× n lattice. Each QMDD representing |Gn⟩ has at least 2⌊n/12⌋ nodes.

Proof. Let G = lattice(n, n) be the undirected graph of the n × n lattice, with
vertex set V = {v1, . . . , vn2}. Let σ = v1v2 · · · vn2 be a variable order, and let
S = {v1, v2, . . . , v 1

2n
2} ⊂ V be the first 1

2n
2 vertices in this order.

The proof proceeds broadly as follows. First, in Lemma A.1, we show that any (S, S)-
strong matching M effects 2|M | different subfunctions of fG. Second, Lemma A.2
shows that the lattice contains a large (S, S)-strong matching for any choice of S.
Put together, this will prove the lower bound on the number of QMDD nodes as in
Theorem 3.2 by the fact that a QMDD for the cluster state G has a node per unique
subfunction of the function fG. Figure A.1 illustrates this setup for the 5× 5 lattice.

Lemma A.1. Let M be a non-empty (S, S)-strong matching for the vertex set S
chosen above. If σ = v1v2 · · · vn2 is a variable order where all vertices in S appear
before all vertices in S, then fG(x1, . . . , xn2) has 2|M | different subfunctions of order
|S|.

206

Proof that cluster states and coset states need exponentially large
QMDDs

Proof. Let SM := S∩V (M) and SM := S∩M be the sets of vertices that are involved
in the strong matching. Write χ(x1, ..., xn) for the indicator function for vertices:
χ(x1, ..., xn) := {vi | xi = 1, i ∈ [n]}. Choose two different subsets A,B ⊆ SM and
let a⃗ = χ−1(A) and b⃗ = χ−1(B) be the corresponding length-|S| bit strings. These
two strings induce the two subfunctions fG,⃗a and fG,⃗b. We will show that these
subfunctions differ in at least one point.

First, if fG,⃗a(0, . . . , 0) ̸= fG,⃗b(0, . . . , 0), then we are done. Otherwise, take a vertex
s ∈ A ⊕ B and say w.l.o.g. that s ∈ A \ B. Let t = M(s) be its partner in the
strong matching. Then we have, |E[A ∪ {t}]| = |E[A]|+ 1 but |E[B ∪ {t}]| = |E[B]|.
Therefore we have

fG,⃗a(0, . . . , 0, xt = 0, 0, . . . , 0) ̸= fG,⃗a(0, . . . , 0, xt = 1, 0, . . . , 0) (A.3)

fG,⃗b(0, . . . , 0, xt = 0, 0, . . . , 0) = fG,⃗b(0, . . . , 0, xt = 1, 0, . . . , 0) (A.4)

We see that each subset of SM corresponds to a different subfunction of fG. Since
there are 2|M | subsets of M , fG has at least that many subfunctions.

We now show that the n× n lattice contains a large enough strong matching.

Lemma A.2. Let S = {v1, . . . , v 1
2n

2} be a set of 1
2n

2 vertices of the n× n lattice, as
above. Then the graph contains a (S, S)-strong matching of size at least

⌊
1
12n
⌋
.

Proof. Consider the boundary BS of S. This set contains at least n/3 vertices, by
Theorem 11 in [204]. Each vertex of the boundary of S has degree at most 4. It
follows that there is a set of

⌊
1
4 |BS |

⌋
vertices which share no neighbors. In particular,

there is a set of
⌊
1
4 |BS |

⌋
≥
⌊

1
12n
⌋

vertices in BS which share no neighbors in S.

Put together, every choice of half the vertices in the lattice yields a set with a boundary
of at least n/3 nodes, which yields a strong matching of at least

⌊
1
12n
⌋

edges, which
shows that fG has at least 2⌊

1
12n⌋ subfunctions of order 1

2n
2.

Proof that coset states need exponentially large QMDDs. We now show that
QMDDs which represent coset states are exponentially large in the worst case. We will
use the following result by Ďuriš et al. on binary decision diagrams (BDDs), which
are QMDDs with codomain {0, 1}. This result concerns vector spaces, but of course,
every vector space of {0, 1}n is, in particular, a coset.

207

Figure A.1: The 5× 5 lattice, partitioned in a vertex set S and its complement S. A
strong matching between S and S is indicated by thick black edges. The nodes in S
are highlighted.

Theorem A.1 (Ďuriš et al. [108]). The characteristic function fV : {0, 1}n → {0, 1}
of a randomly chosen vector space V in {0, 1}n, defined as fV (x) = 1 if x ∈ V and 0

otherwise, needs a BDD of size 2Ω(n)/(2n) with high probability.

Our result follows by noting that if f has codomain {0, 1} as above, then the QMDD
of the state |f⟩ =

∑
x f(x) |x⟩ has the same structure as the BDD of f . Consequently,

in particular the BDD and QMDD have the same number of nodes.

Corollary A.1. For a random vector space V ⊆ {0, 1}n, the coset state |V ⟩ requires
QMDDs of size 2Ω(n)/(2n) with high probability.

Proof. We will show that the QMDD has the same number of nodes as a BDD. A
BDD encodes a function f : {0, 1}n → {0, 1}. In this case, the BDD encodes fV , the
characteristic function of V . A BDD is a graph which contains one node for each
subfunction of f . (In the literature, such a BDD is sometimes called a Full BDD,
so that the term BDD is reserved for a variant where the nodes are in one-to-one
correspondence with the subfunctions f which satisfy f0 ̸= f1).

Similarly, a QMDD representing a state |φ⟩ =
∑
x f(x) |x⟩ can be said to represent

the function f : {0, 1}n → C, and contains one node for each subfunction of f modulo
scalars. We will show that, two distinct subfunctions of fV are never equal up to
a scalar. To this end, let fV,a, fV,b be distinct subfunctions of fV induced by partial

208

Proof that cluster states and coset states need exponentially large
QMDDs

assignments a, b ∈ {0, 1}k. We will show that there is no λ ∈ C∗ such that fV,a = λfV,b.
Since the two subfunctions are not pointwise equal, say that the two subfunctions differ
in the point x ∈ {0, 1}n−k, i.e., fV,a(x) ̸= fV,b(x). Say without loss of generality that
fV,a(x) = 0 and fV,b(x) = 1. Then, since λ ̸= 0, we have λ = λfS,b(x) ̸= fV,a(x) = 0,
so fV,a ̸= λfB,b.

Because distinct subfunctions of fV are not equal up to a scalar, the QMDD of |V ⟩
contains a node for every unique subfunction of fV . We conclude that, since by
Theorem A.1 with high probability the BDD representing fV has exponentially many
nodes, so does the QMDD representing |V ⟩.

209

210

Appendix B

How to write graph states, coset
states and stabilizer states as
Tower-LIMDDs

In this appendix, we prove that the families of ⟨Z⟩-, ⟨X⟩-, and ⟨Pauli⟩-Tower-LIMDDs
correspond to graph states, coset states, and stabilizer states, respectively, in Theo-
rem B.1, Theorem B.2 and Theorem 3.1 below. Definition 3.5 for reduced Pauli-
LIMDDs requires modification for G = ⟨Z⟩-LIMDDs because of the absence of X as
discussed below the definition. Note that the proofs do not rely on the specialized def-
inition of reduced LIMDDs, but only on Definition 3.2 which allows parameterization
of the LIM G. They only rely on the Tower LIMDD in Definition 3.3.

Before we give the proof, we remark that graph states present an interesting special
case because the LIMDD’s edge labels contain meaningful information. Namely, the
labels on the high edges of a graph state’s LIMDD are precisely the edges in the original
graph. Specifically, suppose a graph G gives rise to a graph state |φG⟩ represented by
a LIMDD. Let P = Pk−1 ⊗ · · · ⊗ P1 be the label on the high edge out of the LIMDD
node at level k. Then G contains an edge (vk, vj) if and only if Pj = Z (with the
roles of k and j reversed if k < j). These edge labels come about in a straightforward
manner during the construction of the graph state. Namely, the graph state |φG⟩ is
produced by starting from the state |+⟩⊗n, and applying controlled-Z gates to qubit

211

pairs (u, v) for every edge (u, v) in the graph. Applying such a controlled-Z gate to
qubit pair (u, v) has the effect of setting Pv to Z in the high edge outgoing from the
vertex at level u. In general, however, the labels on the high edges cannot be easily
inferred from the stabilizer state.

A G-Tower-LIMDD representing an n-qubit state is a LIMDD which has n nodes, not
counting the leaf. It has G-LIMs on its high edges. Definition 3.3 gives an exact
definition.

Theorem B.1 (Graph states are ⟨Z⟩-Tower-LIMDDs). Let n ≥ 1. Denote by Gn the
set of n-qubit graph states and write Zn for the set of n-qubit quantum states which
are represented by ⟨Z⟩-Tower-LIMDDs a defined in Definition 3.3, i.e, a tower with
low-edge-labels I and high-edge labels λ

⊗
j Pj with Pj ∈ { I , Z} and λ = 1, except

for the root edge where λ ∈ C \ {0}. Then Gn = Zn.

Proof. We establish Gn ⊆ Zn by providing a procedure to convert any graph state in
Gn to a ⟨Z⟩-Tower-LIMDD in Zn. See Figure B.1 for an example of a 4-qubit graph
state. We describe the procedure by induction on the number n of qubits in the graph
state.

Base case: n = 1. We note that there is only one single-qubit graph state by
definition (see Equation A.1), which is |+⟩ := (|0⟩+ |1⟩)/

√
2 and can be represented

as LIMDD by a single node (in addition to the leaf node): see Figure B.1(a).

Induction case. We consider an (n+ 1)-qubit graph state |G⟩ corresponding to the
graph G. We isolate the (n+1)-th qubit by decomposing the full state definition from
Equation A.1:

|G⟩ = 1√
2

|0⟩ ⊗ |G1..n⟩+ |1⟩ ⊗

 ⊗
(n+1,j)∈E

Zj


︸ ︷︷ ︸

Isomorphism B

|G1..n⟩

 (B.1)

where E is the edge set of G and G1..n is the induced subgraph of G on vertices 1 to
n. Thus, |G1..n⟩ is an n-qubit graph state on qubits 1 to n. Since |G1..n⟩ is a graph
state on n qubits, by the induction hypothesis, we have a procedure to convert it to
a ⟨Z⟩-Tower-LIMDD ∈ Zn. Now we construct a ⟨Z⟩-Tower-LIMDD for |G⟩ as follows.
The root node has two outgoing edges, both going to the node representing |G1..n⟩.

212

How to write graph states, coset states and stabilizer states as
Tower-LIMDDs

The node’s low edge has label I, and the node’s high edge has label B, as follows,

B =
⊗

(n+1,j)∈E

Zj (B.2)

Thus the root node represents the state |0⟩ |G1..n⟩ + |1⟩B |G1..n⟩, satisfying Equa-
tion B.1.

To prove Zn ⊆ Gn, we show how to construct the graph corresponding to a given
⟨Z⟩-Tower LIMDD. Briefly, we simply run the algorithm outlined above in reverse,
constructing the graph one node at a time. Here we assume without loss of generality
that the low edge of every node is labeled I.

Base case. The LIMDD node above the Leaf node, representing the state |+⟩, always
represents the singleton graph, containing one node.

Induction case. Suppose that the LIMDD node k+1 levels above the Leaf has a low
edge labeled I, and a high edge labeled Pk ⊗ · · · ⊗ P1, with Pj = Zaj for j = 1 . . . k.
Here by Zaj we mean Z0 = I and Z1 = Z. Then we add a node labeled k + 1 to
the graph, and connect it to those nodes j with aj = 1, for j = 1 . . . k. The state
represented by this node is of the form given in Equation B.1, so it represents a graph
state.

A simple counting argument based on the above construction shows that |Zn| = |Gn| =
2(

n
2), so the conversion is indeed a bijection. Namely, there are 2(

n
2) graphs, since

there are
(
n
2

)
edges to choose, and there are 2(

n
2) ⟨Z⟩-Tower-LIMDDs, because the

total number of single-qubit operators of the LIMs on the high edges is
(
n
2

)
, each of

which can be independently chosen to be either I or Z.

We now prove that coset states are represented by ⟨X⟩-Tower-LIMDDs.

Theorem B.2 (coset states are ⟨X⟩-Tower-LIMDDs). Let n ≥ 1. Denote by Vn the
set of n-qubit coset states and write Xn for the set of n-qubit quantum states which
are represented by ⟨X⟩-Tower-LIMDDs as per Definition 3.3, i.e., a tower with low
edge labels I and high edge labels λ

⊗
j Pj with Pj ∈ {I, X} and λ ∈ {0, 1}, except

for the root edge where λ ∈ C \ {0}. Then Vn = Xn.

Proof. We first prove Vn ⊆ Xn by providing a procedure for constructing a Tower-
LIMDD for a coset state. We prove the statement for the case when C is a group
rather than a coset; the result will then follow by noting that, by placing the label

213

1 A
a)

1

Z

A
B

b)

1

Z
⊗

I

Z

A
BC

c)

1

Z
⊗

I
⊗
Z

Z
⊗

I

Z0

A
B

C
D

d)

1

−
1

−
1

−
1

−
1

F
igure

B
.1:

C
onstruction

of
the

⟨Z
⟩-T

ow
er

LIM
D

D
for

the
4-qubit

cluster
state,by

iterating
over

the
vertices

in
the

graph,
as

described
in

the
proof

of
T

heorem
B

.1.
(a)

F
irst,

w
e

consider
the

single-qubit
graph

state,
w

hich
corresponds

to
a

the
subgraph

containing
only

vertex
A

.
(b)

T
hen,w

e
add

vertex
B

,w
hich

is
connected

to
A

by
an

edge.
T

he
resulting

LIM
D

D
is

constructed
from

the
LIM

D
D

from
(a)

by
adding

a
new

root
node.

In
the

figure,the
isom

orphism
is
Z
B
⊗

I
[A

],since
vertex

C
is

connected
to

vertex
B

(yielding
the

Z
operator)

but
not

to
A

(yielding
the

identity
operator

I).
(c)

T
his

process
is

repeated
for

a
third

vertex
C

untilw
e

reach
the

LIM
D

D
ofthe

full
4-qubit

cluster
state

(d).
For

com
parison,(d)

also
depicts

a
regular

Q
M

D
D

for
the

sam
e

graph
state,w

hich
has

w
idth

4
instead

of
1

for
the

LIM
D

D
.

214

How to write graph states, coset states and stabilizer states as
Tower-LIMDDs

Xan ⊗ · · · ⊗Xa1 on the root edge, we obtain the coset state |C + a⟩. The procedure
is recursive on the number of qubits.

Base case: n = 1. In this case, there are two coset states: |0⟩ and (|0⟩ + |1⟩)/
√
2,

which are represented by a single node which has a low and high edge pointing to the
leaf node with low/high edge labels 1/0 and 1/1, respectively.

Induction case. Now consider an (n + 1)-qubit coset state |S⟩ for a group S ⊆
{0, 1}n+1 for some n ≥ 1 and assume we have a procedure to convert any n-qubit
coset state into a Tower-LIMDD in Xn. We consider two cases, depending on whether
the first bit of each element of S is zero:

(a) The first bit of each element of S is 0. Thus, we can write S = {0x | x ∈ S0}
for some set S0 ⊆ {0, 1}n. Then 0a, 0b ∈ S =⇒ 0a ⊕ 0b ∈ S implies a, b ∈
S0 =⇒ a⊕ b ∈ S0 and thus S0 is an length-n bit string vector space. Thus by
assumption, we have a procedure to convert it to a Tower-LIMDD in Xn. Convert
it into a Tower-LIMDD in Xn+1 for |S⟩ by adding a fresh node on top with low
edge label I⊗n and high edge label 0, both pointing to the the root S.

(b) There is some length-n bit string u such that 1u ∈ S. Write S as the union of the
sets {0x | x ∈ S0} and {1x | x ∈ S1} for sets S0, S1 ⊆ {0, 1}n. Since S is closed
under element-wise XOR, we have 1u⊕ 1x = 0(u⊕ x) ∈ S for each x ∈ S1 and
therefore u ⊕ x ∈ S0 for each x ∈ S1. This implies that S1 = {u⊕ x | x ∈ S0}
and thus S is the union of {0x | x ∈ S0} and {1u⊕ 0x | x ∈ S0}. By similar
reasoning as in case (a), we can show that S0 is a vector space on length-n bit
strings.

We build a Tower-LIMDD for |S⟩ as follows. By the induction hypothesis, there
is a Tower-LIMDD with root node v which represents |v⟩ = |S0⟩. We construct
a new node whose two outgoing edges both go to this node v. Its low edge has
label I⊗n and its high edge has label P = Pn⊗ · · · ⊗P1 where Pj = X if uj = 1

and Pj = I if uj = 0.

We now show Vn ⊆ Xn, also by induction.

Base case: n = 1. There are only two Tower-LIMDDs on 1 qubit satisfying the
description above, namely

(1) A node whose two edges point to the leaf. Its low edge has label 1, and its high

215

edge has label 0. This node represents the coset state |0⟩, corresponding to the
vector space V = {0} ⊆ {0, 1}1.

(2) A node whose two edges point to the leaf. Its low edge has label 1 and its high
edge also has label 1. This node represents the coset state |0⟩+|1⟩, corresponding
to the vector space V = {0, 1}.

Induction case. Let v be the root node of an n + 1-qubit Tower ⟨X⟩-LIMDD as
described above. We distinguish two cases, depending on whether v’s high edge has
label 0 or not.

(a) The high edge has label 0. Then |v⟩ = |0⟩ |v0⟩ for a node v0, which represents a
coset state |v0⟩ corresponding to a coset V0 ⊆ {0, 1}n, by the induction hypoth-
esis. Then v corresponds to the coset {0x | x ∈ V0}.

(b) the high edge has label P = Pn⊗· · ·⊗P1 with Pj ∈ { I , X}. Then |v⟩ = |0⟩ |v0⟩+
|1⟩ ⊗ P |v0⟩. By the observations above, this is a coset state, corresponding to
the vector space V = {0x|x ∈ V0} ∪ {1(ux)|x ∈ V0} where u ∈ {0, 1}n is a string
whose bits are uj = 1 if Pj = X and uj = 0 if Pj = I , and V0 is the vector space
corresponding to the coset state |v0⟩.

Lastly, we prove the stabilizer-state case, showing that they are exactly equivalent
to the ⟨Pauli⟩-Tower-LIMDD, as defined in Definition 3.3. For this, we first need
Lemma B.1 and Lemma B.2, which state that, if one applies a Clifford gate to a
⟨Pauli⟩-Tower-LIMDD, the resulting state is another ⟨Pauli⟩-Tower-LIMDD. First,
Lemma B.1 treats the special case of applying a gate to the top qubit; then Lemma B.2
treats the general case of applying a gate to an arbitrary qubit.

Lemma B.1. Let |φ⟩ be an n-qubit stabilizer state which is represented by a ⟨Pauli⟩-
Tower-LIMDD as defined in Definition 3.3. Let U be either a Hadamard gate or S gate
on the top qubit (n-th qubit), or a downward CNOT with the top qubit as control.
Then U |φ⟩ is still represented by a ⟨Pauli⟩-Tower-LIMDD.

Proof. The proof is on the number n of qubits.

Base case: n = 1. For n = 1, there are six single-qubit stabilizer states |0⟩ , |1⟩ and
(|0⟩ + α |1⟩)/

√
2 for α ∈ {±1,±i}. There are precisely represented by Pauli-Tower-

LIMDDs with high edge label factor ∈ {0,±1,±i} as follows:

216

How to write graph states, coset states and stabilizer states as
Tower-LIMDDs

• for |0⟩: 1
1

1
0

• for |1⟩: A · 1
1

1
0

where A ∝ X or A ∝ Y

• for (|0⟩+ α |1⟩)/
√
2): 1

1
1

α

Since the H and S gate permute these six stabilizer states, U |φ⟩ is represented by a
⟨Pauli⟩-Tower-LIMDD if |φ⟩ is.

Induction case. For n > 1, we first consider U = S and U = CNOT. Let R
be the label of the root edge. If U = S, then the high edge of the top node is
multiplied with i, while a downward CNOT (target qubit with index k) updates the
high edge label A 7→ XkA. Next, the root edge label is updated to URU†, which
is still a Pauli string, since U is a Clifford gate. Since the high labels of the top
qubit in the resulting diagram is still a Pauli string, and the high edge’s weights are
still ∈ {0,±1,±i}, we conclude that both these gates yield a ⟨Pauli⟩-Tower-LIMDD.
Finally, for the Hadamard, we decompose |φ⟩ = |0⟩⊗|ψ⟩+α |1⟩⊗P |ψ⟩ for some (n−1)-
qubit stabilizer state |ψ⟩, α ∈ {0,±1,±i} and P is an (n− 1)-qubit Pauli string. Now
we note that H |φ⟩ ∝ |0⟩ ⊗ |ψ0⟩ + |1⟩ ⊗ |ψ1⟩ where |ψx⟩ := (I + (−1)xαP) |ψ⟩ with
x ∈ {0, 1}. Now we consider two cases, depending on whether P commutes with all
stabilizers of |ψ⟩:

(a) There exist a stabilizer g of |ψ⟩ which anticommutes with P . We note two things.
First, ⟨ψ|P |ψ⟩ = ⟨ψ|Pg|ψ⟩ = ⟨ψ|g · (−P)|ψ⟩ = −⟨ψ|P |ψ⟩, hence ⟨ψ|P |ψ⟩ = 0. It
follows from Lemma 15 of [125] that |ψx⟩ is a stabilizer state, so by the induction
hypothesis it can be written as a ⟨Pauli⟩-Tower-LIMDD. Let v be the root node
of this LIMDD. Next, we note that g |ψ0⟩ = g(I+αP) |ψ⟩ = (I−αP)g |ψ⟩ = |ψ1⟩.

Hence, v
I

v
g

is the root node of a ⟨Pauli⟩-Tower-LIMDD for H |φ⟩.

(b) All stabilizers of |ψ⟩ commute with P . Then (−1)yP is a stabilizer of |ψ⟩ for
either y = 0 or y = 1. Hence, |ψx⟩ = (I + (−1)xαP) |ψ⟩ = (1 + (−1)x+yα) |ψ⟩.
Therefore, |φ⟩ = |a⟩⊗|ψ⟩ where |a⟩ := (1+(−1)yα) |0⟩+(1+(−1)y+1α |1⟩). It is
not hard to see that |a⟩ is a stabilizer state for all choices of α ∈ {0,±1,±i}. By
the induction hypothesis, both |a⟩ and |ψ⟩ can be represented as ⟨Pauli⟩-Tower-
LIMDDs. We construct a ⟨Pauli⟩-Tower-LIMDD for H |φ⟩ by replacing the leaf
of the LIMDD of |a⟩ by the root node of the LIMDD of |ψ⟩, and propagating
the root edge label of |ψ⟩ upwards. Specifically, if the root edge of |a⟩ is v

A

217

with v = 1
1

1
β

, and if the root edge of |ψ⟩ is w
B , then a ⟨Pauli⟩-

Tower-LIMDD for H |φ⟩ has root node I w
w

βI
and has root edge label

A⊗B.

Lemma B.2. Let |φ⟩ be an n-qubit state state represented by a ⟨Pauli⟩-Tower-
LIMDD, as defined in Definition 3.3. Let U be either a Hadamard gate, an S gate or
a CNOT gate. Then U |φ⟩ is a state which is also represented by a ⟨Pauli⟩-Tower-
LIMDD.

Proof. The proof is by induction on n. The case n = 1 is covered by Lemma B.1.
Suppose that the induction hypothesis holds, and let |φ⟩ be an n + 1-qubit state
represented by a ⟨Pauli⟩-Tower-LIMDD. First, we note that a CNOT gate CXt

c can
be written as CXt

c = (H ⊗ H)CXc
t (H ⊗ H), so without loss of generality we may

assume that c > t. We treat two cases, depending on whether U affects the top qubit
or not.

(a) U affects the top qubit. Then U |φ⟩ is represented by a ⟨Pauli⟩-Tower-LIMDD,
according to Lemma B.1.

(b) U does not affect the top qubit. Suppose |φ⟩ = |0⟩ ⊗ |φ0⟩ + |1⟩ ⊗ αP |φ0⟩
(with P a Pauli string and α ∈ {0,±1,±i}). Then U |φ⟩ = |0⟩ ⊗ U |φ0⟩ +
|1⟩ ⊗ (αUPU†)U |φ0⟩. Since U is either a Hadamard, S gate or CNOT, and
|φ0⟩ is an n-qubit state, the induction hypothesis states that the state U |φ0⟩
is represented by a ⟨Pauli⟩-Tower-LIMDD. Let v

A be the root edge of this
⟨Pauli⟩-Tower-LIMDD, representing U |φ0⟩. Then U |φ⟩ is represented by the

root edge w
I ⊗ A , where w is the node v

I
v

αA−1UPU†A
. The label

αA−1UPU†A is a Pauli LIM, and may therefore be used as the label on the high
edge of w.

Finally, we show that stabilizer states are precisely the ⟨Pauli⟩-Tower-LIMDDs.

Theorem 3.1. Let n > 0. Each n-qubit stabilizer state is represented up to nor-
malization by a ⟨Pauli⟩-Tower LIMDDs of Definition 3.3, e.g., where the scalars λ of
the PauliLIMs λP on high edges are restricted as λ ∈ {0,±1,±i}. Conversely, every
such LIMDD represents a stabilizer state.

218

How to write graph states, coset states and stabilizer states as
Tower-LIMDDs

Proof. We first prove that each stabilizer state is represented by a ⟨Pauli⟩-Tower-
LIMDD. We recall that each stabilizer state can be obtained as the output state of
a Clifford circuit on input state |0⟩⊗n. Each Clifford circuit can be decomposed into
solely the gates H,S and CNOT. The state |0⟩⊗n is represented by a ⟨Pauli⟩-Tower-
LIMDD. According to Lemma B.2, applying an H, S or CNOT gate to a ⟨Pauli⟩-
Tower-LIMDD results a state represented by another ⟨Pauli⟩-Tower-LIMDD. One can
therefore apply the gates of a Clifford circuit to the initial state |0⟩, and obtain a
⟨Pauli⟩-Tower-LIMDD for every intermediate state, including the output state. There-
fore, every stabilizer state is represented by a ⟨Pauli⟩-Tower-LIMDD.

For the converse direction, the proof is by induction on n. We only need to note that
a state represented by a ⟨Pauli⟩-Tower-LIMDD can be written as |φ⟩ = |0⟩ ⊗ |φ0⟩ +
|1⟩ ⊗ αP |φ0⟩ = C(P)(|0⟩ + α |1⟩) ⊗ |φ0⟩ where C(P) := |0⟩⟨0| ⊗ I + |1⟩⟨1| ⊗ P is
the controlled-(P) gate. Using the relations Z = HXH, Y = SXS† and S = Z2, we
can decompose C(P) as CNOT, H and S, hence C(P) is a Clifford gate. Since both
|0⟩+α |1⟩ and |φ0⟩ can be written as ⟨Pauli⟩-Tower-LIMDDs, they are stabilizer states
by the induction hypothesis. Therefore, the state |ψ⟩ = (|0⟩ + α |1⟩) ⊗ |φ0⟩ is also a
stabilizer state. Thus, the state |φ⟩ = C(P) |ψ⟩ is obtained by applying the Clifford
gate C(P) to the stabilizer state |φ⟩. Therefore, |φ⟩ is a stabilizer state.

219

220

Appendix C

Advanced LIMDD algorithms

C.1 Measuring an arbitrary qubit

Algorithm 18 allows one to measure a given qubit. Specifically, given a quantum state
|e⟩ represented by a LIMDD edge e, a qubit index k and an outcome b ∈ {0, 1}, it
computes the probability of observing |b⟩ when measuring the k-th significant qubit
of |e⟩. The algorithm proceeds by traversing the LIMDD with root edge e at Line 7.
Like Algorithm 5, which measured the top qubit, this algorithm finds the probability
of a given outcome by computing the squared norm of the state when the k-th qubit
is projected onto |0⟩, or |1⟩. The case that is added, relative to Algorithm 5, is the
case when n > k, in which case it calls the procedure SquaredNormProjected.
On input e, y, k, the procedure SquaredNormProjected outputs the squared norm
of Πyk |e⟩, where Πyk = I [n− k]⊗ |y⟩ ⟨y| ⊗ I [k − 1] is the projector which projects the
k-th qubit onto |y⟩.

After measurement of a qubit k, a quantum state is typically projected to |0⟩ or |1⟩
(b = 0 or b = 1) on that qubit, depending on the outcome. Algorithm 19 realizes this.
It does so by traversing the LIMDD until a node v with idx(v) = k is reached. It then
returns an edge to a new node by calling MakeEdge(follow(0, e), 0) to project onto
|0⟩ or MakeEdge(0, follow(1, e)) to project onto |1⟩, on Line 6, recreating a node
on level k in the backtrack on Line 8. The projection operator Πbk commutes with
any LIM P when Pk is a diagonal operator (i.e., Pk ∈ { I [2], Z}). Otherwise, if Pk is

221

Measuring an arbitrary qubit

Algorithm 18 Compute the probability of observing |y⟩ when measuring the k-
th qubit of the state |e⟩. Here e is given as LIMDD on n qubits, y is given as a
bit, and k is an integer index. For example, to measure the top-most qubit, one
calls Measure(e, 0, n). The procedure SquaredNorm(e, y, k) computes the scalar
⟨e| (I ⊗ |y⟩ ⟨y| ⊗ I) |e⟩, i.e., computes the squared norm of the state |e⟩ after the k-th
qubit is projected to |y⟩. For readability, we omit calls to the cache, which implement
dynamic programming.

1: procedure MeasurementProbability(Edge e v
λPn ⊗ P ′

, y ∈ {0, 1}, k ∈
[1...idx(v)])

2: if n = k then
3: p0 := SquaredNorm(follow(0, e))
4: p1 := SquaredNorm(follow(1, e))

5: return pj/(p0 + p1) where j = 0 if Pn ∈ {I, Z} and j = 1 if Pn ∈ {X,Y }
6: else
7: p0 := SquaredNormProjected(follow(0, e), y, k)
8: p1 := SquaredNormProjected(follow(1, e), y, k)

9: return (p0 + p1)/SquaredNorm(e)

10: procedure SquaredNorm(Edge v
λP)

11: if n = 0 then return |λ|2

12: s := Add(SquaredNorm(follow(0, v
I)),SquaredNorm(follow(1, v

I)))

13: return |λ|2s
14: procedure SquaredNormProjected(Edge e v

λPn ⊗ P ′

, y ∈ {0, 1}, k ∈
[1...idx(v)])

15: b := (Pn ∈ {X,Y }) ▷ i.e., b = 1 iff Pn is Anti-diagonal

16: if n = 0 then
17: return |λ|2
18: else if n = k then
19: return SquaredNorm(follow(b⊕ y, e))
20: else
21: α0 := SquaredNormProjected(follow(0, v

I), b⊕ y, k)

22: α1 := SquaredNormProjected(follow(1, v
I), b⊕ y, k)

23: return |λ|2 · (α0 + α1)

an antidiagonal operator (i.e, Pk ∈ {X,Y }), have Πbk · P = PΠ
(1−b)
k . The algorithm

applies this correction on Line 2. The resulting state should still be normalized as
shown in Sec. 3.3.3.1.

Sampling. To sample from a quantum state in the computational basis, simply repeat
the three-step measurement procedure outlined in Sec. 3.3.3.1 n times: once for each

222

Advanced LIMDD algorithms

Algorithm 19 Project the state given by LIMDD v
A to state |b⟩ for qubit k, i.e.,

produce a LIMDD representing the state (I [n − k] ⊗ |b⟩ ⟨b| ⊗ I [k − 1]) · A |v⟩, with
A = λPn ⊗ · · · ⊗ P1.

1: procedure UpdatePostMeas(Edge v
λPn ⊗ · · · ⊗ P1 , k ∈ [1...idx(v)], b ∈

{0, 1})
2: b′ := x⊕ b where x = 0 if Pk ∈ {I, Z} and x = 1 if Pk ∈ {X,Y } ▷ flip b if Pk is

anti-diagonal

3: if (v, k, b′) ∈ Cache then return Cache[v, k, b′]
4: n := idx(v)
5: if n = k then
6: e := MakeEdge((1− b′) · lowv, b′ · highv) ▷ Project |v⟩ to |b′⟩ ⟨b′| ⊗ I [2]⊗n−1

7: else ▷ n ̸= k:
8: e := MakeEdge(UpdatePostMeas(lowv, k, b′),UpdatePostMeas(highv, k, b′))

9: Cache[v, k, b′] := e

10: return e

qubit.

Strong simulation. To compute the probability of observing a given bit-string x =

xn . . . x1, first compute the probability pn of observing |xn⟩; then update the LIMDD
to outcome xn, obtaining a new, smaller LIMDD. On this new LIMDD, compute the
probability pn−1 of observing |xn−1⟩, and so forth. Note that, because the LIMDD
was updated after observing the measurement outcome |xn⟩, pn−1 is the probability
of observing xn−1 given that the top qubit is measured to be xn. Then the probability
of observing the string x is the product p = p1 · · · pn.

C.2 Applying Hadamards to stabilizer states in poly-

nomial time

We show that, using the algorithms that we have given,∗ a Hadamard can be applied
to a stabilizer state in polynomial time (Theorem C.1). Together with the algorithms
for the other Clifford gates, presented in Sec. 3.3.3.2, this shows that all Clifford
gates can be applied to stabilizer states in polynomial time. We emphasize that our
algorithms do not invoke existing algorithms that are tailored to applying a Hadamard

∗We make minor modifications to the Add algorithm, which are presented in Theorem C.1

223

Applying Hadamards to stabilizer states in polynomial time

to a stabilizer state; instead, the LIMDD algorithms are inherently polynomial-time for
this use case. The key ingredient is Lemma C.3, which describes situations in which
the Add procedure adds two stabilizer states in polynomial time. It shows that only
5n distinct calls to Add are made. Our algorithms are polynomial-time because of
the dynamic programming effected by the caching of previously computed results, as
described in Sec. 3.3.3.3, which, in this case, makes sure only 5n recursive calls are
made.

Theorem C.1. The algorithm HGate(v
A , k) (Algorithm 10) takes polynomial

time when the input edge v
A represents a stabilizer state.

Proof. Due to the cache, the algorithm HGate effects only one recursive call per node.
The LIMDD of a stabilizer state has one node on each of the n layers, so there are at
most n recursive calls.

When the algorithm arrives at layer k, it makes two calls to Add. Both calls are of

the form Add(v′
λP , v′

ωQ
) where λ, ω ∈ {0,±1,±i}, where P and Q are Pauli

strings, and v′ is a node representing a stabilizer state, namely v′ is the node at the
(k − 1)-th level of the LIMDD. This satisfies the conditions of Lemma C.3; therefore,
both calls to Add make at most 5k = O(n) recursive calls in total. Each recursive call
to Add may invoke the MakeEdge procedure, which runs in time O(n3), yielding a
total worst-case runtime of O(n4). Since there are two calls to Add, the total runtime
of HGate is also O(n4).

Lastly, for completeness we note that the call to Add(v′
λP , v′

ωQ
) may have

λ = 0 or ω = 0, i.e., one of the operands may be the zero vector. For readability,
we have presented the Add algorithm (Algorithm 9) without treatment of this case,
when one of the edges is the zero vector. For the purposes of this proof, we therefore
add the following two lines to the Add algorithm:

1: procedure Add(Edge e = v
αP , Edge f = w

βQ)
2: . . .

3: if α = 0 then return w
βQ

4: if β = 0 then return v
αP

5: . . .

These simple checks are also present in the C++ implementation presented in Chap-
ter 4 and is routine in DD implementations, such as the matrix addition algorithm

224

Advanced LIMDD algorithms

described by Miller and Thornton [227]. Consequently, a call to Add(v
αP , w

βQ
)

runs in O(1) time if α = 0 or β = 0.

We now prepare Lemma C.3, which is the main technical ingredient. It states that
all the recursive calls to Add effect only five different cache entries at any given level
of the LIMDD. To this end, the strategy is (1) to look closely at which recursive calls
made by Add; (2) to look closely at when a cache hit is achieved; and (3) to inspect
the Follow procedure.

The recursive calls of Add. First, we will find a good description of the set of
recursive calls made by a call to Add. We note that each call to Add makes two

recursive calls. Specifically, when it is called with parameters Add(v
αP , v

βQ
),

it makes two recursive calls, of the following form,

Add(follow(x, v
αP), follow(x, v

βQ
)) for x ∈ {0, 1} (C.1)

These calls subsequently call Add again, recursively. Let us temporarily forget that
some of these calls may not happen because a cache hit preempts them (namely, the
Add does not recurse in the cache of a cache hit). Then the set of recursive calls to
Add is described by calls of the following form,

Add(follow(x, v
αP), follow(x, v

βQ
)) for x ∈ {0, 1}ℓ for 0 ≤ ℓ ≤ n (C.2)

Cache hits of Add. Inspecting the algorithm Add (Algorithm 9) in Sec. 3.3.3.3, we
see that a call to Add with parameters (v

A , v
B) effects a cache hit if and only

if Add was previously called with (v
C , v

D) satisfying A−1B |v⟩ = C−1D |v⟩.
Therefore, let us associate a given call to Add(v

αP , v
βQ

) with the operator
α−1βP−1Q. Then a call to Add with associated operator U will effect a cache hit if
a previous call to Add was associated with the same operator U .†

The Follow procedure. We now turn to the Follow procedure. The proce-
dure follow(x, v

αP) outputs an edge t
A , labeled with some label A. Let

L(x, v
αP) be the function which outputs this label, i.e., L(x, v

αP) = A. In
this paragraph, we aim to find a closed-form expression for L(x, v

αP) in the case
†More precisely, a call to Add associated with U effects a cache hit if and only if a previous call

was associated with an operator U ′ satisfing U · Stab(φ) = U ′ · Stab(φ). Here U · Stab(φ) is the coset
obtained by left-multiplying the group Stab(φ) with U . Therefore, the condition U = U ′, named
above, is sufficient, but not necessary.

225

Applying Hadamards to stabilizer states in polynomial time

of Tower Pauli-LIMDDs. If the node v is clear from context, we will write simply
L(x, P).

It is useful to conceive of the Follow procedure as traversing a path from v to t

of length ℓ = |x|. Then the label L(x, v
αP) is the product of the LIMs on the

edges that were traversed (including the label P), after which we discard the most
significant ℓ qubits. More precisely, for any Pauli string A = αPn ⊗ · · · ⊗ P1, denote
with A(ℓ) = αPn−ℓ ⊗ · · · ⊗ P1 the least significant (n − ℓ) gates of A, so that, e.g.,
A = Pn ⊗ Pn−1 ⊗ P (2). (In other words, A(ℓ) discards the ℓ most significant qubits of
A). Then, if the Follow procedure traverses edges e1, e2, . . . , eℓ, labeled with LIMs
A1, A2, . . . , Aℓ, respectively, then

L(x, v
A1) = λA

(ℓ)
1 ·A(ℓ)

2 · · ·A(ℓ)
ℓ for some λ ∈ C (C.3)

Here the factor λ depends only on x and on the operators of A1 that were discarded;
we give a closed formula for λ below. For example, if x = 1 and Pn = Z, then λ = −1.
In summary, L(x, v

A) is the product of (1) the labels on the traversed edges and
(2) a phase λ.

Moreover, the ℓ most significant operators of P influence which path is traversed in
the following way. For a pauli string P , let χ(P) = χ1(P) . . . χℓ(P) ∈ {0, 1}ℓ be the
string defined by χj(P) = 0 if Pn−j+1 ∈ {I, Z} and χj(P) = 1 otherwise, i.e., if
Pn−j+1 ∈ {X,Y }. To be clear, P (ℓ) isolates the n− ℓ least significant qubits, whereas
χ(P) depends on the ℓ most significant qubits:

P = Pn ⊗ · · · ⊗ Pn−ℓ+1︸ ︷︷ ︸
χ(P) depends on this part

⊗
P (ℓ) yields this part︷ ︸︸ ︷
Pn−ℓ ⊗ · · · ⊗ P1 (C.4)

Then we have

L(x, P) = λL(x⊕ χ(P), I⊗ℓ ⊗ P (ℓ)) (C.5)

where λ = ⟨x|Pn ⊗ · · · ⊗ Pn−ℓ+1 |x⊕ χ(P)⟩. Therefore,

follow(x, v
P) = t

λL(x⊕ χ(P), I⊗ℓ ⊗ P (ℓ))
for some λ ∈ {0,±1,±i} (C.6)

where t is the destination of the path traversed by follow(x, v
P). Lastly, we note

226

Advanced LIMDD algorithms

that

L(x, I⊗ℓ ⊗ P (ℓ)) = P (ℓ) · L(x, I⊗n) (C.7)

We have thus reduced the problem of finding a closed-form expression for L(x, v
αP)

to the problem of obtaining a closed-form expression for L(x, I), to which we now turn.
In the following, we let v0, . . . , vn be the nodes in the Tower Pauli-limdd, with v0 the
top node and vn the Leaf node (we say that node vℓ is on layer ℓ). For a bit a ∈ {0, 1}
and Pauli string P , we use the notation P a = P if a = 1 and P a = I if a = 0. To
avoid multiple superscripts, we write P a,(ℓ) = (P a)(ℓ) for a bit a and an integer ℓ.

Lemma C.1. Let v be the root node of an n-qubit Tower LIMDD and denote with Aj
the label of the (unique) high edge from layer j−1 to layer j in this Tower LIMDD. Let
x ∈ {0, 1}ℓ. Then there are predicates V1, . . . , Vℓ such that (1) for each 1 ≤ j ≤ ℓ, the
predicate Vj(x) can be expressed as the XOR of (a subset of) the variables x1, . . . , xj ;
and (2) it holds that

L(x, v
I) = A

V1(x),(ℓ)
1 · · ·AVℓ(x),(ℓ)

ℓ (C.8)

Proof. We observed above (in Equation C.3) that L(x, I) is the product of the P (ℓ)

for each label P encountered on the edges traversed by follow(x, I). For a layer
1 ≤ j ≤ ℓ, let Vj(x) be the predicate which is true iff the high edge from layer j − 1

to j is traversed by follow(x, v
I). Recall that the low edges of a LIMDD are

labeled with the identity operator I. It follows that, in a Tower-LIMDD, L(x, I) =

A
V1(x),(ℓ)
1 · · ·AVℓ(x),(ℓ)

ℓ , thus settling claim (1).

We now show that Vj(x) can be expressed as the XOR of (a subset of) the variables
x1, . . . , xj , which proves the lemma. The proof is by induction on the layer index.
The induction hypothesis in step j is that the predicates V1(x), . . . , Vj(x) can each be
written as a XOR over the variables x1, . . . , xj .

Base case. For the base case, we observe that V1(x) = x1; namely, if x1 = 1, then
from layer 0 to layer 1, the path traverses the high edge; otherwise the low edge.

Induction step. Assume the induction hypothesis and consider Vj+1. We claim that

Vj+1 = xj+1 ⊕ (χj+1(A1) ∧ V1)⊕ · · · ⊕ (χj+1(Aj) ∧ Vj) (C.9)

227

Applying Hadamards to stabilizer states in polynomial time

Namely, for each visited high edge with label A, the bit χj+1(A) “flips” the instruction
for the path to traverse the high or low edge at layer j + 1. Lastly, since the bits
χj+1(A) ∈ {0, 1} are constants defined by the LIMDD, and the expressions V1, . . . , Vj
are XORs over the variables x1, . . . , xj , it follows that Vj+1 is a XOR over the variables
x1, . . . , xj+1.

Lemma C.2. Let v be the root node of an n-qubit Tower Pauli-LIMDD. Let x, y ∈
{0, 1}ℓ for some 0 ≤ ℓ ≤ n. Then L(x, v

I) · L(y, v
I)−1 = ±L(x⊕ y, v

I).

Proof. Let V1, . . . , Vℓ be the predicates determining L as in Equation C.8. Then,

L(x, v
I) =A

V1(x),(ℓ)
1 · · ·AVℓ(x),(ℓ)

ℓ (C.10)

L(y, v
I) =A

V1(y),(ℓ)
1 · · ·AVℓ(y),(ℓ)

ℓ (C.11)

L(x⊕ y, v
I) =A

V1(x⊕y),(ℓ)
1 · · ·AVℓ(x⊕y),(ℓ)

ℓ (C.12)

=A
V1(x)⊕V1(y),(ℓ)
1 · · ·AVℓ(x)⊕Vℓ(x),(ℓ)

ℓ (C.13)

=±A
V (x),(ℓ)
1 A

V1(y),(ℓ)
1 · · ·AVℓ(y),(ℓ)

ℓ A
Vℓ(y),(ℓ)
ℓ (C.14)

Here, in Equation C.13, we have used the fact that, since Vj(x⊕ y) is simply a XOR
over some of its inputs, we have

Vj(x⊕ y) = Vj(x)⊕ Vj(y) (C.15)

In Equation C.14, we have used the fact that Aa⊕b = ±Aa · Ab. Namely, we have
A = λP for some λ ∈ {0,±1,±i}; thus, if a = b = 1 and λ = ±i then A2 = −I
so Aa⊕b = I = −Aa · Ab; otherwise, if λ ∈ {0,±1} or if a = 0 or b = 0 we have
Aa⊕b = Aa ·Ab. We now obtain L(x, v

I) · L(x⊕ y, v
I) = L(y, v

I) by simple
algebraic manipulation:

L(x, v
I) · L(x⊕ y, v

I) (C.16)

=±A
V1(x),(ℓ)
1 · · ·AVℓ(x),(ℓ)

ℓ︸ ︷︷ ︸
L(x,I)

·AV1(x),(ℓ)
1 ·AV1(y),(ℓ)

1 · · ·AVℓ(x),(ℓ)
ℓ ·AVℓ(y),(ℓ)

ℓ︸ ︷︷ ︸
L(x⊕y)

(C.17)

=±A
V1(x),(ℓ)
1 ·AV1(x),(ℓ)

1 ·AV1(y),(ℓ)
1 · · ·AVℓ(x),(ℓ)

ℓ ·AVℓ(x),(ℓ)
ℓ ·AVℓ(y),(ℓ)

ℓ (C.18)

=±A
V1(x)⊕V1(x)⊕V1(y),(ℓ)
1 · · ·AVℓ(x)⊕Vℓ(x)⊕Vℓ(y),(ℓ)

ℓ (C.19)

=±A
V1(y),(ℓ)
1 · · ·AVℓ(y),(ℓ)

ℓ = ±L(y, I) (C.20)

We obtain Equation C.18 by grouping like terms; this “shuffling” is possible because

228

Advanced LIMDD algorithms

Pauli operators either commute or anticommute. The statement L(x, I) · L(y, I)−1 =

±L(x⊕ y, I) follows from Equation C.20.

Lemma C.3. Let v = v0 be a node in a Tower Pauli-LIMDD representing a stabilizer

state and let P,Q Pauli strings. Then a call to Add(v
αP , v

βQ
) invokes only at

most 5n recursive calls to Add.

Proof. We observed in Equation C.2 that when Add is called with parameters

Add(v0
αP , v0

βQ
), the parameters to the recursive calls are all of the form

Add(follow(x, v0
αP), follow(x, v0

βQ
)) for some x ∈ {0, 1}ℓ and 0 ≤ ℓ ≤ n

(C.21)

Using the insights above, we have, for any x ∈ {0, 1}ℓ,

follow(x, v0
αP) = vℓ

αλL(x⊕ χ(P), I⊗ℓ ⊗ P (ℓ))
= vℓ

αλP (ℓ)L(x⊕ χ(P), I)
(C.22)

follow(x, v0
βQ

) = vℓ
βωL(x⊕ χ(Q), I⊗ℓ ⊗ R(ℓ))

= vℓ
βωQ(ℓ)L(x⊕ χ(Q), I)

(C.23)

with λ, ω ∈ {0,±1,±i}. Thus, Add is called with parameters

Add
(

vℓ
αλP (ℓ)L(x⊕ χ(P), I)

, vℓ
βωR(ℓ)L(x⊕ χ(Q), I)

)
for some λ, ω ∈ {0,±1,±i}

(C.24)

Therefore, this call to Add can be associated with the following operator,

(αλP (ℓ)L(x⊕ χ(P), I))−1 · (ωQ(ℓ)L(x⊕ χ(Q), I)) (C.25)

=α−1λ−1βωP (ℓ)Q(ℓ)L(x⊕ χ(P), I)L(x⊕ χ(Q), I)−1 (C.26)

=θP (ℓ)Q(ℓ)L(χ(P)⊕ χ(Q), I) (C.27)

for some θ ∈ C. In Equation C.27 we have used Lemma C.2 to obtain

L(x⊕ χ(P), I)−1 · L(x⊕ χ(Q), I) = ±L(χ(P)⊕ χ(Q), I) (C.28)

Recall that in a Tower Pauli-LIMDD, all edge weights are in {0,±1,±i}, so in par-
ticular we have θ ∈ {0,±1,±i}. We observe that this operator depends on the level ℓ
and only the phase θ depends on x. That is to say, P (ℓ), Q(ℓ) and L(χ(P)⊕ χ(Q), I)
are fixed for a given level ℓ. It follows that each recursive call to Add at some level ℓ

229

Applying Hadamards to stabilizer states in polynomial time

is associated with the same operator, modulo some phase θ ∈ {0,±1,±i}. Therefore,
the cache only stores at most five distinct recursive calls, and will achieve a cache hit
on all other recursive calls, at level ℓ. When a cache hit is achieved, the algorithm
does not recurse further, and instead terminates the current call. Since the diagram
contains n levels, there are at most 5n recursive calls in total.

230

Appendix D

LIMDDs prepare the W state
efficiently

In this section, we prove Theorem 3.6. To this end, we show that LIMDDs can efficiently
simulate a circuit family given by McClung [220], which prepares the |W ⟩ state when
initialized to the |0⟩ state. We thereby show a separation between LIMDD and the
Clifford+T simulator, as explained in Sec. 3.3.4.3. Figure Figure D.1 shows the circuit
for the case of 8 qubits.

Theorem 3.6. There exists a circuit family Cn such that Cn |0⟩⊗n = |Wn⟩, that
Pauli-LIMDDs can efficiently simulate. Here simulation means that it constructs rep-
resentations of all intermediate states, in a way which allows one to, e.g., efficiently
simulate any single-qubit computational-basis measurement or compute any compu-
tational basis amplitude on any intermediate state and the output state.

Proof. The proof outline is as follows. First, we establish that the LIMDD of each
intermediate state (Lemma D.3), as well as of each gate (Lemma D.4), has polyno-
mial size. Second, we establish that the algorithms presented in Sec. 3.3.3 can apply
each gate to the intermediate state in polynomial time (Lemma D.8). To this end, we
observe that the circuit only produces relatively simple intermediate states. Specifi-
cally, each intermediate and output state is of the form |ψt⟩ = 1√

n

∑n
k=1 |xk⟩ where

the xk ∈ {0, 1}n are computational basis vectors (Lemma D.2). For example, the
output state has |xk⟩ = |0⟩k−1 |1⟩ |0⟩⊗n−k. The main technical tool we will use to

231

reason about the size of the LIMDDs of these intermediate states, are the subfunction
rank and computational basis rank of a state. Both these measures are upper bounds
of the size of a LIMDD (in Lemma D.1), and also allow us to upper bound the time
taken by the ApplyGate and Add algorithms (in Lemma D.5 for ApplyGate and
Lemma D.6 Add).

The theorem follows from Lemma D.8 and Corollary D.1.

Figure D.1 shows the circuit for the case of n = 8 qubits. For convenience and without
loss of generality, we only treat the case when the number of qubits is a power of 2,
since the circuit is simplest in that case. In general, the circuit works as follows. The
qubits are divided into two registers; register A, with log n qubits, and register B,
with the remaining n − log n qubits. First, the circuit applies a Hadamard gate to
each qubit in register A, to bring the state to the superposition |+⟩⊗ logn |0⟩n−logn.
Then it applies n−log n Controlled-X gates, where, in each gate, each qubit of register
A acts as the control qubits and one qubit in register B is the target qubit. Lastly, it
applies n − log n Controlled-X gates, where, in each gate, one qubit in register B is
the control qubit and one or more qubits in register A are the target qubits. Each of
the three groups of gates is highlighted in a dashed rectangle in Figure D.1. On input
|0⟩⊗n, the circuit’s final state is |Wn⟩. We emphasize that the Controlled-X gates are

Figure D.1: Reproduced from McClung [220]. A circuit on eight qubits (n = 8) which
takes as input the |0⟩⊗8 state and outputs the |W8⟩ state. In the general case, it
contains log n Hadamard gates, and its Controlled-X gates act on one target qubit
and at most log n control qubits.

232

LIMDDs prepare the W state efficiently

permutation gates (i.e., their matrices are permutation matrices). Therefore, these
gates do not influence the number of non-zero computational basis state amplitudes
of the intermediate states. We refer to the t-th gate of this circuit as Ut, and the t-th
intermediate state as |ψt⟩, so that |ψt+1⟩ = Ut |ψt⟩ and |ψ0⟩ = |0⟩ is the initial state.

We refer to the number of computational basis states with nonzero amplitude as a
state’s computational basis rank, denoted χcomp(|ψ⟩).

Definition D.1. (Computational basis rank) Let |ψ⟩ =
∑
x∈{0,1}n α(x) |x⟩ be a quan-

tum state defined by the amplitude function α : {0, 1}n → C. Then the computational
basis rank of |ψ⟩ is χcomp(|ψ⟩) = | {x | α(x) ̸= 0} |, the number of nonzero computa-
tional basis amplitudes.

Recall that, for a given function α : {0, 1}n → C, a string a ∈ {0, 1}ℓ induces a
subfunction αy : {0, 1}n−ℓ → C, defined as αy(x) = α(y, x). We refer to the number
of subfunctions of a state’s amplitude function as its subfunction rank. The following
definition makes this more precise.

Definition D.2. (Subfunction rank) Let |ψ⟩ =
∑
x∈{0,1}n αψ(x) |x⟩ be a quantum

state defined by the amplitude function αψ : {0, 1}n → C, as above. Let χsub(|ψ⟩ , ℓ)
be the number of unique non-zero subfunctions induced by strings of length ℓ, as
follows,

χsub(|ψ⟩ , ℓ) = |
{
αψy : {0, 1}n−ℓ → C | αy ̸= 0, y ∈ {0, 1}ℓ

}
| (D.1)

We define the subfunction rank of |ψ⟩ as χsub(|ψ⟩) = maxℓ=0,...n χsub(|ψ⟩ , ℓ).
We extend these definitions in the natural way for an n-qubit matrix U =∑
r,c∈{0,1}n αU (r, c) |r⟩ ⟨c| defined by the function αU : {0, 1}2n → C.

It is easy to check that χsub(|ψ⟩) ≤ χcomp(|ψ⟩) holds for any state.

For the next lemma, we use the notion of a prefix of a LIMDD node. This lemma will
serve as a tool which allows us to show that a LIMDD is small when its computational
basis rank is low. We apply this tool to the intermediate states of the circuit in
Lemma D.3.

Definition D.3 (Prefix of a LIMDD node). For a given string x ∈ {0, 1}ℓ, consider
the path traversed by the follow(x, r

R) subroutine, which starts at the diagram’s
root edge and ends at a node v on level ℓ. We will say that x is a prefix of the node v.

233

We let Labels(x) be the product of the LIMs on the edges of this path (i.e., including
the root edge). The set of prefixes of a node v is denoted pre(v).

Lemma D.1. If a LIMDD represents the state |φ⟩, then its width at any given level
(i.e., the number of nodes at that level) is at most χcomp(|φ⟩).

Proof. For notational convenience, let us number the levels so that the root node is
on level 0, its children are on level 1, and so on, with the Leaf on level n (contrary
to Figure 3.3). Let r be the root node of the LIMDD, and R the root edge’s label.
By construction of a LIMDD, the state represented by the LIMDD can be expressed as
follows, for any level ℓ ≥ 0,

R |r⟩ =
∑

x∈{0,1}ℓ

|x⟩ ⊗ follow(x, r
R) (D.2)

Since r
R is the root of our diagram, if x is a prefix of v, then

follow(x, r
R) = Labels(x) · |v⟩ (D.3)

A string x ∈ {0, 1}ℓ can be a prefix of only one node; consequently, the prefix sets
of two nodes on the same level are disjoint, i.e., pre(vp) ∩ pre(vq) = ∅ for p ̸= q.
Moreover, each string x is a prefix of some node on level ℓ (namely, simply the node
at which the follow(x, r

R) subroutine arrives). Say that the ℓ-th level contains
m nodes, v1, . . . , vm. Therefore, the sets pre(v1), . . . ,pre(vm) partition the set {0, 1}ℓ.
Therefore, by putting Equation D.3 and Equation D.2 together, we can express the
root node’s state in terms of the nodes v1, . . . , vm on level ℓ:

R |r⟩ =
m∑
k=1

∑
x∈pre(vk)

|x⟩ ⊗ follow(x, r
R) (D.4)

=

m∑
k=1

∑
x∈pre(vk)

|x⟩ ⊗ Labels(x) · |vk⟩ (D.5)

We now show that each term
∑
x∈pre(vk) |x⟩ ⊗ Labels(x) · |vk⟩ contributes a non-zero

vector. It then follows that the state has computational basis rank at least m, since
these terms are vectors with pairwise disjoint support, since the sets pre(vk) are pair-
wise disjoint. Specifically, we show that each node has at least one prefix x such that
Labels(x) · |v⟩ is not the all-zero vector. In principle, this can fail in one of three ways:
either v has no prefixes, or all prefixes x ∈ pre(vk) have Labels(x) = 0 because the

234

LIMDDs prepare the W state efficiently

path contains an edge labeled with the 0 LIM, or the node v represents the all-zero
vector (i.e., |v⟩ = 0⃗). First, we note that each node has at least one prefix, since each
node is reachable from the root, as a LIMDD is a connected graph. Second, due to
the zero edges rule (see Definition 3.5), for any node, at least one of its prefixes has
only non-zero LIMs on the edges. Namely, each node v has at least one incoming edge
labeled with a non-zero LIM, since, if it has an incoming edge from node w labeled
with 0, then this must be the high edge of w and by the zero edges rule the low edge
of w must also point to v and moreover must be labeled with I by the low factoring
rule. Together, via a simple inductive argument, there must be at least one non-zero
path from v to the root. Lastly, no node represents the all-zero vector, due to the low
factoring rule (in Definition 3.5). Namely, if v is a node, then by the low factoring rule,
the low edge has label I. Therefore, if this edge points to node v0, and the high edge
is v1

A , then the node v represents |v⟩ = |0⟩ |v0⟩+ |1⟩A |v1⟩ with possibly A = 0, so,
if |v0⟩ ≠ 0⃗, then |v⟩ ≠ 0⃗. An argument by induction now shows that no node in the
reduced LIMDD represents the all-zero vector.

Therefore, each node has at least one prefix x such that follow(x, r
R) ̸= 0⃗. We

conclude that the equation above contains at least m non-zero contributions. Hence
m ≤ χcomp(R |r⟩), at any level 0 ≤ ℓ ≤ n.

Lemma D.2. Each intermediate state in the circuit in Figure D.1 (with n = 2c) has
χcomp(|ψ⟩) ≤ n.

Proof. The initial state is |ψ0⟩ = |0⟩⊗n, which is a computational basis state, so
χcomp(ψ0) = 1. The first log n gates are Hadamard gates, which produce the state

|ψlogn⟩ = H⊗ logn ⊗ In−logn |0⟩ = |+⟩⊗ logn ⊗ |0⟩⊗n−logn
=

1√
n

n−1∑
x=0

|x⟩ |0⟩⊗n−logn

(D.6)

This is a superposition of n computational basis states, so we have χcomp(|ψlogn⟩) = n.
All subsequent gates are controlled-X gates; these gates permute the computational
basis states, but they do not increase their number.

Lemma D.3. The reduced LIMDD of each intermediate state in the circuit in Fig-
ure D.1 has polynomial size.

Proof. By Lemma D.1, the width of a LIMDD representing |φ⟩ is at most χcomp(|φ⟩)

235

at any level. Since there are n levels, the total size is at most nχcomp(|φ⟩). By
Lemma D.2, the intermediate states in question have polynomial χcomp, so the result
follows.

Lemma D.4. The LIMDD of each gate in the circuit in Figure D.1 (with n = 2c) has
polynomial size.

Proof. Each gate acts on at most k = log n + 1 qubits. Therefore, the width of any
level of the LIMDD is at most 4k = 4n2. The height of the LIMDD is n by definition,
so the LIMDD has at most 4n3 nodes.

The ApplyGate procedure handles the Hadamard gates efficiently, since they apply
a single-qubit gate to a product state. The difficult part is to show that the same
holds for the controlled-X gates. To this end, we show a general result for the speed
of LIMDD operations (Lemma D.5). Although this worst-case upper bound is tight,
it is exponentially far removed from the best case, e.g., in the case of Clifford cir-
cuits, in which case the intermediate states can have exponential χsub, yet the LIMDD
simulation is polynomial-time, as shown in Sec. 3.3.3.4.

Lemma D.5. The number of recursive calls made by subroutine ApplyGate(U, |ψ⟩),
is at most nχsub(U)χsub(|ψ⟩), for any gate U and any state |ψ⟩.

Proof. Inspecting Algorithm 8, we see that every call to ApplyGate(U, |ψ⟩) pro-
duces four new recursive calls, namely ApplyGate(follow(rc, U), follow(c, |ψ⟩))
for r, c ∈ {0, 1}. Therefore, the set of parameters in all recursive calls of
ApplyGate(U, |ψ⟩) is precisely the set of tuples (follow(rc, U), follow(c, |ψ⟩)),
with r, c ∈ {0, 1}ℓ with ℓ = 0 . . . n. The terms follow(rc, U) and follow(c, |ψ⟩)
are precisely the subfunctions of U and |ψ⟩, and since there are at most χsub(U) and
χsub(|ψ⟩) of these, the total number of distinct parameters passed to ApplyGate in
recursive calls at level ℓ, is at most χsub(U, ℓ) ·χsub(|ψ⟩ , ℓ) ≤ χsub(U) ·χsub(|ψ⟩). Sum-
ming over the n levels of the diagram, we see that there are at most nχsub(U)χsub(|ψ⟩)
distinct recursive calls in total. As detailed in Sec. 3.3.3.3, the ApplyGate al-
gorithm caches its inputs in such a way that it will achieve a cache hit on a call
ApplyGate(U ′, |ψ′⟩) when it has previously been called with parameters U, |ψ⟩ such
that U = U ′ and |ψ⟩ = |ψ′⟩. Therefore, the total number of recursive calls that is
made, is equal to the number of distinct calls, and the result follows.

236

LIMDDs prepare the W state efficiently

In our case, both χsub(U) and χsub(|ψ⟩) are polynomial, so a polynomial number of
recursive calls to ApplyGate is made. We now show that also the Add subroutine
makes only a small number of recursive calls every time it is called from ApplyGate.
First, Lemma D.6 shows expresses a worst-case upper bound on the number of recursive
calls to Add in terms of χsub. Then Lemma D.7 uses this result to show that, in our
circuit, the number of recursive calls is polynomial in n.

Lemma D.6. The number of recursive calls made by the subroutine Add(|α⟩ , |β⟩) is
at most nχsub(|α⟩) · χsub(|β⟩), if |α⟩ , |β⟩ are n-qubit states.

Proof. Inspecting Algorithm 9, every call to Add(|α⟩ , |β⟩) produces two
new recursive calls, namely Add(follow(0, |α⟩), follow(0, |β⟩)) and
Add(follow(1, |α⟩), follow(1, |β⟩)). It follows that the set of parameters on n − ℓ

qubits with which Add is called is the set of tuples (follow(x, |α⟩), follow(x, |β⟩)),
for x ∈ {0, 1}ℓ. This corresponds precisely to the set of subfunctions of α and
β induced by length-ℓ strings, of which there are χsub(|α⟩ , ℓ) and χsub(|β⟩ , ℓ),
respectively. Because the results of previous computations are cached, as explained
in Sec. 3.3.3.3, the total number of recursive calls is the number of distinct recursive
calls. Therefore, we get the upper bound of χsub(|α⟩) · χsub(|β⟩) for each level of
the LIMDD. Since the LIMDD has n levels, the upper bound nχsub(|α⟩) · χsub(|β⟩)
follows.

Lemma D.7. The calls to Add(|α⟩ , |β⟩) that are made by the recursive calls to
ApplyGate(Ut, |ψt⟩), satisfy χsub(|α⟩), χsub(|β⟩) = poly(n).

Proof. We have established that the recursive calls to ApplyGate are all called
with parameters of the form ApplyGate(follow(r, c, Ut), follow(c, |ψt⟩)) for some
r, c ∈ {0, 1}ℓ. Inspecting Algorithm 8, we see that, within such a call, each
call to Add(|α⟩ , |β⟩) has parameters which are both of the form |α⟩ , |β⟩ =

ApplyGate(follow(rx, cy, Ut), follow(cy, |ψt⟩)) for some x, y ∈ {0, 1}; therefore,
the parameters |α⟩ , |β⟩ are of the form |α⟩ , |β⟩ = follow(r, c, Ut) · follow(r, |ψt⟩).
Here follow(cy, |ψt⟩) is a quantum state on n− (ℓ+ 1) qubits.

The computational basis rank of a state is clearly non-increasing under taking sub-
functions; that is, for any string x, it holds that, χcomp(follow(x, |ψ⟩)) ≤ χcomp(|ψ⟩).
In particular, we have χcomp(follow(cy, |ψt⟩)) ≤ χcomp(|ψt⟩) = O(n). The matrix
follow(rx, cy, Ut) is a subfunction of a permutation gate, and applying such a matrix

237

to a vector cannot increase its computational basis rank, so we have

χsub(|α⟩) =χsub(follow(rx, cy, Ut) · follow(cy, |ψt⟩)) (D.7)

≤χcomp(follow(rx, cy, Ut) · follow(cy, |ψt⟩)) ≤ χcomp(follow(cy, |ψt⟩))
(D.8)

≤χcomp(|ψt⟩) = O(n) (D.9)

This proves the lemma.

Lemma D.8. Each call to ApplyGate(Ut, |ψt⟩) runs in polynomial time, for any
gate Ut in the circuit in Figure D.1 (with n = 2c).

Proof. If Ut is a Hadamard gate, then LIMDDs can apply this in polynomial time by
Theorem 3.5, since |ψt⟩ is a stabilizer state. Otherwise, Ut is one of the controlled-X
gates. In this case there are a polynomial number of recursive calls to ApplyGate,
by Lemma D.5. Each recursive call to ApplyGate makes two calls to Add(|α⟩ , |β⟩),
where both α and β are states with polynomial subfunction rank, by Lemma D.7. By
Lemma D.6, these calls to Add all complete in time polynomial in the subfunction
rank of its arguments.

Corollary D.1. The circuit in Figure D.1 (with n = 2c) can be simulated by LIMDDs
in polynomial time.

238

Appendix E

Proofs of Section 5.3

In this appendix, we prove Theorem 5.1 as reproduced below. We also reproduce Fig-
ure 5.2 in Figure E.1, which additionally includes references to the respective lemmas.
Chapter 2 and Section 5.2 contain relevant preliminaries on quantum information and
QDDs.

Theorem 5.1. The succinctness results in Figure 5.2 hold.

MPS

LIMDD

RBM

QMDD

ADD

×
Lemma E.6

×
Lemma E.5

Lemma E.3

×Lemma E.11

×Lemma E.8

×Lemma E.10

×
×

Lemma E.8Lemma E.2

Lemma E.1

Figure E.1: Succinctness relations between various classical data structures for repre-
senting quantum states. Solid arrows A → B denote B ≺s A, i.e., B is strictly more
succinct than A. Crossed arrows A−→× B denote a separation B ⪯̸s A; a bidirectional
crossed arrow implies incomparability. Blue arrows indicate novel relations that we
identified.

239

Proof. The proofs for individual relations are stated in the lemmas referenced by
Figure E.1.

Note that we do not include a proof for every arrow (direction), since several can be
derived through transitivity properties. All unlabeled edge (directions) can be derived
as follows:

• MPS ≺s ADD follows from MPS ≺s QMDD and QMDD ≺s ADD

• LIMDD ≺s ADD follows from LIMDD ≺s QMDD and QMDD ≺s ADD

• QMDD ⪯̸s RBM follows from LIMDD ⪯̸s RBM and LIMDD ≺s QMDD

• ADD ⪯̸s RBM follows from LIMDD ⪯̸s RBM and LIMDD ≺s ADD

• RBM ⪯̸s MPS follows from RBM ⪯̸s ADD and MPS ≺s ADD

• RBM ⪯̸s QMDD follows from RBM ⪯̸s ADD and QMDD ≺s ADD

• RBM ⪯̸s LIMDD follows from RBM ⪯̸s ADD and LIMDD ≺s ADD

This completes the proof of all stated succinctness relations.

Lemma E.1. QMDD is exponentially more succinct than ADD.

Proof. Since ADD is a special case of QMDD (Sec. 5.2.2), QMDD is at least as succinct.

Fargier et al. [114] prove an exponential separation in Prop. 10. The proposition itself
only mentions a superpolynomial separation; the fact that the separation is in fact
exponential is contained in the proof.

Lemma E.2. LIMDD is exponentially more succinct than QMDD.

Proof. Since QMDD is a special case of LIMDD (Sec. 5.2.2), LIMDD is at least as
succinct.

Vinkhuijzen et al. [337] show an exponential separation for so-called ‘cluster states.’

Lemma E.3. MPS is exponentially more succinct than QMDD.

240

Proofs of Section 5.3

Proof. We show in Section G.4 that MPS is at least as succinct as QMDD, by showing
that every QMDD can be translated to MPS in linear time.

We provide a state |φ⟩ on n qubits, which has an exponential-sized QMDD, but a
polynomial-sized MPS. Let (x)2 ∈ Z be the integer represented by a bit-string x ∈
{0, 1}n. The state of interest is

|φ⟩ =
∑

x∈{0,1}n

(x)2 |x⟩ =
∑

x∈{0,1}n

 n∑
j=1

2j−1xj

 |x⟩ (E.1)

Fargier et al. [114] show that this state has exponential-sized QMDD (Prop. 10). On the
other hand, it can be efficiently represented by the following MPS of bond dimension
2:

A0
n = [1 0] A0

j = [1 0
0 1] A0

1 = [01] (E.2)

A1
n = [1 2n−1] A1

j =
[
1 2j−1

0 1

]
A1

1 = [11] (E.3)

Here j ranges from 2 . . . n− 1. To show this, we can write

Axn
n =

[
1 xn · 2n−1

]
A
xj

j =

[
1 xj · 2j−1

0 1

]
for j = 2, ..., n− 1 Ax1

1 =

[
x1

1

]

Hence we can write

Axn
n · · · ·Ax1

1 =
[
1 xn · 2n−1

]
·

[
1
∑n−1
j=2 xj · 2j−1

0 1

]
·

[
x1

1

]
(E.4)

=
[
1 xn · 2n−1

]
·

[∑n−1
j=1 xj · 2j−1

1

]
(E.5)

=
[∑n

j=1 2
j−1 · xj

]
(E.6)

The following quantum state, called |Sum⟩, will feature in several of the below proofs.
Specifically, we will show that RBM and MPS can represent this state efficiently,
whereas LIMDDs cannot. A similar state will be used to show that LIMDD does not
support the Swap operation. We omit normalization factors, as all data structures are

241

oblivious to them.

|Sum⟩ = |+⟩⊗n +

n⊗
j=1

(|0⟩+ eiπ2
−j−1

|1⟩) (E.7)

Lemma E.4. The LIMDD of |Sum⟩ has size 2Ω(n) for every variable order.

Proof. We compute that the amplitude function for |Sum⟩ is

f(x⃗) = 1 + eiπ
∑n

j=1 xj ·2−j−1

. (E.8)

We note that f is injective and never zero, and indeed that the function (x⃗, y⃗) 7→ f(x⃗)
f(y⃗)

is injective on the domain where x⃗ ̸= y⃗.

We now study the nodes v at level 1 (with idx(v) = 1) via the subfunctions they
represent, considering all variable orders. These nodes represent subfunctions on one
variable. So we take out one variable xk ∈ x⃗ = {x1, ..., xn}. Without loss of generality,
we may pick x1 because the summation in Equation E.8 is commutative. For each
assignment a⃗ ∈ {0, 1}n−1, we obtain the function:

fa⃗(x1) = 1 + eiπ
∑n

j=2 aj ·2
−j−1

· eiπ·1/4x1 .

We now show that for any a⃗ ̸= c⃗ ∈ {0, 1}n−1 there is no Q ∈ PauliLIM1 such that
fa⃗ = Qfc⃗.

Let Q = αP for α ∈ C \ {0} , P ∈ { I , X, Y, Z}, so fa⃗ = αPfc⃗. Furthermore, define
α = α(z, x, a⃗, x1) = (−1)z · fa⃗(x1⊕x=0)

fa⃗(x1⊕x=1) for P = Xx · Zz with x, z ∈ {0, 1}, absorbing
the factor i of Y and -1 of ZX in α. The function α is injective, i.e., α(s) = α(t)

implies s = t, based on our earlier observations about f .

It follows that each subfunction fa⃗ requires a separate node at level 1. So there are
Ω(2n−1) nodes.

Lemma E.5. There is a family of quantum states with polynomial-size MPS but
exponential-size LIMDD.

Proof. MPS require only bond dimension 2 to represent the state |Sum⟩ as shown by
Lemma E.3. However, Lemma E.4 shows that LIMDDs require exponential size to

242

Proofs of Section 5.3

represent the same state.

Lemma E.6. There is a family of quantum states with polynomial-size LIMDD but
exponential-size MPS.

Proof. LIMDD can efficiently represent any stabilizer state, but some stabilizer states
require exponential-size MPS (in particular, the cluster state, among others [337].

Lemma E.7. MPS is at least as succinct as QMDD.

Proof. Section G.4 provides a polynomial-time transformation from QMDD to MPS.

x1

x2

x3

x4

xn−1

xn

0 1
A

...

...

...

Figure E.2: An ADD for the inner product
function IP ′ from Lemma E.8 made up of
stacked blocks, each consisting of a layer
of 2 nodes and a layer of 4 nodes. A in
the right leaf is the normalization constant
from Lemma E.8.

For proving the separation between RBM
and ADD, we use the seminal Boolean
function IP : {0, 1}n → {0, 1}, x⃗ 7→∑n/2
k=1 xkxk+n/2 mod 2 for even n, which

computes the inner product between the
first half of the input with the second
half. Martens et al. [214] show that
any RBM requires a number of hidden
weights m which is necessarily exponen-
tial in m.

Lemma E.8. There is a quantum state
that has linear representation both as
ADD, and QMDD, and LIMDD, and MPS,
but requires exponential space when rep-
resented as RBM under any qubit order.

Proof. We will give the proof for the
ADD; the result will then follow for
QMDD, LIMDD and MPS, since these are
at least as succinct as ADD.

Since we consider the representation size
under any qubit variable order, we may
as well interleave the order. That is, we consider IP ′ which equals IP with xk+1

243

and xk+n/2 swapped, i.e. IP ′(x) = x1x2 + x3x4 + ...+ xn−1xn. Consider the n-qubit
quantum state |φ⟩ where ⟨x|φ⟩ = IP ′(x)/A for x ∈ {0, 1}, where the normalization
factor is A =

√∑
x∈{0,1} IP

′(x). Martens et al. [214] show that any RBM requires a
number of hidden weights m which is necessarily exponential in m.

There exists an ADD which represents |φ⟩ in O(n) space. This ADD is constructed
from stacked blocks of two layers (of 2 and 4 nodes, respectively). The (k + 1)/2-th
block (counting from 1 from the top) for odd k = 1, 3, 5, ... corresponds to computing
the value xk · xk+1 and adding it to the running value of IP ′(x1, x2, ..., xk−1). See
Figure E.2.

Lemma E.9. RBM can represent the state |Sum⟩ with a single hidden node.

Proof. All nodes have bias 0, i.e., β = [0] and α = [0, ..., 0]T (a length-n vector). The
weight on the edge between the hidden node and the j-th visible node is eiπ2

−j−1

.
Then the RBM is defined by the multiplicative term of this hidden node, yielding

ψ(x⃗) = 1 + ew·x⃗ = 1 +

n∏
j=1

exjiπ2
−j−1

(E.9)

This corresponds exactly with the sum state: |ψ⟩ = |Sum⟩.

Lemma E.10. There is a state with a RBM of size O(n) but which requires LIMDD
of size 2Θ(n), for every variable order.

Proof. RBM can represent the state |Sum⟩, by Lemma E.9. However, Lemma E.4
shows that LIMDDs require exponential size to represent this state.

Lemma E.11. There is a family of states with polynomial-size RBM but exponential-
size MPS.

Proof. RBM can efficiently represent stabilizer states, as shown by Zhang et al. [365].
Vinkhuijzen et al. [337] show that some stabilizer states require exponential-size MPS
(in particular, the cluster state, among others).

244

Appendix F

Proofs of Section 5.4

In this appendix, we prove Theorem 5.2 and Theorem 5.3 from Section 5.4.

Theorem 5.2 is restated below. The proofs are organized per row of the table, so there
is one section for each data structure. Section 5.2 and Chapter 2 contain relevant
preliminaries on quantum information and QDDs.

Theorem 5.2. The tractability results in Table 5.2 hold.

We restate the other main result Theorem 5.3 here and provide a proof.

Theorem 5.3. Assuming the exponential time hypothesis, the fidelity of two states
represented as LIMDDs or RBMs cannot be computed in polynomial time. The proof
uses a reduction from the #EVEN SUBGRAPHS problem [169].

Proof. Lemma F.19 proves that LIMDD does not admit a polynomial time algorithm
unless the exponential time hypothesis fails. Corollary F.1 concludes the same for
RBM.

F.1 Easy and hard operations for ADD

As noted in Sec. 5.2.2, the decision diagrams are special cases of each other. In par-
ticular, ADD specializes QMDD, which specializes LIMDD. From this, it immediately
follows that LIMDD ⪯s QMDD ⪯s ADD. We also use this fact in the below proofs.

245

Easy and hard operations for ADD

Lemma F.1. ADD supports Sample and Measure.

Proof. LIMDD supports these operations (see Lemma F.15). Since ADD specializes
LIMDD, it inherits the tractability of these operations

Lemma F.2. ADD supports inner-product ⟨φ|ψ⟩.

Proof. QMDD supports these operations (see Lemma F.6). Since ADD is a specializa-
tion of QMDD, it inherits the tractability of these operations.

Lemma F.3. ADD supports Addition and Equal.

Proof. See Fargier et al. [113] Table 1 (EQ) and Table 2 (+BC).

Lemma F.4. ADD supports Local, and hence also Hadamard, X,Y,Z, T , Swap
and CZ.

Proof. Suppose U is a local gate on k qubits. Then U can be expressed as the sum of
4k terms, U =

∑
x,y∈{0,1}k axy |x⟩ ⟨y| ⊗ In−k. Each of these terms individually can be

applied to an ADD in polynomial time ([113] Table 1 CD), since they are projections,
followed by X gates. Since a constant number of states can be added in polynomial

Table 5.2: Tractability of queries and manipulations on the data structures analyzed
in this chapter (single application of the operation). A ✓ means the data structure
supports the operation in polytime, a ✓’ means supported in randomized polytime,
and ✖ means the data structure does not support the operation in polytime. A ◦
means the operation is not supported in polytime unless P = NP . ? means unknown.
The table only considers deterministic algorithms (for some ? a probabilistic algorithm
exists, e.g., for InnerProd on RBM). Novel results are blue and underlined.

Queries Manipulation operations

S
am

p
le

M
ea

su
re

E
qu

al

In
n
er

P
ro

d

F
id

el
it
y

A
d
d
it

io
n

H
ad

am
ar

d

X
,Y

,Z

C
Z

S
w

ap

L
oc

al

T
-g

at
e

Vector ✓’ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

ADD Section F.1 ✓’ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

QMDD Section F.2 ✓’ ✓ ✓ ✓ ✓ ✖ ✖ ✓ ✓ ✖ ✖ ✓

LIMDD Section F.3 ✓’ ✓ ✓ ◦ ◦ ✖ ✖ ✓ ✓ ✖ ✖ ✓

MPS Section F.4 ✓’ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

RBM Section F.5 ✓’ ? ? ◦ ◦ ? ? ✓ ✓ ✓ ? ✓

246

Proofs of Section 5.4

time in ADDs (Lemma F.3), the result can be computed in polynomial time. Since
ADD supports arbitrary k-local gates, in particular it supports all other gates that are
mentioned: H, X, Y , Z, T , Swap CZ.

F.2 Easy and hard operations for QMDD

Lemma F.5. QMDD supports Equal, Sample and Measure.

Proof. LIMDD supports these operations (see Lemma F.15). Since QMDD specializes
LIMDD, it inherits the tractability of these operations.

Lemma F.6. QMDD supports inner product (InnerProd) and fidelity (Fidelity).

Proof. We show in Section G.4 that a QMDD can be efficiently and exactly translated
to an MPS. Since MPS supports inner product and fidelity, the result follows.

Lemma F.7. QMDD does not support Addition in polynomial time.

Proof. Fargier et al. [113] (Thm. 4.9) show that Addition is hard for QMDD.

Lemma F.8. QMDD does not support Hadamard in polynomial time and hence
neither Local.

Proof. By reduction from addition: Take a QMDD root node v with left child a and
right child b, then Hadamard(v) = H |v⟩ is a new node with a left child |a⟩+ |b⟩. By
choosing |a⟩ , |b⟩ to be the states from Fargier et al.’s proof showing that addition is
intractable for QMDDs, the state |a⟩ + |b⟩ requires an exponential-size QMDD. Since
QMDD does not support the Hadamard gate, neither does it support arbitrary local
gates (Local).

Lemma F.9. QMDD supports Pauli gates X,Y,Z and T in polynomial time.

Proof. We will show that we can apply any single-qubit diagonal or anti-diagonal
operator A =

[
α 0
0 β

]
to an QMDD in polynomial time. The result then immediately

follows for the special cases of the gates X,Y, Z and T . Applying any diagonal local
operator A =

[
α 0
0 β

]
to the top qubit is easy: simply multiply the weights of the low

247

Easy and hard operations for QMDD

and high edges of the diagram’s root node with respectively α and β. For the anti-
diagonal operator AT , we also swap low with high edges. To apply the local operator
on any qubit, simply do the above for all nodes on the corresponding level.

To see that the resulting QMDD indeed represents the state A·|ψ⟩ (or AT |ψ⟩), consider
the amplitude of any basis state x ∈ {0, 1}n. The amplitude of |x⟩ in an QMDD is
the product of the labels found on the edges while traversing the diagram from root
to leaf. In the new diagram, only the weights have changed, whereas the topology has
remained the same. If xk = 0 (resp. xk = 1), then, the k-th edge encountered during
this traversal is the same in the new diagram as in the old diagram, but the label has
been multiplied by α. Otherwise, if xk = 1 (resp. xk = 0), then the label is multiplied
by β. All the other weights remain the same. Therefore, the amplitude of x in the
new diagram is equal to the old amplitude multiplied by α (resp. β).

Lemma F.10. QMDD supports controlled-Z in polynomial time.

Proof. Algorithm 20 applies a controlled-Z gate to a QMDD in time linear in the
number of nodes in the QMDD. To show that this is the runtime, we consider the
number of times the algorithms ApplyControlledZ and ApplyZ are called.

For both these algorithms, say that a call is trivial if the result is already in the cache,
otherwise a call is non-trivial. Then a trivial call completes in constant time (i.e., in
time O(1)). Moreover, the number of trivial calls is at most twice the number of non-
trivial calls. Therefore, for the purposes of obtaining an asymptotic upper bound on
the running time, it suffices to count the number of non-trivial calls to the algorithm.

Thanks to the cache, a given setting of the input parameters (v, a, b) (or (v, t) in the
case of ApplyZ) will trigger only one non-trivial call. Therefore, the number of non-
trivial calls is equal to the number of distinct input parameters. But here only v varies,
so the number of non-trivial calls is at most the number of nodes in the QMDD. This
reasoning holds for both algorithms ApplyControlledZ and ApplyZ. Therefore,
both subroutines run in time O(m), for an QMDD which contains m nodes.

The correctness of this algorithm follows from the fact that CZa,b |v⟩ = λ0 |v0⟩ +

λ1Zb |v1⟩ where node v is represents an a − qubit state vv0
λ0 v1

λ1

and Zb means
applying the Z gate to the b-th qubit. This behavior is implemented by Line 4. By
linearity, the algorithm is correct for nodes representing k-qubit states with k > a.
This is implemented by Line 5.

248

Proofs of Section 5.4

Algorithm 20 Applies a controlled-Z gate to a QMDD node v, with control qubit a
and target qubit b. More specifically, given a QMDD node v, representing the state
|v⟩, this subroutine returns a QMDD edge e representing |e⟩ = CZba |v⟩. We assume
wlog that a > b, since CZba = CZab . Here idx denotes the index of the qubit of v,
and Cache denotes a hashmap which maps triples to QMDD nodes. The subroutine
ApplyZ applies a Z gate to a given target qubit t.
1: procedure ApplyControlledZ(QMDD node v, qubit indices a, b)

2: Say that node v is vv0
λ0 v1

λ1

3: if the Cache contains the tuple (v, a, b) then return Cache[v, a, b]

4: else if idx(v) = a then r := MakeNode(v0
λ0 , λ1 · ApplyZ(v1, b))

5: else r := MakeNode(λ0 · ApplyCZ(v0, a, b), λ1 · ApplyCZ(v1, a, b))

6: Cache[v, a, b] := r

7: return r

8: procedure ApplyZ(QMDD node v, qubit index t)

9: Say that node v is vv0
λ0 v1

λ1

10: if the Cache contains the tuple (v, t) then return Z-Cache[v, t]

11: else if idx(v) = t then r := MakeNode(v0
λ0 , v1

−λ1)
12: else r := MakeNode(λ0 · ApplyZ(v0, t), λ1 · ApplyZ(v1, t))

13: Z-Cache[v, t] := r

14: return r

...

...

...

1

+n

...

...

...

1

Rotn

eiπ·2
−n−1

eiπ·2
−2

Figure F.1: The states |+n⟩ and |Rotn⟩ state as QMDD.

249

Easy and hard operations for QMDD

To prove that a single swap operation can explode the LIMDD or QMDD, we first
provide two lemmas.

Lemma F.11. For n ≥ 1, let |Rotn⟩ =
⊗n

j=1

(
|0⟩+ eiπ2

−j−1 |1⟩
)

and |+n⟩ =

|+⟩⊗n.Then the states |Rotn⟩ and |+n⟩ have a linear-size QMDD.

Proof. Figure F.1 provides the QMDD representing both states.

Lemma F.12. The following state has large LIMDD, for any variable order in which
the qubit in register B comes after the qubits in register A.

|Sum ′⟩ = |+⟩⊗nA |0⟩B +

n⊗
j=1

(|0⟩A + eiπ2
−j−1

|1⟩A)⊗ |1⟩B (F.1)

Proof. The proof is similar to that of Lemma E.4 except that we reason about level
2.

Lemma F.13. QMDD does not support Swap in polynomial time.

Proof. Let |+n⟩ and |Rotn⟩ be the states from Lemma F.11, and define the following
state |ρ⟩ on n+ 2 qubits,

|ρ⟩ = |0⟩ |+n⟩ |0⟩+ |1⟩ |Rotn⟩ |0⟩ (F.2)

Then |ρ⟩ has a small QMDD, of only size O(n). When we swap the first and last
qubits, we obtain a state that includes |Sum ′⟩ from Lemma F.12:

Swapn1 · |ρ⟩ = |0⟩ ⊗ (|+n⟩ |0⟩+ |Rotn⟩ |1⟩) (F.3)

The QMDD of Swapn1 · |ρ⟩ is at least as large as that of |Sum⟩: First, Wegener [344],
Th. 2.4.1, shows that constraining can never increase the DD size, so we can discard
the |0⟩⊗ part (regardless of variable order), as Swapn1 · |ρ⟩ is at least as large as
|Sum ′⟩. Then Lemma F.12 shows that this LIMDD has size at least 2Ω(n) for any
variable order. Since, LIMDD is at least as succinct as QMDD (see Figure 5.2), this
also holds for QMDD.

Lemma F.14. QMDD does not support Local in polynomial time.

250

Proofs of Section 5.4

Proof. This is implied by Lemma F.13, since Swap is a 2-local gate (namely, it involves
2 qubits).

F.3 Easy and hard operations for LIMDD

Lemma F.15. LIMDD supports Sample, Measure, Equal and X,Y,Z.

Proof. Vinkhuijzen et al. [337] show that LIMDD supports Sample, Measure, Equal
and X,Y,Z.

Here we show that LIMDD also support applying a T gate, but does not support
Addition, H and Swap. In this work, we show that computing the fidelity (and
hence the inner product, as we can reduce fidelity to inner product) between two
states represented by LIMDDs is NP-hard.

Lemma F.16. LIMDD supports Controlled-Z in polynomial time.

Proof. Vinkhuijzen et al. [337] show how to apply any controlled Pauli gate to a state
represented by a LIMDD in polynomial time, in the case where the target qubit comes
after the control qubit in the variable order of that LIMDD. However, in the case of
the controlled-Z, there is no distinction between control and target qubit, since the
gate is symmetric. Therefore, their analysis applies to all controlled-Z gates. In fact,
inspecting their method, we see that the LIMDD of the resulting state is never larger
in size than the LIMDD we started with.

It is known that addition is hard for QMDD (see Table 2 in [113]). For LIMDD,
the same was suspected, but not proved in [337]. We show it here by showing that
⟨Z⟩-LIMDD does not support addition in polytime.

Lemma F.17. LIMDD does not support Addition in polytime.

Proof. Consider the states |+n⟩ and |Rotn⟩ as defined in Lemma F.12. Both states
have polynomially sized QMDDs as shown in Lemma F.11. Since LIMDD is at least
as succinct as QMDD (see Figure 5.2), the LIMDDs representing these states are
also small. However, their sum is the state |Sum⟩ = |+n⟩ + |Rotn⟩, which has an
exponential-size LIMDD relative to every variable order by Lemma E.4.

251

Easy and hard operations for LIMDD

Lemma F.18. LIMDD does not support Hadamard in polynomial time, and hence
neither does it support Local.

Proof. Since Hadamard can be used together with measurement (called conditioning
by Fargier [113]) to realize state addition as explained in Section 5.4, it is also in-
tractable. (Recall also from [344] Th. 2.4.1 that conditioning never increases DD size;
this is true in particular for LIMDDs)

We now prove that the fidelity of LIMDDs cannot be computed in polynomial time,
under common assumptions of complexity theory.

LIMDD FIDELITY is hard to compute. We show that LIMDD FIDELITY cannot
be computed in polynomial time, unless the Exponential Time Hypothesis (ETH) is
false. This proof implies that inner product is hard, since fidelity reduces to inner
product. Proving hardness of inner product is also a specialized case of the below
construction, which does not require our newly defined EOSD problem (see below)
but only the well-known hard problem of counting even subgraphs of a certain size
(#EVEN SUBGRAPHS).

The proof of LIMDD FIDELITY hardness proceeds in several steps. The starting
point is Jerrum and Meeks’ result that the problem #EVEN SUBGRAPHS cannot be
solved in polynomial time unless ETH is false (Lemma F.19). We introduce a prob-
lem we call EVEN ODD SUBGRAPHS DIFFERENCE (EOSD). We give a reduction
from #EVEN SUBGRAPHS to EOSD, thus showing that EOSD cannot be solved
in polynomial time, under the same assumptions (Lemma F.21). This step is the
most technical part of the proof. Finally, we give a reduction form EOSD to LIMDD
FIDELITY, thus obtaining the desired result, that LIMDD FIDELITY cannot be com-
puted in polynomial time (to a certain precision), unless ETH is false (Lemma F.20).
In this step, we use the fact that LIMDDs can efficiently represent Dicke states and
graph states (a type of stabilizer state). Specifically, we will show that computing the
fidelity between these states essentially amounts to solving EOSD for the given graph
state. Dicke states were first studied by Dicke [101]; see also Bärtschi et al. [32].

We first formally define the three problems above, including computing the fidelity of
two LIMDDs. We will need the following terminology for graphs. For an undirected
graph G = (V,E) and a set of vertices S ⊆ V , we denote by G[S] the subgraph induced
by S. If |S| = k, then we say that G[S] is a k-induced subgraph, and we say that it is
an even (resp. odd) subgraph if G[S] has an even (resp. odd) number of edges. We

252

Proofs of Section 5.4

let e(G, k) (resp. o(G, k)) denote the number of even (resp. odd) k-induced subgraphs
of G.

LIMDD FIDELITY.
Input: Two LIMDDs, representing the states |φ⟩ , |ψ⟩
Output: The value | ⟨φ|ψ⟩ |2 to 2n bits of precision.

#EVEN SUBGRAPHS
Input: A graph G = (V,E), an an integer k
Output: The value e(G, k).

EVEN ODD SUBGRAPH DIFFERENCE (EOSD).
Input: A graph G = (V,E), and an integer k.
Output: The value |e(G, k)− o(G, k)|, i.e., the absolute value of the difference
between the number of even and odd induced k-subgraphs of G.

Lemma F.19 (Jerrum and Meeks [169]). If #EVEN SUBGRAPHS is polytime, then
ETH is false.

Proof. Jerrum and Meeks [169] showed that counting the number of even induced
subgraphs with k vertices is #W[1]-hard. Consequently, there is no algorithm running
in time poly(n) (independent of k) unless the exponential time hypothesis fails.

Lemma F.20. There is no polynomial-time algorithm for LIMDD FIDELITY, i.e., for
computing fidelity between two LIMDDs to 2n bits of precision, unless the Exponential
Time Hypothesis (ETH) fails.

Proof. Suppose there was such a polynomial-time algorithm, running in time O(nc)

for some constant c ≥ 1. We will show that then EOSD can be solved in time O(nc)

(independent of k), by giving a reduction from EOSD to LIMDD FIDELITY. From
Lemma F.21, it would then follow that ETH is false.

The reduction from EOSD to LIMDD FIDELITY is as follows.

Let G be an input graph on n vertices V and 0 ≤ k ≤ n an integer. Let |G⟩ be the
graph state corresponding to G [324], so that

|G⟩ = 1

2n/2

∑
S⊆V

(−1)|G[S]| |S⟩ (F.4)

253

Easy and hard operations for LIMDD

where |G[S]| denotes the number of edges in the S-induced subgraph of G, and |S⟩
denotes the computational-basis state |S⟩ = |x1⟩⊗ |x2⟩⊗...⊗|xn⟩ with xj = 1 if j ∈ S

and xj = 0 otherwise. Let |Dk
n⟩ be the Dicke state [101].

|Dk
n⟩ =

1√(
n
k

) ∑
x⃗∈{0,1}n with |x⃗|=k

|x⃗⟩ (F.5)

Both these states have small LIMDDs:

Dicke state. Bryant [67] gives a construction for BDDs to represent the function
fk : {0, 1}n → {0, 1}, with fk(x) = 1 iff |x| = k. This is precisely the amplitude
function of the Dicke state |Dk

n⟩ (up to a factor 1/
√(

n
k

)
). This construction also

works for LIMDDs, by simply setting all the edge labels to the identity, and using
root label 1/

√(
n
k

)
· I⊗n.

Graph state. Vinkhuijzen et al. [337] show how to efficiently construct a LIMDD for
any graph state.

It is straightforward to verify that the fidelity between |Dk
n⟩ and |G⟩ is related to the

subgraphs of G, as follows,

⟨Dk
n|G⟩ =

1√(
n
k

)
2n

∑
S⊆V :|S|=k

(−1)|G[S]| =
1√(
n
k

)
2n

(e(G, k)− o(G, k)) (F.6)

Hence,

|e(G, k)− o(G, k)|︸ ︷︷ ︸
solution to EOSD

=

√√√√(n
k

)
2n| ⟨Dk

n|G⟩ |2︸ ︷︷ ︸
Fidelity

(F.7)

Since | ⟨Dk
n|G⟩ |2 denotes the fidelity between |Dk

n⟩ and |G⟩, and |e(G, k) − o(G, k)|
denotes the quantity asked for by the EOSD problem, this completes the reduction.
The overhead of constructing the LIMDDs from the description of the Dicke and graph
states takes linear time in the size of the resulting LIMDD. So, if the fidelity of two
LIMDDs is computed in polynomial time, say, in time O(nc), then also the quantity
|e(G, k) − o(G, k)| is computed in time O(nc); thus, EOSD is solved in time O(nc).
Lastly, we address the number of bits of precision required. In order to exactly compute
the integer |e(G, k)− o(G, k)|, it is necessary to compute the fidelity | ⟨Dk

n|G⟩ |2 with
a precision of at least one part in

(
n
k

)
2n. Put another way, the required number of

254

Proofs of Section 5.4

bits of precision is log2(
(
n
k

)
· 2n) ≤ log2(2

n · 2n) = 2n. Summarizing, computing the
fidelity of (the states represented by) two LIMDDs representing a graph state and a
Dicke state, to 2n bits of precision, is not possible in polynomial time, unless ETH
fails.

Lemma F.21. There is no polynomial-time algorithm for EOSD, unless ETH is false.

Proof. We provide an efficient reduction (in Algorithm 21) from #EVEN SUB-
GRAPHS: the problem, on input an undirected graph G and a parameter k ∈
{0, 1, 2, ..., |V |}, of computing the number of k-vertex induced subgraphs which have an
even number of edges. It follows that, if EOSD can be computed in polynomial time,
then Algorithm 21, which computes #EVEN SUBGRAPHS, also runs in polynomial
time. Jerrum and Meeks [169] show that #EVEN-SUBGRAPHS cannot be computed
in polynomial time unless ETH is false (Lemma F.19). Therefore, if EOSD could be
computed in polynomial time, then ETH would be false.

The algorithm CountEvenSubgraphs (Algorithm 21) takes as parameters a graph
G and an integer k ≥ 0, and outputs e(G, k), the number of even k-induced sub-
graphs of G, thus solving #EVEN SUBGRAPHS. This algorithm uses at most 2n

invocations of a subroutine EvenOddSubgraphsDifference; therefore, if the sub-
routine EvenOddSubgraphsDifference runs in polynomial time, then so does
CountEvenSubgraphs.

Let us briefly sketch the idea behind the algorithm, before we give a formal proof
of correctness. First, we know that e(G, k) + o(G, k) =

(
n
k

)
, since each subgraph is

either even or odd, and G has
(
n
k

)
different k-induced subgraphs in total. Thus, if

we knew the (possibly negative) difference ζk = e(G, k) − o(G, k), then we know the
sum and difference of e(G, k) and o(G, k), so we could compute the desired value
e(G, k) = 1

2 (
(
n
k

)
+ ζk). Unfortunately, EvenOddSubgraphsDifference only tells

us the absolute value, |ζk|. Fortunately, we know that e(G, 0) = 1 and o(G, 0) = 0, so
ζ0 = 1− 0 = 1 (namely, there is only one induced subgraph with 0 vertices, and it has
0 edges, which is even). We now bootstrap our way up, computing ζj for j = 1, . . . , k

using the previously known results. The key ingredient is that, by adding isolated
vertices to the graph and querying EvenOddSubgraphsDifference on this new
graph, we can discover the the absolute difference |ζj + ζj−1|, which allows us to
compute the values ζj .

Correctness of the algorithm. We now prove that the algorithm CountEven-

255

Easy and hard operations for LIMDD

Subgraphs outputs the correct value. Let (G, k) be the input to the algorithm. For
j = 0, . . . , k, let ζj = e(G, j) − o(G, j). We will show that, for each j = 1, . . . , k,
the algorithm sets the variable dj to the value ζj in the j-th iteration of the for-loop.
The proof is by induction on j. In the induction hypothesis, we include also that the
variable ℓ is always the largest value below j satisfying ζℓ ̸= 0 as in Equation F.8 (this
value is well-defined, since 1 = ζ0 ̸= 0, so we have 0 ≤ ℓ < j).

ℓ = max{0 ≤ ℓ < j | ζℓ ̸= 0} (F.8)

For the base case, where j = 0, it suffices to note that there is only one set with zero
vertices – the empty set – which induces the empty graph, which contains an even
number of edges. Therefore, ζ0 = 1, which the algorithm sets on Line 2. Finally, ℓ is
correctly set to 0.

For the induction case j ≥ 1, the variables dt have been set to dt = ζt for t = 0, . . . , j−1

and ℓ satisfies Equation F.8 from the induction hypothesis. Consequently, we have
ζℓ+1 = · · · = ζj−1 = 0. If ζj = 0, then the algorithm sets q := |ζj | = |0| = 0 on
Line 5, so the algorithm sets dj correctly on Line 7, and correctly leaves ℓ untouched
(ℓ remains unchanged from the j − 1-th to the j-th iteration). Otherwise, if ζj ̸= 0,

Algorithm 21 An algorithm which computes the number of even k-induced sub-
graphs using at most 2n calls to a subroutine EvenOddSubgraphsDifference,
which returns |e(G, k)− o(G, k)| on input (G, k).

1: procedure CountEvenSubgraphs(G = (V,E), k)
Output: The number of even induced subgraphs of G with k vertices

2: d0 := 1 ▷ d is an array of k + 1 integers
3: ℓ := 0 ▷ Last iteration when ζj = 1

4: for j := 1, . . . , k do
5: q := EvenOddSubgraphsDifference(G, j)

6: if q = 0 then ▷ There are equally many even as odd subgraphs
7: dj := 0
8: else ▷ Else we have to figure out whether there more even or odd subgraphs:
9: G′ := (V ∪ {v′1, . . . , v′j−ℓ}, E) ▷ Add j − ℓ new isolated vertices

10: p := EvenOddSubgraphsDifference(G′, j)

11: dj :=

{
q if |dℓ + q| = p

−q if |dℓ − q| = p

12: ℓ := j ▷ Since iteration j is the latest iteration having ζj = 1

13: return 1
2

((
n
k

)
+ dk

)

256

Proofs of Section 5.4

the algorithm adds j − ℓ new, isolated vertices to G, obtaining the new graph G′ =

(VG ∪ {v′1, . . . , v′j−ℓ}, EG). On Line 10, it computes the value |e(G′, j) − o(G′, j)| of
this graph. Since this expression also sums over induced subgraphs of G′ that contain
isolated vertices, this value can be expressed as follows:

p :=|e(G′, j)− o(G′, j)| (F.9)

=

∣∣∣∣∣
j∑
a=ℓ

(
j − ℓ

j − a

)
(e(G, a)− o(G, a))

∣∣∣∣∣ =
∣∣∣∣∣
j∑
a=ℓ

(
j − ℓ

j − a

)
ζa

∣∣∣∣∣ (F.10)

=

∣∣∣∣(j − ℓ

j − ℓ

)
ζℓ +

(
j − ℓ

0

)
ζj

∣∣∣∣ = |ζℓ + ζj | (F.11)

We noted that ζℓ+1 = · · · = ζj−1 = 0; therefore, these terms vanish from the summa-
tion (step from Equation F.10 to Equation F.11), so that only p = |ζj + ζℓ| remains.
Since we now know the values of ζℓ, |ζj | and |ζj + ζℓ| and since ζℓ ̸= 0, we can infer the
value of ζj , which is done on Line 11. We conclude that each variable dj is correctly
set to ζj , concluding the proof by induction. Also, since ζj ̸= 0, ℓ is correctly set to j.

Lastly, we show that the value returned by the algorithm is indeed the number e(G, k).
Suppose that dk = ζk = e(G, k) − o(G, k). We know that e(G, k) + o(G, k) =

(
n
k

)
.

That is, we know both the sum and the difference of e(G, k), o(G, k); therefore we can
compute them both. By adding these two equations and solving for e(G, k), we obtain
e(G, k) = 1

2

((
n
k

)
+ dk

)
, which is the value returned by the algorithm.

Lemma F.22. LIMDD supports the T -gate.

Proof. Algorithm 22 applies an arbitrary diagonal gate D =
[
ρ 0
0 ω

]
to a state repre-

sented by a LIMDD. To apply a T -gate, one calls the algorithm withD = T =
[
1 0
0 eiπ/4

]
.

We now show that the algorithm runs in polynomial time. First, since each recursive
call takes O(1) time, for the purposes of estimating runtime it suffices to count the
number of recursive calls. The cache stores all tuples of nodes and matrices with
which the algorithm is called, so for the purposes of estimating the runtime it suffices
to count the number of distinct recursive calls. To this end, we note that the recursive
calls to the algorithm only receive two different matrices, namely

[
ρ 0
0 ω

]
and

[
ω 0
0 ρ

]
.

The nodes that are passed as argument v are nodes that are already in the diagram.
Therefore, if the diagram contains m nodes, then at most 2m distinct recursive calls
are made. We conclude that the runtime is polynomial (indeed, linear), in the size of
the diagram.

257

Easy operations for MPS

Algorithm 22 Applies a diagonal gate D to qubit k of a state represented by a
LIMDD.

1: procedure ApplyDiagGate(LIMDD Node v = v0
λ0A0 v1

λ1A1

, gate D,
qubit k)
with D =

[
ρ 0
0 ω

]
Node v represents a state on n qubits

2: if Cache contains the tuple (v,D) then return Cache[v,D]
3: else if k = n then

4: return v0
ρλ0A0 v1

ωλ1A1

5: else
6: gate E :=

[
ω 0
0 ρ

]
7: for i = 0, 1 do

8: gate Fi :=

{
D if Aki ∈ {I, Z}
E if Aki ∈ {X,Y }

▷ Here Aki denotes the k-th qubit of the

Pauli operator Ai

9: Node ui := ApplyTGateToLIMDD(v0, Fi, k)

10: Node r := u0
λ0A0 u1

λ1A1

11: Cache[v,D] := r

12: return r

F.4 Easy operations for MPS

Vidal [335] shows that MPS supports efficient application of a single one-qubit gate
or two-qubit gate on consecutive qubits, which includes X,Y,Z, Hadamard, T. This
extends to any two-qubit operation on any pair of qubits [262], particularly including
Swap and CZ gates. These algorithms are extendable to k-local gates on adjacent
qubits, which does not increase the largest matrix dimension D to more than Dk. The
algorithm consists of merging the k tensors (the j-th tensor combines the two matrices
A0
j and A1

j) into a single large one, applying the gate to the large tensor, followed by
splitting the tensor again into k matrices A0

j and A1
j again by use of the singular-value

decomposition (for details on the merging and splitting see e.g. Dang et al. [93]). The
largest matrix dimension during this process does not increase above Dk. Using Swap
gates, one thus implements Local on any qubits. We give a direct proof of the support
for addition below (Lemma F.23).

Orus [248] gives an accessible exposition of TN, of which MPS is a special case. He
explains how to compute the inner product in polynomial time. Thus, MPS also

258

Proofs of Section 5.4

supports Measure. Sample can be done by a Markov Chain Monte Carlo approach,
invoking Measure as subroutine. Since inner product is supported, so is Equal: MPS
M and M ′ are equivalent iff |⟨M |M ′⟩|2

⟨M |M⟩·⟨M ′|M ′⟩ = 1.

Lemma F.23. MPS supports addition in polynomial time.

Proof. Let A,B be MPSs. Then a new MPS C representing |C⟩ = |A⟩ + |B⟩ can be
efficiently constructed as follows, for x = 0, 1 and j = 2, . . . , n− 1:

Cxn = [Ax
n Bx

n] Cxj =
[
Ax

j 0

0 Bx
j

]
Cx1 =

[
Ax

1

Bx
1

]
(F.12)

F.5 Easy and hard operations for RBM

Jonsson et al. [174] show that RBM supports Pauli gates, the controlled-Z gate and
the T -gate (and, in fact, arbitrary phase gates). There is at the moment no efficient
exact algorithm for the Hadamard gate, which would make the list of supported
gates universal. Hence there is at the moment no exact efficient algorithm for Local
either. Sample is supported for any n-qubit RBM M , see e.g. Appendix B of [174]
and references therein, by performing a Markov Chain Monte Carlo algorithm (e.g.
Metropolis algorithm) where the Markov Chain state space consists of all bit strings
x ∈ {0, 1}n, and the corresponding unnormalized probability |⟨x|M⟩|2 of each state is
efficiently computed using Equation 5.1. No exact algorithm for Equal is known (in
fact, the related problem of identity testing when one only has sampling access to one
of the two RBMs is already computationally hard [52]). Although no exact algorithm
for InnerProd is known, it can be approximated using Sample as subroutine (see
e.g. Wu et al. [354]). Furthermore, Measure can be approximated by computing
the normalization factor 1/⟨M |M⟩ using the (exact or approximate) algorithm for
InnerProd, while the relative outcome probabilities are defined in Equation 5.1.

Lemma F.24. RBM supports Swap.

Proof. In order to effect a swap between qubits q1 and q2, we simply exchange rows
q1 and q2 in the matrix W and the vector α⃗, obtaining W ′ and α⃗′. Then M′ =

(α⃗′, β⃗,W ′,m) has |M′⟩ = Swap(q1, q2) · |M⟩.

259

Easy and hard operations for RBM

Torlai et al. [315] note that RBMs can exactly represent Dicke states. In Lemma F.25,
we give another construction of succinct RBMs for Dicke states, where the number of
hidden nodes grows linearly with the number of visible nodes.

Lemma F.25. An RBM can exactly represent any Dicke state, using only 2n hidden
nodes.

Proof. We will construct an RBM with 2n hidden nodes representing |Dk
n⟩.

For each j ∈ {0, 1, . . . , n}\{k}, our construction will use two hidden nodes. Fix such a
j. Then the first hidden node is connected to each visible node with weight iπ/n, and
has bias bj = iπ(1− j/n). The second hidden node is connected to each visible node
with weight −iπ/n and has bias bj = −iπ(1 − j/n). Since the weights on all edges
incident to a given hidden node are the same, the term it contributes depends only on
the weight of the input (i.e., the number of zeroes and ones). Thus, these two nodes
contribute a multiplicative factor (1 + eiπ(1+|x|/n+j/n)) and (1 + e−iπ(1+|x|/n−j/n)),
respectively. Multiplying these together, the two terms collectively contribute a multi-
plicative term of 2+2 cos(π(1+|x|/n−j/n) = 2−2 cos(π(|x|−j)/n), which is 0 iff |x| = j

and nonzero otherwise. Let a be the constant a =
∏n
j=0,j ̸=k 2− 2 cos(π(k− j)/n), i.e.,

the product of all terms when |x| = k. Then the RBM represents the following state
unnormalized function Ψ: {0, 1}n → C, which we then normalize to obtain the state
|Ψ⟩:

Ψ(x) =

a if |x| = k

0 otherwise
|Ψ⟩ = 1

a
√(

n
k

) ∑
x

Ψ(x) |x⟩ (F.13)

The normalized state |Ψ⟩ represents exactly the Dicke state |Dk
n⟩, since its amplitudes

are equal to 1/
√(

n
k

)
when |x| = k and zero otherwise.

Since RBM can succinctly represent both Dicke states (Lemma F.25) and graph
states, a subset of stabilizer states [365], the proof for hardness of LIMDD FIDELITY
(Lemma F.20) is also applicable to RBM.

Corollary F.1. There is no polynomial-time algorithm for RBM FIDELITY, i.e., for
computing fidelity between two RBM to 2n bits of precision, unless the Exponential
Time Hypothesis (ETH) fails.

260

Appendix G

Proofs of Section 5.5

Section G.1 proves that our rapidity definition is a preorder and is equivalent to the
one given by Lai et al. [194] for canonical data structures.

Section G.2 provides the proof for the sufficient condition for rapidity. Section G.3-G.5
apply this sufficient condition to the data structures studied in this work.

G.1 Rapidity is a preorder and generalizes earlier

definitions

We now show that rapidity is a preorder over data structures and that the definition
of Lai et al. [194] can be considered a special case for canonical data structures. For
convenience, we restate the definition of rapidity.

Definition 5.3 (Rapidity for non-canonical data structures). Let D1, D2 be two data
structures and consider some c-ary operation OP on these data structures. In the
below, ALG1 (ALG2) is an algorithm implementing OP for D1 (D2).

(a) We say that ALG1 is at most as rapid as ALG2 iff there exists a polynomial
p such that for each input φ = (φ1, . . . , φc) there exists an equivalent input
ψ = (ψ1, . . . , ψc), i.e., with |φj⟩ = |ψj⟩ for j = 1 . . . c, for which time(ALG2, ψ) ≤
p (time(ALG1, φ)). We say that ALG2 is at least as rapid as ALG1.

261

Rapidity is a preorder and generalizes earlier definitions

(b) We say that OP (D1) is at most as rapid as OP (D2) if for each algorithm ALG1

performing OP (D1), there is an algorithm ALG2 performing OP (D2) such that
ALG1 is at most as rapid as ALG2.

Theorem 5.4. Rapidity is a preorder over data structures.

Proof. We first show that rapidity is reflexive, next we show that it is transitive.

Rapidity is reflexive. It suffices to show that rapidity is a reflexive relation on
algorithms performing a given operation. Let D be a data structure, OP an operation
and ALG an algorithm performing OP (D). Then ALG is at most as rapid as itself
if there exists a polynomial p such that for each input φ there exists an equivalent
input ψ with time(ALG,φ) ≤ p(ALG,ψ). We may choose the polynomial p(x) = x,
and we may choose ψ := φ. Then the statement reduces to the trivial statement
time(ALG,φ) = time(ALG,ψ) = p(ALG,ψ).

Rapidity is transitive. It suffices to show that rapidity is a transitive relation on
algorithms. To this end, let D1, D2, D3 be data structures, OP an operation and
ALG1, ALG2, ALG3 algorithms performing OP (D1), OP (D2), OP (D3), respectively.
Suppose that ALG1 is at most as rapid as ALG2 and ALG2 is at most as rapid as
ALG3. We will show that ALG1 is at most as rapid as ALG3. By the assumptions
above, there are polynomials p and q such that (i) for each input φ there exists an equiv-
alent input ψ such that time(ALG2, ψ) ≤ p(time(ALG1, φ)); and (ii) for each input
ψ there exists an equivalent input γ such that time(ALG3, γ) ≤ q(time(ALG2, ψ)).

Put together, for every input φ there exist equivalent inputs ψ and γ such that
time(ALG3, γ) ≤ q(time(ALG2, ψ)) ≤ q(p(time(ALG1, φ))). Letting the polyno-
mial ℓ(x) = q(p(x)), we obtain that for every φ there exists an equivalent γ such that
time(ALG3, γ) ≤ ℓ(ALG1, φ).

We note that an alternative definition of rapidity [194], which always allows ALG2

to read its input by requiring time(ALG2, y) ≤ p(time(ALG1, x) + |y|) instead of
time(ALG2, y) ≤ p(time(ALG1, x)), is not transitive for query operations:

Consider the data structure Padded QMDD, (PQMDD) which is just a QMDD, except
that a string of 22

n

"0"’s have been concatenated to the end of the QMDD represen-
tation, where n is the number of qubits.

Under the alternative rapidity relation ≥alt
r , both ADD and QMDD are at least as

262

Proofs of Section 5.5

rapid as PQMDD, because the ADD algorithm is allowed to run for poly(22
n

) time.
But PQMDD is also at least as rapid as QMDD, because algorithms for PQMDD don’t
need to read the whole 22

n

-length input — they only read the QMDD at the beginning
of the string. Put together, this leads to:

ADD ≥alt
r PQMDD ≥alt

r QMDD and ADD ̸≥alt
r QMDD.

Next, we show that our definition of rapidity is equivalent to Lai et al.’s definition
of rapidity in the case when both data structures are canonical and we restrict our
attention to only those algorithms which run in time at least m where m is the size of
the input. For convenience, we restate Lai et al.’s definition here.

Definition G.1 (Rapidity for canonical data structures [194]). A c-ary operation
OP on a canonical language L1 is at most as rapid as OP on another canonical
language L2, iff for each algorithm ALG performing OP on L1 there exists some
polynomial p and some algorithm ALG2 performing OP on L2 such that for every
valid input (φ1, . . . , φc, α) of OP on L1 and every valid input (ψ1, . . . , ψc, α) of OP
on L2 satisfying φi ≡ ψi (1 ≤ i ≤ c), ALG2(ψ1, . . . , ψc, α) can be done in time
p(t+ |φ1|+ · · ·+ |φc|+ |α|), where α is any element of supplementary information and
t is the running time of ALG(φ1, . . . , φc, α).

Lai et al. use several minor differences in notation. First, they speak of valid inputs
(because they consider data structures which cannot represent all objects), whereas
we do not; they use an element of supplementary information α as part of the input,
whereas we omit such an element; they write φi ≡ ψi where we write |φi⟩ = |ψi⟩;
lastly they speak of a language whereas we speak of a data structure. Since these
differences between the notation are inconsequential, it will be convenient to rephrase
the definition of Lai et al. using the notation of this work, as follows:

Definition G.2 (Rapidity of canonical data structures, rephrased). In the following,
ALG1, ALG2 are algorithms which perform OP on canonical data structures D1, D2,
respectively.

(a) An algorithm ALG1 is at most as rapid as an algorithm ALG2 iff there is a
polynomial p such that for each input φ and for each equivalent input ψ, it holds
that time(ALG2, ψ) ≤ p(time(ALG1, φ) + |φ|).

263

Rapidity is a preorder and generalizes earlier definitions

(b) A canonical data structure D1 is at most as rapid as a canonical data structure
D2 for an operation OP if for each algorithm ALG1 performing OP on D1 there
is an algorithm ALG2 performing OP on D2 such that ALG1 is at most as rapid
as ALG2.

Lemma G.1. Definition 5.3 is equivalent to the definition of [194] (Definition G.2)
in the case when two data structures D1, D2 are both canonical and where we restrict
our attention to algorithms whose runtime is at least m, where m is the size of the
input.

Proof. Let D1, D2 be two canonical data structures. We will show that D1 is at most
as rapid as D2 according to Definition 5.3 if and only if the same is true according tot
Definition G.2. Since items 5.3.(b) and G.2.(b) are equivalent, it suffices to show that
the two definitions are equivalent for algorithms rather than data structures. That
is, we will show that an algorithm ALG1 is at most as rapid as ALG2 according to
Definition 5.3 if and only if the same is true according to Definition G.2.

Abusing notation, we write |(φ1, . . . , φc)| instead of |φ1|+ . . .+ |φc|, etc. In this proof,
we will assume without loss of generality that all polynomials p are monotonically
increasing (i.e., p(x) ≤ p(y) if x ≤ y). Namely, if p is a polynomial which does
not monotonically increase, then use instead the polynomial p′(x) = p(x) + xk for
sufficiently large k.

Direction if. Let ALG1, ALG2 be algorithms performing OP on canonical data
structures D1, D2, respectively, such that ALG1 is at most as rapid as ALG2 ac-
cording to Definition G.2. Then there is a polynomial p such that time(ALG2, ψ) ≤
p(time(ALG1, φ)+ |φ|) for all equivalent inputs φ,ψ. Since the data structures D1, D2

can represent all quantum state vectors, there certainly exists an equivalent ψ to any
φ; indeed, since D2 is canonical, there is a unique such instance ψ. Since we restrict
our attention to algorithms with runtime at least m where m is the size of the input,
we get that |φ| ≤ time(ALG1, φ), so p(time(ALG1, φ) + |φ|) ≤ p(2 · time(ALG1, φ)).

Therefore, let q(x) = p(2x). Now we get that, for every input φ, there exists an
equivalent input ψ such that time(ALG2, ψ) ≤ q(ALG1, φ). Therefore, ALG1 is at
most as rapid as ALG2 according to Definition 5.3.

Direction only if. Suppose that ALG1 is at most as rapid as ALG2 accord-
ing to Definition 5.3. Then there is a polynomial p such that for each input φ,
there is an equivalent input ψ such that time(ALG2, ψ) ≤ p(time(ALG1, φ)). Us-

264

Proofs of Section 5.5

ing the monotonicity of p which we assume without loss of generality, we get that
p(time(ALG1, φ)) ≤ p(time(ALG1, φ) + |φ|). Lastly, since D2 is canonical, any in-
stance ψ which is equivalent to φ must be the only input instance that is equivalent
to φ. Therefore, we obtain that there exists a polynomial p such that for each input
φ and for all equivalent inputs ψ (i.e., for the unique equivalent instance ψ of D2), it
holds that time(ALG2, ψ) ≤ p(time(ALG1, φ) + |φ|). Therefore, ALG1 is at most as
rapid as ALG2 according to Definition G.2.

G.2 A Sufficient Condition for Rapidity

Here, we prove Theorem 5.5, which we restate below.

Theorem 5.5 (A sufficient condition for rapidity). Let D1, D2 be data structures
with D1 ⪯s D2 and OP a c-ary operation. Suppose that,

A1 OP (D2) requires time Ω(m) where m is the sum of the sizes of the operands; and

A2 for each algorithm ALG implementing OP (D2), there is a runtime monotonic
algorithm ALGrm, implementing the same operation OP (D2), which is at least
as rapid as ALG; and

A3 there exists a transformation fromD1 toD2 which is (i) weakly minimizing and (ii)
runs in time polynomial in the output size (i.e, in time poly(|ψ|) for transformation
output ψ ∈ D2); and

A4 if OP is a manipulation operation (as opposed to a query), then there also exists
a polynomial time transformation from D2 to D1 (polynomial time in the input
size, i.e, in |ρ| for transformation input ρ ∈ D2).

Then D1 is at least as rapid as D2 for operation OP .

Proof. We prove the theorem for c = 1. This can be easily extended to the case with
multiple operands by treating the operands point-wise and summing their sizes. We
show that OP (D2) is at most as rapid as OP (D1), assuming that the conditions in
Theorem 5.5 hold. (Note that this swaps the roles of D1 and D2 relative to Defini-
tion 5.3). In this proof, we will assume without loss of generality that all polynomials
p are monotone, i.e., if x ≤ y then p(x) ≤ p(y).

265

A Sufficient Condition for Rapidity

We prove the theorem for a manipulation operation OP . The proof for a query oper-
ation OP follows as a special case, which we treat at the end of the proof.

Let ALG2 be an Ω(m) algorithm implementing OP (D2). By A2, we may assume
without loss of generality that ALG2 is runtime monotonic. Let f : D1 → D2 be
the polynomial-time weakly minimizing transformation (A3), and g : D2 → D1 the
polynomial-time transformation in the other direction satisfying the criteria in A4.

We set ALG1 = f ◦ALG2 ◦ g, i.e., ALG1 is as follows.

1: procedure ALG1(φ)
2: ψ := f(φ)

3: ρ := ALG2(ψ)

4: return g(ρ)

ALG1 is complete (i.e., works on all inputs), since f, g and ALG2 are. The remainder of
the proof shows that ALG2 is at most as rapid as ALG1, i.e., there exists a polynomial
p such that for all operands ψ ∈ D2, there exists in input φ ∈ D1 with |φ⟩ = |ψ⟩ for
which time(ALG1, φ) ≤ p (time(ALG2, ψ)).

Let ψ ∈ D2. We take φ ∈ D1 such that |φ⟩ = |ψ⟩ and |φ| ≤ s(|ψ|) for the polynomial
s ensuring the succinctness relation D1 ⪯s D2. Such a φ exists, because D1 is more
succinct than D2.

It remains to show that ∃p : time(ALG1, φ) ≤ p (time(ALG2, ψ)), where p is indepen-
dent of φ and ψ. To this end, we can express the time required by ALG1 by summing
the runtimes of its three steps as follows.

time(ALG1, φ) = time(f, φ) + time(ALG2, f(φ)) + time(g,ALG2(f(φ))) (G.1)

It now suffices to prove that each summand of Equation G.1 is polynomial in the
runtime of ALG2(ψ).

1. We show time(f, φ) ≤ poly(time(ALG2, ψ)). Since f runs in polynomial time in
its output (A3) and |φ| ≤ s(|ψ|) (see above), we have time(f, φ) ≤ poly(|f(φ)|).
Let t be the polynomial such that time(f, φ) ≤ t(|f(φ)|). Since f is weakly
minimizing (A3), it is guaranteed that |f(φ)| ≤ m(|ψ|) for some polynomial m.
Lastly, by A1, we have |ψ| = O(time(ALGrm2 , ψ)), so |ψ| ≤ k(time(ALG2, ψ)) for
some polynomial k. Put together, we have time(f, φ) ≤ t(|f(φ)|) ≤ t(m(|ψ|)) ≤

266

Proofs of Section 5.5

t(m(k(time(ALG2, ψ)))), which proves the claim.

2. We show time(ALG2, f(φ)) ≤ poly(time(ALG2, ψ)). Because f is a weakly
minimizing transformation (A3), we have |f(φ)| ≤ s(|ψ|) for some s. Since
ALG2 is runtime monotonic (A2), and because |f(φ)| ≤ s(|ψ|), we have
time(ALG2, f(φ)) ≤ t(ALG2, ψ) for some t, which proves the claim.

3. We show time(g,ALG2(f(φ))) ≤ poly(time(ALG2, ψ)). Since g runs in time
polynomial in the input (A4); and the input to g is ALG2(f(φ)), we have
time(g,ALG2(f(φ))) ≤ p(|ALG2(f(φ))|) for some polynomial p. Next, we have
trivially time(ALG2, f(φ)) ≥ |ALG2(f(φ))|, since the time ALG2 spends writing
the output is included in the total time, thus we obtain time(g,ALG2(f(φ))) ≤
p(time(ALG2, f(φ))). As we have seen above in item 2, time(ALG2, f(φ)) ≤
t(time(ALG2, ψ)) for some polynomial t. Putting this together, we obtain
time(g,ALG2(f(φ))) ≤ p(t(time(ALG2, ψ))), which proves the claim.

This proves the theorem for the case when OP is a manipulation operation.

Lastly, if OP is a query operation rather than a manipulation operation, then the
transformation from D2 back to D1 using g is no longer necessary. This is the only
change needed in ALG1; in the proof above, we may use time(g,ALG2(f(x1))) = 0.
The requirement that time(g,ALG2(f(x1))) ≤ p(time(ALG2, x2)) now holds vacu-
ously.

G.3 Rapidity Relations between Data Structures

Here we prove the rapidity relations between data structures studied in the paper as
stated in Theorem 5.6, restated below with proof.

Theorem 5.6. The rapidity relations in Figure 5.4 hold.

Proof. The relation between QMDD and MPS is proved in Theorem 5.7 as restated
in Section G.4. Finally, Section G.5 provides the transformations between QDDs that
fulfill the conditions of Theorem 5.5.

267

MPS is at least as Rapid as QMDD

MPSLIMDD

QMDD

ADD

Figure G.1: Rapidity relations between data structures considered here. A solid
arrow D1 → D2 means D2 is at least as rapid as D1 for all operations satisfying
A1 and A2 of Theorem 5.5.

G.4 MPS is at least as Rapid as QMDD

This appendix proves Theorem 5.7 from Sec. 5.5.2 by providing transformations be-
tween MPS and QMDD that realize the sufficient conditions of Theorem 5.5. The
introduction to QDDs, given in Section 2.3, is relevant here.

Theorem 5.7. MPS is at least as rapid as QMDD for all operations satisfying
A1 and A2.

Proof. Let f be the polynomial-time transformation from Lemma G.2. Let g be the
weakly minimizing transformation from MPS to QMDD of Lemma G.3, that runs in
time polynomial in the size of the input MPS and the resulting QMDD. These tran-
sitions satisfy requirements A3 and A4 of Theorem 5.5 respectively. Since QDDs are
canonical data structures as explained in Section 5.2, all algorithms are by definition
runtime monotonic, as for any state |φ⟩ there is only one structure representing it,
i.e., Dφ is a singleton set. This satisfies A2. Since its premise fulfills A1, the theorem
follows.

Lemma G.2 (QMDD to MPS). In polynomial time, a QMDD can be converted to an
MPS representing the same state.

Proof. Consider a QMDD with root edge v
λ describing a state |φ⟩ =∑

x⃗∈{0,1}n α(x⃗) |x⃗⟩. We will construct an MPS A describing the same state. For
the purposes of this proof, we will call low edges 0-edges and high edge 1-edges.

First, without loss of generality, we may assume that the root edge label is λ = 1.
Namely, we may multiply the labels on the root’s low and high edges with λ, and

268

Proofs of Section 5.5

then set the root edge label to 1; this operation preserves the state represented by the
QMDD.

Denote by Dℓ the number of nodes at the ℓ-th layer in QMDD v, i.e. Dn = 1 (the
root node v) and D0 = 1 (the leaf 1). Recall that the QMDD is a directed, weighted
graph whose vertices are divided into n + 1 layers, i.e., the edges only connect nodes
from consecutive layers. Therefore, we may speak of the Dℓ×Dℓ−1 bipartite adjacency
matrix between layer ℓ and layer ℓ−1 of the diagram. For layer 1 ≤ ℓ ≤ n and x = 0, 1,
let Axℓ be the Dℓ ×Dℓ−1 bipartite adjacency matrix obtained in this way using only
the low edges if x = 0, and only the high edges if x = 1. That is, assuming some
order on nodes within each level, the entry of the matrix Axℓ in row r and column c is
defined as

(Axℓ)r,c =



label(e) if node with index r in level ℓ has a x-edge e

to node with index c in level ℓ− 1

0 otherwise

(G.2)

We claim that the following MPS A describes the same state as the QMDD:

A = (A0
1, A

1
1, . . . , A

0
n, A

1
n) (G.3)

Following the MPS definition in Section 5.2, our claim is proven by showing that for
QMDD root node v representing |v⟩, we have

⟨x⃗|v⟩ = Axn
n ·Axn−1

n−1 · · ·Ax1
1 for all x⃗ ∈ {0, 1}n (G.4)

For an n-qubit QMDD v, the amplitude ⟨x⃗|v⟩ for x⃗ ∈ {0, 1}n is equal to the product
of the weights found on the single path from the root node node to leaf effected by
x⃗ (this path is found as follows: go down from root to leaf; at a vertex at layer j,
choose to traverse the low edge if xj = 0 and the high edge if xj = 1). We next reason
that this product equals the single entry of the product y := Axn

n ·Axn−1

n−1 · · ·Ax1
1 from

Equation G.4.

We recall several useful facts from graph theory. If G (G′) is a weighted, directed
bipartite graph on the bipartitionM∪M ′′ (M ′′∪M ′) vertices, with weighted adjacency
matrix AG (AG′), then it is not hard to see that the element (AG ·AG′)r,c is the sum,

269

MPS is at least as Rapid as QMDD

over all two-step paths r − a − c starting at vertex r ∈ M and going through vertex
a ∈ M ′′ to vertex c ∈ M ′, of products of the two weights wr→a and wa→c. More
generally, for a sequence of weighted, directed bipartite graphs Gj with vertex set
Mj ∪Mj+1, the (r, c)-th entry of the product of adjacency matrices AG1 ·AG2 ·...·AGn

equals
∑

paths π from r to c
∏

edgeϵ∈π weight(ϵ).

Now note that the matrix y has dimensions 1× 1 (since D0 = Dn = 1), corresponding
to a single root and single leaf. By the reasoning above, since y is the product of all
bipartite adjacency matrices of the QMDD, the single element of this matrix is equal
to the product of weights found on the single path from root to leaf as represented by
x⃗.

Lemma G.3 (MPS to QMDD). There is a weakly minimizing transformation from
MPS to QMDD, that runs in time polynomial in the size of the input MPS and the
resulting QMDD.

Proof. Algorithm 23 shows the algorithm which converts an MPS to a QMDD. The
idea is to use perform backtracking to construct the QMDD bottom-up. Specifically,
given an MPS {A0

n, A
1
n, ..., A0

1, A
1
1} representing a state |φ⟩ = |0⟩ |φ0⟩ + |1⟩ |φ1⟩, the

MPS for |φ0⟩ is easily constructed by setting the first open index to 0 and contracting
these two blocks, i.e., A0

n−1 := A0
n · A0

n−1 and A1
n−1 := A0

n · A1
n−1, and similarly for

|φ1⟩. We then recurse, constructing MPS for states |φ00⟩ , |φ01⟩, etc. When we find
a state whose QMDD node we have already constructed, then we may simply return
an edge to that QMDD node without recursing further. This dynamic programming
behavior is implemented through the check at Line 3.

Through the use of dynamic programming with the cache set D, it is clear that the
number of recursive calls to MPS2QMDD is bound by the number of edges in the
resulting QMDD. Dynamic programming is implemented by checking, for each call
with MPS M , whether some QMDD node v ∈ D already represents |M⟩ up to a
complex factor. To this end, the subroutine Equivalent, on Line 3, checks whether
|M⟩ = λ · |v⟩ for some λ ∈ C. It is straightforward to see that it runs in polynomial
time in the sizes of QMDD v and MPS M : first, it creates an MPS for the given
QMDD node v using the efficient transformation in Section G.4. Next, it computes
several inner products on MPS, which can also be done in polynomial time, using the
results in App. F. This Equivalent operation is called |D| time, which dominates
the runtime of each call MPS2QMDD. Therefore the entire runtime is polynomial in
the sizes of the MPS and the resulting QMDD.

270

Proofs of Section 5.5

Since QMDD is canonical, the transformation is weakly minimizing by definition.

Algorithm 23 An algorithm which converts an MPS into a QMDD. It runs in time
polynomial in s + d, where s is the size of the QMDD, and d is the bond dimen-
sion of the MPS. Here D is the diagram representing the state. The subroutine
Equivalent(v,M) computes whether the vectors |v⟩ , |M⟩ are co-linear, i.e., whether
there exists λ ∈ C such that |M⟩ = λ |v⟩.
1: D := { 1 } ▷ Initiate diagram D with only a QMDD leaf node representing 1
2: procedure MPS2QMDD(MPS M = {Axj }) ▷ Returns a root edge eR such that

|eR⟩ = |M⟩

3: if D contains a node v with |M⟩ = λ |v⟩ then return v
λ ▷ Implemented

with Equivalent(v,M) for all v ∈ D

4: Edge e0 := MPS2QMDD({A0
n · A0

n−1, A0
n · A1

n−1} ∪
{A0

n−2, A
1
n−2, . . . , A

0
1, A

1
1})

5: Edge e1 := MPS2QMDD({A1
n · A0

n−1, A1
n · A1

n−1} ∪
{A0

n−2, A
1
n−2, . . . , A

0
1, A

1
1})

6: Node w :=
e0 e1

▷ Create new node w with MakeNode
7: D := D ∪ {w}
8: return Edge w

1

9: procedure Equivalent(QMDD Node v, MPS M = {Axj })
10: V := QMDD2MPS(v) ▷ Using transformation in Section G.4
11: sV :=

√
| ⟨V |V ⟩ | ▷ Compute inner product

12: sM :=
√
| ⟨M |M⟩ | ▷ Compute inner product

13: λ := 1/sV ·sM ⟨V |M⟩ ▷ Compute inner product

14: if |λ| = 1 then return “|M⟩ = sM
sV
λ |v⟩”

15: else return “|v⟩ is not equivalent to |M⟩”

G.5 Transformations between QDDs

QDDs are canonical data structures as explained in Section 5.2 and Chapter 2. There-
fore, (i) all algorithms are by definition runtime monotonic, as for any state |φ⟩ there
is only one structure representing it, i.e., Dφ is a singleton set; and (ii) all transforma-
tions given below are therefore weakly minimizing since they convert to a canonical
data structure (namely, since they map to the unique element in Dφ, in particular
they map to the minimum-size element of Dφ).

271

Transformations between QDDs

Algorithm 24 An algorithm which converts a LIMDD into an QMDD.

1: QMDD D := { 1
1 } ▷ The QMDD is initialized to contain only the Leaf

2: procedure LIMDD 2QMDD(LIMDD edge v
λPn ⊗ P ′

)
Returns (a pointer to) an edge to a QMDD node

3: if v is the Leaf node then return v
λ

4: R := getLexminLabel(Pn ⊗ P ′, v)

5: if the Cache contains tuple (R, v) then return λ · Cache[R, v]

6: for x = 0, 1 do

7: QMDD edge rx := Followx(v
Pn ⊗ P ′

)

8: QMDD edge r := MakeEdge(r0, r1)
9: Cache[R, v] := r

10: D := D ∪ {r} ▷ Add the new edge to the diagram

11: return λ · r

G.5.1 Transforming LIMDD to QMDD

Algorithm 24 converts a LIMDD to a QMDD in time linear in the size of the output.
The diagram is the set of edges D, which is initialized to contain the Leaf (i.e., the
node 1

1), and is filled with the other edges during the recursive calls to LIMDD

2QMDD. The function getLexminLabel is taken from Vinkhuijzen et al. [337]; it
returns a canonical edge label.

G.5.2 Transforming QMDD to LIMDD

By definition, a QMDD can be seen as a LIMDD in which every edge is labeled with
a complex number and the n-qubit identity tensor I⊗n. Thus, a transformation does
not need to do anything. Optionally, it is possible to convert a given LIMDD to one
of minimum size, as described by [337].

G.5.3 Transforming ADD to QMDD

To convert an ADD into a QMDD, we add a Leaf node labelled with 1; then, for each
Leaf node labelled with λ ̸= 1, we label each incoming edge with λ, and then reroute
this edge to the (new) Leaf node labelled with 1. Optionally, the resulting QMDD can
be minimized to obtain the canonical instance for this state, using, e.g., techniques

272

Proofs of Section 5.5

from [59,227].

G.5.4 Transforming QMDD to ADD

Algorithm 25 gives a method which converts an QMDD to an ADD. It is very similar to
the ones used in the transformation LIMDD to QMDD above, . We here check whether
the diagram already contains a function which is pointwise equal to the one we are
currently considering. If so, we reuse that node; otherwise, we recurse.

Algorithm 25 An algorithm which converts an QMDD to an ADD. Its input is an
QMDD edge e representing a state |e⟩ on n qubits. Here the method Followx(e)
returns an QMDD edge representing the state ⟨x| ⊗ I⊗n−1 · |e⟩. It outputs an QMDD
node w representing |w⟩ = |e⟩.

1: procedure QMDD 2ADD(QMDD edge e = v
λ on n qubits)

2: if n = 0 then
3: w := λ

4: else if A contains a node w with |v⟩ = |w⟩ then
5: return w
6: else
7: for x = 0, 1 do
8: wx := SLDD2ADD(Followx(e))

9: QMDD Node w := w0 w1

10: A := A ∪ {w}
11: return w

273

Transformations between QDDs

274

Bibliography

[1] Scott Aaronson. Multilinear formulas and skepticism of quantum computing.
In Proceedings of the Thirty-Sixth Annual ACM Symposium on Theory of Com-
puting, STOC ’04, page 118–127, New York, NY, USA, 2004. Association for
Computing Machinery.

[2] Scott Aaronson. Quantum computing since Democritus. Cambridge University
Press, 2013.

[3] Scott Aaronson and Daniel Gottesman. Improved simulation of stabilizer cir-
cuits. Physical Review A, 70(5), nov 2004.

[4] Afshin Abdollahi and Massoud Pedram. Analysis and synthesis of quantum
circuits by using quantum decision diagrams. In Design, Automation and Test
in Europe, pages 317–322, 2006.

[5] Farid Ablayev, Aida Gainutdinova, and Marek Karpinski. On computational
power of quantum branching programs. In Fundamentals of Computation The-
ory: 13th International Symposium, FCT 2001 Riga, Latvia, August 22–24, 2001
Proceedings 13, pages 59–70. Springer, 2001.

[6] Smaran Adarsh, Lukas Burgholzer, Tanmay Manjunath, and Robert Wille.
SyReC synthesizer: An MQT tool for synthesis of reversible circuits. Software
Impacts, 14:100451, 2022.

[7] Sheldon B. Akers. Binary decision diagrams. IEEE Computer Architecture
Letters, 27(06):509–516, 1978.

[8] Anas N. Al-Rabadi, Marek Perkowski, and Martin Zwick. A comparison of modi-
fied reconstructability analysis and Ashenhurst-Curtis decomposition of Boolean
functions. Kybernetes, 2004.

[9] F Aloul, I Markov, and K Sakallah. Mince: A static global variable-ordering
for SAT and BDD. In International Workshop on Logic and Synthesis, pages
1167–1172, 2001.

275

Bibliography

[10] Rajeev Alur and P. Madhusudan. Visibly pushdown languages. In Proceedings
of the Thirty-Sixth Annual ACM Symposium on Theory of Computing, STOC
’04, pages 202–211, New York, NY, USA, 2004. Association for Computing Ma-
chinery.

[11] Luca Amarú, Pierre-Emmanuel Gaillardon, and Giovanni De Micheli. BDS-
MAJ: A BDD-based logic synthesis tool exploiting majority logic decomposition.
In Proceedings of the 50th Annual Design Automation Conference, pages 1–6,
2013.

[12] Andris Ambainis, András Gilyén, Stacey Jeffery, and Martins Kokainis.
Quadratic speedup for finding marked vertices by quantum walks. In Symp.
on Theory of Computing, pages 412–424, 2020.

[13] Matthew Amy. Formal methods in quantum circuit design. PhD thesis, 2019.

[14] Matthew Amy, Dmitri Maslov, and Michele Mosca. Polynomial-time T-depth
optimization of Clifford+ T circuits via matroid partitioning. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 33(10):1476–
1489, 2014.

[15] Matthew Amy, Martin Roetteler, and Krysta M Svore. Verified compilation
of space-efficient reversible circuits. In International Conference on Computer
Aided Verification, pages 3–21. Springer, 2017.

[16] Linda Anticoli, Carla Piazza, Leonardo Taglialegne, and Paolo Zuliani. Towards
quantum programs verification: from quipper circuits to QPMC. In Reversible
Computation: 8th International Conference, RC 2016, Bologna, Italy, July 7-8,
2016, Proceedings 8, pages 213–219. Springer, 2016.

[17] Ebrahim Ardeshir-Larijani, Simon J Gay, and Rajagopal Nagarajan. Equiva-
lence checking of quantum protocols. In Tools and Algorithms for the Construc-
tion and Analysis of Systems: 19th International Conference, TACAS 2013, Held
as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings 19, pages 478–492.
Springer, 2013.

[18] Ebrahim Ardeshir-Larijani, Simon J Gay, and Rajagopal Nagarajan. Verification
of concurrent quantum protocols by equivalence checking. In TACAS, pages 500–
514. Springer, 2014.

[19] Stefan Arnborg, Derek G Corneil, and Andrzej Proskurowski. Complexity of
finding embeddings in ak-tree. SIAM Journal on Algebraic Discrete Methods,
8(2):277–284, 1987.

[20] Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach.
Cambridge University Press, 2009.

276

Bibliography

[21] Srinivasan Arunachalam, Sergey Bravyi, Chinmay Nirkhe, and Bryan
O’Gorman. The parameterized complexity of quantum verification. arXiv
preprint arXiv:2202.08119, 2022.

[22] Robert L. Ashenhurst. The decomposition of switching functions. In Proceedings
of an International Symposium on the theory of Switching, April 1957, 1957.

[23] Gilles Audemard, Frédéric Koriche, and Pierre Marquis. On tractable XAI
queries based on compiled representations. In Proceedings of the Interna-
tional Conference on Principles of Knowledge Representation and Reasoning,
volume 17, pages 838–849, 2020.

[24] Koenraad M R Audenaert and Martin B Plenio. Entanglement on mixed stabi-
lizer states: normal forms and reduction procedures. New Journal of Physics,
7(1):170, 2005.

[25] UCLA Automated Reasoning Group. The SDD package. http://reasoning.
cs.ucla.edu/sdd/, 2018.

[26] Junaid Babar, Chuan Jiang, Gianfranco Ciardo, and Andrew Miner. Binary
decision diagrams with edge-specified reductions. In International Conference
on Tools and Algorithms for the Construction and Analysis of Systems, pages
303–318. Springer, 2019.

[27] R. I. Bahar, E. A. Frohm, C. M. Gaona, G. D. Hachtel, E. Macii, A. Pardo, and
F. Somenzi. Algebraic decision diagrams and their applications. In Proceedings
of 1993 International Conference on Computer Aided Design (ICCAD), pages
188–191, 1993.

[28] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. The MIT
Press, 2008.

[29] Roberto Baldoni, Emilio Coppa, Daniele Cono D’Elia, Camil Demetrescu, and
Irene Finocchi. A survey of symbolic execution techniques. ACM Comput. Surv.,
51(3), 2018.

[30] Pedro Baltazar, Rohit Chadha, and Paulo Mateus. Quantum computation tree
logic—model checking and complete calculus. International Journal of Quantum
Information, 6(02):219–236, 2008.

[31] Zuzana Baranová, Jiří Barnat, Katarína Kejstová, Tadeáš Kučera, Henrich
Lauko, Jan Mrázek, Petr Ročkai, and Vladimír Štill. Model checking of C and
C++ with DIVINE 4. In ATVA 2017, volume 10482 of LNCS, pages 201–207.
Springer, 2017.

[32] Andreas Bärtschi and Stephan Eidenbenz. Deterministic preparation of Dicke
states. In Fundamentals of Computation Theory: 22nd International Sympo-
sium, FCT 2019, Copenhagen, Denmark, August 12-14, 2019, Proceedings 22,
pages 126–139. Springer, 2019.

277

http://reasoning.cs.ucla.edu/sdd/
http://reasoning.cs.ucla.edu/sdd/

Bibliography

[33] Jon Barwise. Handbook of mathematical logic. Elsevier, 1982.

[34] Fabian Bauer-Marquart, Stefan Leue, and Christian Schilling. symQV: Auto-
mated symbolic verification of quantum programs. In Formal Methods: 25th
International Symposium, FM 2023, Lübeck, Germany, March 6–10, 2023, Pro-
ceedings, pages 181–198. Springer, 2023.

[35] Stephane Beauregard. Circuit for Shor’s algorithm using 2n + 3 qubits. arXiv
preprint quant-ph/0205095, 2002.

[36] John S Bell. On the Einstein Podolsky Rosen paradox. Physics Physique Fizika,
1(3):195, 1964.

[37] Marcello Benedetti, Erika Lloyd, Stefan Sack, and Mattia Fiorentini. Param-
eterized quantum circuits as machine learning models. Quantum Science and
Technology, 4(4):043001, nov 2019.

[38] Charles H. Bennet. Quantum cryptography: public key distribution and coin
tossing. In Proceedings of the IEEE International Conference on Computers,
Systems, and Signal Processing, Bangalore, Dec. 1984, pages 175–179, 1984.

[39] Charles H. Bennett, Herbert J. Bernstein, Sandu Popescu, and Benjamin Schu-
macher. Concentrating partial entanglement by local operations. Physical Review
A, 53(4):2046, 1996.

[40] Charles H. Bennett, Gilles Brassard, Claude Crépeau, Richard Jozsa, Asher
Peres, and William K. Wootters. Teleporting an unknown quantum state via
dual classical and Einstein-Podolsky-Rosen channels. Physical Review Letters,
70(13):1895, 1993.

[41] Charles H. Bennett, David P. DiVincenzo, John A. Smolin, and William K
Wootters. Mixed-state entanglement and quantum error correction. Physical
Review A, 54(5):3824, 1996.

[42] Charles H. Bennett and Stephen J. Wiesner. Communication via one-and two-
particle operators on Einstein-Podolsky-Rosen states. Physical Review Letters,
69(20):2881, 1992.

[43] Lucas Berent, Lukas Burgholzer, and Robert Wille. Towards a SAT encoding
for quantum circuits: A journey from classical circuits to Clifford circuits and
beyond. arXiv:2203.00698, 2022.

[44] David Bergman, Andre A Cire, Willem-Jan van Hoeve, and John N Hooker. Dis-
crete optimization with decision diagrams. INFORMS Journal on Computing,
28(1):47–66, 2016.

[45] Valeria Bertacco. The disjunctive decomposition of logic functions. In Proceed-
ings of the International Conference on Computer-Aided Design (ICCAD’97),
November 1997, pages 78–82, 1997.

278

Bibliography

[46] Valeria Bertacco and Maurizio Damiani. Boolean function representation based
on disjoint-support decompositions. In Proceedings International Conference on
Computer Design. VLSI in Computers and Processors, pages 27–32. IEEE, 1996.

[47] Yves Bertot and Pierre Castéran. Interactive theorem proving and program de-
velopment: Coq’Art: the calculus of inductive constructions. Springer Science &
Business Media, 2013.

[48] Kishor Bharti, Alba Cervera-Lierta, Thi Ha Kyaw, Tobias Haug, Sumner
Alperin-Lea, Abhinav Anand, Matthias Degroote, Hermanni Heimonen, Jakob S
Kottmann, Tim Menke, et al. Noisy intermediate-scale quantum algorithms. Re-
views of Modern Physics, 94(1):015004, 2022.

[49] Debjyoti Bhattacharjee and Anupam Chattopadhyay. Depth-optimal quantum
circuit placement for arbitrary topologies. arXiv preprint arXiv:1703.08540,
2017.

[50] Jean-François Biasse and Fang Song. Efficient quantum algorithms for com-
puting class groups and solving the principal ideal problem in arbitrary degree
number fields. In Proceedings of the 27th Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 893–902. SIAM, 2016.

[51] Armin Biere, Alessandro Cimatti, Edmund Clarke, and Yunshan Zhu. Symbolic
model checking without BDDs. In International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems (TACAS), pages 193–207.
Springer, 1999.

[52] Antonio Blanca, Zongchen Chen, Daniel Štefankovič, and Eric Vigoda. Hardness
of identity testing for restricted Boltzmann machines and Potts models. The
Journal of Machine Learning Research, 22(1):6727–6782, 2021.

[53] Hans L Bodlaender. A linear-time algorithm for finding tree-decompositions of
small treewidth. SIAM Journal on computing, 25(6):1305–1317, 1996.

[54] Beate Bollig and Matthias Buttkus. On the relative succinctness of sentential
decision diagrams. Theory of Computing Systems, 63(6):1250–1277, 2019.

[55] Beate Bollig and Martin Farenholtz. On the relation between structured d-
DNNFs and SDDs. Theory of Computing Systems, 65(2):274–295, 2021.

[56] Beate Bollig and Ingo Wegener. Improving the variable ordering of OBDDs is
NP-complete. IEEE Transactions on Computers, 45:993–1002, 1996.

[57] Adi Botea, Akihiro Kishimoto, and Radu Marinescu. On the complexity of
quantum circuit compilation. In Proceedings of the International Symposium on
Combinatorial Search, volume 9, pages 138–142, 2018.

[58] Simone Bova. SDDs are exponentially more succinct than OBDDs. In Thirtieth
AAAI Conference on Artificial Intelligence, 2016.

279

Bibliography

[59] Karl S. Brace, Richard L. Rudell, and Randal E. Bryant. Efficient implemen-
tation of a BDD package. In 27th ACM/IEEE Design Automation Conference,
pages 40–45. IEEE, 1990.

[60] Aaron R. Bradley. SAT-based model checking without unrolling. In Verification,
Model Checking, and Abstract Interpretation: 12th International Conference,
VMCAI 2011, Austin, Texas, USA, January 23-25, 2011. Proceedings 12, pages
70–87. Springer, 2011.

[61] Sergey Bravyi, Dan Browne, Padraic Calpin, Earl Campbell, David Gosset, and
Mark Howard. Simulation of quantum circuits by low-rank stabilizer decompo-
sitions. Quantum, 3:181, September 2019.

[62] Sergey Bravyi and David Gosset. Improved classical simulation of quantum
circuits dominated by clifford gates. Physical Review Letters, 116:250501, Jun
2016.

[63] Sergey Bravyi and Alexei Kitaev. Universal quantum computation with ideal
clifford gates and noisy ancillas. Physical Review A, 71:022316, Feb 2005.

[64] Sergey Bravyi, Graeme Smith, and John A. Smolin. Trading classical and quan-
tum computational resources. Physical Review X, 6:021043, Jun 2016.

[65] Hans J. Briegel and Robert Raussendorf. Persistent entanglement in arrays of
interacting particles. Physical Review Letters, 86:910–913, Jan 2001.

[66] Dan Browne and Hans Briegel. One-way quantum computation. Quantum infor-
mation: From foundations to quantum technology applications, pages 449–473,
2016.

[67] Randal E. Bryant. Graph-based algorithms for Boolean function manipulation.
IEEE Trans. Computers, 35(8):677–691, 1986.

[68] Randal E Bryant. Chain reduction for binary and zero-suppressed decision dia-
grams. In International Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems, pages 81–98. Springer, 2018.

[69] Yirng-An Chen Randal E Bryant. Verification of arithmetic circuits with bi-
nary moment diagrams. In 32nd Design Automation Conference, pages 535–541.
IEEE, 1995.

[70] Jerry R Burch, Edmund M Clarke, Kenneth L McMillan, David L Dill, and Lain-
Jinn Hwang. Symbolic model checking: 1020 states and beyond. Information
and computation, 98(2):142–170, 1992.

[71] Lukas Burgholzer, Richard Kueng, and Robert Wille. Random stimuli generation
for the verification of quantum circuits. In Proceedings of the 26th Asia and South
Pacific Design Automation Conference, pages 767–772, 2021.

280

Bibliography

[72] Lukas Burgholzer, Alexander Ploier, and Robert Wille. Tensor networks or
decision diagrams? Guidelines for classical quantum circuit simulation. arXiv
preprint arXiv:2302.06616, 2023.

[73] Lukas Burgholzer, Rudy Raymond, and Robert Wille. Verifying results of the
IBM Qiskit quantum circuit compilation flow. In 2020 IEEE International Con-
ference on Quantum Computing and Engineering (QCE), pages 356–365. IEEE,
2020.

[74] Lukas Burgholzer and Robert Wille. Improved DD-based equivalence checking
of quantum circuits. In 2020 25th Asia and South Pacific Design Automation
Conference (ASP-DAC), pages 127–132. IEEE, 2020.

[75] Lukas Burgholzer and Robert Wille. Advanced equivalence checking for quan-
tum circuits. IEEE Transactions on CAD of Integrated Circuits and Systems,
40(9):1810–1824, 2021.

[76] Padraic Calpin. Exploring Quantum Computation Through the Lens of Classical
Simulation. PhD thesis, UCL (University College London), 2020.

[77] Jacques Carette, Gerardo Ortiz, and Amr Sabry. Symbolic execution of
Hadamard-Toffoli quantum circuits. In Proceedings of the 2023 ACM SIGPLAN
International Workshop on Partial Evaluation and Program Manipulation, pages
14–26, 2023.

[78] Giuseppe Carleo and Matthias Troyer. Solving the quantum many-body problem
with artificial neural networks. Science, 355(6325):602–606, 2017.

[79] Rohit Chadha, Paulo Mateus, and Amílcar Sernadas. Reasoning about imper-
ative quantum programs. Electronic Notes in Theoretical Computer Science,
158:19–39, 2006.

[80] Jing Chen, Song Cheng, Haidong Xie, Lei Wang, and Tao Xiang. Equivalence
of restricted Boltzmann machines and tensor network states. Physical Review
B, 97(8):085104, 2018.

[81] Tian-Fu Chen, Jie-Hong R Jiang, and Min-Hsiu Hsieh. Partial equivalence check-
ing of quantum circuits. In 2022 IEEE International Conference on Quantum
Computing and Engineering (QCE), pages 594–604. IEEE, 2022.

[82] Eric Chitambar, Debbie Leung, Laura Mančinska, Maris Ozols, and Andreas
Winter. Everything you always wanted to know about LOCC (but were afraid
to ask). Communications in Mathematical Physics, 328(1):303–326, 2014.

[83] Arthur Choi and Adnan Darwiche. Dynamic minimization of sentential decision
diagrams. In 27th AAAI Conference on Artificial Intelligence, 2013.

281

Bibliography

[84] E. M. Clarke, K. L. McMillan, X Zhao, M. Fujita, and J. Yang. Spectral trans-
forms for large boolean functions with applications to technology mapping. In
Proceedings of the 30th International Design Automation Conference, DAC ’93,
pages 54–60, New York, NY, USA, 1993. Association for Computing Machinery.

[85] Edmund M Clarke and E Allen Emerson. Design and synthesis of synchroniza-
tion skeletons using branching time temporal logic. In Workshop on Logic of
Programs, pages 52–71. Springer, 1981.

[86] Edmund M Clarke, M. Fujita, P C McGeer, K. McMillan, J C-Y Yang, and
X Zhao. Multi-Terminal Binary Decision Diagrams: An Efficient Data Structure
for Matrix Representation. 2 2001.

[87] Edmund M Clarke, Kenneth L McMillan, Xudong Zhao, Masahiro Fujita, and
Jerry Yang. Spectral transforms for large Boolean functions with applications to
technology mapping. In Proceedings of the 30th international Design Automation
Conference, pages 54–60, 1993.

[88] Edmund M Clarke Jr, Orna Grumberg, Daniel Kroening, Doron Peled, and
Helmut Veith. Model checking. MIT press, 2018.

[89] Bob Coecke and Ross Duncan. Interacting quantum observables: categorical
algebra and diagrammatics. New Journal of Physics, 13(4):043016, 2011.

[90] Elizabeth Cuthill and James McKee. Reducing the bandwidth of sparse symmet-
ric matrices. In Proceedings of the 1969 24th national conference, pages 157–172.
ACM, 1969.

[91] Giso H. Dal, Alfons W Laarman, Arjen Hommersom, and Peter JF Lucas. A
compositional approach to probabilistic knowledge compilation. International
Journal of Approximate Reasoning, 138:38–66, 2021.

[92] Maurizio Damiani and Valeria Bertacco. Finding complex disjunctive decom-
positions of logic functions. In Proc of the International Workshop on Logic &
Synthesis, pages 478–483, 1998.

[93] Aidan Dang, Charles D. Hill, and Lloyd C. L. Hollenberg. Optimising Matrix
Product State Simulations of Shor’s Algorithm. Quantum, 3:116, January 2019.

[94] Adnan Darwiche. Compiling knowledge into decomposable negation normal
form. In IJCAI, volume 99, pages 284–289. Citeseer, 1999.

[95] Adnan Darwiche. Decomposable negation normal form. Journal of the ACM
(JACM), 48(4):608–647, 2001.

[96] Adnan Darwiche. SDD: a new canonical representation of propositional knowl-
edge bases. In Proceedings of the Twenty-Second international joint confer-
ence on Artificial Intelligence-Volume Volume Two, pages 819–826. AAAI Press,
2011.

282

Bibliography

[97] Adnan Darwiche and Pierre Marquis. A knowledge compilation map. Journal
of Artificial Intelligence Research, 17:229–264, 2002.

[98] JW De Bakker and Lambert G. L. T. Meertens. On the completeness of the in-
ductive assertion method. Journal of Computer and System Sciences, 11(3):323–
357, 1975.

[99] Luc De Raedt, Kristian Kersting, Angelika Kimmig, Kate Revoredo, and Hannu
Toivonen. Compressing probabilistic prolog programs. Machine learning,
70:151–168, 2008.

[100] Ellie D’hondt and Prakash Panangaden. Quantum weakest preconditions. Math-
ematical Structures in Computer Science, 16(3):429–451, 2006.

[101] Robert H Dicke. Coherence in spontaneous radiation processes. Physical Review,
93(1):99, 1954.

[102] Edsger W Dijkstra. The humble programmer. Communications of the ACM,
15(10):859–866, 1972.

[103] Rolf Drechsler, Andisheh Sarabi, Michael Theobald, Bernd Becker, and Marek A
Perkowski. Efficient representation and manipulation of switching functions
based on ordered Kronecker functional decision diagrams. In Proceedings of
the 31st annual Design Automation Conference, pages 415–419, 1994.

[104] Vincent Dumoulin, Ian Goodfellow, Aaron Courville, and Yoshua Bengio. On
the challenges of physical implementations of RBMs. Proceedings of the AAAI
Conference on Artificial Intelligence, 28(1), Jun. 2014.

[105] Ross Duncan, Aleks Kissinger, Simon Perdrix, and John van de Wetering.
Graph-theoretic Simplification of Quantum Circuits with the ZX-calculus. Quan-
tum, 4:279, June 2020.

[106] Vedran Dunjko and Hans J Briegel. Machine learning & artificial intelligence
in the quantum domain: a review of recent progress. Reports on Progress in
Physics, 81(7):074001, 2018.

[107] Wolfgang Dür, Guifre Vidal, and J Ignacio Cirac. Three qubits can be entangled
in two inequivalent ways. Physical Review A, 62(6):062314, 2000.

[108] Pavol Ďuriš, Juraj Hromkovič, Stasys Jukna, Martin Sauerhoff, and Georg
Schnitger. On multi-partition communication complexity. Information and com-
putation, 194(1):49–75, 2004.

[109] Matthias Englbrecht and Barbara Kraus. Symmetries and entanglement of sta-
bilizer states. Physical Review A, 101:062302, Jun 2020.

[110] Glen Evenbly and Guifré Vidal. Tensor network states and geometry. Journal
of Statistical Physics, 145:891–918, 2011.

283

Bibliography

[111] Liangda Fang, Biqing Fang, Hai Wan, Zeqi Zheng, Liang Chang, and Quan Yu.
Tagged sentential decision diagrams: Combining standard and zero-suppressed
compression and trimming rules. In 2019 IEEE/ACM International Conference
on Computer-Aided Design (ICCAD), pages 1–8. IEEE, 2019.

[112] Hélene Fargier and Pierre Marquis. Extending the knowledge compilation map:
Krom, horn, affine and beyond. In AAAI, pages 442–447, 2008.

[113] Hélene Fargier, Pierre Marquis, Alexandre Niveau, and Nicolas Schmidt. A
knowledge compilation map for ordered real-valued decision diagrams. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence, volume 28, 2014.

[114] Hélene Fargier, Pierre Marquis, and Nicolas Schmidt. Semiring labelled decision
diagrams, revisited: Canonicity and spatial efficiency issues. In IJCAI, pages
884–890, 2013.

[115] David Y Feinstein and Mitchell A Thornton. On the skipped variables of quan-
tum multiple-valued decision diagrams. In 2011 41st IEEE International Sym-
posium on Multiple-Valued Logic, pages 164–169. IEEE, 2011.

[116] Yuan Feng, Ernst Moritz Hahn, Andrea Turrini, and Lijun Zhang. QPMC:
A model checker for quantum programs and protocols. In FM 2015: Formal
Methods: 20th International Symposium, Oslo, Norway, June 24-26, 2015, Pro-
ceedings 20, pages 265–272. Springer, 2015.

[117] Yuan Feng, Nengkun Yu, and Mingsheng Ying. Model checking quantum Markov
chains. Journal of Computer and System Sciences, 79(7):1181–1198, 2013.

[118] Felipe Cavalcanti Ferreira. An Exploratory Study on the Usage of Quantum
Programming Languages. PhD thesis, 2022.

[119] Richard P. Feynman. Simulating physics with computers. International Journal
of Theoretical Physics, 21(6/7), 1982.

[120] Richard P. Feynman. Quantum mechanical computers. Optics news, 11(2):11–
20, 1985.

[121] Robert W Floyd. Assigning meanings to programs. In Program Verification,
pages 65–81. Springer, 1993.

[122] WMC Foulkes, Lubos Mitas, RJ Needs, and Guna Rajagopal. Quantum Monte
Carlo simulations of solids. Reviews of Modern Physics, 73(1):33, 2001.

[123] Lars-Hendrik Frahm and Daniela Pfannkuche. Ultrafast ab initio quantum chem-
istry using matrix product states. Journal of Chemical Theory and Computation,
15(4):2154–2165, 2019.

[124] Masahiro Fujita, Patrick C. McGeer, and JC-Y Yang. Multi-terminal binary
decision diagrams: An efficient data structure for matrix representation. Formal
Methods in System Design, 10(2-3):149–169, 1997.

284

Bibliography

[125] Hector J Garcia, Igor L Markov, and Andrew W Cross. Efficient inner-product
algorithm for stabilizer states. arXiv preprint arXiv:1210.6646, 2012.

[126] Sunita Garhwal, Maryam Ghorani, and Amir Ahmad. Quantum program-
ming language: A systematic review of research topic and top cited languages.
Archives of Computational Methods in Engineering, 28:289–310, 2021.

[127] Simon J Gay and Rajagopal Nagarajan. Communicating quantum processes. In
Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming languages, pages 145–157, 2005.

[128] Simon J Gay, Rajagopal Nagarajan, and Nikolaos Papanikolaou. QMC: A model
checker for quantum systems: Tool paper. In Computer Aided Verification:
20th International Conference, CAV 2008 Princeton, NJ, USA, July 7-14, 2008
Proceedings 20, pages 543–547. Springer, 2008.

[129] Jordan Gergov and Christoph Meinel. Efficient boolean manipulation with
obdd’s can be extended to fbdd’s. IEEE Transactions on Computers,
43(10):1197–1209, 1994.

[130] Jordan Gergov and Christoph Meinel. Mod-2-OBDDs—a data structure that
generalizes exor-sum-of-products and ordered binary decision diagrams. Formal
Methods in System Design, 8:273–282, 1996.

[131] Nicolas Gisin, Grégoire Ribordy, Wolfgang Tittel, and Hugo Zbinden. Quantum
cryptography. Reviews of Modern Physics, 74(1):145, 2002.

[132] Ivan Glasser, Nicola Pancotti, Moritz August, Ivan D Rodriguez, and J Ignacio
Cirac. Neural-network quantum states, string-bond states, and chiral topological
states. Physical Review X, 8(1):011006, 2018.

[133] Ivan Glasser, Ryan Sweke, Nicola Pancotti, Jens Eisert, and Ignacio Cirac. Ex-
pressive power of tensor-network factorizations for probabilistic modeling. Ad-
vances in Neural Information Processing Systems, 32, 2019.

[134] Patrice Godefroid. Using partial orders to improve automatic verification meth-
ods. In Computer-Aided Verification: 2nd International Conference, CAV’90
New Brunswick, NJ, USA, June 18–21, 1990 Proceedings 2, pages 176–185.
Springer, 1991.

[135] Daniel Gottesman. Stabilizer codes and quantum error correction. PhD thesis,
California Institute of Technology, 1997.

[136] Daniel Gottesman. The Heisenberg representation of quantum computers. In
Proc. XXII International Colloquium on Group Theoretical Methods in Physics,
1998, pages 32–43, 1998.

[137] Daniel Gottesman. Theory of fault-tolerant quantum computation. Physical
Review A, 57:127–137, 1998.

285

Bibliography

[138] Daniel M Greenberger, Michael A Horne, Abner Shimony, and Anton Zeilinger.
Bell’s theorem without inequalities. American Journal of Physics, 58(12):1131–
1143, 1990.

[139] David J Griffiths and Darrell F Schroeter. Introduction to quantum mechanics.
Cambridge university press, 2018.

[140] Lov K. Grover. A fast quantum mechanical algorithm for database search. In
Symp. on Theory of Computing, pages 212–219, 1996.

[141] Thomas Grurl, Jürgen Fuß, and Robert Wille. Considering decoherence errors
in the simulation of quantum circuits using decision diagrams. In Proceedings of
the 39th International Conference on Computer-Aided Design, pages 1–7, 2020.

[142] Thomas Grurl, Jürgen Fuß, and Robert Wille. Lessons learnt in the implemen-
tation of quantum circuit simulation using decision diagrams. In 2021 IEEE
51st International Symposium on Multiple-Valued Logic (ISMVL), pages 87–92.
IEEE, 2021.

[143] Thomas Grurl, Jürgen Fuß, and Robert Wille. Noise-aware quantum circuit sim-
ulation with decision diagrams. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 2022.

[144] Thomas Grurl, Richard Kueng, Jürgen Fuß, and Robert Wille. Stochastic quan-
tum circuit simulation using decision diagrams. In 2021 Design, Automation &
Test in Europe Conference & Exhibition (DATE), pages 194–199. IEEE, 2021.

[145] G. G. Guerreschi and A. Y. Matsuura. QAOA for max-cut requires hundreds of
qubits for quantum speed-up. Scientific Reports, 9(1):6903, 2019.

[146] Wolfgang Günther and Rolf Drechsler. BDD minimization by linear transforma-
tions. In In Advanced Computer Systems. University Szczecin, 1998.

[147] Ernst Moritz Hahn, Yi Li, Sven Schewe, Andrea Turrini, and Lijun Zhang. IS-
CAS MC: a web-based probabilistic model checker. In FM 2014: Formal Meth-
ods: 19th International Symposium, Singapore, May 12-16, 2014. Proceedings
19, pages 312–317. Springer, 2014.

[148] Sean Hallgren. Fast quantum algorithms for computing the unit group and
class group of a number field. In Proceedings of the thirty-seventh annual ACM
symposium on Theory of computing, pages 468–474, 2005.

[149] Sean Hallgren. Polynomial-time quantum algorithms for pell’s equation and the
principal ideal problem. Journal of the ACM (JACM), 54(1):1–19, 2007.

[150] Thomas Häner and Damian S. Steiger. 5 petabyte simulation of a 45-qubit
quantum circuit. In Proceedings of the International Conference for High Per-
formance Computing, Networking, Storage and Analysis, pages 1–10, 2017.

286

Bibliography

[151] Klaus Havelund, Mike Lowry, and John Penix. Formal analysis of a space-craft
controller using spin. IEEE Transactions on Software Engineering, 27(8):749–
765, 2001.

[152] Martin Hebenstreit, Richard Jozsa, Barbara Kraus, and Sergii Strelchuk. Com-
putational power of matchgates with supplementary resources. Physical Review
A, 102(5):052604, 2020.

[153] Marc Hein, Wolfgang Dür, Jens Eisert, Robert Raussendorf, M Nest, and H-
J Briegel. Entanglement in graph states and its applications. In Proceedings
of the International School of Physics "Enrico Fermi", volume 162: Quantum
Computers, Algorithms and Chaos. IOS Press, 2006.

[154] Marc Herbstritt. wld: A C++ library for decision diagrams. https://ira.
informatik.uni-freiburg.de/software/wld/, 2004.

[155] Kesha Hietala, Robert Rand, Shih-Han Hung, Xiaodi Wu, and Michael Hicks. A
verified optimizer for quantum circuits. Proceedings of the ACM on Programming
Languages, 5(POPL):1–29, 2021.

[156] Stefan Hillmich, Lukas Burgholzer, Florian Stögmüller, and Robert Wille. Re-
ordering decision diagrams for quantum computing is harder than you might
think. In Reversible Computation: 14th International Conference, RC 2022,
Urbino, Italy, July 5–6, 2022, Proceedings, pages 93–107. Springer, 2022.

[157] Stefan Hillmich, Richard Kueng, Igor L. Markov, and Robert Wille. As accurate
as needed, as efficient as possible: Approximations in DD-based quantum circuit
simulation. In Design, Automation & Test in Europe Conference & Exhibition,
DATE 2021, Grenoble, France, February 1-5, 2021, pages 188–193. IEEE, 2021.

[158] Stefan Hillmich, Igor L. Markov, and Robert Wille. Just like the real thing: Fast
weak simulation of quantum computation. In Design Automation Conference,
pages 1–6. IEEE, 2020.

[159] Gerard J. Holzmann. The model checker SPIN. IEEE TSE, 23:279–295, 1997.

[160] Gerard J. Holzmann, Eli Najm, and Ahmed Serhrouchni. SPIN model check-
ing: An introduction. International Journal on Software Tools for Technology
Transfer, 2:321–327, 2000.

[161] Shahin Honarvar, Mohammad Reza Mousavi, and Rajagopal Nagarajan.
Property-based testing of quantum programs in Q#. In Proceedings of the
IEEE/ACM 42nd International Conference on Software Engineering Workshops,
pages 430–435, 2020.

[162] Xin Hong, Mingsheng Ying, Yuan Feng, Xiangzhen Zhou, and Sanjiang Li.
Approximate equivalence checking of noisy quantum circuits. In 2021 58th
ACM/IEEE Design Automation Conference (DAC), pages 637–642, 2021.

287

https://ira.informatik.uni-freiburg.de/software/wld/
https://ira.informatik.uni-freiburg.de/software/wld/

Bibliography

[163] Xin Hong, Xiangzhen Zhou, Sanjiang Li, Yuan Feng, and Mingsheng Ying. A
tensor network based decision diagram for representation of quantum circuits.
ACM Trans. Des. Autom. Electron. Syst., 27(6), 2022.

[164] Shlomo Hoory, Nathan Linial, and Avi Wigderson. Expander graphs and their
applications. Bulletin of the American Mathematical Society, 43(4):439–561,
2006.

[165] Yifei Huang and Peter Love. Approximate stabilizer rank and improved
weak simulation of Clifford-dominated circuits for qudits. Physical Review A,
99:052307, May 2019.

[166] Yipeng Huang and Margaret Martonosi. QDB: from quantum algorithms to-
wards correct quantum programs. arXiv preprint arXiv:1811.05447, 2018.

[167] Yipeng Huang and Margaret Martonosi. Statistical assertions for validating
patterns and finding bugs in quantum programs. In Proceedings of the 46th
International Symposium on Computer Architecture, pages 541–553, 2019.

[168] Vít Jelínek. The rank-width of the square grid. Discrete Applied Mathematics,
158(7):841–850, 2010.

[169] Mark Jerrum and Kitty Meeks. The parameterised complexity of counting even
and odd induced subgraphs. Combinatorica, 37(5):965–990, 2017.

[170] Wang Jian, Zhang Quan, and Tang Chao-Jing. Quantum secure communication
scheme with W state. Communications in Theoretical Physics, 48(4):637, 2007.

[171] Phillip Johnston and Rozi Harris. The boeing 737 max saga: lessons for software
organizations. Software Quality Professional, 21(3):4–12, 2019.

[172] N Cody Jones, James D Whitfield, Peter L McMahon, Man-Hong Yung, Rodney
Van Meter, Alán Aspuru-Guzik, and Yoshihisa Yamamoto. Faster quantum
chemistry simulation on fault-tolerant quantum computers. New Journal of
Physics, 14(11):115023, 2012.

[173] Tyson Jones, Anna Brown, Ian Bush, and Simon C Benjamin. Quest and high
performance simulation of quantum computers. Scientific reports, 9(1):1–11,
2019.

[174] Bjarni Jónsson, Bela Bauer, and Giuseppe Carleo. Neural-network states for the
classical simulation of quantum computing. arXiv preprint arXiv:1808.05232,
2018.

[175] Stephen Jordan. Quantum algorithm zoo. https://quantumalgorithmzoo.
org/. Accessed: 20-05-2023.

[176] Richard Jozsa. Quantum algorithms and the Fourier transform. Royal Society
of London. Series A, 454(1969):323–337, 1998.

288

https://quantumalgorithmzoo.org/
https://quantumalgorithmzoo.org/

Bibliography

[177] Richard Jozsa and Akimasa Miyake. Matchgates and classical simulation of
quantum circuits. Proceedings: Mathematical, Physical and Engineering Sci-
ences, pages 3089–3106, 2008.

[178] Gijs Kant et al. LTSmin: High-performance language-independent model check-
ing. In Tool and Algorithms for the Construction and Analysis of Systems
(TACAS), TACAS’15, volume 9035 of LNCS, pages 692–707. Springer, 2015.

[179] Pawel Kerntopf. A new heuristic algorithm for reversible logic synthesis. In
Proceedings of the 41st annual Design Automation Conference, pages 834–837,
2004.

[180] Doga Kisa, Guy Van den Broeck, Arthur Choi, and Adnan Darwiche. Proba-
bilistic sentential decision diagrams. In Fourteenth International Conference on
the Principles of Knowledge Representation and Reasoning, 2014.

[181] Aleks Kissinger and John van de Wetering. Reducing T-count with the ZX-
calculus. arXiv preprint arXiv:1903.10477, 2019.

[182] Alexei Yu Kitaev, Alexander Shen, and Mikhail N Vyalyi. Classical and quantum
computation. Number 47. American Mathematical Soc., 2002.

[183] Donald E Knuth. The Art of Computer Programming, Volume 4, Fascicle 1:
Bitwise Tricks & Techniques; Binary Decision Diagrams. Addison-Wesley Pro-
fessional, 2009.

[184] Lucas Kocia and Peter Love. Stationary phase method in discrete wigner func-
tions and classical simulation of quantum circuits. Quantum, 5:494, 2021.

[185] Lucas Kocia and Mohan Sarovar. Improved simulation of quantum circuits by
fewer gaussian eliminations. arXiv:2003.01130, 2020.

[186] Attila Kondacs and John Watrous. On the power of quantum finite state au-
tomata. In Proceedings 38th annual symposium on foundations of computer
science, pages 66–75. IEEE, 1997.

[187] Fabrice Kordon, Hubert Garavel, Lom-Messan Hillah, Emmanuel Paviot-Adet,
Loïg Jezequel, Francis Hulin-Hubard, Elvio Gilberto Amparore, Marco Bec-
cuti, Bernard Berthomieu, Hugues Evrard, Peter Gjøl Jensen, Didier Le Botlan,
Torsten Liebke, Jeroen Meijer, Jirí Srba, Yann Thierry-Mieg, Jaco van de Pol,
and Karsten Wolf. Mcc’2017 - the seventh model checking contest. Transactions
on Petri Nets and Other Models of Concurrency (ToPNoC), XIII:181–209, 2018.

[188] Fabrice Kordon, Hubert Garavel, Lom-Messan Hillah, Emmanuel Paviot-Adet,
Loïg Jezequel, César Rodríguez, and Francis Hulin-Hubard. MCC’2015 - The
Fifth Model Checking Contest. Transactions on Petri Nets and Other Models of
Concurrency (ToPNoC), XI:262–273, 2016.

[189] Dexter Kozen. Results on the propositional µ-calculus. Theoretical computer
science, 27(3):333–354, 1983.

289

Bibliography

[190] Richard Kueng and David Gross. Qubit stabilizer states are complex projective
3-designs. arXiv preprint arXiv:1510.02767, 2015.

[191] Marta Kwiatkowska, Gethin Norman, and David Parker. Prism 4.0: Verifica-
tion of probabilistic real-time systems. In Computer Aided Verification: 23rd
International Conference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011.
Proceedings 23, pages 585–591. Springer, 2011.

[192] Jean-Marie Lagniez and Pierre Marquis. An improved decision-dnnf compiler.
In IJCAI, volume 17, pages 667–673, 2017.

[193] Y-T Lai, Massoud Pedram, and Sarma BK Vrudhula. EVBDD-based algorithms
for integer linear programming, spectral transformation, and function decompo-
sition. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 13(8):959–975, 1994.

[194] Yong Lai, Dayou Liu, and Minghao Yin. New canonical representations by
augmenting OBDDs with conjunctive decomposition. Journal of Artificial In-
telligence Research, 58:453–521, 2017.

[195] Yong Lai, Kuldeep S. Meel, and Roland H.C. Yap. CCDD: A tractable
representation for model counting and uniform sampling. arXiv preprint
arXiv:2202.10025, 2022.

[196] Benjamin P Lanyon, James D Whitfield, Geoff G Gillett, Michael E Goggin,
Marcelo P Almeida, Ivan Kassal, Jacob D Biamonte, Masoud Mohseni, Ben J
Powell, Marco Barbieri, et al. Towards quantum chemistry on a quantum com-
puter. Nature Chemistry, 2(2):106, 2010.

[197] Anna LD Latour, Behrouz Babaki, Anton Dries, Angelika Kimmig, Guy Van den
Broeck, and Siegfried Nijssen. Combining stochastic constraint optimization and
probabilistic programming: from knowledge compilation to constraint solving.
In Principles and Practice of Constraint Programming: 23rd International Con-
ference, CP 2017, Melbourne, VIC, Australia, August 28–September 1, 2017,
Proceedings 23, pages 495–511. Springer, 2017.

[198] Anna Louise D Latour, Behrouz Babaki, and Siegfried Nijssen. Stochastic con-
straint propagation for mining probabilistic networks. In Proceedings of the 28th
International Joint Conference on Artificial Intelligence, pages 1137–1145, 2019.

[199] Chang-Yeong Lee. Representation of switching circuits by binary-decision pro-
grams. The Bell System Technical Journal, 38(4):985–999, 1959.

[200] Nancy G Leveson and Clark S Turner. An investigation of the Therac-25 acci-
dents. Computer, 26(7):18–41, 1993.

[201] Daniel A Lidar and Haobin Wang. Calculating the thermal rate constant with
exponential speedup on a quantum computer. Physical Review E, 59(2):2429,
1999.

290

Bibliography

[202] Jacques-Louis Lions, Lennart Luebeck, Jean-Luc Fauquembergue, Gilles Kahn,
Wolfgang Kubbat, Stefan Levedag, Leonardo Mazzini, Didier Merle, and Colin
O’Halloran. Ariane 5 flight 501 failure report by the inquiry board, 1996.

[203] Victoria Lipinska, Gláucia Murta, and Stephanie Wehner. Anonymous trans-
mission in a noisy quantum network using the W state. Physical Review A,
98:052320, Nov 2018.

[204] Richard J Lipton, Donald J Rose, and Robert Endre Tarjan. Generalized nested
dissection. SIAM journal on numerical analysis, 16(2):346–358, 1979.

[205] Junyi Liu, Bohua Zhan, Shuling Wang, Shenggang Ying, Tao Liu, Yangjia Li,
Mingsheng Ying, and Naijun Zhan. Formal verification of quantum algorithms
using quantum Hoare logic. In Computer Aided Verification: 31st International
Conference, CAV 2019, New York City, NY, USA, July 15-18, 2019, Proceed-
ings, Part II 31, pages 187–207. Springer, 2019.

[206] Wen Liu, Yong-Bin Wang, and Zheng-Tao Jiang. An efficient protocol for the
quantum private comparison of equality with W state. Optics Communications,
284(12):3160–3163, 2011.

[207] Benjamin Livshits, Manu Sridharan, Yannis Smaragdakis, Ondřej Lhoták, J Nel-
son Amaral, Bor-Yuh Evan Chang, Samuel Z Guyer, Uday P Khedker, Anders
Møller, and Dimitrios Vardoulakis. In defense of soundiness: A manifesto. Com-
munications of the ACM, 58(2):44–46, 2015.

[208] Seth Lloyd. Universal quantum simulators. Science, 273(5278):1073–1078, 1996.

[209] Benjamin Lovitz and Vincent Steffan. New techniques for bounding stabilizer
rank. Quantum, 6:692, 2022.

[210] LTSmin with sentential decision diagrams. https://zenodo.org/record/
3940936.

[211] Chin-Yung Lu, Shiou-An Wang, and Sy-Yen Kuo. An extended XQDD repre-
sentation for multiple-valued quantum logic. IEEE Transactions on Computers,
60(10):1377–1389, 2011.

[212] Eugene M Luks, Ferenc Rákóczi, and Charles RB Wright. Some algorithms for
nilpotent permutation groups. Journal of Symbolic Computation, 23(4):335–354,
1997.

[213] Guanfeng Lv, Yao Chen, Yachao Feng, Qingliang Chen, and Kaile Su. A suc-
cinct and efficient implementation of a 232 BDD package. In Tiziana Margaria,
Zongyan Qiu, and Hongli Yang, editors, Int’l Symp. on Theoretical Aspects of
Software Engineering, pages 241–244, 2012.

[214] James Martens, Arkadev Chattopadhya, Toni Pitassi, and Richard Zemel. On
the representational efficiency of restricted Boltzmann machines. Advances in
Neural Information Processing Systems, 26, 2013.

291

https://zenodo.org/record/3940936
https://zenodo.org/record/3940936

Bibliography

[215] Robert Mateescu, Rina Dechter, and Radu Marinescu. And/or multi-valued
decision diagrams (AOMDDs) for graphical models. Journal of Artificial Intel-
ligence Research, 33:465–519, 2008.

[216] Paulo Mateus, Jaime Ramos, Amílcar Sernadas, and Cristina Sernadas. Tempo-
ral logics for reasoning about quantum systems. Semantic techniques in quantum
computation, pages 389–413, 2009.

[217] Paulo Mateus and Amílcar Sernadas. Weakly complete axiomatization of exoge-
nous quantum propositional logic. Information and Computation, 204(5):771–
794, 2006.

[218] Yusuke Matsunaga. An exact and efficient algorithm for disjunctive decompo-
sition. Proceedings of Synthesis and System Integration of Mixed Technologies
(SASIMI’98, Japan), Oct., 1998.

[219] Sam McArdle, Suguru Endo, Alán Aspuru-Guzik, Simon C Benjamin, and
Xiao Yuan. Quantum computational chemistry. Reviews of Modern Physics,
92(1):015003, 2020.

[220] James McClung. Constructions and Applications of W-States. PhD thesis,
Worcester Polytechnic Institute, 2020.

[221] K.L. McMillan. Symbolic model checking: an approach to the state explosion
problem. PhD thesis, Carnegie Mellon University, 1992. UMI No. GAX92-24209.

[222] Saeed Mehraban and Mehrdad Tahmasbi. Lower bounds on the approximate sta-
bilizer rank: A probabilistic approach. arXiv preprint arXiv:2305.10277, 2023.

[223] Jeroen Meijer, Gijs Kant, Stefan Blom, and Jaco van de Pol. Read, write and
copy dependencies for symbolic model checking. In Haifa Verification Confer-
ence, pages 204–219. Springer, 2014.

[224] Jeroen Meijer and Jaco van de Pol. Bandwidth and wavefront reduction for static
variable ordering in symbolic reachability analysis. In NASA Formal Methods
Symposium, pages 255–271. Springer, 2016.

[225] Roger G Melko, Giuseppe Carleo, Juan Carrasquilla, and J Ignacio Cirac. Re-
stricted Boltzmann machines in quantum physics. Nature Physics, 15(9):887–
892, 2019.

[226] D Michael Miller, David Y Feinstein, and Mitchell A Thrornton. QMDD mini-
mization using sifting for variable reordering. Journal of Multiple-Valued Logic
& Soft Computing, 13, 2007.

[227] D Michael Miller and Mitchell A Thornton. QMDD: A decision diagram struc-
ture for reversible and quantum circuits. In 36th International Symposium on
Multiple-Valued Logic (ISMVL’06), pages 30–30. IEEE, 2006.

292

Bibliography

[228] D Michael Miller, Robert Wille, and Zahra Sasanian. Elementary quantum gate
realizations for multiple-control toffoli gates. In 2011 41st IEEE International
Symposium on Multiple-Valued Logic, pages 288–293. IEEE, 2011.

[229] Shin-ichi Minato. Zero-suppressed BDDs for set manipulation in combinatorial
problems. In 30th ACM/IEEE Design Automation Conference, pages 272–277.
IEEE, 1993.

[230] Shin-ichi Minato. Finding simple disjoint decompositions in frequent itemset
data using zero-suppressed BDD. In Proc. of IEEE ICDM 2005 workshop on
Computational Intelligence in Data Mining, pages 3–11, 2005.

[231] Ashley Montanaro. Quantum-walk speedup of backtracking algorithms. Theory
of Computing, 14(1):1–24, 2018.

[232] Tomoyuki Morimae and Suguru Tamaki. Fine-grained quantum computational
supremacy. arXiv preprint arXiv:1901.01637, 2019.

[233] MQT DDSIM - A quantum circuit simulator based on decision diagrams written
in C++. https://github.com/cda-tum/ddsim/tree/limdd.

[234] Ece C Mutlu. Quantum probabilistic models using Feynman diagram rules for
better understanding the information diffusion dynamics in online social net-
works. In Proceedings of the AAAI Conference on Artificial Intelligence, vol-
ume 34, pages 13730–13731, 2020.

[235] Kengo Nakamura, Shuhei Denzumi, and Masaaki Nishino. Variable shift SDD:
a more succinct sentential decision diagram. arXiv preprint arXiv:2004.02502,
2020.

[236] Naoki Nakatani and Garnet Kin Chan. Efficient tree tensor network states
(TTNS) for quantum chemistry: Generalizations of the density matrix renor-
malization group algorithm. The Journal of chemical physics, 138(13), 2013.

[237] Amit Narayan, Jawahar Jain, Masahiro Fujita, and Alberto Sangiovanni-
Vincentelli. Partitioned ROBDDs-a compact, canonical and efficiently manipu-
lable representation for boolean functions. In Proceedings of International Con-
ference on Computer Aided Design, pages 547–554. IEEE, 1996.

[238] Hendrik Poulsen Nautrup, Nicolas Delfosse, Vedran Dunjko, Hans J Briegel, and
Nicolai Friis. Optimizing quantum error correction codes with reinforcement
learning. Quantum, 3:215, 2019.

[239] Xiaotong Ni, Oliver Buerschaper, and Maarten Van den Nest. A non-commuting
stabilizer formalism. Journal of Mathematical Physics, 56(5):052201, 2015.

[240] Michael A Nielsen and Isaac L Chuang. Quantum information and quantum
computation. Cambridge: Cambridge University Press, 2(8):23, 2000.

293

https://github.com/cda-tum/ddsim/tree/limdd

Bibliography

[241] Philipp Niemann, Robert Wille, and Rolf Drechsler. Equivalence checking in
multi-level quantum systems. In Reversible Computation: 6th International
Conference, RC 2014, Kyoto, Japan, July 10-11, 2014. Proceedings 6, pages
201–215. Springer, 2014.

[242] Philipp Niemann, Robert Wille, David Michael Miller, Mitchell A Thornton, and
Rolf Drechsler. QMDDs: Efficient quantum function representation and manip-
ulation. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 35(1):86–99, 2015.

[243] Philipp Niemann, Alwin Zulehner, Rolf Drechsler, and Robert Wille. Over-
coming the trade-off between accuracy and compactness in decision diagrams
for quantum computation. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 2020.

[244] Tobias Nipkow, Markus Wenzel, and Lawrence C Paulson. Isabelle/HOL: a proof
assistant for higher-order logic. Springer, 2002.

[245] Masaaki Nishino, Norihito Yasuda, Shin-ichi Minato, and Masaaki Nagata. Zero-
suppressed sentential decision diagrams. In Thirtieth AAAI Conference on Ar-
tificial Intelligence, 2016.

[246] Weber Noah, Niranjan Balasubramanian, and Nathanael Chambers. Event rep-
resentations with tensor-based compositions. Proceedings of the AAAI Confer-
ence on Artificial Intelligence, 32(1), Apr. 2018.

[247] Yusuke Nomura, Andrew S Darmawan, Youhei Yamaji, and Masatoshi Imada.
Restricted boltzmann machine learning for solving strongly correlated quantum
systems. Physical Review B, 96(20):205152, 2017.

[248] Román Orús. A practical introduction to tensor networks: Matrix product states
and projected entangled pair states. Annals of Physics, 349:117–158, 2014.

[249] Umut Oztok and Adnan Darwiche. CV-width: A new complexity parameter for
CNFs. In ECAI, pages 675–680, 2014.

[250] Sebastian Paeckel, Thomas Köhler, Andreas Swoboda, Salvatore R Manmana,
Ulrich Schollwöck, and Claudius Hubig. Time-evolution methods for matrix-
product states. Annals of Physics, 411:167998, 2019.

[251] Matteo Paltenghi and Michael Pradel. Bugs in quantum computing plat-
forms: an empirical study. Proceedings of the ACM on Programming Languages,
6(OOPSLA1):1–27, 2022.

[252] Christos H Papadimitriou et al. Computational complexity. 1994.

[253] Lawrence C Paulson. Isabelle: A generic theorem prover. Springer, 1994.

[254] Lawrence C Paulson. Isabelle: The next 700 theorem provers. arXiv preprint
cs/9301106, 2000.

294

Bibliography

[255] Edwin Pednault, John A. Gunnels, Giacomo Nannicini, Lior Horesh, and Robert
Wisnieff. Leveraging secondary storage to simulate deep 54-qubit sycamore cir-
cuits, 2019.

[256] Tom Peham, Lukas Burgholzer, and Robert Wille. Equivalence checking of
quantum circuits with the ZX-calculus. IEEE Journal on Emerging and Selected
Topics in Circuits and Systems, 12(3):662–675, 2022.

[257] Tom Peham, Lukas Burgholzer, and Robert Wille. Equivalence checking
paradigms in quantum circuit design: A case study. In Proceedings of the 59th
ACM/IEEE Design Automation Conference, pages 517–522, 2022.

[258] R. Pelánek. BEEM: Benchmarks for Explicit Model Checkers. In SPIN, volume
4595 of LNCS, pages 263–267. Springer, 2007.

[259] Doron Peled. Combining partial order reductions with on-the-fly model-checking.
Formal Methods in System Design, 8:39–64, 1996.

[260] Shir Peleg, Amir Shpilka, and Ben Lee Volk. Lower bounds on stabilizer rank.
Quantum, 6:652, 2022.

[261] Yuxiang Peng, Kesha Hietala, Runzhou Tao, Liyi Li, Robert Rand, Michael
Hicks, and Xiaodi Wu. A formally certified end-to-end implementation of
Shor’s factorization algorithm. Proceedings of the National Academy of Sciences,
120(21):e2218775120, 2023.

[262] D. Perez-Garcia, F. Verstraete, M. M. Wolf, and J. I. Cirac. Matrix product
state representations. Quantum Information & Computation, 7(5):401–430, jul
2007.

[263] Stefano Pirandola, Ulrik L Andersen, Leonardo Banchi, Mario Berta, Darius
Bunandar, Roger Colbeck, Dirk Englund, Tobias Gehring, Cosmo Lupo, Carlo
Ottaviani, et al. Advances in quantum cryptography. Advances in Optics and
Photonics, 12(4):1012–1236, 2020.

[264] Stephen Plaza and Valeria Bertacco. Boolean operations on decomposed func-
tions. Proceedings of the 24th International Workshop on Logic & Synthesis,
pages 310–317, 2005.

[265] Stephen Plaza and Valeria Bertacco. STACCATO: disjoint support decomposi-
tions from BDDs through symbolic kernels. In Proceedings of the 2005 Asia and
South Pacific Design Automation Conference, pages 276–279, 2005.

[266] Amir Pnueli. The temporal logic of programs. In 18th Annual Symposium on
Foundations of Computer Science (sfcs 1977), pages 46–57. IEEE, 1977.

[267] John Preskill. Quantum Computing in the NISQ era and beyond. Quantum,
2:79, 2018.

295

Bibliography

[268] Hammam Qassim, Hakop Pashayan, and David Gosset. Improved upper bounds
on the stabilizer rank of magic states. Quantum, 5:606, 2021.

[269] Mohamed Raed El Aoun, Heng Li, Foutse Khomh, and Lionel Tidjon. Bug
characteristics in quantum software ecosystem. arXiv preprint arXiv:2204.11965,
2022.

[270] Robert Rand, Jennifer Paykin, and Steve Zdancewic. QWIRE practice: Formal
verification of quantum circuits in Coq. arXiv preprint arXiv:1803.00699, 2018.

[271] Robert Raussendorf and Hans J. Briegel. A one-way quantum computer. Phys-
ical Review Letters, 86:5188–5191, May 2001.

[272] Robert Raussendorf, Daniel E Browne, and Hans J Briegel. Measurement-based
quantum computation on cluster states. Physical Review A, 68(2):022312, 2003.

[273] Igor Razgon. On OBDDs for CNFs of bounded treewidth. arXiv preprint
arXiv:1308.3829, 2013.

[274] Markus Reiher, Nathan Wiebe, Krysta M Svore, Dave Wecker, and Matthias
Troyer. Elucidating reaction mechanisms on quantum computers. Proceedings
of the National Academy of Sciences, 114(29):7555–7560, 2017.

[275] José Ignacio Requeno and José Manuel Colom. Compact representation of bio-
logical sequences using set decision diagrams. In 6th International Conference on
Practical Applications of Computational Biology & Bioinformatics, pages 231–
239. Springer, 2012.

[276] Michael Rice and Sanjay Kulhari. A survey of static variable ordering heuristics
for efficient BDD/MDD construction. University of California, Tech. Rep, 2008.

[277] Leanna Rierson. Developing safety-critical software: a practical guide for avia-
tion software and DO-178C compliance. CRC Press, 2017.

[278] Richard Rudell. Dynamic variable ordering for ordered binary decision diagrams.
In Proceedings of 1993 International Conference on Computer Aided Design (IC-
CAD), pages 42–47. IEEE, 1993.

[279] Mehdi Saeedi and Igor L Markov. Synthesis and optimization of reversible cir-
cuits—a survey. ACM Computing Surveys (CSUR), 45(2):1–34, 2013.

[280] Tuhin Sahai, Anurag Mishra, Jose Miguel Pasini, and Susmit Jha. Estimating
the density of states of boolean satisfiability problems on classical and quan-
tum computing platforms. Proceedings of the AAAI Conference on Artificial
Intelligence, 34(02):1627–1635, Apr. 2020.

[281] Scott Sanner and David McAllester. Affine algebraic decision diagrams (AADDs)
and their application to structured probabilistic inference. In Proceedings of the
19th International Joint Conference on Artificial Intelligence, IJCAI’05, pages
1384–1390, San Francisco, CA, USA, 2005. Morgan Kaufmann Publishers Inc.

296

Bibliography

[282] Tsutomu Sasao. FPGA design by generalized functional decomposition. In Logic
synthesis and optimization, pages 233–258. Springer, 1993.

[283] Tsutomu Sasao and Munehiro Matsuura. DECOMPOS: An integrated system for
functional decomposition. In 1998 International Workshop on Logic Synthesis,
pages 471–477, 1998.

[284] Ulrich Schollwöck. The density-matrix renormalization group in the age of ma-
trix product states. Annals of physics, 326(1):96–192, 2011.

[285] Peter Selinger. Towards a quantum programming language. Mathematical Struc-
tures in Computer Science, 14(4):527–586, 2004.

[286] Peter Selinger. Quantum circuits of T-depth one. Physical Review A,
87(4):042302, 2013.

[287] Irfansha Shaik and Jaco van de Pol. Optimal layout synthesis for quantum
circuits as classical planning. arXiv preprint arXiv:2304.12014, 2023.

[288] Claude E Shannon. A symbolic analysis of relay and switching circuits. Electrical
Engineering, 57(12):713–723, 1938.

[289] Shubham Sharma, Rahul Gupta, Subhajit Roy, and Kuldeep S. Meel. Knowledge
compilation meets uniform sampling. In LPAR, pages 620–636, 2018.

[290] Y-Y Shi, L-M Duan, and Guifre Vidal. Classical simulation of quantum many-
body systems with a tree tensor network. Physical Review A, 74(2):022320,
2006.

[291] Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer. SIAM Jour. of Comp., 26(5):1484–1509,
1997.

[292] Radu I Siminiceanu and Gianfranco Ciardo. New metrics for static variable
ordering in decision diagrams. In International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems (TACAS), pages 90–104.
Springer, 2006.

[293] Meghana Sistla, Swarat Chaudhuri, and Thomas Reps. CFLOBDDs:
Context-free-language ordered binary decision diagrams. arXiv preprint
arXiv:2211.06818, 2022.

[294] Meghana Sistla, Swarat Chaudhuri, and Thomas Reps. Symbolic quantum sim-
ulation with quasimodo. arXiv preprint arXiv:2302.04349, 2023.

[295] Meghana Sistla, Swarat Chaudhuri, and Thomas Reps. Symbolic quantum sim-
ulation with quasimodo. In Constantin Enea and Akash Lal, editors, Computer
Aided Verification, pages 213–225, Cham, 2023. Springer Nature Switzerland.

297

Bibliography

[296] Meghana Sistla, Swarat Chaudhuri, and Thomas Reps. Weighted context-free-
language ordered binary decision diagrams. arXiv preprint arXiv:2305.13610,
2023.

[297] SW Sloan. A FORTRAN program for profile and wavefront reduction. Interna-
tional Journal for Numerical Methods in Engineering, 28(11):2651–2679, 1989.

[298] Graeme Smith and Debbie Leung. Typical entanglement of stabilizer states.
Physical Review A, 74(6):062314, 2006.

[299] Kaitlin N Smith and Mitchell A Thornton. A quantum computational com-
piler and design tool for technology-specific targets. In Proceedings of the 46th
International Symposium on Computer Architecture, pages 579–588, 2019.

[300] Mathias Soeken, Stefan Frehse, Robert Wille, and Rolf Drechsler. RevKit:
A toolkit for reversible circuit design. J. Multiple Valued Log. Soft Comput.,
18(1):55–65, 2012.

[301] Mathias Soeken, Laura Tague, Gerhard W. Dueck, and Rolf Drechsler. Ancilla-
free synthesis of large reversible functions using binary decision diagrams. Jour-
nal of Symbolic Computation, 73:1–26, 2016.

[302] Mathias Soeken, Robert Wille, Christoph Hilken, Nils Przigoda, and Rolf Drech-
sler. Synthesis of reversible circuits with minimal lines for large functions. In
17th Asia and South Pacific Design Automation Conference, pages 85–92. IEEE,
2012.

[303] Fabio Somenzi. Efficient manipulation of decision diagrams. International Jour-
nal on Software Tools for Technology Transfer, 3(2):171–181, 2001.

[304] Fabio Somenzi. CUDD: CU decision diagram package release 3.0.0. http://
vlsi.colorado.edu/~fabio/, 2015.

[305] Stabranksearcher: code for finding (upper bounds to) the stabilizer rank of a
quantum state. https://github.com/timcp/StabRankSearcher, 2021.

[306] Krysta Svore, Alan Geller, Matthias Troyer, John Azariah, Christopher
Granade, Bettina Heim, Vadym Kliuchnikov, Mariia Mykhailova, Andres Paz,
and Martin Roetteler. Q# enabling scalable quantum computing and develop-
ment with a high-level dsl. In Proceedings of the Real World Domain Specific
Languages Workshop 2018, pages 1–10, 2018.

[307] Ryan Sweke, Markus S Kesselring, Evert P.L. van Nieuwenburg, and Jens Eis-
ert. Reinforcement learning decoders for fault-tolerant quantum computation.
Machine Learning: Science and Technology, 2(2):025005, 2020.

[308] Paul Tafertshofer and Massoud Pedram. Factored edge-valued binary decision
diagrams. Formal Methods in System Design, 10(2):243–270, 1997.

298

http://vlsi.colorado.edu/~fabio/
http://vlsi.colorado.edu/~fabio/
https://github.com/timcp/StabRankSearcher

Bibliography

[309] Yasuhiro Takahashi and Noboru Kunihiro. A quantum circuit for Shor’s factoring
algorithm using 2n+2 qubits. Quantum Information & Computation, 6(2):184–
192, 2006.

[310] Barbara M Terhal. Quantum error correction for quantum memories. Reviews
of Modern Physics, 87(2):307, 2015.

[311] Barbara M. Terhal and David P. DiVincenzo. Classical simulation of
noninteracting-fermion quantum circuits. Physical Review A, 65:032325, Mar
2002.

[312] Dimitrios Thanos, Tim Coopmans, and Alfons Laarman. Fast equivalence check-
ing of quantum circuits of clifford gates. ATVA 2023 (accepted for publication),
2023.

[313] Himanshu Thapliyal, Edgard Munoz-Coreas, TSS Varun, and Travis S Humble.
Quantum circuit designs of integer division optimizing T-count and T-depth.
IEEE Transactions on Emerging Topics in Computing, 9(2):1045–1056, 2019.

[314] Jules Tilly, Hongxiang Chen, Shuxiang Cao, Dario Picozzi, Kanav Setia, Ying
Li, Edward Grant, Leonard Wossnig, Ivan Rungger, George H. Booth, et al.
The variational quantum eigensolver: a review of methods and best practices.
Physics Reports, 986:1–128, 2022.

[315] Giacomo Torlai, Guglielmo Mazzola, Juan Carrasquilla, Matthias Troyer, Roger
Melko, and Giuseppe Carleo. Neural-network quantum state tomography. Nature
Physics, 14(5):447–450, 2018.

[316] Jan Tretmans, Klaas Wijbrans, and Michel Chaudron. Software engineering
with formal methods: The development of a storm surge barrier control system
revisiting seven myths of formal methods. Formal Methods in System Design,
19:195–215, 2001.

[317] Andrea Turrini. An introduction to quantum model checking. Applied Sciences,
12(4):2016, 2022.

[318] Tomás E. Uribe and Mark E. Stickel. Ordered binary decision diagrams and
the Davis-Putnam procedure. In International Conference on Constraints in
Computational Logics, pages 34–49. Springer, 1994.

[319] Antti Valmari. Stubborn sets for reduced state space generation. In Advances
in Petri Nets 1990 10, pages 491–515. Springer, 1991.

[320] John van de Wetering. ZX-calculus for the working quantum computer scientist.
arXiv preprint arXiv:2012.13966, 2020.

[321] Ewout van den Berg and Kristan Temme. Circuit optimization of Hamiltonian
simulation by simultaneous diagonalization of pauli clusters. Quantum, 4:322,
2020.

299

Bibliography

[322] Guy Van den Broeck and Adnan Darwiche. On the role of canonicity in knowl-
edge compilation. In Twenty-Ninth AAAI Conference on Artificial Intelligence,
2015.

[323] M. Van den Nest, W. Dür, G. Vidal, and H. J. Briegel. Classical simulation versus
universality in measurement-based quantum computation. Physical Review A,
75:012337, Jan 2007.

[324] Maarten Van den Nest, Jeroen Dehaene, and Bart De Moor. Graphical descrip-
tion of the action of local clifford transformations on graph states. Physical
Review A, 69(2):022316, 2004.

[325] Maarten Van den Nest, Jeroen Dehaene, and Bart De Moor. Local unitary versus
local clifford equivalence of stabilizer states. Physical Review A, 71:062323, Jun
2005.

[326] Tom Van Dijk, Alfons Laarman, and Jaco Van De Pol. Multi-core BDD op-
erations for symbolic reachability. Electronic Notes in Theoretical Computer
Science, 296:127–143, 2013.

[327] Tom van Dijk and Jaco van de Pol. Sylvan: Multi-core decision diagrams.
In International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), pages 677–691. Springer, 2015.

[328] Tom van Dijk, Robert Wille, and Robert Meolic. Tagged BDDs: combining
reduction rules from different decision diagram types. In Proceedings of the
17th Conference on Formal Methods in Computer-Aided Design, pages 108–115.
FMCAD Inc, 2017.

[329] Vivien Vandaele, Simon Martiel, Simon Perdrix, and Christophe Vuillot. Opti-
mal Hadamard gate count for Clifford +T synthesis of Pauli rotations sequences.
arXiv preprint arXiv:2302.07040, 2023.

[330] Frank Verstraete, Diego Porras, and J. Ignacio Cirac. Density matrix renor-
malization group and periodic boundary conditions: A quantum information
perspective. Physical Review Letters, 93(22):227205, 2004.

[331] George F. Viamontes, Igor L. Markov, and John P. Hayes. Improving gate-level
simulation of quantum circuits. Quantum Information Processing, 2(5):347–380,
2003.

[332] George F Viamontes, Igor L Markov, and John P Hayes. Quantum circuit sim-
ulation. Springer Science & Business Media, 2009.

[333] George F. Viamontes, Manoj Rajagopalan, Igor L. Markov, and John P. Hayes.
Gate-level simulation of quantum circuits. In Proceedings of the 2003 Asia and
South Pacific Design Automation Conference, pages 295–301, 2003.

300

Bibliography

[334] G.F. Viamontes, I.L. Markov, and J.P. Hayes. High-performance QuIDD-based
simulation of quantum circuits. In Proceedings Design, Automation and Test in
Europe Conference and Exhibition, volume 2, pages 1354–1355 Vol.2, 2004.

[335] Guifré Vidal. Efficient classical simulation of slightly entangled quantum com-
putations. Physical Review Letters, 91(14):147902, 2003.

[336] Renaud Vilmart. Quantum multiple-valued decision diagrams in graphical cal-
culi, 2021.

[337] Lieuwe Vinkhuijzen, Tim Coopmans, David Elkouss, Vedran Dunjko, and Alfons
Laarman. LIMDD: A decision diagram for simulation of quantum computing
including stabilizer states. Quantum, 7:1108, 2023.

[338] Lieuwe Vinkhuijzen, Thomas Grurl, Stefan Hillmich, Sebastiaan Brand, Robert
Wille, and Alfons Laarman. Efficient implementation of LIMDDs for quantum
circuit simulation. In International Symposium on Model Checking Software,
pages 3–21. Springer, 2023.

[339] Lieuwe Vinkhuijzen and Alfons Laarman. Symbolic model checking with sen-
tential decision diagrams. In International Symposium on Dependable Software
Engineering: Theories, Tools, and Applications, pages 124–142. Springer, 2020.

[340] Hefeng Wang, Sabre Kais, Alán Aspuru-Guzik, and Mark R Hoffmann. Quantum
algorithm for obtaining the energy spectrum of molecular systems. Physical
Chemistry Chemical Physics, 10(35):5388–5393, 2008.

[341] Shiou-An Wang, Chin-Yung Lu, I-Ming Tsai, and Sy-Yen Kuo. An XQDD-based
verification method for quantum circuits. IEICE Transactions on Fundamentals
of Electronics, Communications and Computer Sciences, 91(2):584–594, 2008.

[342] Shiou-An Wang, Chin-Yung Lu, I-Ming Tsai, and Sy-Yen Kuo. An xqdd-based
verification method for quantum circuits. IEICE Transactions on Fundamentals
of Electronics, Communications and Computer Sciences, 91(2):584–594, 2008.

[343] Tianshu Wang, Yuexian Hou, Panpan Wang, and Xiaolei Niu. Exploring rel-
evance judgement inspired by quantum weak measurement. Proceedings of the
AAAI Conference on Artificial Intelligence, 32(1), Apr. 2018.

[344] Ingo Wegener. Branching programs and binary decision diagrams: theory and
applications. SIAM, 2000.

[345] Chun-Yu Wei, Yuan-Hung Tsai, Chiao-Shan Jhang, and Jie-Hong R Jiang. Accu-
rate BDD-based unitary operator manipulation for scalable and robust quantum
circuit verification. In Proceedings of the 59th ACM/IEEE Design Automation
Conference, pages 523–528, 2022.

[346] Steven R. White. Density matrix formulation for quantum renormalization
groups. Physical Review Letters, 69:2863–2866, Nov 1992.

301

Bibliography

[347] Robert Wille and Rolf Drechsler. BDD-based synthesis of reversible logic for
large functions. In Proceedings of the 46th Annual Design Automation Confer-
ence, pages 270–275, 2009.

[348] Robert Wille and Rolf Drechsler. Effect of BDD optimization on synthesis of
reversible and quantum logic. Electronic Notes in Theoretical Computer Science,
253(6):57–70, 2010.

[349] Robert Wille, Daniel Große, D Michael Miller, and Rolf Drechsler. Equiva-
lence checking of reversible circuits. In 2009 39th International Symposium on
Multiple-Valued Logic, pages 324–330. IEEE, 2009.

[350] Robert Wille, Stefan Hillmich, and Lukas Burgholzer. JKQ: JKU tools for quan-
tum computing. In Int’l Conf. on CAD, pages 154:1–154:5, 2020.

[351] Robert Wille, Nils Przigoda, and Rolf Drechsler. A compact and efficient SAT
encoding for quantum circuits. In 2013 Africon, pages 1–6. IEEE, 2013.

[352] Nic Wilson. Decision diagrams for the computation of semiring valuations. In
Proceedings of the 19th international joint conference on Artificial intelligence,
pages 331–336, 2005.

[353] Yu Wu, Per Austrin, Toniann Pitassi, and David Liu. Inapproximability of
treewidth and related problems. Journal of Artificial Intelligence Research,
49:569–600, 2014.

[354] Yukai Wu, L.-M. Duan, and Dong-Ling Deng. Artificial neural network based
computation for out-of-time-ordered correlators. Physical Review B, 101:214308,
Jun 2020.

[355] Ming Xu, Jianling Fu, Jingyi Mei, and Yuxin Deng. Model checking QCTL plus
on quantum markov chains. Theoretical Computer Science, 913:43–72, 2022.

[356] Shigeru Yamashita and Igor L Markov. Fast equivalence-checking for quantum
circuits. In 2010 IEEE/ACM International Symposium on Nanoscale Architec-
tures, pages 23–28. IEEE, 2010.

[357] Shigeru Yamashita, Shin-ichi Minato, and D Michael Miller. DDMF: An efficient
decision diagram structure for design verification of quantum circuits under a
practical restriction. IEICE Transactions on Fundamentals of Electronics, Com-
munications and Computer Sciences, 91(12):3793–3802, 2008.

[358] Feidiao Yang, Jiaqing Jiang, Jialin Zhang, and Xiaoming Sun. Revisiting on-
line quantum state learning. Proceedings of the AAAI Conference on Artificial
Intelligence, 34(04):6607–6614, Apr. 2020.

[359] Mingsheng Ying. Floyd–Hoare logic for quantum programs. ACM Transactions
on Programming Languages and Systems (TOPLAS), 33(6):1–49, 2012.

302

Bibliography

[360] Mingsheng Ying and Yuan Feng. Model checking quantum systems—a survey.
arXiv preprint arXiv:1807.09466, 2018.

[361] Mingsheng Ying and Yuan Feng. Model Checking Quantum Systems: Principles
and Algorithms. Cambridge University Press, 2021.

[362] Mingsheng Ying, Yuan Feng, Runyao Duan, and Zhengfeng Ji. An algebra
of quantum processes. ACM Transactions on Computational Logic (TOCL),
10(3):1–36, 2009.

[363] Mingsheng Ying, Yangjia Li, Nengkun Yu, and Yuan Feng. Model-checking
linear-time properties of quantum systems. ACM Transactions on Computa-
tional Logic (TOCL), 15(3):1–31, 2014.

[364] Christof Zalka. Simulating quantum systems on a quantum computer. Pro-
ceedings of the Royal Society of London. Series A: Mathematical, Physical and
Engineering Sciences, 454(1969):313–322, 1998.

[365] Yuan-Hang Zhang, Zhian Jia, Yu-Chun Wu, and Guang-Can Guo. An efficient
algorithmic way to construct Boltzmann machine representations for arbitrary
stabilizer code. arXiv:1809.08631, 2018.

[366] Li Zhou, Gilles Barthe, Justin Hsu, Mingsheng Ying, and Nengkun Yu. A quan-
tum interpretation of bunched logic & quantum separation logic. In 2021 36th
Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pages
1–14. IEEE, 2021.

[367] Li Zhou, Nengkun Yu, and Mingsheng Ying. An applied quantum Hoare logic. In
Proceedings of the 40th ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 1149–1162, 2019.

[368] Alwin Zulehner, Stefan Hillmich, Igor L Markov, and Robert Wille. Approxi-
mation of quantum states using decision diagrams. In 2020 25th Asia and South
Pacific Design Automation Conference (ASP-DAC), pages 121–126. IEEE, 2020.

[369] Alwin Zulehner, Stefan Hillmich, and Robert Wille. How to efficiently han-
dle complex values? implementing decision diagrams for quantum computing.
In 2019 IEEE/ACM International Conference on Computer-Aided Design (IC-
CAD), pages 1–7. IEEE, 2019.

[370] Alwin Zulehner, Philipp Niemann, Rolf Drechsler, and Robert Wille. Accuracy
and compactness in decision diagrams for quantum computation. In 2019 Design,
Automation & Test in Europe Conference & Exhibition (DATE), pages 280–283.
IEEE, 2019.

[371] Alwin Zulehner, Alexandru Paler, and Robert Wille. An efficient methodology
for mapping quantum circuits to the ibm qx architectures. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 38(7):1226–1236,
2018.

303

Bibliography

[372] Alwin Zulehner and Robert Wille. Improving synthesis of reversible circuits:
Exploiting redundancies in paths and nodes of QMDDs. In International Con-
ference on Reversible Computation, pages 232–247. Springer, 2017.

[373] Alwin Zulehner and Robert Wille. One-pass design of reversible circuits: Com-
bining embedding and synthesis for reversible logic. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 37(5):996–1008,
2017.

[374] Alwin Zulehner and Robert Wille. Advanced simulation of quantum computa-
tions. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 38(5):848–859, 2018.

[375] Alwin Zulehner and Robert Wille. Compiling SU(4) quantum circuits to IBM
QX architectures. In Proceedings of the 24th Asia and South Pacific Design
Automation Conference, pages 185–190, 2019.

[376] Alwin Zulehner and Robert Wille. Introducing design automation for quantum
computing, volume 11. Springer, 2020.

304

