
Data structures for quantum circuit verification and how to
compare them
Vinkhuijzen, L.T.

Citation
Vinkhuijzen, L. T. (2025, February 25). Data structures for quantum circuit
verification and how to compare them. IPA Dissertation Series. Retrieved from
https://hdl.handle.net/1887/4208911

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis
in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/4208911

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/4208911

Chapter 6

The Power of Disjoint Support
Decompositions in BDDs

The relative succinctness and ease of manipulation of different languages to express
Boolean constraints is studied in knowledge compilation, and impacts areas including
formal verification and circuit design. We give the first analysis of Disjoint Support
Decomposition Binary Decision Diagrams (DSDBDD), introduced by Bertacco, which
achieves a more succinct representation than Binary Decision Diagrams (BDDs) by
exploiting Ashenhurst Decompositions. Our main result is that DSDBDDs can be
exponentially smaller than BDDs.

This chapter contributes to Research Question 3:

Research question 3. Which classical decision diagrams might be effective
for the analysis of quantum algorithms, if they were suitably adapted?

Our answer is that we find the results of this chapter encouraging: the (classical)
DSDBDD provides an example of a minor and conceptually simple modification of a
DD which nevertheless leads to exponential improvements. Can such lessons inspire us
to design a “quantum DSDBDD,” which effects exponential improvement, too? Indeed,
we formulate specific ways to draw inspiration from the DSDBDD to design such a
“quantum DSDBDD” in Section 8.3. In the same chapter, we speculate about several

157

Introduction

other opportunities to improve quantum decision diagrams.

6.1 Introduction

Decision Diagrams are data structures for the representation and manipulation of
Boolean functions. They are used for probabilistic reasoning [28, 91], verification
[162, 221, 339], circuit design [300, 301, 347, 372] and simulation of quantum comput-
ing [242,333,337]. Since Bryant [67] popularized the Binary Decision Diagram (BDD),
there has been a proliferation of different decision diagrams which use different archi-
tectures, e.g., ZDD [229], TBDD [328], CBDD [68], SDD [96], uSDD [322], FBDD [129].
Darwiche and Marquis [97] analytically compare the succinctness and tractability of
manipulation operations (e.g., computing the logical OR of two functions) of these
different diagrams and other representations, such as CNF, resulting in a knowledge
compilation map. In particular, they elucidate the inherent tradeoff between succinct-
ness and tractability: Some diagrams can be exponentially more succinct, but do not
admit efficient manipulation and/or query operations, or vice versa (e.g., d-DNNF [97]
strictly contains DDs and allows model counting in polynomial time, but no efficient
algorithm for computing the logical OR is known; and SDDs can be exponentially
more succinct than BDDs [58]).

The Disjoint Support Decomposition BDD [46, 264] (DSDBDD∗) augments a BDD
with disjunctive decompositions (sometimes called Ashenhurst-Curtis decomposi-
tions [8, 22]). They are canonical like BDDs and support the same queries and oper-
ations as BDDs (model counting, conjunction, negation, etc.). DSDBDDs have so far
been deployed in only few applications, mostly in circuit verification [265]. In order
to know whether efforts to deploy them elsewhere are likely to be fruitful, we make an
initial step towards placing DSDBDDs on the knowledge compilation map. Our main
result is that DSDBDDs can be exponentially smaller than BDDs. To this end, we
give a function that yields the separation, drawing on the theory of expander graphs
to show that its BDD cannot be small. As corollaries, we also clarify the relation
between other languages. Finally, we also point out some open questions.

∗No name has been given to this diagram, so we use DSDBDD in accordance with conventions in
the literature.

158

The Power of Disjoint Support Decompositions in BDDs

6.2 Background and related work

A decision diagram is a data structure used to represent and manipulate Boolean
functions. For an accessible exposition of decision diagrams, the interested reader
may consult Section 2.3. For the purposes of this chapter, it suffices to give the
following definition of a Binary Decision Diagram (BDD):

Definition 6.1 (Binary Decision Diagram (BDD)). A BDD is a rooted, directed
acyclic graph. It has two leaves, labeled True (or 1) and False (or 0). A non-leaf
node is called a Shannon node; it is labeled with (the index of) a variable and has
two outgoing edges, called the low edge and the high edge. Each node v represents
a Boolean function [[v]], defined inductively as follows. In the base case, the True

and False leaves represent the constant functions [[True]] = 1 and [[False]] = 0,

(a) (b) (c)

BDD
(good variable order)

BDD
(bad variable order) DSDBDD

kernel factors
(d)

means

(e)

DSDBDD

Figure 6.1: (a) and (b): BDDs for the function f ≜ (x1 ⇔ x2)∧(x3 ⇔ x4)∧(x5 ⇔ x6).
Low (high) edges are drawn as dotted (solid) arcs. The False Leaf and arcs which go
to the False Leaf are not drawn. These two BDDs use different variable orders: (a)
uses x1 < x2 < x3 < x4 < x5 < x6, whereas (b) uses x1 < x3 < x5 < x2 < x4 < x6,
which is why (b) is much bigger than (a). (c): a DSDBDD for the same function. The
root node is a decomposition node, whose kernel and factors are indicated. For sake
of clarity and compactness, in several parts of the figure we have “collapsed” the small
BDD representing xi ⇔ xj by drawing it as a single rectangle (e). (d): a DSDBDD
which represents the function f = ¬x1 ∧¬x2 ∨x1 ∧ ((x2 ⇔ x5)∧ (x3⊕x4)) and whose
root node is not a Decomposition node.

159

Background and related work

respectively. If a Shannon node v is labeled with variable x and has low edge to v0
and high edge to v1, then it represents the function [[v]] ≜ ¬x∧ [[v0]]∨x∧ [[v1]]. A BDD
is ordered if, on each path from the root to a leaf, each variable appears at most once
and always in the same order. Two nodes u, v are called equivalent if they represent
the same function, [[u]] = [[v]]. A BDD is reduced if there are no equivalent nodes. ⋄

Figures 6.1(a) and (b) show examples of BDDs. These two BDDs represent the same
function, f ≜ (x1 ⇔ x2) ∧ (x3 ⇔ x4) ∧ (x5 ⇔ x6). They have a different shape,
because they employ different variables orders, x1 < x2 < x3 < x4 < x5 < x6 and
x1 < x3 < x5 < x2 < x4 < x6, respectively. In fact, if we generalized the functions and
variable orders from n = 6 to n > 6, the corresponding BDD would stay linearly sized
in the first case, but in the latter would become exponentially sized, in the number of
variables. The effect of variable orders in BDDs is well known [56].

In the figure, the value f(x) of an assignment x can be found by traversing the diagram
as follows. One starts at the root node. A node is labeled with a variable xi; if xi = 0,
we traverse the low (dotted) edge; otherwise, if xi = 1, we traverse the high (solid)
edge, until we arrive at a Leaf. To avoid cluttering the diagram, edges to the False

Leaf are not drawn in the figure.

A reduced and ordered BDD (ROBDD) is a canonical representation of its corre-
sponding Boolean function [67]. From now on, we assume all BDDs are ROBDDs.
Bryant [67] observed that such BDDs can be queried and manipulated in polynomial
time in the size of the diagrams (number of nodes). For example, given BDDs f and
g, with k and m nodes, respectively, a BDD representing the function f ∧ g can be
constructed and the number of models of f (i.e., x⃗ s.t. f(x) = 1) can be computed in
O(km) and O(k) time, respectively. Layer i in an ordered BDD, is the set of nodes
with variable label xi (possibly empty).

A DSDBDD [45, 46, 92, 218, 264, 265, 282, 283] augments a BDD by considering the
disjoint support decompositions of its nodes. A disjoint support decomposition of a
function f decomposes it into its kernel k and its factors j1, . . . , jm, as follows:

f(x1, . . . , xn) =k(ℓ1, . . . , ℓm) with ℓi ≜ ji(xi,1, . . . , xi,ni) (6.1)

Here factor ji takes ni variables as input; the variables ℓi are “dummy variables”. The
factors have no variables in common, so the numbers ni sum to n. A decomposition is
non-trivial if there are at least two factors, and one factor reads at least two variables.

160

The Power of Disjoint Support Decompositions in BDDs

Ashenhurst [22] was the first to develop a theory of disjoint support decompositions of
Boolean functions and to give an algorithm which finds the decomposition given f ’s
truth table, requiring time exponential in the number of variables. He showed that
by repeatedly decomposing the functions k and ji, the fixpoint reached is uniquely
determined by f , up to complementation of the factors, and up to permutation of the
order in which they appear as inputs to the kernel. This tree of functions is sometimes
called the Ashenhurst-Curtis decomposition of f .

In [45], Bertacco and Damiani describe and implement an efficient algorithm to build a
DSDBDD as follows. If a Shannon node in a BDD represents a function which allows
a non-trivial decomposition, this node and its children are replaced by a dedicated
decomposition node pointing to BDDs representing its kernel and its factors. These
factors may themselves be decompositions, allowing ‘nesting’ of decompositions. This
process is repeated until no Shannon node is eligible. Thus, a hybrid diagram is
obtained, in which some nodes indicate decompositions (see Definition 6.2). Because of
Ashenhurst’s unique decomposition theorem [22], DSDBDDs are canonical like BDDs.
The goal is that the new diagram is smaller than BDD, since this method may remove
more nodes than it adds, but analytically little was known about this up to now.

Definition 6.2 (Disjoint Support Decomposition Diagram (DSDBDD)). A DSDBDD
is a BDD whose internal nodes are either Shannon nodes or decomposition nodes.
A decomposition node v has an outgoing edge to an internal node vker called its
kernel and outgoing edges to its factors v1, . . . , vm. It represents the function [[v]] =

[[vker]]([[v1]], . . . , [[vm]]), like in Equation 6.1. The diagram satisfies the following three
rules:

1. If v is a factor of a decomposition node, then v satisfies [[v]](0, . . . , 0) = 1

2. Two factors [[vi]] and [[vj]] of a decomposition node have disjoint support, i.e.,
vars([[vi]])∩ vars([[vj]]) = ∅, for i ̸= j, where vars(f) denotes the set of variables
on which f depends.

3. The factors v1, . . . , vm of a decomposition node satisfy min vars([[vi]]) <

min vars([[vj]]) for i < j, where min is relative to the diagram’s variable or-
der. ⋄

Figure 6.1(c) shows a DSDBDD for the same function f as 6.1(a) and 6.1(b). Since this
function can be expressed as a formula referencing each variable once, the DSDBDD

161

Background and related work

can easily decompose it, obtaining the kernel k = AND on three variables. The
factors are xi ⇔ xi+1 for i = 1, 3, 5. We remark that this succinct decomposition is
available to a DSDBDD regardless of the variable order, whereas the BDD may have
exponential size unless the right variable order is found. Figure 6.1(d) shows that the
root of a DSDBDD is not necessarily a decomposition node.

Let us briefly motivate the three rules in Definition 6.2, which are similar to those
formulated by Bertacco and Damiani [45]. The purpose of the rules is to keep the
query and manipulation operations tractable, i.e., to prevent the diagram from be-
coming more expressive than intended. Notably, without rule 2, we no longer have
efficient algorithms for querying and manipulating such a diagram; for example, model
counting would be NP-hard, because, a 3-CNF formula may now be represented as a
decomposition with kernel AND, and whose factors are disjunctions on three variables.
Rule 1 compensates the fact that, according to Ashenhurst’s Theorem, a decompo-
sition is unique up to complementation of the factors. For example, if a function f

has a decomposition f = k(ℓ1, . . . , ℓm) with ℓi = ji(xi,1, . . . , xi,ni
) as in Equation

6.1, then another decomposition is f = k′(¬ℓ1, . . . ,¬ℓm), where k′ takes the values
k′(ℓ1, . . . , ℓm) ≜ k(¬ℓ1, . . . ,¬ℓm). More generally, for each factor, the complementa-
tion may be chosen independently, leading to exponentially many possible decomposi-
tions. Rule 1 uniquely determines the choice of complementation by enforcing that, for
each factor, ji(0, . . . , 0) = 1. Similarly, rule 3 compensates for the fact that a decompo-
sition is unique up to permutation of the kernel’s input variables. For example, we may
write the function f above as f = k′′(jm, . . . , j1) where k′′(ℓ1, . . . , ℓm) ≜ k(ℓm, . . . , ℓ1).

Technically, the kernel of a decomposition node takes as input variables that are not
inputs to f . The question which variables of the kernel to identify with which variables
of the DD can be an important design decision for DSDBDD package implementations,
and for obtaining canonicity. The diagram can be made canonical by imposing ad-
ditional rules. Since such a canonical diagram is included in the above definition, a
separation between BDDs and Definition 6.2 implies a separation with the canonical
version. Therefore, we omit the strengthening of Definition 6.2 to obtain canonicity
for the purposes of this work.

DSDBDDs supports the same queries and manipulation operations as BDDs (i.e.,
conjunction, disjunction, negation, model counting, etc.). These algorithms greedily
minimize the DD by checking, whenever a new node is constructed, whether the node
allows a decomposition, and then building this decomposition before proceeding. The

162

The Power of Disjoint Support Decompositions in BDDs

worst-case running times of the algorithms are polynomial in the size of the BDDs
(but not necessarily in the size of the DSDBDDs). In the best case, the running time
is much better; in that case, the operands of, e.g., Conjoin, are two decompositions
whose kernels read exactly the same factors. In this case the operation can take
advantage of the fact that, if j1, . . . , jm are functions such that f1, f2 decompose as
f = k1(j1, . . . , jm) and f2 = k2(j1, . . . , jm), then

f1 ∧ f2 = (k1 ∧ k2)(j1, . . . , jm) (6.2)

This allows the Conjoin algorithm to work only on k1 and k2, whose diagrams may
be exponentially smaller than the BDDs of f and g. In the worst case, however, the
decompositions share no factors, so that Conjoin must “unfold” these decomposition
nodes into BDDs and the operation is done on the BDDs; hence, the running time is
polynomial in the size of the BDDs. Bertacco and Plaza implemented these operations
in the publicly available software package STACCATO [264,265]. They find that their
package is competitive with CUDD both in terms of time and memory, on the task of
compiling a Boolean circuit into a DD.

Similar ideas appear in AND/OR multi-valued DDs (AOMDDs) [215], which are
canonial, and in BDS-Maj diagrams [11]. In BDS-Maj, the kernel is always chosen to
be the Majority function on three inputs, and the factors may share variables, unlike
in a DSDBDD.

6.3 Succinctness separation between DSDBDD and

BDD

Theorem 6.1 shows an example of a separating function g (Equation 6.4) which has a
small DSDBDD but exponential-sized BDD, for every variable order. It is based on
three multiplexed copies of the order-parameterized function f , with variable orders
π0, π1, π2. By abuse of notation, we use z both as a bit-string, and as the integer
z ∈ {0, 1, 2} which the bit-string represents in base 2. The function f is well known to
yield exponential BDDs for non-interleaved variable orders, as our generalized Lemma

163

Succinctness separation between DSDBDD and BDD

Figure 6.2: The DSDBDD of the function g, in Equation 6.4 when n = 3. The
permutations used are π0 = (1)(2)(3), π1 = (1, 2, 3), π2 = (1, 3, 2). The rectangle
containing xi ⇔ xj represents the BDD of the function xi ⇔ xj , as shown in Figure
2.3(e).

6.1 shows. We state it without proof.

f [π](x1, . . . , xn, y1, . . . , yn) ≜ (x1 ⇔ yπ(1)) ∧ · · · ∧ (xn ⇔ yπ(n)) (6.3)

g(z, x1, . . . , xn, y1, . . . , yn) ≜ f [πz](x1, . . . , xn, y1, . . . , yn) for z ∈ {0, 1, 2}. (6.4)

Lemma 6.1. Let π ∈ Sn and σ be an order over {x1, . . . , xn, y1, . . . , yn} (the variables
f [π]). For 1 ≤ i ≤ n, say that xi and yπ(i) are partners. Let L be the first n variables
according to σ. If k elements in L have their partner outside of L, then a BDD of f [π]
with variable order σ has at least 2k nodes on layer n.

By choosing distinct permutations π, π′, the functions f [π], f [π′] will disagree on which
variables are partners. Theorem 6.1 shows that there exist many irreconcilable choices
for permutations π0 − π2 in g, because the corresponding “partner graph”, connecting
two partner variables according to either permutation, is an expander, i.e., has high
connectivity.

Theorem 6.1. Let π0, π1, π2 be permutations chosen uniformly and independently at
random from Sn. Then it holds that, with high probability, for every variable order
σ over {x1, . . . , xn, y1, . . . , yn}, at least one of the BDDs for f [π0], f [π1], f [π2] has size
2Ω(n) and hence the BDD for g is also large.

Proof. LetG be the undirected bipartite graph with nodes V = {x1, . . . , xn, y1, . . . , yn}

164

The Power of Disjoint Support Decompositions in BDDs

and edges E = E0∪E1∪E2 with Ej = {(xi, yπj(i)) | 1 ≤ i ≤ n}. Then G is an expander
with high probability by Theorem 4.16 in [164]. That is, there is a constant ε > 0

(independent of n) such that, with high probability, for all sets of vertices L ⊂ V , if
|L| ≤ n, then

|N(L) \ L|
|L|

≥ ε where N(L) = {w | ∃v ∈ L : (v, w) ∈ E} (6.5)

Let σ be a variable order of V (the variables of the functions f [πj]), and let L be the
first n variables according σ. Then there are at least ε ·n vertices in L connected to L.
Since each vertex is connected to at most 3 edges, it holds that one of the edge sets Ej
is responsible for at least ε ·n/3 edges crossing over from L to L. Let K = Ej ∩(L×L)
be a set of pairs (xi, yπj(i)) such that xi is in L, but its partner yπj(i) is L. It follows
from Lemma 6.1 that the corresponding function f [πj] has a BDD of size at least
2|K| = 2Ω(n). Since g|z:=j = f [πj], and since a BDD is at least as large as the BDDs
of its subfunctions, g also has at least 2Ω(n) nodes. This holds w.h.p. over the choice
of permutations.

The DSDBDD of g is shown in Figure 6.2, for n = 3. For larger n, the DSDBDD
simply has more “rows”, i.e., there are still three decomposition nodes, and they have
n factors. The DSDBDD of g therefore has only O(n) nodes for larger n.

An immediate corollary is that the same relation holds between DSDBDDs versus
ZDDs [229], Tagged BDDs [328] and CBDDs [68], since these decision diagrams are
all at most a factor n smaller than BDDs on any function.

6.4 Conclusion and future work

We have analyzed the Disjoint Support Decomposition Binary Decision Diagram and
found that it strictly dominates BDD and ZDD in terms of memory, up to polynomial
overhead. That is, DSDBDDs can be exponentially smaller than BDDs. It remains
an open question how DSDBDDs relates to other very expressive DDs; notably, it
would be good to know its relation to SDDs, FBDDs, non-deterministic BDDs (∨-
BDD [54,55]) and d-DNNF. In addition, it would be interesting to map the complexity
of DSDBDDs of the different operations considered by Darwiche & Marquis [97].

To the best of our knowledge, DSDBDDs have not been deployed on large, real-world

165

Conclusion and future work

problems as encountered, e.g., in model checking and synthesis. Given that we showed
that DSDBDDs can be exponentially more succinct, and they retain canonicity of
BDDs, it could be worthwhile to test the scalability of DSDBDD in practice. In a
similar vein, the integration of disjoint support decompositions into other decision
diagrams could be considered. Minato [230] shows how to find the DSDs of the nodes
in a ZDD; a next step would be to integrate this into the Boolean operations of ZDDs,
as was done in [264,265], so that the diagram remains small during compilation. Other
promising candidates for integration with DSDs are FDDs and SDDs; we are not aware
of any work in this direction.

166

