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Appendix A

Proof that cluster states and
coset states need exponentially
large QMDDs

In this appendix, we show that QMDDs which represent both clusters states, and
coset states, are exponentially large in the worst case (respectively, Theorem 3.2 and
Corollary A.1). On the other hand, in App. B, we will show that these states can be
represented using only O(n) nodes by ⟨X⟩-LIMDDs, showing that they are exponen-
tially more succinct than QMDDs. We first fix notation and definitions, after which
we prove the theorem using two lemmas.

Let G be an undirected graph with vertices VG = {v1, ..., vn} and edge set EG ⊆
VG × VG. For a subset of vertices S ⊆ VG, the S-induced subgraph of G has vertices
S and edge set (S × S) ∩ E. Given G, its graph state |G⟩ is expressed as

|G⟩ =
∑

x⃗∈{0,1}n

(−1)fG(x⃗) |x⃗⟩ (A.1)

where fG(x⃗) is the number of edges in the S-induced subgraph of G.

For a function f : {0, 1}n → C and bit string a⃗ = a1 · · · ak ∈ {0, 1}k, we denote by fa⃗
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the subfunction of f restricted to a⃗:

fa⃗(xk+1, . . . , xn) := f(a1, . . . , ak, xk+1, . . . , xn) (A.2)

We also say that fa⃗ is a subfunction of f of order |⃗a| = k.

We will also need the notions of boundary and strong matching.

Definition A.1 (Boundary). For a set S ⊆ VG of vertices in G, the boundary of S is
the set of vertices in S adjacent to a vertex outside of S.

Definition A.2 (Strong Matching). Let G = (V,E) be an undirected graph. A
strong matching is a subset of edges M ⊆ E that do not share any vertices (i.e., it is a
matching) and no two edges of M are incident to the same edge of G, i.e., an edge in
E \M . Alternatively, a strong matching is a matching M s.t. G[V (M)] =M . We say
that M is an (S, T )-strong matching for two sets of vertices S, T ⊂ V if M ⊆ S × T .
For a strong matching M and a vertex v ∈ V (M), we let M(v) denote the unique
vertex to which v is matched by M .

Using these definitions and notation, we prove Theorem 3.2.

Theorem 3.2. Denote by |Gn⟩ the two-dimensional cluster state, defined as a graph
state on the n× n lattice. Each QMDD representing |Gn⟩ has at least 2⌊n/12⌋ nodes.

Proof. Let G = lattice(n, n) be the undirected graph of the n × n lattice, with
vertex set V = {v1, . . . , vn2}. Let σ = v1v2 · · · vn2 be a variable order, and let
S = {v1, v2, . . . , v 1

2n
2} ⊂ V be the first 1

2n
2 vertices in this order.

The proof proceeds broadly as follows. First, in Lemma A.1, we show that any (S, S)-
strong matching M effects 2|M | different subfunctions of fG. Second, Lemma A.2
shows that the lattice contains a large (S, S)-strong matching for any choice of S.
Put together, this will prove the lower bound on the number of QMDD nodes as in
Theorem 3.2 by the fact that a QMDD for the cluster state G has a node per unique
subfunction of the function fG. Figure A.1 illustrates this setup for the 5× 5 lattice.

Lemma A.1. Let M be a non-empty (S, S)-strong matching for the vertex set S
chosen above. If σ = v1v2 · · · vn2 is a variable order where all vertices in S appear
before all vertices in S, then fG(x1, . . . , xn2) has 2|M | different subfunctions of order
|S|.
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Proof that cluster states and coset states need exponentially large
QMDDs

Proof. Let SM := S∩V (M) and SM := S∩M be the sets of vertices that are involved
in the strong matching. Write χ(x1, ..., xn) for the indicator function for vertices:
χ(x1, ..., xn) := {vi | xi = 1, i ∈ [n]}. Choose two different subsets A,B ⊆ SM and
let a⃗ = χ−1(A) and b⃗ = χ−1(B) be the corresponding length-|S| bit strings. These
two strings induce the two subfunctions fG,⃗a and fG,⃗b. We will show that these
subfunctions differ in at least one point.

First, if fG,⃗a(0, . . . , 0) ̸= fG,⃗b(0, . . . , 0), then we are done. Otherwise, take a vertex
s ∈ A ⊕ B and say w.l.o.g. that s ∈ A \ B. Let t = M(s) be its partner in the
strong matching. Then we have, |E[A ∪ {t}]| = |E[A]|+ 1 but |E[B ∪ {t}]| = |E[B]|.
Therefore we have

fG,⃗a(0, . . . , 0, xt = 0, 0, . . . , 0) ̸= fG,⃗a(0, . . . , 0, xt = 1, 0, . . . , 0) (A.3)

fG,⃗b(0, . . . , 0, xt = 0, 0, . . . , 0) = fG,⃗b(0, . . . , 0, xt = 1, 0, . . . , 0) (A.4)

We see that each subset of SM corresponds to a different subfunction of fG. Since
there are 2|M | subsets of M , fG has at least that many subfunctions.

We now show that the n× n lattice contains a large enough strong matching.

Lemma A.2. Let S = {v1, . . . , v 1
2n

2} be a set of 1
2n

2 vertices of the n× n lattice, as
above. Then the graph contains a (S, S)-strong matching of size at least

⌊
1
12n
⌋
.

Proof. Consider the boundary BS of S. This set contains at least n/3 vertices, by
Theorem 11 in [204]. Each vertex of the boundary of S has degree at most 4. It
follows that there is a set of

⌊
1
4 |BS |

⌋
vertices which share no neighbors. In particular,

there is a set of
⌊
1
4 |BS |

⌋
≥
⌊

1
12n
⌋

vertices in BS which share no neighbors in S.

Put together, every choice of half the vertices in the lattice yields a set with a boundary
of at least n/3 nodes, which yields a strong matching of at least

⌊
1
12n
⌋

edges, which
shows that fG has at least 2⌊

1
12n⌋ subfunctions of order 1

2n
2.

Proof that coset states need exponentially large QMDDs. We now show that
QMDDs which represent coset states are exponentially large in the worst case. We will
use the following result by Ďuriš et al. on binary decision diagrams (BDDs), which
are QMDDs with codomain {0, 1}. This result concerns vector spaces, but of course,
every vector space of {0, 1}n is, in particular, a coset.

207



Figure A.1: The 5× 5 lattice, partitioned in a vertex set S and its complement S. A
strong matching between S and S is indicated by thick black edges. The nodes in S
are highlighted.

Theorem A.1 (Ďuriš et al. [108]). The characteristic function fV : {0, 1}n → {0, 1}
of a randomly chosen vector space V in {0, 1}n, defined as fV (x) = 1 if x ∈ V and 0

otherwise, needs a BDD of size 2Ω(n)/(2n) with high probability.

Our result follows by noting that if f has codomain {0, 1} as above, then the QMDD
of the state |f⟩ =

∑
x f(x) |x⟩ has the same structure as the BDD of f . Consequently,

in particular the BDD and QMDD have the same number of nodes.

Corollary A.1. For a random vector space V ⊆ {0, 1}n, the coset state |V ⟩ requires
QMDDs of size 2Ω(n)/(2n) with high probability.

Proof. We will show that the QMDD has the same number of nodes as a BDD. A
BDD encodes a function f : {0, 1}n → {0, 1}. In this case, the BDD encodes fV , the
characteristic function of V . A BDD is a graph which contains one node for each
subfunction of f . (In the literature, such a BDD is sometimes called a Full BDD,
so that the term BDD is reserved for a variant where the nodes are in one-to-one
correspondence with the subfunctions f which satisfy f0 ̸= f1).

Similarly, a QMDD representing a state |φ⟩ =
∑
x f(x) |x⟩ can be said to represent

the function f : {0, 1}n → C, and contains one node for each subfunction of f modulo
scalars. We will show that, two distinct subfunctions of fV are never equal up to
a scalar. To this end, let fV,a, fV,b be distinct subfunctions of fV induced by partial
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Proof that cluster states and coset states need exponentially large
QMDDs

assignments a, b ∈ {0, 1}k. We will show that there is no λ ∈ C∗ such that fV,a = λfV,b.
Since the two subfunctions are not pointwise equal, say that the two subfunctions differ
in the point x ∈ {0, 1}n−k, i.e., fV,a(x) ̸= fV,b(x). Say without loss of generality that
fV,a(x) = 0 and fV,b(x) = 1. Then, since λ ̸= 0, we have λ = λfS,b(x) ̸= fV,a(x) = 0,
so fV,a ̸= λfB,b.

Because distinct subfunctions of fV are not equal up to a scalar, the QMDD of |V ⟩
contains a node for every unique subfunction of fV . We conclude that, since by
Theorem A.1 with high probability the BDD representing fV has exponentially many
nodes, so does the QMDD representing |V ⟩.
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Appendix B

How to write graph states, coset
states and stabilizer states as
Tower-LIMDDs

In this appendix, we prove that the families of ⟨Z⟩-, ⟨X⟩-, and ⟨Pauli⟩-Tower-LIMDDs
correspond to graph states, coset states, and stabilizer states, respectively, in Theo-
rem B.1, Theorem B.2 and Theorem 3.1 below. Definition 3.5 for reduced Pauli-
LIMDDs requires modification for G = ⟨Z⟩-LIMDDs because of the absence of X as
discussed below the definition. Note that the proofs do not rely on the specialized def-
inition of reduced LIMDDs, but only on Definition 3.2 which allows parameterization
of the LIM G. They only rely on the Tower LIMDD in Definition 3.3.

Before we give the proof, we remark that graph states present an interesting special
case because the LIMDD’s edge labels contain meaningful information. Namely, the
labels on the high edges of a graph state’s LIMDD are precisely the edges in the original
graph. Specifically, suppose a graph G gives rise to a graph state |φG⟩ represented by
a LIMDD. Let P = Pk−1 ⊗ · · · ⊗ P1 be the label on the high edge out of the LIMDD
node at level k. Then G contains an edge (vk, vj) if and only if Pj = Z (with the
roles of k and j reversed if k < j). These edge labels come about in a straightforward
manner during the construction of the graph state. Namely, the graph state |φG⟩ is
produced by starting from the state |+⟩⊗n, and applying controlled-Z gates to qubit
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pairs (u, v) for every edge (u, v) in the graph. Applying such a controlled-Z gate to
qubit pair (u, v) has the effect of setting Pv to Z in the high edge outgoing from the
vertex at level u. In general, however, the labels on the high edges cannot be easily
inferred from the stabilizer state.

A G-Tower-LIMDD representing an n-qubit state is a LIMDD which has n nodes, not
counting the leaf. It has G-LIMs on its high edges. Definition 3.3 gives an exact
definition.

Theorem B.1 (Graph states are ⟨Z⟩-Tower-LIMDDs). Let n ≥ 1. Denote by Gn the
set of n-qubit graph states and write Zn for the set of n-qubit quantum states which
are represented by ⟨Z⟩-Tower-LIMDDs a defined in Definition 3.3, i.e, a tower with
low-edge-labels I and high-edge labels λ

⊗
j Pj with Pj ∈ { I , Z} and λ = 1, except

for the root edge where λ ∈ C \ {0}. Then Gn = Zn.

Proof. We establish Gn ⊆ Zn by providing a procedure to convert any graph state in
Gn to a ⟨Z⟩-Tower-LIMDD in Zn. See Figure B.1 for an example of a 4-qubit graph
state. We describe the procedure by induction on the number n of qubits in the graph
state.

Base case: n = 1. We note that there is only one single-qubit graph state by
definition (see Equation A.1), which is |+⟩ := (|0⟩+ |1⟩)/

√
2 and can be represented

as LIMDD by a single node (in addition to the leaf node): see Figure B.1(a).

Induction case. We consider an (n+ 1)-qubit graph state |G⟩ corresponding to the
graph G. We isolate the (n+1)-th qubit by decomposing the full state definition from
Equation A.1:

|G⟩ = 1√
2

|0⟩ ⊗ |G1..n⟩+ |1⟩ ⊗

 ⊗
(n+1,j)∈E

Zj


︸ ︷︷ ︸

Isomorphism B

|G1..n⟩

 (B.1)

where E is the edge set of G and G1..n is the induced subgraph of G on vertices 1 to
n. Thus, |G1..n⟩ is an n-qubit graph state on qubits 1 to n. Since |G1..n⟩ is a graph
state on n qubits, by the induction hypothesis, we have a procedure to convert it to
a ⟨Z⟩-Tower-LIMDD ∈ Zn. Now we construct a ⟨Z⟩-Tower-LIMDD for |G⟩ as follows.
The root node has two outgoing edges, both going to the node representing |G1..n⟩.
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How to write graph states, coset states and stabilizer states as
Tower-LIMDDs

The node’s low edge has label I, and the node’s high edge has label B, as follows,

B =
⊗

(n+1,j)∈E

Zj (B.2)

Thus the root node represents the state |0⟩ |G1..n⟩ + |1⟩B |G1..n⟩, satisfying Equa-
tion B.1.

To prove Zn ⊆ Gn, we show how to construct the graph corresponding to a given
⟨Z⟩-Tower LIMDD. Briefly, we simply run the algorithm outlined above in reverse,
constructing the graph one node at a time. Here we assume without loss of generality
that the low edge of every node is labeled I.

Base case. The LIMDD node above the Leaf node, representing the state |+⟩, always
represents the singleton graph, containing one node.

Induction case. Suppose that the LIMDD node k+1 levels above the Leaf has a low
edge labeled I, and a high edge labeled Pk ⊗ · · · ⊗ P1, with Pj = Zaj for j = 1 . . . k.
Here by Zaj we mean Z0 = I and Z1 = Z. Then we add a node labeled k + 1 to
the graph, and connect it to those nodes j with aj = 1, for j = 1 . . . k. The state
represented by this node is of the form given in Equation B.1, so it represents a graph
state.

A simple counting argument based on the above construction shows that |Zn| = |Gn| =
2(

n
2), so the conversion is indeed a bijection. Namely, there are 2(

n
2) graphs, since

there are
(
n
2

)
edges to choose, and there are 2(

n
2) ⟨Z⟩-Tower-LIMDDs, because the

total number of single-qubit operators of the LIMs on the high edges is
(
n
2

)
, each of

which can be independently chosen to be either I or Z.

We now prove that coset states are represented by ⟨X⟩-Tower-LIMDDs.

Theorem B.2 (coset states are ⟨X⟩-Tower-LIMDDs). Let n ≥ 1. Denote by Vn the
set of n-qubit coset states and write Xn for the set of n-qubit quantum states which
are represented by ⟨X⟩-Tower-LIMDDs as per Definition 3.3, i.e., a tower with low
edge labels I and high edge labels λ

⊗
j Pj with Pj ∈ {I, X} and λ ∈ {0, 1}, except

for the root edge where λ ∈ C \ {0}. Then Vn = Xn.

Proof. We first prove Vn ⊆ Xn by providing a procedure for constructing a Tower-
LIMDD for a coset state. We prove the statement for the case when C is a group
rather than a coset; the result will then follow by noting that, by placing the label
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How to write graph states, coset states and stabilizer states as
Tower-LIMDDs

Xan ⊗ · · · ⊗Xa1 on the root edge, we obtain the coset state |C + a⟩. The procedure
is recursive on the number of qubits.

Base case: n = 1. In this case, there are two coset states: |0⟩ and (|0⟩ + |1⟩)/
√
2,

which are represented by a single node which has a low and high edge pointing to the
leaf node with low/high edge labels 1/0 and 1/1, respectively.

Induction case. Now consider an (n + 1)-qubit coset state |S⟩ for a group S ⊆
{0, 1}n+1 for some n ≥ 1 and assume we have a procedure to convert any n-qubit
coset state into a Tower-LIMDD in Xn. We consider two cases, depending on whether
the first bit of each element of S is zero:

(a) The first bit of each element of S is 0. Thus, we can write S = {0x | x ∈ S0}
for some set S0 ⊆ {0, 1}n. Then 0a, 0b ∈ S =⇒ 0a ⊕ 0b ∈ S implies a, b ∈
S0 =⇒ a⊕ b ∈ S0 and thus S0 is an length-n bit string vector space. Thus by
assumption, we have a procedure to convert it to a Tower-LIMDD in Xn. Convert
it into a Tower-LIMDD in Xn+1 for |S⟩ by adding a fresh node on top with low
edge label I⊗n and high edge label 0, both pointing to the the root S.

(b) There is some length-n bit string u such that 1u ∈ S. Write S as the union of the
sets {0x | x ∈ S0} and {1x | x ∈ S1} for sets S0, S1 ⊆ {0, 1}n. Since S is closed
under element-wise XOR, we have 1u⊕ 1x = 0(u⊕ x) ∈ S for each x ∈ S1 and
therefore u ⊕ x ∈ S0 for each x ∈ S1. This implies that S1 = {u⊕ x | x ∈ S0}
and thus S is the union of {0x | x ∈ S0} and {1u⊕ 0x | x ∈ S0}. By similar
reasoning as in case (a), we can show that S0 is a vector space on length-n bit
strings.

We build a Tower-LIMDD for |S⟩ as follows. By the induction hypothesis, there
is a Tower-LIMDD with root node v which represents |v⟩ = |S0⟩. We construct
a new node whose two outgoing edges both go to this node v. Its low edge has
label I⊗n and its high edge has label P = Pn⊗ · · · ⊗P1 where Pj = X if uj = 1

and Pj = I if uj = 0.

We now show Vn ⊆ Xn, also by induction.

Base case: n = 1. There are only two Tower-LIMDDs on 1 qubit satisfying the
description above, namely

(1) A node whose two edges point to the leaf. Its low edge has label 1, and its high
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edge has label 0. This node represents the coset state |0⟩, corresponding to the
vector space V = {0} ⊆ {0, 1}1.

(2) A node whose two edges point to the leaf. Its low edge has label 1 and its high
edge also has label 1. This node represents the coset state |0⟩+|1⟩, corresponding
to the vector space V = {0, 1}.

Induction case. Let v be the root node of an n + 1-qubit Tower ⟨X⟩-LIMDD as
described above. We distinguish two cases, depending on whether v’s high edge has
label 0 or not.

(a) The high edge has label 0. Then |v⟩ = |0⟩ |v0⟩ for a node v0, which represents a
coset state |v0⟩ corresponding to a coset V0 ⊆ {0, 1}n, by the induction hypoth-
esis. Then v corresponds to the coset {0x | x ∈ V0}.

(b) the high edge has label P = Pn⊗· · ·⊗P1 with Pj ∈ { I , X}. Then |v⟩ = |0⟩ |v0⟩+
|1⟩ ⊗ P |v0⟩. By the observations above, this is a coset state, corresponding to
the vector space V = {0x|x ∈ V0} ∪ {1(ux)|x ∈ V0} where u ∈ {0, 1}n is a string
whose bits are uj = 1 if Pj = X and uj = 0 if Pj = I , and V0 is the vector space
corresponding to the coset state |v0⟩.

Lastly, we prove the stabilizer-state case, showing that they are exactly equivalent
to the ⟨Pauli⟩-Tower-LIMDD, as defined in Definition 3.3. For this, we first need
Lemma B.1 and Lemma B.2, which state that, if one applies a Clifford gate to a
⟨Pauli⟩-Tower-LIMDD, the resulting state is another ⟨Pauli⟩-Tower-LIMDD. First,
Lemma B.1 treats the special case of applying a gate to the top qubit; then Lemma B.2
treats the general case of applying a gate to an arbitrary qubit.

Lemma B.1. Let |φ⟩ be an n-qubit stabilizer state which is represented by a ⟨Pauli⟩-
Tower-LIMDD as defined in Definition 3.3. Let U be either a Hadamard gate or S gate
on the top qubit (n-th qubit), or a downward CNOT with the top qubit as control.
Then U |φ⟩ is still represented by a ⟨Pauli⟩-Tower-LIMDD.

Proof. The proof is on the number n of qubits.

Base case: n = 1. For n = 1, there are six single-qubit stabilizer states |0⟩ , |1⟩ and
(|0⟩ + α |1⟩)/

√
2 for α ∈ {±1,±i}. There are precisely represented by Pauli-Tower-

LIMDDs with high edge label factor ∈ {0,±1,±i} as follows:
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How to write graph states, coset states and stabilizer states as
Tower-LIMDDs

• for |0⟩: 1
1

1
0

• for |1⟩: A · 1
1

1
0

where A ∝ X or A ∝ Y

• for (|0⟩+ α |1⟩)/
√
2): 1

1
1

α

Since the H and S gate permute these six stabilizer states, U |φ⟩ is represented by a
⟨Pauli⟩-Tower-LIMDD if |φ⟩ is.

Induction case. For n > 1, we first consider U = S and U = CNOT. Let R
be the label of the root edge. If U = S, then the high edge of the top node is
multiplied with i, while a downward CNOT (target qubit with index k) updates the
high edge label A 7→ XkA. Next, the root edge label is updated to URU†, which
is still a Pauli string, since U is a Clifford gate. Since the high labels of the top
qubit in the resulting diagram is still a Pauli string, and the high edge’s weights are
still ∈ {0,±1,±i}, we conclude that both these gates yield a ⟨Pauli⟩-Tower-LIMDD.
Finally, for the Hadamard, we decompose |φ⟩ = |0⟩⊗|ψ⟩+α |1⟩⊗P |ψ⟩ for some (n−1)-
qubit stabilizer state |ψ⟩, α ∈ {0,±1,±i} and P is an (n− 1)-qubit Pauli string. Now
we note that H |φ⟩ ∝ |0⟩ ⊗ |ψ0⟩ + |1⟩ ⊗ |ψ1⟩ where |ψx⟩ := ( I + (−1)xαP ) |ψ⟩ with
x ∈ {0, 1}. Now we consider two cases, depending on whether P commutes with all
stabilizers of |ψ⟩:

(a) There exist a stabilizer g of |ψ⟩ which anticommutes with P . We note two things.
First, ⟨ψ|P |ψ⟩ = ⟨ψ|Pg|ψ⟩ = ⟨ψ|g · (−P )|ψ⟩ = −⟨ψ|P |ψ⟩, hence ⟨ψ|P |ψ⟩ = 0. It
follows from Lemma 15 of [125] that |ψx⟩ is a stabilizer state, so by the induction
hypothesis it can be written as a ⟨Pauli⟩-Tower-LIMDD. Let v be the root node
of this LIMDD. Next, we note that g |ψ0⟩ = g( I+αP ) |ψ⟩ = ( I−αP )g |ψ⟩ = |ψ1⟩.

Hence, v
I

v
g

is the root node of a ⟨Pauli⟩-Tower-LIMDD for H |φ⟩.

(b) All stabilizers of |ψ⟩ commute with P . Then (−1)yP is a stabilizer of |ψ⟩ for
either y = 0 or y = 1. Hence, |ψx⟩ = ( I + (−1)xαP ) |ψ⟩ = (1 + (−1)x+yα) |ψ⟩.
Therefore, |φ⟩ = |a⟩⊗|ψ⟩ where |a⟩ := (1+(−1)yα) |0⟩+(1+(−1)y+1α |1⟩). It is
not hard to see that |a⟩ is a stabilizer state for all choices of α ∈ {0,±1,±i}. By
the induction hypothesis, both |a⟩ and |ψ⟩ can be represented as ⟨Pauli⟩-Tower-
LIMDDs. We construct a ⟨Pauli⟩-Tower-LIMDD for H |φ⟩ by replacing the leaf
of the LIMDD of |a⟩ by the root node of the LIMDD of |ψ⟩, and propagating
the root edge label of |ψ⟩ upwards. Specifically, if the root edge of |a⟩ is v

A
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with v = 1
1

1
β

, and if the root edge of |ψ⟩ is w
B , then a ⟨Pauli⟩-

Tower-LIMDD for H |φ⟩ has root node I w
w

βI
and has root edge label

A⊗B.

Lemma B.2. Let |φ⟩ be an n-qubit state state represented by a ⟨Pauli⟩-Tower-
LIMDD, as defined in Definition 3.3. Let U be either a Hadamard gate, an S gate or
a CNOT gate. Then U |φ⟩ is a state which is also represented by a ⟨Pauli⟩-Tower-
LIMDD.

Proof. The proof is by induction on n. The case n = 1 is covered by Lemma B.1.
Suppose that the induction hypothesis holds, and let |φ⟩ be an n + 1-qubit state
represented by a ⟨Pauli⟩-Tower-LIMDD. First, we note that a CNOT gate CXt

c can
be written as CXt

c = (H ⊗ H)CXc
t (H ⊗ H), so without loss of generality we may

assume that c > t. We treat two cases, depending on whether U affects the top qubit
or not.

(a) U affects the top qubit. Then U |φ⟩ is represented by a ⟨Pauli⟩-Tower-LIMDD,
according to Lemma B.1.

(b) U does not affect the top qubit. Suppose |φ⟩ = |0⟩ ⊗ |φ0⟩ + |1⟩ ⊗ αP |φ0⟩
(with P a Pauli string and α ∈ {0,±1,±i}). Then U |φ⟩ = |0⟩ ⊗ U |φ0⟩ +
|1⟩ ⊗ (αUPU†)U |φ0⟩. Since U is either a Hadamard, S gate or CNOT, and
|φ0⟩ is an n-qubit state, the induction hypothesis states that the state U |φ0⟩
is represented by a ⟨Pauli⟩-Tower-LIMDD. Let v

A be the root edge of this
⟨Pauli⟩-Tower-LIMDD, representing U |φ0⟩. Then U |φ⟩ is represented by the

root edge w
I ⊗ A , where w is the node v

I
v

αA−1UPU†A
. The label

αA−1UPU†A is a Pauli LIM, and may therefore be used as the label on the high
edge of w.

Finally, we show that stabilizer states are precisely the ⟨Pauli⟩-Tower-LIMDDs.

Theorem 3.1. Let n > 0. Each n-qubit stabilizer state is represented up to nor-
malization by a ⟨Pauli⟩-Tower LIMDDs of Definition 3.3, e.g., where the scalars λ of
the PauliLIMs λP on high edges are restricted as λ ∈ {0,±1,±i}. Conversely, every
such LIMDD represents a stabilizer state.
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How to write graph states, coset states and stabilizer states as
Tower-LIMDDs

Proof. We first prove that each stabilizer state is represented by a ⟨Pauli⟩-Tower-
LIMDD. We recall that each stabilizer state can be obtained as the output state of
a Clifford circuit on input state |0⟩⊗n. Each Clifford circuit can be decomposed into
solely the gates H,S and CNOT. The state |0⟩⊗n is represented by a ⟨Pauli⟩-Tower-
LIMDD. According to Lemma B.2, applying an H, S or CNOT gate to a ⟨Pauli⟩-
Tower-LIMDD results a state represented by another ⟨Pauli⟩-Tower-LIMDD. One can
therefore apply the gates of a Clifford circuit to the initial state |0⟩, and obtain a
⟨Pauli⟩-Tower-LIMDD for every intermediate state, including the output state. There-
fore, every stabilizer state is represented by a ⟨Pauli⟩-Tower-LIMDD.

For the converse direction, the proof is by induction on n. We only need to note that
a state represented by a ⟨Pauli⟩-Tower-LIMDD can be written as |φ⟩ = |0⟩ ⊗ |φ0⟩ +
|1⟩ ⊗ αP |φ0⟩ = C(P )(|0⟩ + α |1⟩) ⊗ |φ0⟩ where C(P ) := |0⟩⟨0| ⊗ I + |1⟩⟨1| ⊗ P is
the controlled-(P ) gate. Using the relations Z = HXH, Y = SXS† and S = Z2, we
can decompose C(P ) as CNOT, H and S, hence C(P ) is a Clifford gate. Since both
|0⟩+α |1⟩ and |φ0⟩ can be written as ⟨Pauli⟩-Tower-LIMDDs, they are stabilizer states
by the induction hypothesis. Therefore, the state |ψ⟩ = (|0⟩ + α |1⟩) ⊗ |φ0⟩ is also a
stabilizer state. Thus, the state |φ⟩ = C(P ) |ψ⟩ is obtained by applying the Clifford
gate C(P ) to the stabilizer state |φ⟩. Therefore, |φ⟩ is a stabilizer state.
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Appendix C

Advanced LIMDD algorithms

C.1 Measuring an arbitrary qubit

Algorithm 18 allows one to measure a given qubit. Specifically, given a quantum state
|e⟩ represented by a LIMDD edge e, a qubit index k and an outcome b ∈ {0, 1}, it
computes the probability of observing |b⟩ when measuring the k-th significant qubit
of |e⟩. The algorithm proceeds by traversing the LIMDD with root edge e at Line 7.
Like Algorithm 5, which measured the top qubit, this algorithm finds the probability
of a given outcome by computing the squared norm of the state when the k-th qubit
is projected onto |0⟩, or |1⟩. The case that is added, relative to Algorithm 5, is the
case when n > k, in which case it calls the procedure SquaredNormProjected.
On input e, y, k, the procedure SquaredNormProjected outputs the squared norm
of Πyk |e⟩, where Πyk = I [n− k]⊗ |y⟩ ⟨y| ⊗ I [k − 1] is the projector which projects the
k-th qubit onto |y⟩.

After measurement of a qubit k, a quantum state is typically projected to |0⟩ or |1⟩
(b = 0 or b = 1) on that qubit, depending on the outcome. Algorithm 19 realizes this.
It does so by traversing the LIMDD until a node v with idx(v) = k is reached. It then
returns an edge to a new node by calling MakeEdge(follow(0, e), 0) to project onto
|0⟩ or MakeEdge(0, follow(1, e)) to project onto |1⟩, on Line 6, recreating a node
on level k in the backtrack on Line 8. The projection operator Πbk commutes with
any LIM P when Pk is a diagonal operator (i.e., Pk ∈ { I [2], Z}). Otherwise, if Pk is
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Measuring an arbitrary qubit

Algorithm 18 Compute the probability of observing |y⟩ when measuring the k-
th qubit of the state |e⟩. Here e is given as LIMDD on n qubits, y is given as a
bit, and k is an integer index. For example, to measure the top-most qubit, one
calls Measure(e, 0, n). The procedure SquaredNorm(e, y, k) computes the scalar
⟨e| (I ⊗ |y⟩ ⟨y| ⊗ I) |e⟩, i.e., computes the squared norm of the state |e⟩ after the k-th
qubit is projected to |y⟩. For readability, we omit calls to the cache, which implement
dynamic programming.

1: procedure MeasurementProbability(Edge e v
λPn ⊗ P ′

, y ∈ {0, 1}, k ∈
[1...idx(v)])

2: if n = k then
3: p0 := SquaredNorm(follow(0, e))
4: p1 := SquaredNorm(follow(1, e))

5: return pj/(p0 + p1) where j = 0 if Pn ∈ {I, Z} and j = 1 if Pn ∈ {X,Y }
6: else
7: p0 := SquaredNormProjected(follow(0, e), y, k)
8: p1 := SquaredNormProjected(follow(1, e), y, k)

9: return (p0 + p1)/SquaredNorm(e)

10: procedure SquaredNorm(Edge v
λP )

11: if n = 0 then return |λ|2

12: s := Add(SquaredNorm(follow(0, v
I )),SquaredNorm(follow(1, v

I )))

13: return |λ|2s
14: procedure SquaredNormProjected(Edge e v

λPn ⊗ P ′

, y ∈ {0, 1}, k ∈
[1...idx(v)])

15: b := (Pn ∈ {X,Y }) ▷ i.e., b = 1 iff Pn is Anti-diagonal

16: if n = 0 then
17: return |λ|2
18: else if n = k then
19: return SquaredNorm(follow(b⊕ y, e))
20: else
21: α0 := SquaredNormProjected(follow(0, v

I ), b⊕ y, k)

22: α1 := SquaredNormProjected(follow(1, v
I ), b⊕ y, k)

23: return |λ|2 · (α0 + α1)

an antidiagonal operator (i.e, Pk ∈ {X,Y }), have Πbk · P = PΠ
(1−b)
k . The algorithm

applies this correction on Line 2. The resulting state should still be normalized as
shown in Sec. 3.3.3.1.

Sampling. To sample from a quantum state in the computational basis, simply repeat
the three-step measurement procedure outlined in Sec. 3.3.3.1 n times: once for each
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Advanced LIMDD algorithms

Algorithm 19 Project the state given by LIMDD v
A to state |b⟩ for qubit k, i.e.,

produce a LIMDD representing the state ( I [n − k] ⊗ |b⟩ ⟨b| ⊗ I [k − 1]) · A |v⟩, with
A = λPn ⊗ · · · ⊗ P1.

1: procedure UpdatePostMeas(Edge v
λPn ⊗ · · · ⊗ P1 , k ∈ [1...idx(v)], b ∈

{0, 1})
2: b′ := x⊕ b where x = 0 if Pk ∈ {I, Z} and x = 1 if Pk ∈ {X,Y } ▷ flip b if Pk is

anti-diagonal

3: if (v, k, b′) ∈ Cache then return Cache[v, k, b′]
4: n := idx(v)
5: if n = k then
6: e := MakeEdge((1− b′) · lowv, b′ · highv) ▷ Project |v⟩ to |b′⟩ ⟨b′| ⊗ I [2]⊗n−1

7: else ▷ n ̸= k:
8: e := MakeEdge(UpdatePostMeas(lowv, k, b′),UpdatePostMeas(highv, k, b′))

9: Cache[v, k, b′] := e

10: return e

qubit.

Strong simulation. To compute the probability of observing a given bit-string x =

xn . . . x1, first compute the probability pn of observing |xn⟩; then update the LIMDD
to outcome xn, obtaining a new, smaller LIMDD. On this new LIMDD, compute the
probability pn−1 of observing |xn−1⟩, and so forth. Note that, because the LIMDD
was updated after observing the measurement outcome |xn⟩, pn−1 is the probability
of observing xn−1 given that the top qubit is measured to be xn. Then the probability
of observing the string x is the product p = p1 · · · pn.

C.2 Applying Hadamards to stabilizer states in poly-

nomial time

We show that, using the algorithms that we have given,∗ a Hadamard can be applied
to a stabilizer state in polynomial time (Theorem C.1). Together with the algorithms
for the other Clifford gates, presented in Sec. 3.3.3.2, this shows that all Clifford
gates can be applied to stabilizer states in polynomial time. We emphasize that our
algorithms do not invoke existing algorithms that are tailored to applying a Hadamard

∗We make minor modifications to the Add algorithm, which are presented in Theorem C.1
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Applying Hadamards to stabilizer states in polynomial time

to a stabilizer state; instead, the LIMDD algorithms are inherently polynomial-time for
this use case. The key ingredient is Lemma C.3, which describes situations in which
the Add procedure adds two stabilizer states in polynomial time. It shows that only
5n distinct calls to Add are made. Our algorithms are polynomial-time because of
the dynamic programming effected by the caching of previously computed results, as
described in Sec. 3.3.3.3, which, in this case, makes sure only 5n recursive calls are
made.

Theorem C.1. The algorithm HGate( v
A , k) (Algorithm 10) takes polynomial

time when the input edge v
A represents a stabilizer state.

Proof. Due to the cache, the algorithm HGate effects only one recursive call per node.
The LIMDD of a stabilizer state has one node on each of the n layers, so there are at
most n recursive calls.

When the algorithm arrives at layer k, it makes two calls to Add. Both calls are of

the form Add( v′
λP , v′

ωQ
) where λ, ω ∈ {0,±1,±i}, where P and Q are Pauli

strings, and v′ is a node representing a stabilizer state, namely v′ is the node at the
(k − 1)-th level of the LIMDD. This satisfies the conditions of Lemma C.3; therefore,
both calls to Add make at most 5k = O(n) recursive calls in total. Each recursive call
to Add may invoke the MakeEdge procedure, which runs in time O(n3), yielding a
total worst-case runtime of O(n4). Since there are two calls to Add, the total runtime
of HGate is also O(n4).

Lastly, for completeness we note that the call to Add( v′
λP , v′

ωQ
) may have

λ = 0 or ω = 0, i.e., one of the operands may be the zero vector. For readability,
we have presented the Add algorithm (Algorithm 9) without treatment of this case,
when one of the edges is the zero vector. For the purposes of this proof, we therefore
add the following two lines to the Add algorithm:

1: procedure Add(Edge e = v
αP , Edge f = w

βQ )
2: . . .

3: if α = 0 then return w
βQ

4: if β = 0 then return v
αP

5: . . .

These simple checks are also present in the C++ implementation presented in Chap-
ter 4 and is routine in DD implementations, such as the matrix addition algorithm

224



Advanced LIMDD algorithms

described by Miller and Thornton [227]. Consequently, a call to Add( v
αP , w

βQ
)

runs in O(1) time if α = 0 or β = 0.

We now prepare Lemma C.3, which is the main technical ingredient. It states that
all the recursive calls to Add effect only five different cache entries at any given level
of the LIMDD. To this end, the strategy is (1) to look closely at which recursive calls
made by Add; (2) to look closely at when a cache hit is achieved; and (3) to inspect
the Follow procedure.

The recursive calls of Add. First, we will find a good description of the set of
recursive calls made by a call to Add. We note that each call to Add makes two

recursive calls. Specifically, when it is called with parameters Add( v
αP , v

βQ
),

it makes two recursive calls, of the following form,

Add(follow(x, v
αP ), follow(x, v

βQ
)) for x ∈ {0, 1} (C.1)

These calls subsequently call Add again, recursively. Let us temporarily forget that
some of these calls may not happen because a cache hit preempts them (namely, the
Add does not recurse in the cache of a cache hit). Then the set of recursive calls to
Add is described by calls of the following form,

Add(follow(x, v
αP ), follow(x, v

βQ
)) for x ∈ {0, 1}ℓ for 0 ≤ ℓ ≤ n (C.2)

Cache hits of Add. Inspecting the algorithm Add (Algorithm 9) in Sec. 3.3.3.3, we
see that a call to Add with parameters ( v

A , v
B ) effects a cache hit if and only

if Add was previously called with ( v
C , v

D ) satisfying A−1B |v⟩ = C−1D |v⟩.
Therefore, let us associate a given call to Add( v

αP , v
βQ

) with the operator
α−1βP−1Q. Then a call to Add with associated operator U will effect a cache hit if
a previous call to Add was associated with the same operator U .†

The Follow procedure. We now turn to the Follow procedure. The proce-
dure follow(x, v

αP ) outputs an edge t
A , labeled with some label A. Let

L(x, v
αP ) be the function which outputs this label, i.e., L(x, v

αP ) = A. In
this paragraph, we aim to find a closed-form expression for L(x, v

αP ) in the case
†More precisely, a call to Add associated with U effects a cache hit if and only if a previous call

was associated with an operator U ′ satisfing U · Stab(φ) = U ′ · Stab(φ). Here U · Stab(φ) is the coset
obtained by left-multiplying the group Stab(φ) with U . Therefore, the condition U = U ′, named
above, is sufficient, but not necessary.
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Applying Hadamards to stabilizer states in polynomial time

of Tower Pauli-LIMDDs. If the node v is clear from context, we will write simply
L(x, P ).

It is useful to conceive of the Follow procedure as traversing a path from v to t

of length ℓ = |x|. Then the label L(x, v
αP ) is the product of the LIMs on the

edges that were traversed (including the label P ), after which we discard the most
significant ℓ qubits. More precisely, for any Pauli string A = αPn ⊗ · · · ⊗ P1, denote
with A(ℓ) = αPn−ℓ ⊗ · · · ⊗ P1 the least significant (n − ℓ) gates of A, so that, e.g.,
A = Pn ⊗ Pn−1 ⊗ P (2). (In other words, A(ℓ) discards the ℓ most significant qubits of
A). Then, if the Follow procedure traverses edges e1, e2, . . . , eℓ, labeled with LIMs
A1, A2, . . . , Aℓ, respectively, then

L(x, v
A1 ) = λA

(ℓ)
1 ·A(ℓ)

2 · · ·A(ℓ)
ℓ for some λ ∈ C (C.3)

Here the factor λ depends only on x and on the operators of A1 that were discarded;
we give a closed formula for λ below. For example, if x = 1 and Pn = Z, then λ = −1.
In summary, L(x, v

A ) is the product of (1) the labels on the traversed edges and
(2) a phase λ.

Moreover, the ℓ most significant operators of P influence which path is traversed in
the following way. For a pauli string P , let χ(P ) = χ1(P ) . . . χℓ(P ) ∈ {0, 1}ℓ be the
string defined by χj(P ) = 0 if Pn−j+1 ∈ {I, Z} and χj(P ) = 1 otherwise, i.e., if
Pn−j+1 ∈ {X,Y }. To be clear, P (ℓ) isolates the n− ℓ least significant qubits, whereas
χ(P ) depends on the ℓ most significant qubits:

P = Pn ⊗ · · · ⊗ Pn−ℓ+1︸ ︷︷ ︸
χ(P ) depends on this part

⊗
P (ℓ) yields this part︷ ︸︸ ︷
Pn−ℓ ⊗ · · · ⊗ P1 (C.4)

Then we have

L(x, P ) = λL(x⊕ χ(P ), I⊗ℓ ⊗ P (ℓ)) (C.5)

where λ = ⟨x|Pn ⊗ · · · ⊗ Pn−ℓ+1 |x⊕ χ(P )⟩. Therefore,

follow(x, v
P ) = t

λL(x⊕ χ(P ), I⊗ℓ ⊗ P (ℓ))
for some λ ∈ {0,±1,±i} (C.6)

where t is the destination of the path traversed by follow(x, v
P ). Lastly, we note
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Advanced LIMDD algorithms

that

L(x, I⊗ℓ ⊗ P (ℓ)) = P (ℓ) · L(x, I⊗n) (C.7)

We have thus reduced the problem of finding a closed-form expression for L(x, v
αP )

to the problem of obtaining a closed-form expression for L(x, I), to which we now turn.
In the following, we let v0, . . . , vn be the nodes in the Tower Pauli-limdd, with v0 the
top node and vn the Leaf node (we say that node vℓ is on layer ℓ). For a bit a ∈ {0, 1}
and Pauli string P , we use the notation P a = P if a = 1 and P a = I if a = 0. To
avoid multiple superscripts, we write P a,(ℓ) = (P a)(ℓ) for a bit a and an integer ℓ.

Lemma C.1. Let v be the root node of an n-qubit Tower LIMDD and denote with Aj
the label of the (unique) high edge from layer j−1 to layer j in this Tower LIMDD. Let
x ∈ {0, 1}ℓ. Then there are predicates V1, . . . , Vℓ such that (1) for each 1 ≤ j ≤ ℓ, the
predicate Vj(x) can be expressed as the XOR of (a subset of) the variables x1, . . . , xj ;
and (2) it holds that

L(x, v
I ) = A

V1(x),(ℓ)
1 · · ·AVℓ(x),(ℓ)

ℓ (C.8)

Proof. We observed above (in Equation C.3) that L(x, I) is the product of the P (ℓ)

for each label P encountered on the edges traversed by follow(x, I). For a layer
1 ≤ j ≤ ℓ, let Vj(x) be the predicate which is true iff the high edge from layer j − 1

to j is traversed by follow(x, v
I ). Recall that the low edges of a LIMDD are

labeled with the identity operator I. It follows that, in a Tower-LIMDD, L(x, I) =

A
V1(x),(ℓ)
1 · · ·AVℓ(x),(ℓ)

ℓ , thus settling claim (1).

We now show that Vj(x) can be expressed as the XOR of (a subset of) the variables
x1, . . . , xj , which proves the lemma. The proof is by induction on the layer index.
The induction hypothesis in step j is that the predicates V1(x), . . . , Vj(x) can each be
written as a XOR over the variables x1, . . . , xj .

Base case. For the base case, we observe that V1(x) = x1; namely, if x1 = 1, then
from layer 0 to layer 1, the path traverses the high edge; otherwise the low edge.

Induction step. Assume the induction hypothesis and consider Vj+1. We claim that

Vj+1 = xj+1 ⊕ (χj+1(A1) ∧ V1)⊕ · · · ⊕ (χj+1(Aj) ∧ Vj) (C.9)
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Applying Hadamards to stabilizer states in polynomial time

Namely, for each visited high edge with label A, the bit χj+1(A) “flips” the instruction
for the path to traverse the high or low edge at layer j + 1. Lastly, since the bits
χj+1(A) ∈ {0, 1} are constants defined by the LIMDD, and the expressions V1, . . . , Vj
are XORs over the variables x1, . . . , xj , it follows that Vj+1 is a XOR over the variables
x1, . . . , xj+1.

Lemma C.2. Let v be the root node of an n-qubit Tower Pauli-LIMDD. Let x, y ∈
{0, 1}ℓ for some 0 ≤ ℓ ≤ n. Then L(x, v

I ) · L(y, v
I )−1 = ±L(x⊕ y, v

I ).

Proof. Let V1, . . . , Vℓ be the predicates determining L as in Equation C.8. Then,

L(x, v
I ) =A

V1(x),(ℓ)
1 · · ·AVℓ(x),(ℓ)

ℓ (C.10)

L(y, v
I ) =A

V1(y),(ℓ)
1 · · ·AVℓ(y),(ℓ)

ℓ (C.11)

L(x⊕ y, v
I ) =A

V1(x⊕y),(ℓ)
1 · · ·AVℓ(x⊕y),(ℓ)

ℓ (C.12)

=A
V1(x)⊕V1(y),(ℓ)
1 · · ·AVℓ(x)⊕Vℓ(x),(ℓ)

ℓ (C.13)

=±A
V (x),(ℓ)
1 A

V1(y),(ℓ)
1 · · ·AVℓ(y),(ℓ)

ℓ A
Vℓ(y),(ℓ)
ℓ (C.14)

Here, in Equation C.13, we have used the fact that, since Vj(x⊕ y) is simply a XOR
over some of its inputs, we have

Vj(x⊕ y) = Vj(x)⊕ Vj(y) (C.15)

In Equation C.14, we have used the fact that Aa⊕b = ±Aa · Ab. Namely, we have
A = λP for some λ ∈ {0,±1,±i}; thus, if a = b = 1 and λ = ±i then A2 = −I
so Aa⊕b = I = −Aa · Ab; otherwise, if λ ∈ {0,±1} or if a = 0 or b = 0 we have
Aa⊕b = Aa ·Ab. We now obtain L(x, v

I ) · L(x⊕ y, v
I ) = L(y, v

I ) by simple
algebraic manipulation:

L(x, v
I ) · L(x⊕ y, v

I ) (C.16)

=±A
V1(x),(ℓ)
1 · · ·AVℓ(x),(ℓ)

ℓ︸ ︷︷ ︸
L(x,I)

·AV1(x),(ℓ)
1 ·AV1(y),(ℓ)

1 · · ·AVℓ(x),(ℓ)
ℓ ·AVℓ(y),(ℓ)

ℓ︸ ︷︷ ︸
L(x⊕y)

(C.17)

=±A
V1(x),(ℓ)
1 ·AV1(x),(ℓ)

1 ·AV1(y),(ℓ)
1 · · ·AVℓ(x),(ℓ)

ℓ ·AVℓ(x),(ℓ)
ℓ ·AVℓ(y),(ℓ)

ℓ (C.18)

=±A
V1(x)⊕V1(x)⊕V1(y),(ℓ)
1 · · ·AVℓ(x)⊕Vℓ(x)⊕Vℓ(y),(ℓ)

ℓ (C.19)

=±A
V1(y),(ℓ)
1 · · ·AVℓ(y),(ℓ)

ℓ = ±L(y, I) (C.20)

We obtain Equation C.18 by grouping like terms; this “shuffling” is possible because
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Pauli operators either commute or anticommute. The statement L(x, I) · L(y, I)−1 =

±L(x⊕ y, I) follows from Equation C.20.

Lemma C.3. Let v = v0 be a node in a Tower Pauli-LIMDD representing a stabilizer

state and let P,Q Pauli strings. Then a call to Add( v
αP , v

βQ
) invokes only at

most 5n recursive calls to Add.

Proof. We observed in Equation C.2 that when Add is called with parameters

Add( v0
αP , v0

βQ
), the parameters to the recursive calls are all of the form

Add(follow(x, v0
αP ), follow(x, v0

βQ
)) for some x ∈ {0, 1}ℓ and 0 ≤ ℓ ≤ n

(C.21)

Using the insights above, we have, for any x ∈ {0, 1}ℓ,

follow(x, v0
αP ) = vℓ

αλL(x⊕ χ(P ), I⊗ℓ ⊗ P (ℓ))
= vℓ

αλP (ℓ)L(x⊕ χ(P ), I)
(C.22)

follow(x, v0
βQ

) = vℓ
βωL(x⊕ χ(Q), I⊗ℓ ⊗ R(ℓ))

= vℓ
βωQ(ℓ)L(x⊕ χ(Q), I)

(C.23)

with λ, ω ∈ {0,±1,±i}. Thus, Add is called with parameters

Add
(

vℓ
αλP (ℓ)L(x⊕ χ(P ), I)

, vℓ
βωR(ℓ)L(x⊕ χ(Q), I)

)
for some λ, ω ∈ {0,±1,±i}

(C.24)

Therefore, this call to Add can be associated with the following operator,

(αλP (ℓ)L(x⊕ χ(P ), I))−1 · (ωQ(ℓ)L(x⊕ χ(Q), I)) (C.25)

=α−1λ−1βωP (ℓ)Q(ℓ)L(x⊕ χ(P ), I)L(x⊕ χ(Q), I)−1 (C.26)

=θP (ℓ)Q(ℓ)L(χ(P )⊕ χ(Q), I) (C.27)

for some θ ∈ C. In Equation C.27 we have used Lemma C.2 to obtain

L(x⊕ χ(P ), I)−1 · L(x⊕ χ(Q), I) = ±L(χ(P )⊕ χ(Q), I) (C.28)

Recall that in a Tower Pauli-LIMDD, all edge weights are in {0,±1,±i}, so in par-
ticular we have θ ∈ {0,±1,±i}. We observe that this operator depends on the level ℓ
and only the phase θ depends on x. That is to say, P (ℓ), Q(ℓ) and L(χ(P )⊕ χ(Q), I)
are fixed for a given level ℓ. It follows that each recursive call to Add at some level ℓ
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is associated with the same operator, modulo some phase θ ∈ {0,±1,±i}. Therefore,
the cache only stores at most five distinct recursive calls, and will achieve a cache hit
on all other recursive calls, at level ℓ. When a cache hit is achieved, the algorithm
does not recurse further, and instead terminates the current call. Since the diagram
contains n levels, there are at most 5n recursive calls in total.
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Appendix D

LIMDDs prepare the W state
efficiently

In this section, we prove Theorem 3.6. To this end, we show that LIMDDs can efficiently
simulate a circuit family given by McClung [220], which prepares the |W ⟩ state when
initialized to the |0⟩ state. We thereby show a separation between LIMDD and the
Clifford+T simulator, as explained in Sec. 3.3.4.3. Figure Figure D.1 shows the circuit
for the case of 8 qubits.

Theorem 3.6. There exists a circuit family Cn such that Cn |0⟩⊗n = |Wn⟩, that
Pauli-LIMDDs can efficiently simulate. Here simulation means that it constructs rep-
resentations of all intermediate states, in a way which allows one to, e.g., efficiently
simulate any single-qubit computational-basis measurement or compute any compu-
tational basis amplitude on any intermediate state and the output state.

Proof. The proof outline is as follows. First, we establish that the LIMDD of each
intermediate state (Lemma D.3), as well as of each gate (Lemma D.4), has polyno-
mial size. Second, we establish that the algorithms presented in Sec. 3.3.3 can apply
each gate to the intermediate state in polynomial time (Lemma D.8). To this end, we
observe that the circuit only produces relatively simple intermediate states. Specifi-
cally, each intermediate and output state is of the form |ψt⟩ = 1√

n

∑n
k=1 |xk⟩ where

the xk ∈ {0, 1}n are computational basis vectors (Lemma D.2). For example, the
output state has |xk⟩ = |0⟩k−1 |1⟩ |0⟩⊗n−k. The main technical tool we will use to
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reason about the size of the LIMDDs of these intermediate states, are the subfunction
rank and computational basis rank of a state. Both these measures are upper bounds
of the size of a LIMDD (in Lemma D.1), and also allow us to upper bound the time
taken by the ApplyGate and Add algorithms (in Lemma D.5 for ApplyGate and
Lemma D.6 Add).

The theorem follows from Lemma D.8 and Corollary D.1.

Figure D.1 shows the circuit for the case of n = 8 qubits. For convenience and without
loss of generality, we only treat the case when the number of qubits is a power of 2,
since the circuit is simplest in that case. In general, the circuit works as follows. The
qubits are divided into two registers; register A, with log n qubits, and register B,
with the remaining n − log n qubits. First, the circuit applies a Hadamard gate to
each qubit in register A, to bring the state to the superposition |+⟩⊗ logn |0⟩n−logn.
Then it applies n−log n Controlled-X gates, where, in each gate, each qubit of register
A acts as the control qubits and one qubit in register B is the target qubit. Lastly, it
applies n − log n Controlled-X gates, where, in each gate, one qubit in register B is
the control qubit and one or more qubits in register A are the target qubits. Each of
the three groups of gates is highlighted in a dashed rectangle in Figure D.1. On input
|0⟩⊗n, the circuit’s final state is |Wn⟩. We emphasize that the Controlled-X gates are

Figure D.1: Reproduced from McClung [220]. A circuit on eight qubits (n = 8) which
takes as input the |0⟩⊗8 state and outputs the |W8⟩ state. In the general case, it
contains log n Hadamard gates, and its Controlled-X gates act on one target qubit
and at most log n control qubits.
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LIMDDs prepare the W state efficiently

permutation gates (i.e., their matrices are permutation matrices). Therefore, these
gates do not influence the number of non-zero computational basis state amplitudes
of the intermediate states. We refer to the t-th gate of this circuit as Ut, and the t-th
intermediate state as |ψt⟩, so that |ψt+1⟩ = Ut |ψt⟩ and |ψ0⟩ = |0⟩ is the initial state.

We refer to the number of computational basis states with nonzero amplitude as a
state’s computational basis rank, denoted χcomp(|ψ⟩).

Definition D.1. (Computational basis rank) Let |ψ⟩ =
∑
x∈{0,1}n α(x) |x⟩ be a quan-

tum state defined by the amplitude function α : {0, 1}n → C. Then the computational
basis rank of |ψ⟩ is χcomp(|ψ⟩) = | {x | α(x) ̸= 0} |, the number of nonzero computa-
tional basis amplitudes.

Recall that, for a given function α : {0, 1}n → C, a string a ∈ {0, 1}ℓ induces a
subfunction αy : {0, 1}n−ℓ → C, defined as αy(x) = α(y, x). We refer to the number
of subfunctions of a state’s amplitude function as its subfunction rank. The following
definition makes this more precise.

Definition D.2. (Subfunction rank) Let |ψ⟩ =
∑
x∈{0,1}n αψ(x) |x⟩ be a quantum

state defined by the amplitude function αψ : {0, 1}n → C, as above. Let χsub(|ψ⟩ , ℓ)
be the number of unique non-zero subfunctions induced by strings of length ℓ, as
follows,

χsub(|ψ⟩ , ℓ) = |
{
αψy : {0, 1}n−ℓ → C | αy ̸= 0, y ∈ {0, 1}ℓ

}
| (D.1)

We define the subfunction rank of |ψ⟩ as χsub(|ψ⟩) = maxℓ=0,...n χsub(|ψ⟩ , ℓ).
We extend these definitions in the natural way for an n-qubit matrix U =∑
r,c∈{0,1}n αU (r, c) |r⟩ ⟨c| defined by the function αU : {0, 1}2n → C.

It is easy to check that χsub(|ψ⟩) ≤ χcomp(|ψ⟩) holds for any state.

For the next lemma, we use the notion of a prefix of a LIMDD node. This lemma will
serve as a tool which allows us to show that a LIMDD is small when its computational
basis rank is low. We apply this tool to the intermediate states of the circuit in
Lemma D.3.

Definition D.3 (Prefix of a LIMDD node). For a given string x ∈ {0, 1}ℓ, consider
the path traversed by the follow(x, r

R ) subroutine, which starts at the diagram’s
root edge and ends at a node v on level ℓ. We will say that x is a prefix of the node v.
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We let Labels(x) be the product of the LIMs on the edges of this path (i.e., including
the root edge). The set of prefixes of a node v is denoted pre(v).

Lemma D.1. If a LIMDD represents the state |φ⟩, then its width at any given level
(i.e., the number of nodes at that level) is at most χcomp(|φ⟩).

Proof. For notational convenience, let us number the levels so that the root node is
on level 0, its children are on level 1, and so on, with the Leaf on level n (contrary
to Figure 3.3). Let r be the root node of the LIMDD, and R the root edge’s label.
By construction of a LIMDD, the state represented by the LIMDD can be expressed as
follows, for any level ℓ ≥ 0,

R |r⟩ =
∑

x∈{0,1}ℓ

|x⟩ ⊗ follow(x, r
R ) (D.2)

Since r
R is the root of our diagram, if x is a prefix of v, then

follow(x, r
R ) = Labels(x) · |v⟩ (D.3)

A string x ∈ {0, 1}ℓ can be a prefix of only one node; consequently, the prefix sets
of two nodes on the same level are disjoint, i.e., pre(vp) ∩ pre(vq) = ∅ for p ̸= q.
Moreover, each string x is a prefix of some node on level ℓ (namely, simply the node
at which the follow(x, r

R ) subroutine arrives). Say that the ℓ-th level contains
m nodes, v1, . . . , vm. Therefore, the sets pre(v1), . . . ,pre(vm) partition the set {0, 1}ℓ.
Therefore, by putting Equation D.3 and Equation D.2 together, we can express the
root node’s state in terms of the nodes v1, . . . , vm on level ℓ:

R |r⟩ =
m∑
k=1

∑
x∈pre(vk)

|x⟩ ⊗ follow(x, r
R ) (D.4)

=

m∑
k=1

∑
x∈pre(vk)

|x⟩ ⊗ Labels(x) · |vk⟩ (D.5)

We now show that each term
∑
x∈pre(vk) |x⟩ ⊗ Labels(x) · |vk⟩ contributes a non-zero

vector. It then follows that the state has computational basis rank at least m, since
these terms are vectors with pairwise disjoint support, since the sets pre(vk) are pair-
wise disjoint. Specifically, we show that each node has at least one prefix x such that
Labels(x) · |v⟩ is not the all-zero vector. In principle, this can fail in one of three ways:
either v has no prefixes, or all prefixes x ∈ pre(vk) have Labels(x) = 0 because the
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path contains an edge labeled with the 0 LIM, or the node v represents the all-zero
vector (i.e., |v⟩ = 0⃗). First, we note that each node has at least one prefix, since each
node is reachable from the root, as a LIMDD is a connected graph. Second, due to
the zero edges rule (see Definition 3.5), for any node, at least one of its prefixes has
only non-zero LIMs on the edges. Namely, each node v has at least one incoming edge
labeled with a non-zero LIM, since, if it has an incoming edge from node w labeled
with 0, then this must be the high edge of w and by the zero edges rule the low edge
of w must also point to v and moreover must be labeled with I by the low factoring
rule. Together, via a simple inductive argument, there must be at least one non-zero
path from v to the root. Lastly, no node represents the all-zero vector, due to the low
factoring rule (in Definition 3.5). Namely, if v is a node, then by the low factoring rule,
the low edge has label I. Therefore, if this edge points to node v0, and the high edge
is v1

A , then the node v represents |v⟩ = |0⟩ |v0⟩+ |1⟩A |v1⟩ with possibly A = 0, so,
if |v0⟩ ≠ 0⃗, then |v⟩ ≠ 0⃗. An argument by induction now shows that no node in the
reduced LIMDD represents the all-zero vector.

Therefore, each node has at least one prefix x such that follow(x, r
R ) ̸= 0⃗. We

conclude that the equation above contains at least m non-zero contributions. Hence
m ≤ χcomp(R |r⟩), at any level 0 ≤ ℓ ≤ n.

Lemma D.2. Each intermediate state in the circuit in Figure D.1 (with n = 2c) has
χcomp(|ψ⟩) ≤ n.

Proof. The initial state is |ψ0⟩ = |0⟩⊗n, which is a computational basis state, so
χcomp(ψ0) = 1. The first log n gates are Hadamard gates, which produce the state

|ψlogn⟩ = H⊗ logn ⊗ In−logn |0⟩ = |+⟩⊗ logn ⊗ |0⟩⊗n−logn
=

1√
n

n−1∑
x=0

|x⟩ |0⟩⊗n−logn

(D.6)

This is a superposition of n computational basis states, so we have χcomp(|ψlogn⟩) = n.
All subsequent gates are controlled-X gates; these gates permute the computational
basis states, but they do not increase their number.

Lemma D.3. The reduced LIMDD of each intermediate state in the circuit in Fig-
ure D.1 has polynomial size.

Proof. By Lemma D.1, the width of a LIMDD representing |φ⟩ is at most χcomp(|φ⟩)
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at any level. Since there are n levels, the total size is at most nχcomp(|φ⟩). By
Lemma D.2, the intermediate states in question have polynomial χcomp, so the result
follows.

Lemma D.4. The LIMDD of each gate in the circuit in Figure D.1 (with n = 2c) has
polynomial size.

Proof. Each gate acts on at most k = log n + 1 qubits. Therefore, the width of any
level of the LIMDD is at most 4k = 4n2. The height of the LIMDD is n by definition,
so the LIMDD has at most 4n3 nodes.

The ApplyGate procedure handles the Hadamard gates efficiently, since they apply
a single-qubit gate to a product state. The difficult part is to show that the same
holds for the controlled-X gates. To this end, we show a general result for the speed
of LIMDD operations (Lemma D.5). Although this worst-case upper bound is tight,
it is exponentially far removed from the best case, e.g., in the case of Clifford cir-
cuits, in which case the intermediate states can have exponential χsub, yet the LIMDD
simulation is polynomial-time, as shown in Sec. 3.3.3.4.

Lemma D.5. The number of recursive calls made by subroutine ApplyGate(U, |ψ⟩),
is at most nχsub(U)χsub(|ψ⟩), for any gate U and any state |ψ⟩.

Proof. Inspecting Algorithm 8, we see that every call to ApplyGate(U, |ψ⟩) pro-
duces four new recursive calls, namely ApplyGate(follow(rc, U), follow(c, |ψ⟩))
for r, c ∈ {0, 1}. Therefore, the set of parameters in all recursive calls of
ApplyGate(U, |ψ⟩) is precisely the set of tuples (follow(rc, U), follow(c, |ψ⟩)),
with r, c ∈ {0, 1}ℓ with ℓ = 0 . . . n. The terms follow(rc, U) and follow(c, |ψ⟩)
are precisely the subfunctions of U and |ψ⟩, and since there are at most χsub(U) and
χsub(|ψ⟩) of these, the total number of distinct parameters passed to ApplyGate in
recursive calls at level ℓ, is at most χsub(U, ℓ) ·χsub(|ψ⟩ , ℓ) ≤ χsub(U) ·χsub(|ψ⟩). Sum-
ming over the n levels of the diagram, we see that there are at most nχsub(U)χsub(|ψ⟩)
distinct recursive calls in total. As detailed in Sec. 3.3.3.3, the ApplyGate al-
gorithm caches its inputs in such a way that it will achieve a cache hit on a call
ApplyGate(U ′, |ψ′⟩) when it has previously been called with parameters U, |ψ⟩ such
that U = U ′ and |ψ⟩ = |ψ′⟩. Therefore, the total number of recursive calls that is
made, is equal to the number of distinct calls, and the result follows.
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In our case, both χsub(U) and χsub(|ψ⟩) are polynomial, so a polynomial number of
recursive calls to ApplyGate is made. We now show that also the Add subroutine
makes only a small number of recursive calls every time it is called from ApplyGate.
First, Lemma D.6 shows expresses a worst-case upper bound on the number of recursive
calls to Add in terms of χsub. Then Lemma D.7 uses this result to show that, in our
circuit, the number of recursive calls is polynomial in n.

Lemma D.6. The number of recursive calls made by the subroutine Add(|α⟩ , |β⟩) is
at most nχsub(|α⟩) · χsub(|β⟩), if |α⟩ , |β⟩ are n-qubit states.

Proof. Inspecting Algorithm 9, every call to Add(|α⟩ , |β⟩) produces two
new recursive calls, namely Add(follow(0, |α⟩), follow(0, |β⟩)) and
Add(follow(1, |α⟩), follow(1, |β⟩)). It follows that the set of parameters on n − ℓ

qubits with which Add is called is the set of tuples (follow(x, |α⟩), follow(x, |β⟩)),
for x ∈ {0, 1}ℓ. This corresponds precisely to the set of subfunctions of α and
β induced by length-ℓ strings, of which there are χsub(|α⟩ , ℓ) and χsub(|β⟩ , ℓ),
respectively. Because the results of previous computations are cached, as explained
in Sec. 3.3.3.3, the total number of recursive calls is the number of distinct recursive
calls. Therefore, we get the upper bound of χsub(|α⟩) · χsub(|β⟩) for each level of
the LIMDD. Since the LIMDD has n levels, the upper bound nχsub(|α⟩) · χsub(|β⟩)
follows.

Lemma D.7. The calls to Add(|α⟩ , |β⟩) that are made by the recursive calls to
ApplyGate(Ut, |ψt⟩), satisfy χsub(|α⟩), χsub(|β⟩) = poly(n).

Proof. We have established that the recursive calls to ApplyGate are all called
with parameters of the form ApplyGate(follow(r, c, Ut), follow(c, |ψt⟩)) for some
r, c ∈ {0, 1}ℓ. Inspecting Algorithm 8, we see that, within such a call, each
call to Add(|α⟩ , |β⟩) has parameters which are both of the form |α⟩ , |β⟩ =

ApplyGate(follow(rx, cy, Ut), follow(cy, |ψt⟩)) for some x, y ∈ {0, 1}; therefore,
the parameters |α⟩ , |β⟩ are of the form |α⟩ , |β⟩ = follow(r, c, Ut) · follow(r, |ψt⟩).
Here follow(cy, |ψt⟩) is a quantum state on n− (ℓ+ 1) qubits.

The computational basis rank of a state is clearly non-increasing under taking sub-
functions; that is, for any string x, it holds that, χcomp(follow(x, |ψ⟩)) ≤ χcomp(|ψ⟩).
In particular, we have χcomp(follow(cy, |ψt⟩)) ≤ χcomp(|ψt⟩) = O(n). The matrix
follow(rx, cy, Ut) is a subfunction of a permutation gate, and applying such a matrix
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to a vector cannot increase its computational basis rank, so we have

χsub(|α⟩) =χsub(follow(rx, cy, Ut) · follow(cy, |ψt⟩)) (D.7)

≤χcomp(follow(rx, cy, Ut) · follow(cy, |ψt⟩)) ≤ χcomp(follow(cy, |ψt⟩))
(D.8)

≤χcomp(|ψt⟩) = O(n) (D.9)

This proves the lemma.

Lemma D.8. Each call to ApplyGate(Ut, |ψt⟩) runs in polynomial time, for any
gate Ut in the circuit in Figure D.1 (with n = 2c).

Proof. If Ut is a Hadamard gate, then LIMDDs can apply this in polynomial time by
Theorem 3.5, since |ψt⟩ is a stabilizer state. Otherwise, Ut is one of the controlled-X
gates. In this case there are a polynomial number of recursive calls to ApplyGate,
by Lemma D.5. Each recursive call to ApplyGate makes two calls to Add(|α⟩ , |β⟩),
where both α and β are states with polynomial subfunction rank, by Lemma D.7. By
Lemma D.6, these calls to Add all complete in time polynomial in the subfunction
rank of its arguments.

Corollary D.1. The circuit in Figure D.1 (with n = 2c) can be simulated by LIMDDs
in polynomial time.
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Appendix E

Proofs of Section 5.3

In this appendix, we prove Theorem 5.1 as reproduced below. We also reproduce Fig-
ure 5.2 in Figure E.1, which additionally includes references to the respective lemmas.
Chapter 2 and Section 5.2 contain relevant preliminaries on quantum information and
QDDs.

Theorem 5.1. The succinctness results in Figure 5.2 hold.

MPS

LIMDD

RBM

QMDD

ADD

×
Lemma E.6

×
Lemma E.5

Lemma E.3

×Lemma E.11

×Lemma E.8

×Lemma E.10

×
×

Lemma E.8Lemma E.2

Lemma E.1

Figure E.1: Succinctness relations between various classical data structures for repre-
senting quantum states. Solid arrows A → B denote B ≺s A, i.e., B is strictly more
succinct than A. Crossed arrows A−→× B denote a separation B ⪯̸s A; a bidirectional
crossed arrow implies incomparability. Blue arrows indicate novel relations that we
identified.
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Proof. The proofs for individual relations are stated in the lemmas referenced by
Figure E.1.

Note that we do not include a proof for every arrow (direction), since several can be
derived through transitivity properties. All unlabeled edge (directions) can be derived
as follows:

• MPS ≺s ADD follows from MPS ≺s QMDD and QMDD ≺s ADD

• LIMDD ≺s ADD follows from LIMDD ≺s QMDD and QMDD ≺s ADD

• QMDD ⪯̸s RBM follows from LIMDD ⪯̸s RBM and LIMDD ≺s QMDD

• ADD ⪯̸s RBM follows from LIMDD ⪯̸s RBM and LIMDD ≺s ADD

• RBM ⪯̸s MPS follows from RBM ⪯̸s ADD and MPS ≺s ADD

• RBM ⪯̸s QMDD follows from RBM ⪯̸s ADD and QMDD ≺s ADD

• RBM ⪯̸s LIMDD follows from RBM ⪯̸s ADD and LIMDD ≺s ADD

This completes the proof of all stated succinctness relations.

Lemma E.1. QMDD is exponentially more succinct than ADD.

Proof. Since ADD is a special case of QMDD (Sec. 5.2.2), QMDD is at least as succinct.

Fargier et al. [114] prove an exponential separation in Prop. 10. The proposition itself
only mentions a superpolynomial separation; the fact that the separation is in fact
exponential is contained in the proof.

Lemma E.2. LIMDD is exponentially more succinct than QMDD.

Proof. Since QMDD is a special case of LIMDD (Sec. 5.2.2), LIMDD is at least as
succinct.

Vinkhuijzen et al. [337] show an exponential separation for so-called ‘cluster states.’

Lemma E.3. MPS is exponentially more succinct than QMDD.
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Proofs of Section 5.3

Proof. We show in Section G.4 that MPS is at least as succinct as QMDD, by showing
that every QMDD can be translated to MPS in linear time.

We provide a state |φ⟩ on n qubits, which has an exponential-sized QMDD, but a
polynomial-sized MPS. Let (x)2 ∈ Z be the integer represented by a bit-string x ∈
{0, 1}n. The state of interest is

|φ⟩ =
∑

x∈{0,1}n

(x)2 |x⟩ =
∑

x∈{0,1}n

 n∑
j=1

2j−1xj

 |x⟩ (E.1)

Fargier et al. [114] show that this state has exponential-sized QMDD (Prop. 10). On the
other hand, it can be efficiently represented by the following MPS of bond dimension
2:

A0
n = [ 1 0 ] A0

j = [ 1 0
0 1 ] A0

1 = [ 01 ] (E.2)

A1
n = [ 1 2n−1 ] A1

j =
[
1 2j−1

0 1

]
A1

1 = [ 11 ] (E.3)

Here j ranges from 2 . . . n− 1. To show this, we can write

Axn
n =

[
1 xn · 2n−1

]
A
xj

j =

[
1 xj · 2j−1

0 1

]
for j = 2, ..., n− 1 Ax1

1 =

[
x1

1

]

Hence we can write

Axn
n · · · ·Ax1

1 =
[
1 xn · 2n−1

]
·

[
1
∑n−1
j=2 xj · 2j−1

0 1

]
·

[
x1

1

]
(E.4)

=
[
1 xn · 2n−1

]
·

[∑n−1
j=1 xj · 2j−1

1

]
(E.5)

=
[∑n

j=1 2
j−1 · xj

]
(E.6)

The following quantum state, called |Sum⟩, will feature in several of the below proofs.
Specifically, we will show that RBM and MPS can represent this state efficiently,
whereas LIMDDs cannot. A similar state will be used to show that LIMDD does not
support the Swap operation. We omit normalization factors, as all data structures are

241



oblivious to them.

|Sum⟩ = |+⟩⊗n +

n⊗
j=1

(|0⟩+ eiπ2
−j−1

|1⟩) (E.7)

Lemma E.4. The LIMDD of |Sum⟩ has size 2Ω(n) for every variable order.

Proof. We compute that the amplitude function for |Sum⟩ is

f(x⃗) = 1 + eiπ
∑n

j=1 xj ·2−j−1

. (E.8)

We note that f is injective and never zero, and indeed that the function (x⃗, y⃗) 7→ f(x⃗)
f(y⃗)

is injective on the domain where x⃗ ̸= y⃗.

We now study the nodes v at level 1 (with idx(v) = 1) via the subfunctions they
represent, considering all variable orders. These nodes represent subfunctions on one
variable. So we take out one variable xk ∈ x⃗ = {x1, ..., xn}. Without loss of generality,
we may pick x1 because the summation in Equation E.8 is commutative. For each
assignment a⃗ ∈ {0, 1}n−1, we obtain the function:

fa⃗(x1) = 1 + eiπ
∑n

j=2 aj ·2
−j−1

· eiπ·1/4x1 .

We now show that for any a⃗ ̸= c⃗ ∈ {0, 1}n−1 there is no Q ∈ PauliLIM1 such that
fa⃗ = Qfc⃗.

Let Q = αP for α ∈ C \ {0} , P ∈ { I , X, Y, Z}, so fa⃗ = αPfc⃗. Furthermore, define
α = α(z, x, a⃗, x1) = (−1)z · fa⃗(x1⊕x=0)

fa⃗(x1⊕x=1) for P = Xx · Zz with x, z ∈ {0, 1}, absorbing
the factor i of Y and -1 of ZX in α. The function α is injective, i.e., α(s) = α(t)

implies s = t, based on our earlier observations about f .

It follows that each subfunction fa⃗ requires a separate node at level 1. So there are
Ω(2n−1) nodes.

Lemma E.5. There is a family of quantum states with polynomial-size MPS but
exponential-size LIMDD.

Proof. MPS require only bond dimension 2 to represent the state |Sum⟩ as shown by
Lemma E.3. However, Lemma E.4 shows that LIMDDs require exponential size to
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Proofs of Section 5.3

represent the same state.

Lemma E.6. There is a family of quantum states with polynomial-size LIMDD but
exponential-size MPS.

Proof. LIMDD can efficiently represent any stabilizer state, but some stabilizer states
require exponential-size MPS (in particular, the cluster state, among others [337].

Lemma E.7. MPS is at least as succinct as QMDD.

Proof. Section G.4 provides a polynomial-time transformation from QMDD to MPS.

x1

x2

x3

x4

xn−1

xn

0 1
A

...

...

...

Figure E.2: An ADD for the inner product
function IP ′ from Lemma E.8 made up of
stacked blocks, each consisting of a layer
of 2 nodes and a layer of 4 nodes. A in
the right leaf is the normalization constant
from Lemma E.8.

For proving the separation between RBM
and ADD, we use the seminal Boolean
function IP : {0, 1}n → {0, 1}, x⃗ 7→∑n/2
k=1 xkxk+n/2 mod 2 for even n, which

computes the inner product between the
first half of the input with the second
half. Martens et al. [214] show that
any RBM requires a number of hidden
weights m which is necessarily exponen-
tial in m.

Lemma E.8. There is a quantum state
that has linear representation both as
ADD, and QMDD, and LIMDD, and MPS,
but requires exponential space when rep-
resented as RBM under any qubit order.

Proof. We will give the proof for the
ADD; the result will then follow for
QMDD, LIMDD and MPS, since these are
at least as succinct as ADD.

Since we consider the representation size
under any qubit variable order, we may
as well interleave the order. That is, we consider IP ′ which equals IP with xk+1
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and xk+n/2 swapped, i.e. IP ′(x) = x1x2 + x3x4 + ...+ xn−1xn. Consider the n-qubit
quantum state |φ⟩ where ⟨x|φ⟩ = IP ′(x)/A for x ∈ {0, 1}, where the normalization
factor is A =

√∑
x∈{0,1} IP

′(x). Martens et al. [214] show that any RBM requires a
number of hidden weights m which is necessarily exponential in m.

There exists an ADD which represents |φ⟩ in O(n) space. This ADD is constructed
from stacked blocks of two layers (of 2 and 4 nodes, respectively). The (k + 1)/2-th
block (counting from 1 from the top) for odd k = 1, 3, 5, ... corresponds to computing
the value xk · xk+1 and adding it to the running value of IP ′(x1, x2, ..., xk−1). See
Figure E.2.

Lemma E.9. RBM can represent the state |Sum⟩ with a single hidden node.

Proof. All nodes have bias 0, i.e., β = [0] and α = [0, ..., 0]T (a length-n vector). The
weight on the edge between the hidden node and the j-th visible node is eiπ2

−j−1

.
Then the RBM is defined by the multiplicative term of this hidden node, yielding

ψ(x⃗) = 1 + ew·x⃗ = 1 +

n∏
j=1

exjiπ2
−j−1

(E.9)

This corresponds exactly with the sum state: |ψ⟩ = |Sum⟩.

Lemma E.10. There is a state with a RBM of size O(n) but which requires LIMDD
of size 2Θ(n), for every variable order.

Proof. RBM can represent the state |Sum⟩, by Lemma E.9. However, Lemma E.4
shows that LIMDDs require exponential size to represent this state.

Lemma E.11. There is a family of states with polynomial-size RBM but exponential-
size MPS.

Proof. RBM can efficiently represent stabilizer states, as shown by Zhang et al. [365].
Vinkhuijzen et al. [337] show that some stabilizer states require exponential-size MPS
(in particular, the cluster state, among others).
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Appendix F

Proofs of Section 5.4

In this appendix, we prove Theorem 5.2 and Theorem 5.3 from Section 5.4.

Theorem 5.2 is restated below. The proofs are organized per row of the table, so there
is one section for each data structure. Section 5.2 and Chapter 2 contain relevant
preliminaries on quantum information and QDDs.

Theorem 5.2. The tractability results in Table 5.2 hold.

We restate the other main result Theorem 5.3 here and provide a proof.

Theorem 5.3. Assuming the exponential time hypothesis, the fidelity of two states
represented as LIMDDs or RBMs cannot be computed in polynomial time. The proof
uses a reduction from the #EVEN SUBGRAPHS problem [169].

Proof. Lemma F.19 proves that LIMDD does not admit a polynomial time algorithm
unless the exponential time hypothesis fails. Corollary F.1 concludes the same for
RBM.

F.1 Easy and hard operations for ADD

As noted in Sec. 5.2.2, the decision diagrams are special cases of each other. In par-
ticular, ADD specializes QMDD, which specializes LIMDD. From this, it immediately
follows that LIMDD ⪯s QMDD ⪯s ADD. We also use this fact in the below proofs.
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Easy and hard operations for ADD

Lemma F.1. ADD supports Sample and Measure.

Proof. LIMDD supports these operations (see Lemma F.15). Since ADD specializes
LIMDD, it inherits the tractability of these operations

Lemma F.2. ADD supports inner-product ⟨φ|ψ⟩.

Proof. QMDD supports these operations (see Lemma F.6). Since ADD is a specializa-
tion of QMDD, it inherits the tractability of these operations.

Lemma F.3. ADD supports Addition and Equal.

Proof. See Fargier et al. [113] Table 1 (EQ) and Table 2 (+BC).

Lemma F.4. ADD supports Local, and hence also Hadamard, X,Y,Z, T , Swap
and CZ.

Proof. Suppose U is a local gate on k qubits. Then U can be expressed as the sum of
4k terms, U =

∑
x,y∈{0,1}k axy |x⟩ ⟨y| ⊗ In−k. Each of these terms individually can be

applied to an ADD in polynomial time ( [113] Table 1 CD), since they are projections,
followed by X gates. Since a constant number of states can be added in polynomial

Table 5.2: Tractability of queries and manipulations on the data structures analyzed
in this chapter (single application of the operation). A ✓ means the data structure
supports the operation in polytime, a ✓’ means supported in randomized polytime,
and ✖ means the data structure does not support the operation in polytime. A ◦
means the operation is not supported in polytime unless P = NP . ? means unknown.
The table only considers deterministic algorithms (for some ? a probabilistic algorithm
exists, e.g., for InnerProd on RBM). Novel results are blue and underlined.

Queries Manipulation operations
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Vector ✓’ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

ADD Section F.1 ✓’ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

QMDD Section F.2 ✓’ ✓ ✓ ✓ ✓ ✖ ✖ ✓ ✓ ✖ ✖ ✓

LIMDD Section F.3 ✓’ ✓ ✓ ◦ ◦ ✖ ✖ ✓ ✓ ✖ ✖ ✓

MPS Section F.4 ✓’ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

RBM Section F.5 ✓’ ? ? ◦ ◦ ? ? ✓ ✓ ✓ ? ✓
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Proofs of Section 5.4

time in ADDs (Lemma F.3), the result can be computed in polynomial time. Since
ADD supports arbitrary k-local gates, in particular it supports all other gates that are
mentioned: H, X, Y , Z, T , Swap CZ.

F.2 Easy and hard operations for QMDD

Lemma F.5. QMDD supports Equal, Sample and Measure.

Proof. LIMDD supports these operations (see Lemma F.15). Since QMDD specializes
LIMDD, it inherits the tractability of these operations.

Lemma F.6. QMDD supports inner product (InnerProd) and fidelity (Fidelity).

Proof. We show in Section G.4 that a QMDD can be efficiently and exactly translated
to an MPS. Since MPS supports inner product and fidelity, the result follows.

Lemma F.7. QMDD does not support Addition in polynomial time.

Proof. Fargier et al. [113] (Thm. 4.9) show that Addition is hard for QMDD.

Lemma F.8. QMDD does not support Hadamard in polynomial time and hence
neither Local.

Proof. By reduction from addition: Take a QMDD root node v with left child a and
right child b, then Hadamard(v) = H |v⟩ is a new node with a left child |a⟩+ |b⟩. By
choosing |a⟩ , |b⟩ to be the states from Fargier et al.’s proof showing that addition is
intractable for QMDDs, the state |a⟩ + |b⟩ requires an exponential-size QMDD. Since
QMDD does not support the Hadamard gate, neither does it support arbitrary local
gates (Local).

Lemma F.9. QMDD supports Pauli gates X,Y,Z and T in polynomial time.

Proof. We will show that we can apply any single-qubit diagonal or anti-diagonal
operator A =

[
α 0
0 β

]
to an QMDD in polynomial time. The result then immediately

follows for the special cases of the gates X,Y, Z and T . Applying any diagonal local
operator A =

[
α 0
0 β

]
to the top qubit is easy: simply multiply the weights of the low
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Easy and hard operations for QMDD

and high edges of the diagram’s root node with respectively α and β. For the anti-
diagonal operator AT , we also swap low with high edges. To apply the local operator
on any qubit, simply do the above for all nodes on the corresponding level.

To see that the resulting QMDD indeed represents the state A·|ψ⟩ (or AT |ψ⟩), consider
the amplitude of any basis state x ∈ {0, 1}n. The amplitude of |x⟩ in an QMDD is
the product of the labels found on the edges while traversing the diagram from root
to leaf. In the new diagram, only the weights have changed, whereas the topology has
remained the same. If xk = 0 (resp. xk = 1), then, the k-th edge encountered during
this traversal is the same in the new diagram as in the old diagram, but the label has
been multiplied by α. Otherwise, if xk = 1 (resp. xk = 0), then the label is multiplied
by β. All the other weights remain the same. Therefore, the amplitude of x in the
new diagram is equal to the old amplitude multiplied by α (resp. β).

Lemma F.10. QMDD supports controlled-Z in polynomial time.

Proof. Algorithm 20 applies a controlled-Z gate to a QMDD in time linear in the
number of nodes in the QMDD. To show that this is the runtime, we consider the
number of times the algorithms ApplyControlledZ and ApplyZ are called.

For both these algorithms, say that a call is trivial if the result is already in the cache,
otherwise a call is non-trivial. Then a trivial call completes in constant time (i.e., in
time O(1)). Moreover, the number of trivial calls is at most twice the number of non-
trivial calls. Therefore, for the purposes of obtaining an asymptotic upper bound on
the running time, it suffices to count the number of non-trivial calls to the algorithm.

Thanks to the cache, a given setting of the input parameters (v, a, b) (or (v, t) in the
case of ApplyZ) will trigger only one non-trivial call. Therefore, the number of non-
trivial calls is equal to the number of distinct input parameters. But here only v varies,
so the number of non-trivial calls is at most the number of nodes in the QMDD. This
reasoning holds for both algorithms ApplyControlledZ and ApplyZ. Therefore,
both subroutines run in time O(m), for an QMDD which contains m nodes.

The correctness of this algorithm follows from the fact that CZa,b |v⟩ = λ0 |v0⟩ +

λ1Zb |v1⟩ where node v is represents an a − qubit state vv0
λ0 v1

λ1

and Zb means
applying the Z gate to the b-th qubit. This behavior is implemented by Line 4. By
linearity, the algorithm is correct for nodes representing k-qubit states with k > a.
This is implemented by Line 5.
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Proofs of Section 5.4

Algorithm 20 Applies a controlled-Z gate to a QMDD node v, with control qubit a
and target qubit b. More specifically, given a QMDD node v, representing the state
|v⟩, this subroutine returns a QMDD edge e representing |e⟩ = CZba |v⟩. We assume
wlog that a > b, since CZba = CZab . Here idx denotes the index of the qubit of v,
and Cache denotes a hashmap which maps triples to QMDD nodes. The subroutine
ApplyZ applies a Z gate to a given target qubit t.
1: procedure ApplyControlledZ(QMDD node v, qubit indices a, b)

2: Say that node v is vv0
λ0 v1

λ1

3: if the Cache contains the tuple (v, a, b) then return Cache[v, a, b]

4: else if idx(v) = a then r := MakeNode( v0
λ0 , λ1 · ApplyZ(v1, b))

5: else r := MakeNode(λ0 · ApplyCZ(v0, a, b), λ1 · ApplyCZ(v1, a, b))

6: Cache[v, a, b] := r

7: return r

8: procedure ApplyZ(QMDD node v, qubit index t)

9: Say that node v is vv0
λ0 v1

λ1

10: if the Cache contains the tuple (v, t) then return Z-Cache[v, t]

11: else if idx(v) = t then r := MakeNode( v0
λ0 , v1

−λ1 )
12: else r := MakeNode(λ0 · ApplyZ(v0, t), λ1 · ApplyZ(v1, t))

13: Z-Cache[v, t] := r

14: return r

...

...

...

1

+n

...

...

...

1

Rotn

eiπ·2
−n−1

eiπ·2
−2

Figure F.1: The states |+n⟩ and |Rotn⟩ state as QMDD.
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Easy and hard operations for QMDD

To prove that a single swap operation can explode the LIMDD or QMDD, we first
provide two lemmas.

Lemma F.11. For n ≥ 1, let |Rotn⟩ =
⊗n

j=1

(
|0⟩+ eiπ2

−j−1 |1⟩
)

and |+n⟩ =

|+⟩⊗n.Then the states |Rotn⟩ and |+n⟩ have a linear-size QMDD.

Proof. Figure F.1 provides the QMDD representing both states.

Lemma F.12. The following state has large LIMDD, for any variable order in which
the qubit in register B comes after the qubits in register A.

|Sum ′⟩ = |+⟩⊗nA |0⟩B +

n⊗
j=1

(|0⟩A + eiπ2
−j−1

|1⟩A)⊗ |1⟩B (F.1)

Proof. The proof is similar to that of Lemma E.4 except that we reason about level
2.

Lemma F.13. QMDD does not support Swap in polynomial time.

Proof. Let |+n⟩ and |Rotn⟩ be the states from Lemma F.11, and define the following
state |ρ⟩ on n+ 2 qubits,

|ρ⟩ = |0⟩ |+n⟩ |0⟩+ |1⟩ |Rotn⟩ |0⟩ (F.2)

Then |ρ⟩ has a small QMDD, of only size O(n). When we swap the first and last
qubits, we obtain a state that includes |Sum ′⟩ from Lemma F.12:

Swapn1 · |ρ⟩ = |0⟩ ⊗ (|+n⟩ |0⟩+ |Rotn⟩ |1⟩) (F.3)

The QMDD of Swapn1 · |ρ⟩ is at least as large as that of |Sum⟩: First, Wegener [344],
Th. 2.4.1, shows that constraining can never increase the DD size, so we can discard
the |0⟩⊗ part (regardless of variable order), as Swapn1 · |ρ⟩ is at least as large as
|Sum ′⟩. Then Lemma F.12 shows that this LIMDD has size at least 2Ω(n) for any
variable order. Since, LIMDD is at least as succinct as QMDD (see Figure 5.2), this
also holds for QMDD.

Lemma F.14. QMDD does not support Local in polynomial time.
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Proofs of Section 5.4

Proof. This is implied by Lemma F.13, since Swap is a 2-local gate (namely, it involves
2 qubits).

F.3 Easy and hard operations for LIMDD

Lemma F.15. LIMDD supports Sample, Measure, Equal and X,Y,Z.

Proof. Vinkhuijzen et al. [337] show that LIMDD supports Sample, Measure, Equal
and X,Y,Z.

Here we show that LIMDD also support applying a T gate, but does not support
Addition, H and Swap. In this work, we show that computing the fidelity (and
hence the inner product, as we can reduce fidelity to inner product) between two
states represented by LIMDDs is NP-hard.

Lemma F.16. LIMDD supports Controlled-Z in polynomial time.

Proof. Vinkhuijzen et al. [337] show how to apply any controlled Pauli gate to a state
represented by a LIMDD in polynomial time, in the case where the target qubit comes
after the control qubit in the variable order of that LIMDD. However, in the case of
the controlled-Z, there is no distinction between control and target qubit, since the
gate is symmetric. Therefore, their analysis applies to all controlled-Z gates. In fact,
inspecting their method, we see that the LIMDD of the resulting state is never larger
in size than the LIMDD we started with.

It is known that addition is hard for QMDD (see Table 2 in [113]). For LIMDD,
the same was suspected, but not proved in [337]. We show it here by showing that
⟨Z⟩-LIMDD does not support addition in polytime.

Lemma F.17. LIMDD does not support Addition in polytime.

Proof. Consider the states |+n⟩ and |Rotn⟩ as defined in Lemma F.12. Both states
have polynomially sized QMDDs as shown in Lemma F.11. Since LIMDD is at least
as succinct as QMDD (see Figure 5.2), the LIMDDs representing these states are
also small. However, their sum is the state |Sum⟩ = |+n⟩ + |Rotn⟩, which has an
exponential-size LIMDD relative to every variable order by Lemma E.4.
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Lemma F.18. LIMDD does not support Hadamard in polynomial time, and hence
neither does it support Local.

Proof. Since Hadamard can be used together with measurement (called conditioning
by Fargier [113]) to realize state addition as explained in Section 5.4, it is also in-
tractable. (Recall also from [344] Th. 2.4.1 that conditioning never increases DD size;
this is true in particular for LIMDDs)

We now prove that the fidelity of LIMDDs cannot be computed in polynomial time,
under common assumptions of complexity theory.

LIMDD FIDELITY is hard to compute. We show that LIMDD FIDELITY cannot
be computed in polynomial time, unless the Exponential Time Hypothesis (ETH) is
false. This proof implies that inner product is hard, since fidelity reduces to inner
product. Proving hardness of inner product is also a specialized case of the below
construction, which does not require our newly defined EOSD problem (see below)
but only the well-known hard problem of counting even subgraphs of a certain size
(#EVEN SUBGRAPHS).

The proof of LIMDD FIDELITY hardness proceeds in several steps. The starting
point is Jerrum and Meeks’ result that the problem #EVEN SUBGRAPHS cannot be
solved in polynomial time unless ETH is false (Lemma F.19). We introduce a prob-
lem we call EVEN ODD SUBGRAPHS DIFFERENCE (EOSD). We give a reduction
from #EVEN SUBGRAPHS to EOSD, thus showing that EOSD cannot be solved
in polynomial time, under the same assumptions (Lemma F.21). This step is the
most technical part of the proof. Finally, we give a reduction form EOSD to LIMDD
FIDELITY, thus obtaining the desired result, that LIMDD FIDELITY cannot be com-
puted in polynomial time (to a certain precision), unless ETH is false (Lemma F.20).
In this step, we use the fact that LIMDDs can efficiently represent Dicke states and
graph states (a type of stabilizer state). Specifically, we will show that computing the
fidelity between these states essentially amounts to solving EOSD for the given graph
state. Dicke states were first studied by Dicke [101]; see also Bärtschi et al. [32].

We first formally define the three problems above, including computing the fidelity of
two LIMDDs. We will need the following terminology for graphs. For an undirected
graph G = (V,E) and a set of vertices S ⊆ V , we denote by G[S] the subgraph induced
by S. If |S| = k, then we say that G[S] is a k-induced subgraph, and we say that it is
an even (resp. odd) subgraph if G[S] has an even (resp. odd) number of edges. We
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Proofs of Section 5.4

let e(G, k) (resp. o(G, k)) denote the number of even (resp. odd) k-induced subgraphs
of G.

LIMDD FIDELITY.
Input: Two LIMDDs, representing the states |φ⟩ , |ψ⟩
Output: The value | ⟨φ|ψ⟩ |2 to 2n bits of precision.

#EVEN SUBGRAPHS
Input: A graph G = (V,E), an an integer k
Output: The value e(G, k).

EVEN ODD SUBGRAPH DIFFERENCE (EOSD).
Input: A graph G = (V,E), and an integer k.
Output: The value |e(G, k)− o(G, k)|, i.e., the absolute value of the difference
between the number of even and odd induced k-subgraphs of G.

Lemma F.19 (Jerrum and Meeks [169] ). If #EVEN SUBGRAPHS is polytime, then
ETH is false.

Proof. Jerrum and Meeks [169] showed that counting the number of even induced
subgraphs with k vertices is #W[1]-hard. Consequently, there is no algorithm running
in time poly(n) (independent of k) unless the exponential time hypothesis fails.

Lemma F.20. There is no polynomial-time algorithm for LIMDD FIDELITY, i.e., for
computing fidelity between two LIMDDs to 2n bits of precision, unless the Exponential
Time Hypothesis (ETH) fails.

Proof. Suppose there was such a polynomial-time algorithm, running in time O(nc)

for some constant c ≥ 1. We will show that then EOSD can be solved in time O(nc)

(independent of k), by giving a reduction from EOSD to LIMDD FIDELITY. From
Lemma F.21, it would then follow that ETH is false.

The reduction from EOSD to LIMDD FIDELITY is as follows.

Let G be an input graph on n vertices V and 0 ≤ k ≤ n an integer. Let |G⟩ be the
graph state corresponding to G [324], so that

|G⟩ = 1

2n/2

∑
S⊆V

(−1)|G[S]| |S⟩ (F.4)
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Easy and hard operations for LIMDD

where |G[S]| denotes the number of edges in the S-induced subgraph of G, and |S⟩
denotes the computational-basis state |S⟩ = |x1⟩⊗ |x2⟩⊗...⊗|xn⟩ with xj = 1 if j ∈ S

and xj = 0 otherwise. Let |Dk
n⟩ be the Dicke state [101].

|Dk
n⟩ =

1√(
n
k

) ∑
x⃗∈{0,1}n with |x⃗|=k

|x⃗⟩ (F.5)

Both these states have small LIMDDs:

Dicke state. Bryant [67] gives a construction for BDDs to represent the function
fk : {0, 1}n → {0, 1}, with fk(x) = 1 iff |x| = k. This is precisely the amplitude
function of the Dicke state |Dk

n⟩ (up to a factor 1/
√(

n
k

)
). This construction also

works for LIMDDs, by simply setting all the edge labels to the identity, and using
root label 1/

√(
n
k

)
· I⊗n.

Graph state. Vinkhuijzen et al. [337] show how to efficiently construct a LIMDD for
any graph state.

It is straightforward to verify that the fidelity between |Dk
n⟩ and |G⟩ is related to the

subgraphs of G, as follows,

⟨Dk
n|G⟩ =

1√(
n
k

)
2n

∑
S⊆V :|S|=k

(−1)|G[S]| =
1√(
n
k

)
2n

(e(G, k)− o(G, k)) (F.6)

Hence,

|e(G, k)− o(G, k)|︸ ︷︷ ︸
solution to EOSD

=

√√√√(n
k

)
2n| ⟨Dk

n|G⟩ |2︸ ︷︷ ︸
Fidelity

(F.7)

Since | ⟨Dk
n|G⟩ |2 denotes the fidelity between |Dk

n⟩ and |G⟩, and |e(G, k) − o(G, k)|
denotes the quantity asked for by the EOSD problem, this completes the reduction.
The overhead of constructing the LIMDDs from the description of the Dicke and graph
states takes linear time in the size of the resulting LIMDD. So, if the fidelity of two
LIMDDs is computed in polynomial time, say, in time O(nc), then also the quantity
|e(G, k) − o(G, k)| is computed in time O(nc); thus, EOSD is solved in time O(nc).
Lastly, we address the number of bits of precision required. In order to exactly compute
the integer |e(G, k)− o(G, k)|, it is necessary to compute the fidelity | ⟨Dk

n|G⟩ |2 with
a precision of at least one part in

(
n
k

)
2n. Put another way, the required number of
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bits of precision is log2(
(
n
k

)
· 2n) ≤ log2(2

n · 2n) = 2n. Summarizing, computing the
fidelity of (the states represented by) two LIMDDs representing a graph state and a
Dicke state, to 2n bits of precision, is not possible in polynomial time, unless ETH
fails.

Lemma F.21. There is no polynomial-time algorithm for EOSD, unless ETH is false.

Proof. We provide an efficient reduction (in Algorithm 21) from #EVEN SUB-
GRAPHS: the problem, on input an undirected graph G and a parameter k ∈
{0, 1, 2, ..., |V |}, of computing the number of k-vertex induced subgraphs which have an
even number of edges. It follows that, if EOSD can be computed in polynomial time,
then Algorithm 21, which computes #EVEN SUBGRAPHS, also runs in polynomial
time. Jerrum and Meeks [169] show that #EVEN-SUBGRAPHS cannot be computed
in polynomial time unless ETH is false (Lemma F.19). Therefore, if EOSD could be
computed in polynomial time, then ETH would be false.

The algorithm CountEvenSubgraphs (Algorithm 21) takes as parameters a graph
G and an integer k ≥ 0, and outputs e(G, k), the number of even k-induced sub-
graphs of G, thus solving #EVEN SUBGRAPHS. This algorithm uses at most 2n

invocations of a subroutine EvenOddSubgraphsDifference; therefore, if the sub-
routine EvenOddSubgraphsDifference runs in polynomial time, then so does
CountEvenSubgraphs.

Let us briefly sketch the idea behind the algorithm, before we give a formal proof
of correctness. First, we know that e(G, k) + o(G, k) =

(
n
k

)
, since each subgraph is

either even or odd, and G has
(
n
k

)
different k-induced subgraphs in total. Thus, if

we knew the (possibly negative) difference ζk = e(G, k) − o(G, k), then we know the
sum and difference of e(G, k) and o(G, k), so we could compute the desired value
e(G, k) = 1

2 (
(
n
k

)
+ ζk). Unfortunately, EvenOddSubgraphsDifference only tells

us the absolute value, |ζk|. Fortunately, we know that e(G, 0) = 1 and o(G, 0) = 0, so
ζ0 = 1− 0 = 1 (namely, there is only one induced subgraph with 0 vertices, and it has
0 edges, which is even). We now bootstrap our way up, computing ζj for j = 1, . . . , k

using the previously known results. The key ingredient is that, by adding isolated
vertices to the graph and querying EvenOddSubgraphsDifference on this new
graph, we can discover the the absolute difference |ζj + ζj−1|, which allows us to
compute the values ζj .

Correctness of the algorithm. We now prove that the algorithm CountEven-
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Subgraphs outputs the correct value. Let (G, k) be the input to the algorithm. For
j = 0, . . . , k, let ζj = e(G, j) − o(G, j). We will show that, for each j = 1, . . . , k,
the algorithm sets the variable dj to the value ζj in the j-th iteration of the for-loop.
The proof is by induction on j. In the induction hypothesis, we include also that the
variable ℓ is always the largest value below j satisfying ζℓ ̸= 0 as in Equation F.8 (this
value is well-defined, since 1 = ζ0 ̸= 0, so we have 0 ≤ ℓ < j).

ℓ = max{0 ≤ ℓ < j | ζℓ ̸= 0} (F.8)

For the base case, where j = 0, it suffices to note that there is only one set with zero
vertices – the empty set – which induces the empty graph, which contains an even
number of edges. Therefore, ζ0 = 1, which the algorithm sets on Line 2. Finally, ℓ is
correctly set to 0.

For the induction case j ≥ 1, the variables dt have been set to dt = ζt for t = 0, . . . , j−1

and ℓ satisfies Equation F.8 from the induction hypothesis. Consequently, we have
ζℓ+1 = · · · = ζj−1 = 0. If ζj = 0, then the algorithm sets q := |ζj | = |0| = 0 on
Line 5, so the algorithm sets dj correctly on Line 7, and correctly leaves ℓ untouched
(ℓ remains unchanged from the j − 1-th to the j-th iteration). Otherwise, if ζj ̸= 0,

Algorithm 21 An algorithm which computes the number of even k-induced sub-
graphs using at most 2n calls to a subroutine EvenOddSubgraphsDifference,
which returns |e(G, k)− o(G, k)| on input (G, k).

1: procedure CountEvenSubgraphs(G = (V,E), k)
Output: The number of even induced subgraphs of G with k vertices

2: d0 := 1 ▷ d is an array of k + 1 integers
3: ℓ := 0 ▷ Last iteration when ζj = 1

4: for j := 1, . . . , k do
5: q := EvenOddSubgraphsDifference(G, j)

6: if q = 0 then ▷ There are equally many even as odd subgraphs
7: dj := 0
8: else ▷ Else we have to figure out whether there more even or odd subgraphs:
9: G′ := (V ∪ {v′1, . . . , v′j−ℓ}, E) ▷ Add j − ℓ new isolated vertices

10: p := EvenOddSubgraphsDifference(G′, j)

11: dj :=

{
q if |dℓ + q| = p

−q if |dℓ − q| = p

12: ℓ := j ▷ Since iteration j is the latest iteration having ζj = 1

13: return 1
2

((
n
k

)
+ dk

)
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the algorithm adds j − ℓ new, isolated vertices to G, obtaining the new graph G′ =

(VG ∪ {v′1, . . . , v′j−ℓ}, EG). On Line 10, it computes the value |e(G′, j) − o(G′, j)| of
this graph. Since this expression also sums over induced subgraphs of G′ that contain
isolated vertices, this value can be expressed as follows:

p :=|e(G′, j)− o(G′, j)| (F.9)

=

∣∣∣∣∣
j∑
a=ℓ

(
j − ℓ

j − a

)
(e(G, a)− o(G, a))

∣∣∣∣∣ =
∣∣∣∣∣
j∑
a=ℓ

(
j − ℓ

j − a

)
ζa

∣∣∣∣∣ (F.10)

=

∣∣∣∣(j − ℓ

j − ℓ

)
ζℓ +

(
j − ℓ

0

)
ζj

∣∣∣∣ = |ζℓ + ζj | (F.11)

We noted that ζℓ+1 = · · · = ζj−1 = 0; therefore, these terms vanish from the summa-
tion (step from Equation F.10 to Equation F.11), so that only p = |ζj + ζℓ| remains.
Since we now know the values of ζℓ, |ζj | and |ζj + ζℓ| and since ζℓ ̸= 0, we can infer the
value of ζj , which is done on Line 11. We conclude that each variable dj is correctly
set to ζj , concluding the proof by induction. Also, since ζj ̸= 0, ℓ is correctly set to j.

Lastly, we show that the value returned by the algorithm is indeed the number e(G, k).
Suppose that dk = ζk = e(G, k) − o(G, k). We know that e(G, k) + o(G, k) =

(
n
k

)
.

That is, we know both the sum and the difference of e(G, k), o(G, k); therefore we can
compute them both. By adding these two equations and solving for e(G, k), we obtain
e(G, k) = 1

2

((
n
k

)
+ dk

)
, which is the value returned by the algorithm.

Lemma F.22. LIMDD supports the T -gate.

Proof. Algorithm 22 applies an arbitrary diagonal gate D =
[
ρ 0
0 ω

]
to a state repre-

sented by a LIMDD. To apply a T -gate, one calls the algorithm withD = T =
[
1 0
0 eiπ/4

]
.

We now show that the algorithm runs in polynomial time. First, since each recursive
call takes O(1) time, for the purposes of estimating runtime it suffices to count the
number of recursive calls. The cache stores all tuples of nodes and matrices with
which the algorithm is called, so for the purposes of estimating the runtime it suffices
to count the number of distinct recursive calls. To this end, we note that the recursive
calls to the algorithm only receive two different matrices, namely

[
ρ 0
0 ω

]
and

[
ω 0
0 ρ

]
.

The nodes that are passed as argument v are nodes that are already in the diagram.
Therefore, if the diagram contains m nodes, then at most 2m distinct recursive calls
are made. We conclude that the runtime is polynomial (indeed, linear), in the size of
the diagram.

257



Easy operations for MPS

Algorithm 22 Applies a diagonal gate D to qubit k of a state represented by a
LIMDD.

1: procedure ApplyDiagGate(LIMDD Node v = v0
λ0A0 v1

λ1A1

, gate D,
qubit k)
with D =

[
ρ 0
0 ω

]
Node v represents a state on n qubits

2: if Cache contains the tuple (v,D) then return Cache[v,D]
3: else if k = n then

4: return v0
ρλ0A0 v1

ωλ1A1

5: else
6: gate E :=

[
ω 0
0 ρ

]
7: for i = 0, 1 do

8: gate Fi :=

{
D if Aki ∈ {I, Z}
E if Aki ∈ {X,Y }

▷ Here Aki denotes the k-th qubit of the

Pauli operator Ai

9: Node ui := ApplyTGateToLIMDD(v0, Fi, k)

10: Node r := u0
λ0A0 u1

λ1A1

11: Cache[v,D] := r

12: return r

F.4 Easy operations for MPS

Vidal [335] shows that MPS supports efficient application of a single one-qubit gate
or two-qubit gate on consecutive qubits, which includes X,Y,Z, Hadamard, T. This
extends to any two-qubit operation on any pair of qubits [262], particularly including
Swap and CZ gates. These algorithms are extendable to k-local gates on adjacent
qubits, which does not increase the largest matrix dimension D to more than Dk. The
algorithm consists of merging the k tensors (the j-th tensor combines the two matrices
A0
j and A1

j ) into a single large one, applying the gate to the large tensor, followed by
splitting the tensor again into k matrices A0

j and A1
j again by use of the singular-value

decomposition (for details on the merging and splitting see e.g. Dang et al. [93]). The
largest matrix dimension during this process does not increase above Dk. Using Swap
gates, one thus implements Local on any qubits. We give a direct proof of the support
for addition below (Lemma F.23).

Orus [248] gives an accessible exposition of TN, of which MPS is a special case. He
explains how to compute the inner product in polynomial time. Thus, MPS also
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supports Measure. Sample can be done by a Markov Chain Monte Carlo approach,
invoking Measure as subroutine. Since inner product is supported, so is Equal: MPS
M and M ′ are equivalent iff |⟨M |M ′⟩|2

⟨M |M⟩·⟨M ′|M ′⟩ = 1.

Lemma F.23. MPS supports addition in polynomial time.

Proof. Let A,B be MPSs. Then a new MPS C representing |C⟩ = |A⟩ + |B⟩ can be
efficiently constructed as follows, for x = 0, 1 and j = 2, . . . , n− 1:

Cxn = [Ax
n Bx

n ] Cxj =
[
Ax

j 0

0 Bx
j

]
Cx1 =

[
Ax

1

Bx
1

]
(F.12)

F.5 Easy and hard operations for RBM

Jonsson et al. [174] show that RBM supports Pauli gates, the controlled-Z gate and
the T -gate (and, in fact, arbitrary phase gates). There is at the moment no efficient
exact algorithm for the Hadamard gate, which would make the list of supported
gates universal. Hence there is at the moment no exact efficient algorithm for Local
either. Sample is supported for any n-qubit RBM M , see e.g. Appendix B of [174]
and references therein, by performing a Markov Chain Monte Carlo algorithm (e.g.
Metropolis algorithm) where the Markov Chain state space consists of all bit strings
x ∈ {0, 1}n, and the corresponding unnormalized probability |⟨x|M⟩|2 of each state is
efficiently computed using Equation 5.1. No exact algorithm for Equal is known (in
fact, the related problem of identity testing when one only has sampling access to one
of the two RBMs is already computationally hard [52]). Although no exact algorithm
for InnerProd is known, it can be approximated using Sample as subroutine (see
e.g. Wu et al. [354]). Furthermore, Measure can be approximated by computing
the normalization factor 1/⟨M |M⟩ using the (exact or approximate) algorithm for
InnerProd, while the relative outcome probabilities are defined in Equation 5.1.

Lemma F.24. RBM supports Swap.

Proof. In order to effect a swap between qubits q1 and q2, we simply exchange rows
q1 and q2 in the matrix W and the vector α⃗, obtaining W ′ and α⃗′. Then M′ =

(α⃗′, β⃗,W ′,m) has |M′⟩ = Swap(q1, q2) · |M⟩.
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Torlai et al. [315] note that RBMs can exactly represent Dicke states. In Lemma F.25,
we give another construction of succinct RBMs for Dicke states, where the number of
hidden nodes grows linearly with the number of visible nodes.

Lemma F.25. An RBM can exactly represent any Dicke state, using only 2n hidden
nodes.

Proof. We will construct an RBM with 2n hidden nodes representing |Dk
n⟩.

For each j ∈ {0, 1, . . . , n}\{k}, our construction will use two hidden nodes. Fix such a
j. Then the first hidden node is connected to each visible node with weight iπ/n, and
has bias bj = iπ(1− j/n). The second hidden node is connected to each visible node
with weight −iπ/n and has bias bj = −iπ(1 − j/n). Since the weights on all edges
incident to a given hidden node are the same, the term it contributes depends only on
the weight of the input (i.e., the number of zeroes and ones). Thus, these two nodes
contribute a multiplicative factor (1 + eiπ(1+|x|/n+j/n)) and (1 + e−iπ(1+|x|/n−j/n)),
respectively. Multiplying these together, the two terms collectively contribute a multi-
plicative term of 2+2 cos(π(1+|x|/n−j/n) = 2−2 cos(π(|x|−j)/n), which is 0 iff |x| = j

and nonzero otherwise. Let a be the constant a =
∏n
j=0,j ̸=k 2− 2 cos(π(k− j)/n), i.e.,

the product of all terms when |x| = k. Then the RBM represents the following state
unnormalized function Ψ: {0, 1}n → C, which we then normalize to obtain the state
|Ψ⟩:

Ψ(x) =

a if |x| = k

0 otherwise
|Ψ⟩ = 1

a
√(

n
k

) ∑
x

Ψ(x) |x⟩ (F.13)

The normalized state |Ψ⟩ represents exactly the Dicke state |Dk
n⟩, since its amplitudes

are equal to 1/
√(

n
k

)
when |x| = k and zero otherwise.

Since RBM can succinctly represent both Dicke states (Lemma F.25) and graph
states, a subset of stabilizer states [365], the proof for hardness of LIMDD FIDELITY
(Lemma F.20) is also applicable to RBM.

Corollary F.1. There is no polynomial-time algorithm for RBM FIDELITY, i.e., for
computing fidelity between two RBM to 2n bits of precision, unless the Exponential
Time Hypothesis (ETH) fails.
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Appendix G

Proofs of Section 5.5

Section G.1 proves that our rapidity definition is a preorder and is equivalent to the
one given by Lai et al. [194] for canonical data structures.

Section G.2 provides the proof for the sufficient condition for rapidity. Section G.3-G.5
apply this sufficient condition to the data structures studied in this work.

G.1 Rapidity is a preorder and generalizes earlier

definitions

We now show that rapidity is a preorder over data structures and that the definition
of Lai et al. [194] can be considered a special case for canonical data structures. For
convenience, we restate the definition of rapidity.

Definition 5.3 (Rapidity for non-canonical data structures). Let D1, D2 be two data
structures and consider some c-ary operation OP on these data structures. In the
below, ALG1 (ALG2) is an algorithm implementing OP for D1 (D2).

(a) We say that ALG1 is at most as rapid as ALG2 iff there exists a polynomial
p such that for each input φ = (φ1, . . . , φc) there exists an equivalent input
ψ = (ψ1, . . . , ψc), i.e., with |φj⟩ = |ψj⟩ for j = 1 . . . c, for which time(ALG2, ψ) ≤
p (time(ALG1, φ)). We say that ALG2 is at least as rapid as ALG1.
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(b) We say that OP (D1) is at most as rapid as OP (D2) if for each algorithm ALG1

performing OP (D1), there is an algorithm ALG2 performing OP (D2) such that
ALG1 is at most as rapid as ALG2.

Theorem 5.4. Rapidity is a preorder over data structures.

Proof. We first show that rapidity is reflexive, next we show that it is transitive.

Rapidity is reflexive. It suffices to show that rapidity is a reflexive relation on
algorithms performing a given operation. Let D be a data structure, OP an operation
and ALG an algorithm performing OP (D). Then ALG is at most as rapid as itself
if there exists a polynomial p such that for each input φ there exists an equivalent
input ψ with time(ALG,φ) ≤ p(ALG,ψ). We may choose the polynomial p(x) = x,
and we may choose ψ := φ. Then the statement reduces to the trivial statement
time(ALG,φ) = time(ALG,ψ) = p(ALG,ψ).

Rapidity is transitive. It suffices to show that rapidity is a transitive relation on
algorithms. To this end, let D1, D2, D3 be data structures, OP an operation and
ALG1, ALG2, ALG3 algorithms performing OP (D1), OP (D2), OP (D3), respectively.
Suppose that ALG1 is at most as rapid as ALG2 and ALG2 is at most as rapid as
ALG3. We will show that ALG1 is at most as rapid as ALG3. By the assumptions
above, there are polynomials p and q such that (i) for each input φ there exists an equiv-
alent input ψ such that time(ALG2, ψ) ≤ p(time(ALG1, φ)); and (ii) for each input
ψ there exists an equivalent input γ such that time(ALG3, γ) ≤ q(time(ALG2, ψ)).

Put together, for every input φ there exist equivalent inputs ψ and γ such that
time(ALG3, γ) ≤ q(time(ALG2, ψ)) ≤ q(p(time(ALG1, φ))). Letting the polyno-
mial ℓ(x) = q(p(x)), we obtain that for every φ there exists an equivalent γ such that
time(ALG3, γ) ≤ ℓ(ALG1, φ).

We note that an alternative definition of rapidity [194], which always allows ALG2

to read its input by requiring time(ALG2, y) ≤ p(time(ALG1, x) + |y|) instead of
time(ALG2, y) ≤ p(time(ALG1, x)), is not transitive for query operations:

Consider the data structure Padded QMDD, (PQMDD) which is just a QMDD, except
that a string of 22

n

"0"’s have been concatenated to the end of the QMDD represen-
tation, where n is the number of qubits.

Under the alternative rapidity relation ≥alt
r , both ADD and QMDD are at least as
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rapid as PQMDD, because the ADD algorithm is allowed to run for poly(22
n

) time.
But PQMDD is also at least as rapid as QMDD, because algorithms for PQMDD don’t
need to read the whole 22

n

-length input — they only read the QMDD at the beginning
of the string. Put together, this leads to:

ADD ≥alt
r PQMDD ≥alt

r QMDD and ADD ̸≥alt
r QMDD.

Next, we show that our definition of rapidity is equivalent to Lai et al.’s definition
of rapidity in the case when both data structures are canonical and we restrict our
attention to only those algorithms which run in time at least m where m is the size of
the input. For convenience, we restate Lai et al.’s definition here.

Definition G.1 (Rapidity for canonical data structures [194]). A c-ary operation
OP on a canonical language L1 is at most as rapid as OP on another canonical
language L2, iff for each algorithm ALG performing OP on L1 there exists some
polynomial p and some algorithm ALG2 performing OP on L2 such that for every
valid input (φ1, . . . , φc, α) of OP on L1 and every valid input (ψ1, . . . , ψc, α) of OP
on L2 satisfying φi ≡ ψi (1 ≤ i ≤ c), ALG2(ψ1, . . . , ψc, α) can be done in time
p(t+ |φ1|+ · · ·+ |φc|+ |α|), where α is any element of supplementary information and
t is the running time of ALG(φ1, . . . , φc, α).

Lai et al. use several minor differences in notation. First, they speak of valid inputs
(because they consider data structures which cannot represent all objects), whereas
we do not; they use an element of supplementary information α as part of the input,
whereas we omit such an element; they write φi ≡ ψi where we write |φi⟩ = |ψi⟩;
lastly they speak of a language whereas we speak of a data structure. Since these
differences between the notation are inconsequential, it will be convenient to rephrase
the definition of Lai et al. using the notation of this work, as follows:

Definition G.2 (Rapidity of canonical data structures, rephrased). In the following,
ALG1, ALG2 are algorithms which perform OP on canonical data structures D1, D2,
respectively.

(a) An algorithm ALG1 is at most as rapid as an algorithm ALG2 iff there is a
polynomial p such that for each input φ and for each equivalent input ψ, it holds
that time(ALG2, ψ) ≤ p(time(ALG1, φ) + |φ|).
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(b) A canonical data structure D1 is at most as rapid as a canonical data structure
D2 for an operation OP if for each algorithm ALG1 performing OP on D1 there
is an algorithm ALG2 performing OP on D2 such that ALG1 is at most as rapid
as ALG2.

Lemma G.1. Definition 5.3 is equivalent to the definition of [194] (Definition G.2)
in the case when two data structures D1, D2 are both canonical and where we restrict
our attention to algorithms whose runtime is at least m, where m is the size of the
input.

Proof. Let D1, D2 be two canonical data structures. We will show that D1 is at most
as rapid as D2 according to Definition 5.3 if and only if the same is true according tot
Definition G.2. Since items 5.3.(b) and G.2.(b) are equivalent, it suffices to show that
the two definitions are equivalent for algorithms rather than data structures. That
is, we will show that an algorithm ALG1 is at most as rapid as ALG2 according to
Definition 5.3 if and only if the same is true according to Definition G.2.

Abusing notation, we write |(φ1, . . . , φc)| instead of |φ1|+ . . .+ |φc|, etc. In this proof,
we will assume without loss of generality that all polynomials p are monotonically
increasing (i.e., p(x) ≤ p(y) if x ≤ y). Namely, if p is a polynomial which does
not monotonically increase, then use instead the polynomial p′(x) = p(x) + xk for
sufficiently large k.

Direction if. Let ALG1, ALG2 be algorithms performing OP on canonical data
structures D1, D2, respectively, such that ALG1 is at most as rapid as ALG2 ac-
cording to Definition G.2. Then there is a polynomial p such that time(ALG2, ψ) ≤
p(time(ALG1, φ)+ |φ|) for all equivalent inputs φ,ψ. Since the data structures D1, D2

can represent all quantum state vectors, there certainly exists an equivalent ψ to any
φ; indeed, since D2 is canonical, there is a unique such instance ψ. Since we restrict
our attention to algorithms with runtime at least m where m is the size of the input,
we get that |φ| ≤ time(ALG1, φ), so p(time(ALG1, φ) + |φ|) ≤ p(2 · time(ALG1, φ)).

Therefore, let q(x) = p(2x). Now we get that, for every input φ, there exists an
equivalent input ψ such that time(ALG2, ψ) ≤ q(ALG1, φ). Therefore, ALG1 is at
most as rapid as ALG2 according to Definition 5.3.

Direction only if. Suppose that ALG1 is at most as rapid as ALG2 accord-
ing to Definition 5.3. Then there is a polynomial p such that for each input φ,
there is an equivalent input ψ such that time(ALG2, ψ) ≤ p(time(ALG1, φ)). Us-

264



Proofs of Section 5.5

ing the monotonicity of p which we assume without loss of generality, we get that
p(time(ALG1, φ)) ≤ p(time(ALG1, φ) + |φ|). Lastly, since D2 is canonical, any in-
stance ψ which is equivalent to φ must be the only input instance that is equivalent
to φ. Therefore, we obtain that there exists a polynomial p such that for each input
φ and for all equivalent inputs ψ (i.e., for the unique equivalent instance ψ of D2), it
holds that time(ALG2, ψ) ≤ p(time(ALG1, φ) + |φ|). Therefore, ALG1 is at most as
rapid as ALG2 according to Definition G.2.

G.2 A Sufficient Condition for Rapidity

Here, we prove Theorem 5.5, which we restate below.

Theorem 5.5 (A sufficient condition for rapidity). Let D1, D2 be data structures
with D1 ⪯s D2 and OP a c-ary operation. Suppose that,

A1 OP (D2) requires time Ω(m) where m is the sum of the sizes of the operands; and

A2 for each algorithm ALG implementing OP (D2), there is a runtime monotonic
algorithm ALGrm, implementing the same operation OP (D2), which is at least
as rapid as ALG; and

A3 there exists a transformation fromD1 toD2 which is (i) weakly minimizing and (ii)
runs in time polynomial in the output size (i.e, in time poly(|ψ|) for transformation
output ψ ∈ D2); and

A4 if OP is a manipulation operation (as opposed to a query), then there also exists
a polynomial time transformation from D2 to D1 (polynomial time in the input
size, i.e, in |ρ| for transformation input ρ ∈ D2).

Then D1 is at least as rapid as D2 for operation OP .

Proof. We prove the theorem for c = 1. This can be easily extended to the case with
multiple operands by treating the operands point-wise and summing their sizes. We
show that OP (D2) is at most as rapid as OP (D1), assuming that the conditions in
Theorem 5.5 hold. (Note that this swaps the roles of D1 and D2 relative to Defini-
tion 5.3). In this proof, we will assume without loss of generality that all polynomials
p are monotone, i.e., if x ≤ y then p(x) ≤ p(y).
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We prove the theorem for a manipulation operation OP . The proof for a query oper-
ation OP follows as a special case, which we treat at the end of the proof.

Let ALG2 be an Ω(m) algorithm implementing OP (D2). By A2, we may assume
without loss of generality that ALG2 is runtime monotonic. Let f : D1 → D2 be
the polynomial-time weakly minimizing transformation (A3), and g : D2 → D1 the
polynomial-time transformation in the other direction satisfying the criteria in A4.

We set ALG1 = f ◦ALG2 ◦ g, i.e., ALG1 is as follows.

1: procedure ALG1(φ)
2: ψ := f(φ)

3: ρ := ALG2(ψ)

4: return g(ρ)

ALG1 is complete (i.e., works on all inputs), since f, g and ALG2 are. The remainder of
the proof shows that ALG2 is at most as rapid as ALG1, i.e., there exists a polynomial
p such that for all operands ψ ∈ D2, there exists in input φ ∈ D1 with |φ⟩ = |ψ⟩ for
which time(ALG1, φ) ≤ p (time(ALG2, ψ)).

Let ψ ∈ D2. We take φ ∈ D1 such that |φ⟩ = |ψ⟩ and |φ| ≤ s(|ψ|) for the polynomial
s ensuring the succinctness relation D1 ⪯s D2. Such a φ exists, because D1 is more
succinct than D2.

It remains to show that ∃p : time(ALG1, φ) ≤ p (time(ALG2, ψ)), where p is indepen-
dent of φ and ψ. To this end, we can express the time required by ALG1 by summing
the runtimes of its three steps as follows.

time(ALG1, φ) = time(f, φ) + time(ALG2, f(φ)) + time(g,ALG2(f(φ))) (G.1)

It now suffices to prove that each summand of Equation G.1 is polynomial in the
runtime of ALG2(ψ).

1. We show time(f, φ) ≤ poly(time(ALG2, ψ)). Since f runs in polynomial time in
its output (A3) and |φ| ≤ s(|ψ|) (see above), we have time(f, φ) ≤ poly(|f(φ)|).
Let t be the polynomial such that time(f, φ) ≤ t(|f(φ)|). Since f is weakly
minimizing (A3), it is guaranteed that |f(φ)| ≤ m(|ψ|) for some polynomial m.
Lastly, by A1, we have |ψ| = O(time(ALGrm2 , ψ)), so |ψ| ≤ k(time(ALG2, ψ)) for
some polynomial k. Put together, we have time(f, φ) ≤ t(|f(φ)|) ≤ t(m(|ψ|)) ≤
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t(m(k(time(ALG2, ψ)))), which proves the claim.

2. We show time(ALG2, f(φ)) ≤ poly(time(ALG2, ψ)). Because f is a weakly
minimizing transformation (A3), we have |f(φ)| ≤ s(|ψ|) for some s. Since
ALG2 is runtime monotonic (A2), and because |f(φ)| ≤ s(|ψ|), we have
time(ALG2, f(φ)) ≤ t(ALG2, ψ) for some t, which proves the claim.

3. We show time(g,ALG2(f(φ))) ≤ poly(time(ALG2, ψ)). Since g runs in time
polynomial in the input (A4); and the input to g is ALG2(f(φ)), we have
time(g,ALG2(f(φ))) ≤ p(|ALG2(f(φ))|) for some polynomial p. Next, we have
trivially time(ALG2, f(φ)) ≥ |ALG2(f(φ))|, since the time ALG2 spends writing
the output is included in the total time, thus we obtain time(g,ALG2(f(φ))) ≤
p(time(ALG2, f(φ))). As we have seen above in item 2, time(ALG2, f(φ)) ≤
t(time(ALG2, ψ)) for some polynomial t. Putting this together, we obtain
time(g,ALG2(f(φ))) ≤ p(t(time(ALG2, ψ))), which proves the claim.

This proves the theorem for the case when OP is a manipulation operation.

Lastly, if OP is a query operation rather than a manipulation operation, then the
transformation from D2 back to D1 using g is no longer necessary. This is the only
change needed in ALG1; in the proof above, we may use time(g,ALG2(f(x1))) = 0.
The requirement that time(g,ALG2(f(x1))) ≤ p(time(ALG2, x2)) now holds vacu-
ously.

G.3 Rapidity Relations between Data Structures

Here we prove the rapidity relations between data structures studied in the paper as
stated in Theorem 5.6, restated below with proof.

Theorem 5.6. The rapidity relations in Figure 5.4 hold.

Proof. The relation between QMDD and MPS is proved in Theorem 5.7 as restated
in Section G.4. Finally, Section G.5 provides the transformations between QDDs that
fulfill the conditions of Theorem 5.5.
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MPSLIMDD

QMDD

ADD

Figure G.1: Rapidity relations between data structures considered here. A solid
arrow D1 → D2 means D2 is at least as rapid as D1 for all operations satisfying
A1 and A2 of Theorem 5.5.

G.4 MPS is at least as Rapid as QMDD

This appendix proves Theorem 5.7 from Sec. 5.5.2 by providing transformations be-
tween MPS and QMDD that realize the sufficient conditions of Theorem 5.5. The
introduction to QDDs, given in Section 2.3, is relevant here.

Theorem 5.7. MPS is at least as rapid as QMDD for all operations satisfying
A1 and A2.

Proof. Let f be the polynomial-time transformation from Lemma G.2. Let g be the
weakly minimizing transformation from MPS to QMDD of Lemma G.3, that runs in
time polynomial in the size of the input MPS and the resulting QMDD. These tran-
sitions satisfy requirements A3 and A4 of Theorem 5.5 respectively. Since QDDs are
canonical data structures as explained in Section 5.2, all algorithms are by definition
runtime monotonic, as for any state |φ⟩ there is only one structure representing it,
i.e., Dφ is a singleton set. This satisfies A2. Since its premise fulfills A1, the theorem
follows.

Lemma G.2 (QMDD to MPS). In polynomial time, a QMDD can be converted to an
MPS representing the same state.

Proof. Consider a QMDD with root edge v
λ describing a state |φ⟩ =∑

x⃗∈{0,1}n α(x⃗) |x⃗⟩. We will construct an MPS A describing the same state. For
the purposes of this proof, we will call low edges 0-edges and high edge 1-edges.

First, without loss of generality, we may assume that the root edge label is λ = 1.
Namely, we may multiply the labels on the root’s low and high edges with λ, and
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then set the root edge label to 1; this operation preserves the state represented by the
QMDD.

Denote by Dℓ the number of nodes at the ℓ-th layer in QMDD v, i.e. Dn = 1 (the
root node v) and D0 = 1 (the leaf 1 ). Recall that the QMDD is a directed, weighted
graph whose vertices are divided into n + 1 layers, i.e., the edges only connect nodes
from consecutive layers. Therefore, we may speak of the Dℓ×Dℓ−1 bipartite adjacency
matrix between layer ℓ and layer ℓ−1 of the diagram. For layer 1 ≤ ℓ ≤ n and x = 0, 1,
let Axℓ be the Dℓ ×Dℓ−1 bipartite adjacency matrix obtained in this way using only
the low edges if x = 0, and only the high edges if x = 1. That is, assuming some
order on nodes within each level, the entry of the matrix Axℓ in row r and column c is
defined as

(Axℓ )r,c =



label(e) if node with index r in level ℓ has a x-edge e

to node with index c in level ℓ− 1

0 otherwise

(G.2)

We claim that the following MPS A describes the same state as the QMDD:

A = (A0
1, A

1
1, . . . , A

0
n, A

1
n) (G.3)

Following the MPS definition in Section 5.2, our claim is proven by showing that for
QMDD root node v representing |v⟩, we have

⟨x⃗|v⟩ = Axn
n ·Axn−1

n−1 · · ·Ax1
1 for all x⃗ ∈ {0, 1}n (G.4)

For an n-qubit QMDD v, the amplitude ⟨x⃗|v⟩ for x⃗ ∈ {0, 1}n is equal to the product
of the weights found on the single path from the root node node to leaf effected by
x⃗ (this path is found as follows: go down from root to leaf; at a vertex at layer j,
choose to traverse the low edge if xj = 0 and the high edge if xj = 1). We next reason
that this product equals the single entry of the product y := Axn

n ·Axn−1

n−1 · · ·Ax1
1 from

Equation G.4.

We recall several useful facts from graph theory. If G (G′) is a weighted, directed
bipartite graph on the bipartitionM∪M ′′ (M ′′∪M ′) vertices, with weighted adjacency
matrix AG (AG′), then it is not hard to see that the element (AG ·AG′)r,c is the sum,
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over all two-step paths r − a − c starting at vertex r ∈ M and going through vertex
a ∈ M ′′ to vertex c ∈ M ′, of products of the two weights wr→a and wa→c. More
generally, for a sequence of weighted, directed bipartite graphs Gj with vertex set
Mj ∪Mj+1, the (r, c)-th entry of the product of adjacency matrices AG1 ·AG2 ·...·AGn

equals
∑

paths π from r to c
∏

edgeϵ∈π weight(ϵ).

Now note that the matrix y has dimensions 1× 1 (since D0 = Dn = 1), corresponding
to a single root and single leaf. By the reasoning above, since y is the product of all
bipartite adjacency matrices of the QMDD, the single element of this matrix is equal
to the product of weights found on the single path from root to leaf as represented by
x⃗.

Lemma G.3 (MPS to QMDD). There is a weakly minimizing transformation from
MPS to QMDD, that runs in time polynomial in the size of the input MPS and the
resulting QMDD.

Proof. Algorithm 23 shows the algorithm which converts an MPS to a QMDD. The
idea is to use perform backtracking to construct the QMDD bottom-up. Specifically,
given an MPS {A0

n, A
1
n, ..., A0

1, A
1
1} representing a state |φ⟩ = |0⟩ |φ0⟩ + |1⟩ |φ1⟩, the

MPS for |φ0⟩ is easily constructed by setting the first open index to 0 and contracting
these two blocks, i.e., A0

n−1 := A0
n · A0

n−1 and A1
n−1 := A0

n · A1
n−1, and similarly for

|φ1⟩. We then recurse, constructing MPS for states |φ00⟩ , |φ01⟩, etc. When we find
a state whose QMDD node we have already constructed, then we may simply return
an edge to that QMDD node without recursing further. This dynamic programming
behavior is implemented through the check at Line 3.

Through the use of dynamic programming with the cache set D, it is clear that the
number of recursive calls to MPS2QMDD is bound by the number of edges in the
resulting QMDD. Dynamic programming is implemented by checking, for each call
with MPS M , whether some QMDD node v ∈ D already represents |M⟩ up to a
complex factor. To this end, the subroutine Equivalent, on Line 3, checks whether
|M⟩ = λ · |v⟩ for some λ ∈ C. It is straightforward to see that it runs in polynomial
time in the sizes of QMDD v and MPS M : first, it creates an MPS for the given
QMDD node v using the efficient transformation in Section G.4. Next, it computes
several inner products on MPS, which can also be done in polynomial time, using the
results in App. F. This Equivalent operation is called |D| time, which dominates
the runtime of each call MPS2QMDD. Therefore the entire runtime is polynomial in
the sizes of the MPS and the resulting QMDD.
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Since QMDD is canonical, the transformation is weakly minimizing by definition.

Algorithm 23 An algorithm which converts an MPS into a QMDD. It runs in time
polynomial in s + d, where s is the size of the QMDD, and d is the bond dimen-
sion of the MPS. Here D is the diagram representing the state. The subroutine
Equivalent(v,M) computes whether the vectors |v⟩ , |M⟩ are co-linear, i.e., whether
there exists λ ∈ C such that |M⟩ = λ |v⟩.
1: D := { 1 } ▷ Initiate diagram D with only a QMDD leaf node representing 1
2: procedure MPS2QMDD(MPS M = {Axj }) ▷ Returns a root edge eR such that

|eR⟩ = |M⟩

3: if D contains a node v with |M⟩ = λ |v⟩ then return v
λ ▷ Implemented

with Equivalent(v,M) for all v ∈ D

4: Edge e0 := MPS2QMDD({A0
n · A0

n−1, A0
n · A1

n−1} ∪
{A0

n−2, A
1
n−2, . . . , A

0
1, A

1
1})

5: Edge e1 := MPS2QMDD({A1
n · A0

n−1, A1
n · A1

n−1} ∪
{A0

n−2, A
1
n−2, . . . , A

0
1, A

1
1})

6: Node w :=
e0 e1

▷ Create new node w with MakeNode
7: D := D ∪ {w}
8: return Edge w

1

9: procedure Equivalent( QMDD Node v, MPS M = {Axj })
10: V := QMDD2MPS(v) ▷ Using transformation in Section G.4
11: sV :=

√
| ⟨V |V ⟩ | ▷ Compute inner product

12: sM :=
√
| ⟨M |M⟩ | ▷ Compute inner product

13: λ := 1/sV ·sM ⟨V |M⟩ ▷ Compute inner product

14: if |λ| = 1 then return “|M⟩ = sM
sV
λ |v⟩”

15: else return “|v⟩ is not equivalent to |M⟩”

G.5 Transformations between QDDs

QDDs are canonical data structures as explained in Section 5.2 and Chapter 2. There-
fore, (i) all algorithms are by definition runtime monotonic, as for any state |φ⟩ there
is only one structure representing it, i.e., Dφ is a singleton set; and (ii) all transforma-
tions given below are therefore weakly minimizing since they convert to a canonical
data structure (namely, since they map to the unique element in Dφ, in particular
they map to the minimum-size element of Dφ).
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Algorithm 24 An algorithm which converts a LIMDD into an QMDD.

1: QMDD D := { 1
1 } ▷ The QMDD is initialized to contain only the Leaf

2: procedure LIMDD 2QMDD(LIMDD edge v
λPn ⊗ P ′

)
Returns (a pointer to) an edge to a QMDD node

3: if v is the Leaf node then return v
λ

4: R := getLexminLabel(Pn ⊗ P ′, v)

5: if the Cache contains tuple (R, v) then return λ · Cache[R, v]

6: for x = 0, 1 do

7: QMDD edge rx := Followx( v
Pn ⊗ P ′

)

8: QMDD edge r := MakeEdge(r0, r1)
9: Cache[R, v] := r

10: D := D ∪ {r} ▷ Add the new edge to the diagram

11: return λ · r

G.5.1 Transforming LIMDD to QMDD

Algorithm 24 converts a LIMDD to a QMDD in time linear in the size of the output.
The diagram is the set of edges D, which is initialized to contain the Leaf (i.e., the
node 1

1 ), and is filled with the other edges during the recursive calls to LIMDD

2QMDD. The function getLexminLabel is taken from Vinkhuijzen et al. [337]; it
returns a canonical edge label.

G.5.2 Transforming QMDD to LIMDD

By definition, a QMDD can be seen as a LIMDD in which every edge is labeled with
a complex number and the n-qubit identity tensor I⊗n. Thus, a transformation does
not need to do anything. Optionally, it is possible to convert a given LIMDD to one
of minimum size, as described by [337].

G.5.3 Transforming ADD to QMDD

To convert an ADD into a QMDD, we add a Leaf node labelled with 1; then, for each
Leaf node labelled with λ ̸= 1, we label each incoming edge with λ, and then reroute
this edge to the (new) Leaf node labelled with 1. Optionally, the resulting QMDD can
be minimized to obtain the canonical instance for this state, using, e.g., techniques

272



Proofs of Section 5.5

from [59,227].

G.5.4 Transforming QMDD to ADD

Algorithm 25 gives a method which converts an QMDD to an ADD. It is very similar to
the ones used in the transformation LIMDD to QMDD above, . We here check whether
the diagram already contains a function which is pointwise equal to the one we are
currently considering. If so, we reuse that node; otherwise, we recurse.

Algorithm 25 An algorithm which converts an QMDD to an ADD. Its input is an
QMDD edge e representing a state |e⟩ on n qubits. Here the method Followx(e)
returns an QMDD edge representing the state ⟨x| ⊗ I⊗n−1 · |e⟩. It outputs an QMDD
node w representing |w⟩ = |e⟩.

1: procedure QMDD 2ADD(QMDD edge e = v
λ on n qubits)

2: if n = 0 then
3: w := λ

4: else if A contains a node w with |v⟩ = |w⟩ then
5: return w
6: else
7: for x = 0, 1 do
8: wx := SLDD2ADD(Followx(e))

9: QMDD Node w := w0 w1

10: A := A ∪ {w}
11: return w
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