
Data structures for quantum circuit verification and how to
compare them
Vinkhuijzen, L.T.

Citation
Vinkhuijzen, L. T. (2025, February 25). Data structures for quantum circuit
verification and how to compare them. IPA Dissertation Series. Retrieved from
https://hdl.handle.net/1887/4208911

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis
in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/4208911

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/4208911

Chapter 3

LIMDD: a decision diagram for
simulation of quantum
computing including stabilizer
states

Efficient methods for the representation and simulation of quantum states and quan-
tum operations are crucial for the optimization of quantum circuits. Decision diagrams
(DDs), a well-studied data structure originally used to represent Boolean functions,
have proven capable of capturing relevant aspects of quantum systems, but their lim-
its are not well understood. In this work, we investigate and bridge the gap between
existing DD-based structures and the stabilizer formalism, an important tool for sim-
ulating quantum circuits in the tractable regime. We first show that although DDs
were suggested to succinctly represent important quantum states, they actually re-
quire exponential space for certain stabilizer states. To remedy this, we introduce a
more powerful decision diagram variant, called Local Invertible Map-DD (LIMDD). We
prove that the set of quantum states represented by poly-sized LIMDDs strictly con-
tains the union of stabilizer states and other decision diagram variants. Finally, there
exist circuits which LIMDDs can efficiently simulate, while their output states cannot
be succinctly represented by two state-of-the-art simulation paradigms: the stabilizer

45

Introduction

decomposition techniques for Clifford + T circuits and Matrix-Product States.

This chapter contributes to answering Research Question 1:

Research question 1. Can we unite the strengths of decision diagrams and
the stabilizer formalism?

This chapter answers this question by uniting the strengths of decision diagrams and
the stabilizer formalism in a new data structure, the LIMDD. This new DD can ef-
ficiently simulate any circuit that can also be efficiently simulated by an existing
state-of-the-art DD, the QMDD, and moreover can simulate all stabilizer circuits in
polynomial time and represent all stabilizer states in polynomial space. By uniting two
successful approaches, LIMDDs thus pave the way for fundamentally more powerful
solutions for simulation and analysis of quantum computing.

3.1 Introduction

Classical simulation of quantum computing is useful for circuit design [74,373], verifica-
tion [71,75] and studying noise resilience in the era of Noisy Intermediate-Scale Quan-
tum (NISQ) computers [267]. Moreover, identifying classes of quantum circuits that
are classically simulatable, helps in excluding regions where a quantum computational
advantage cannot be obtained. For example, circuits containing only Clifford gates (a
non-universal quantum gate set), using an all-zero initial state, only compute the so-
called ‘stabilizer states’ and can be simulated in polynomial time [3,109,135,136,325].
Stabilizer states, and associated formalisms for expressing them, are fundamental to
many quantum error correcting codes [135] and play a role in measurement-based
quantum computation [271]. In fact, simulation of universal quantum circuits is fixed-
parameter tractable in the number of non-Clifford gates [64], which is why many
modern simulators are based on stabilizer decomposition [61, 62,64,165,184,185].

Another method for simulating universal quantum computation is based on decision
diagrams (DDs) [7,67,69,334], including Algebraic DDs [27,84,124,331], Affine Alge-
braic DDs [281], Quantum Multi-valued DDs [227,374], and Tensor DDs [163]. A DD
is a directed acyclic graph (DAG) in which each path represents a quantum amplitude,
enabling the succinct (and exact) representation of many quantum states through the
combinatorial nature of this structure. A DD can also be thought of as a homo-

46

LIMDD: a decision diagram for simulation of quantum computing
including stabilizer states

State space

poly-size LIMDD

poly-size
MPS

cluster states(pseudo)

poly-size
QMDD

Stabilizer
states

Figure 3.1: The set of stabilizer states and states representable as poly-sized: (Pauli-
)LIMDDs (this work), QMDDs and MPS.

morphic (lossless) compression scheme, since various manipulation operations for DDs
exist which implement any quantum gate operation, including measurement (without
requiring decompression). Strong simulation is therefore easily implemented using a
DD data structure [163,227,374]. Indeed, DD-based simulation was empirically shown
to be competitive with state-of-the-art simulators [157,334,374] and is used in several
simulator and circuit verification implementations [162, 332]. DDs and the stabilizer
formalism are introduced in Section 3.2.

QMDDs are currently the most succinct DD supporting quantum simulation, but in
this chapter we show that they require exponential size to represent a type of stabilizer
state called a cluster state [65]. In order to unite the strengths of DDs and the sta-
bilizer formalism and inspired by SLOCC (Stochastic Local Operations and Classical
Communication) equivalence of quantum states [82, 107], in Section 3.3, we propose
LIMDD: a new DD for quantum computing simulation using local invertible maps
(LIMs). Specifically, LIMDDs eliminate the need to store multiple states which are
equivalent up to LIMs, allowing more succinct DD representations. For the local oper-
ations in the LIMs, we choose Pauli operations, creating a Pauli-LIMDD, which we will
simply refer to as LIMDD. We prove that there is a family of quantum states —called
pseudo cluster states— that can be represented by poly-sized (Pauli-)LIMDDs but that
require exponentially-sized QMDDs and cannot be expressed in the stabilizer formal-
ism. We also show the same separation for matrix product states (MPS) [262,335,346].
Figure 3.1 visualizes the resulting separations.

Further, we give algorithms for simulating quantum circuits using Pauli-LIMDDs. We
continue by investigating the power of these algorithms compared to state-of-the-

47

Introduction

art simulation algorithms based on QMDD, MPS and stabilizer decomposition. We
find circuit families which Pauli-LIMDD can efficiently simulate, which stands in stark
contrast to the exponential space needed by QMDD-based, MPS-based and a stabilizer-
decomposition-based simulator (the latter result is conditional on the exponential time
hypothesis). This is the first analytical comparison between decision diagrams and
matrix product states.

Efficient decision diagram operations for both classical [97] and quantum [74] applica-
tions crucially rely on dynamic programming (storing the result of each intermediate
computation) and canonicity (each quantum state has a unique, smallest representa-
tive as a LIMDD) [59,183,303]. We provide algorithms for both in Section 3.4. Indeed,
the main technical contribution of this chapter is the formulation of a canonical form
for Pauli-LIMDDs together with an algorithm which brings a Pauli-LIMDD into this
canonical form. By interleaving this algorithm with the circuit simulation algorithms,
we ensure that the algorithms act on LIMDDs that are canonical and as small as
possible.

The canonicity algorithm effectively determines whether two n-qubit quantum states
|φ⟩ , |ψ⟩, each represented by a LIMDD node φ,ψ, are equivalent up to a Pauli oper-
ator P , i.e, |φ⟩ = P |ψ⟩, which we call an isomorphism between |φ⟩ and |ψ⟩. Here
P = Pn⊗ ...⊗P1 consists of single qubit Pauli operators Pi (ignoring scalars for now).
In general, there are multiple choices for P , so the goal is to make a deterministic
selection among them, to ensure canonicity of the resulting LIMDD. To do so, we first
take out one qubit and write the states as, e.g., |φ⟩ = c0 |0⟩ |φ0⟩+ c1 |1⟩ |φ1⟩ for com-
plex coefficients c0, c1. We then realize that Prest = Pn−1...⊗ P1 must map the pair
(|φ0⟩ , |φ1⟩) to either (|ψ0⟩ , |ψ1⟩) or (|ψ1⟩ , |ψ0⟩) (in case Pn is a diagonal or antidi-
agonal, respectively). Hence Prest is a member of the intersection of the two sets of
isomorphisms. Next, we realize that the set of all isomorphisms, e.g. mapping |φ0⟩
to |ψ0⟩, is a coset π ·G of the stabilizer group G of |φ0⟩ (i.e. the set of isomorphisms
mapping |φ0⟩ to itself) where π is a single isomorphism |φ0⟩ → |ψ0⟩. Thus, to find
a (canonical) isomorphism between n-qubit states |φ⟩ → |ψ⟩ (or determine no such
isomorphism exists), we need three algorithms: to find (a) an isomorphism between
(n−1)-qubit states, (b) the stabilizer group of an (n−1)-qubit state (in fact: the group
generators, which form an efficient description), (c) the intersection of two cosets in
the Pauli group (solving the Pauli coset intersection problem). Task (a) and (b) are
naturally formulated as recursive algorithms on the number of qubits, which invoke
each other in the recursion step. For (c) we provide a separate algorithm which first

48

LIMDD: a decision diagram for simulation of quantum computing
including stabilizer states

rotates the two cosets such that one is a member of the Pauli Z group, hence isomor-
phic to a binary vector space, followed by using existing algorithms for binary coset
(hyperplane) intersection. Having characterized all isomorphisms |φ⟩ → |ψ⟩, we select
the lexicographical minimum to ensure canonicity. We emphasize that the algorithm
works for arbitrary quantum states, not only stabilizer states.

In Chapter 4, we describe a software implementation of Pauli-LIMDDs. We evaluate
this implementation empirically against QMDDs in a case study in which we simulate
a quantum circuit which applies a quantum Fourier Transform to a random stabilizer
state.

To further establish a separation between LIMDDs and stabilizer rank-based simula-
tors, we provide a small numerical experiment which tries to find a low-rank stabilizer
decomposition for the so-called Dicke state, in Section 3.6. A state-of-the-art algo-
rithm fails to find a low-rank decomposition, whereas LIMDDs represent and prepare
such states efficiently; a proof is given in App. D.

3.2 Preliminaries: decision diagrams and the stabi-

lizer formalism

Here, we briefly introduce two methods to manipulate and succinctly represent quan-
tum states: decision diagrams, which support universal quantum computing, and the
stabilizer formalism, in which a subset of all quantum computations is supported which
can however be efficiently classically simulated. Both support strong simulation, i.e.
the probability distribution of measurement outcomes can be computed (through weak
simulation one only samples measurement outcomes).

For an introduction to quantum computing, see Section 2.2; for an introduction to
decision diagrams, see Section 2.3

3.2.1 Decision diagrams

An n-qubit quantum state |φ⟩ can be represented as a 2n-dimensional vector of com-
plex numbers (modeling amplitudes) and can thus be described by a pseudo-Boolean

49

Preliminaries: decision diagrams and the stabilizer formalism

function f : {0, 1}n → C where

|φ⟩ =
∑

x1,...,xn∈{0,1}

f(xn, ..., x1) |xn⟩ ⊗ ...⊗ |x1⟩ . (3.1)

The Quantum Multi-valued Decision Diagram (QMDD) [227] is a data structure which
can succinctly represent functions of the form f : {0, 1}n → C, and thus can represent
any quantum state per Equation 3.1. A QMDD is a rooted DAG with a unique
leaf node 1 , representing the value 1. Figure 3.2 (d) shows an example (and its
construction from a binary tree). Each node has two outgoing edges, called its low
edge (dashed line) and its high edge (solid line). The diagram has levels as each node
is labeled with (the index of) a variable; the root has index n, its children n− 1, etc,
until the leaf with index 0 (the set of nodes with index k form level k). Hence each
path from root to leaf visits nodes representing the variables x3, x2, x1 in order. The
value f(xn, . . . , x1) = ⟨xn...x1|φ⟩ is computed by traversing the diagram, starting at
the root edge and then for each node at level i following the low edge (dashed line)
when xi = 0, and the high edge (solid line) when xi = 1, while multiplying the edge
weights (shown in boxes) along the path, e.g., f(1, 1, 0) = 1

2 · 1 · −
√
2 · 1 = − 1√

2
in

Figure 3.2.

A path from the root to a node v with index k (on level k) thus corresponds to a partial
assignment (xn = an, . . . , xk−1 = ak−1), which induces subfunction fa⃗(xk, . . . , x1) ≜

f(an, . . . , ak−1, xk, . . . , x1). The node v represents this subfunction up to a complex
factor γ, which is stored on the edge incoming to v along that path. This allows any
two nodes which represent functions equal up to a complex factor to be merged. For
instance, the node u on level 1 in Figure 3.2 represents f01 = f10 = −1√

2
f11 = 0 · f00.

When all eligible nodes have been merged, the QMDD is reduced. A reduced QMDD
is a canonical representation: a given function has a unique reduced QMDD.

Canonicity ensures that the QMDD is always as small as possible as redundant nodes
are merged. But more importantly, canonicity allows for quick equality checks: two
diagrams represent the same state if and only if their root edges are the same (i.e.,
have the same label and point to the same root node). This allows for efficient QMDD
manipulation algorithms (i.e. updating the QMDD upon performing a gate or mea-
surement) through dynamic programming, which avoids traversing all paths (exponen-
tially many in the size of the diagram in the worst case). For all quantum gates, there
are algorithms to update the QMDD accordingly and measurement is also supported
(even efficiently). Therefore, QMDDs can simulate any quantum circuit, although they

50

LIMDD: a decision diagram for simulation of quantum computing
including stabilizer states

u 1

1 /
2

0
−
√
2

0

d)

u 1

0

1 2
1 2

-
1 √
2

1
0

c)

1
0

0
1 2

0
1 2

0
-

1 √
2 0

b)

0
0

1 2
0

1 2
0

−
1 √
2

0

a)

3

L
ev

el
: 2 1

F
ig

ur
e

3.
2:

D
iff

er
en

t
de

ci
si

on
di

ag
ra

m
s

re
pr

es
en

ti
ng

th
e
3-

qu
bi

t
st

at
e
[0
,0
,
1 2
,0
,
1 2
,0
,−

1 √
2
,0
]⊤

,e
vo

lv
in

g
in

to
a

Q
M

D
D

(r
ig

ht
).

Le
ft

,
(a

)
sh

ow
s

th
e

ex
po

ne
nt

ia
l

bi
na

ry
tr

ee
,

w
he

re
a

no
de

on
le

ve
l
i

re
pr

es
en

ts
x
i

(s
ee

E
qu

at
io

n
3.

1)
an

d
it

s
ou

tg
oi

ng
ar

ro
w

s
x
i
=

0
(d

as
he

d)
an

d
x
i
=

1
(s

ol
id

).
T

he
le

af
co

nt
ai

ns
th

e
co

m
pl

ex
am

pl
it

ud
e
f
(x

1
,x

2
,x

3
)

(s
ee

E
qu

at
io

n
3.

1)
fo

r
th

e
as

si
gn

m
en

t
of

(x
1
,x

2
,x

3
)

co
rr

es
po

nd
in

g
to

th
e

pa
th

fr
om

th
e

ro
ot

,
e.

g.
f
(1
,1
,0
)
=

−
1 √
2
.

N
ex

t
(b

),
th

e
le

av
es

ar
e

m
er

ge
d

by
di

vi
di

ng
ou

t
co

m
m

on
fa

ct
or

s,
pu

tt
in

g
th

es
e

as
w

ei
gh

ts
(s

ho
w

n
in

bo
xe

s)
on

th
e

ed
ge

s
go

in
g

ou
t

of
le

ve
l-1

no
de

s
(n

ot
e

in
pa

rt
ic

ul
ar

th
at

w
e

ca
n

su
pp

re
ss

a
se

pa
ra

te
0

le
af

,
as

0
=

0
·1

).
T

he
n

th
e

sa
m

e
tr

ic
k

is
ap

pl
ie

d
to

le
ve

l-
1

no
de

s
in

(c
).

In
th

is
ex

am
pl

e,
al

l
le

ve
l-1

no
de

s
v
,w
,s
,t

be
co

m
e

is
om

or
ph

ic
an

d
ca

n
be

m
er

ge
d

in
to

a
ne

w
no

de
u
,

re
pr

es
en

ti
ng

th
e

ve
ct

or
|u
⟩=

[1
,0
]⊤

.
T

hi
s

ca
n

be
do

ne
be

ca
us

e
th

e
le

ve
l-1

no
de

s
v
,w
,s
,t

re
sp

ec
ti

ve
ly

re
pr

es
en

t
th

e
ve

ct
or

s
[0
,0
]⊤
,[

1 2
,0
]⊤
,[

1 2
,0
]⊤
,[

1 √
2
,0
]⊤

,w
hi

ch
ca

n
be

w
ri

tt
en

as
c
·|
u
⟩=

c
·[
1,
0
]⊤

fo
r

re
sp

ec
ti

ve
w

ei
gh

ts
c
=

0
,
1 2
,
1 2
,

1 √
2
.

F
in

al
ly

,(
d)

sh
ow

s
th

e
re

su
lt

in
g

Q
M

D
D

,
ap

pl
yi

ng
th

e
sa

m
e

ta
ct

ic
to

no
de

s
on

le
ve

ls
2

an
d

3.
N

ot
e

th
at

a
Q

M
D

D
re

qu
ir

es
a

ro
ot

ed
ge

.
M

er
gi

ng
(i
so

m
or

ph
ic

)
no

de
s

m
ak

es
Q

M
D

D
s

su
cc

in
ct

.
B

y
co

nv
en

ti
on

,u
nl

ab
el

le
d

ed
ge

s
ha

ve
la

be
l1

.

51

Preliminaries: decision diagrams and the stabilizer formalism

may become exponentially large (in the number of qubits) already after applying part
of the gates from the circuit. The resulting simulator is strong, as the complete final
state is computed as QMDD (and computing measurement outcome probabilities on
QMDD is tractable).

Finally, we can also define the semantics of a node v recursively, overloading Dirac
notation: |v⟩. For convenience, we denote an edge to node v labeled with ℓ pictograph-

ically as v
ℓ . Now a node v with low edge v0

α and high edge v1
β , represents

the state: |v⟩ ≜ α |0⟩ ⊗ |v0⟩+ β |1⟩ ⊗ |v1⟩, where in the base case | 1 ⟩ ≜ 1 as defined
above. We later define LIMDD semantics similarly.

3.2.2 Pauli operators and stabilizer states

In contrast to decision diagrams, the stabilizer formalism [136] forms a classically sim-
ulatable subset of quantum computation. Instead of explicitly representing the (expo-
nential) amplitude vector, the stabilizer formalism describes the symmetries a quantum
state using so-called stabilizers. A unitary operator U stabilizes a state |φ⟩ if |φ⟩ is a
+1 eigenvector of U , i.e., U |φ⟩ = |φ⟩. The formalism considers stabilizers U made up
of the single-qubit Pauli operators Pauli ≜ {I, X, Y, Z} as defined below. In fact, a
stabilizer is taken from the n-qubit Pauli group, defined as Paulin ≜

〈
Pauli⊗n

〉
, i.e.

it is the group generated by all n-qubit Pauli strings Pn ⊗ ...⊗ P1 with Pi ∈ Pauli.
Here we used the notation ⟨G⟩ = H to denote that G ⊆ H is a generator set for a group
H. One can check that Paulin = {icPn ⊗ ...⊗ P1 | P1, ..., Pn ∈ Pauli, c ∈ {0, 1, 2, 3}},
so in particular we have Pauli1 = {±P,±iP | P ∈ Pauli} (the Pauli set with a factor
±1 or ±i).

I ≜

(
1 0

0 1

)
, X ≜

(
0 1

1 0

)
, Y ≜

(
0 −i
i 0

)
, Z ≜

(
1 0

0 −1

)

The set of Pauli stabilizers Stab(|φ⟩) ⊂ Paulin of an n-qubit quantum state |φ⟩
necessarily forms a subgroup of Paulin, since the identity operator I⊗n is a stabilizer
of any n-qubit state and moreover if U and V stabilize |φ⟩, then so do UV, V U and
U−1. Furthermore, any Pauli stabilizer group G is abelian, i.e. A,B ∈ G implies
AB = BA. The reason for this is that elements of Paulin either commute (AB = BA)
or anticommute (AB = −BA) under multiplication and anticommuting elements can
never be stabilizers of the same state |φ⟩, because if A,B ∈ Stab(|φ⟩) and AB = −BA

52

LIMDD: a decision diagram for simulation of quantum computing
including stabilizer states

then |φ⟩ = AB |φ⟩ = −(BA) |φ⟩ = − |φ⟩, a contradiction. Finally, note that −I⊗n can
never be a stabilizer. In fact, these conditions are necessary and and sufficient: the
class of abelian subgroups G of Paulin, not containing −I⊗n, are precisely all n-qubit
stabilizer groups. For clarity, we adopt the convention that we denote Pauli strings
without phase using the symbols P,Q,R, . . . and we use the symbols A,B,C, . . . for
Pauli operators including phase; e.g., we may write A = λP . The phase λ of any
stabilizer λP ∈ Pauli can only be λ = ±1, derived as

∀λP ∈ Stab(|φ⟩) : |φ⟩ = (λP) |φ⟩ = (λP)2 |φ⟩ = λ2I |φ⟩ = λ2 |φ⟩ =⇒ λ = ±1.

(3.2)

The number of generators k for a n-qubit stabilizer group S can range from 1 to n,
and S has 2k elements. If k = n, then there is only a single quantum state |φ⟩ (a
single vector up to complex scalar) which is stabilized by S; such a state is called a
stabilizer state. Equivalently, |φ⟩ = C |0⟩⊗n where C is a circuit composed of only
Clifford unitaries, a group generated by the Clifford gates:

(Hadamard gate) H ≜
1√
2

(
1 1

1 −1

)
, (phase gate) S ≜

(
1 0

0 −i

)
, (3.3)

CNOT ≜

(
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

)
. (3.4)

In the stabilizer formalism, an n-qubit stabilizer state is succinctly represented through
n independent generators of its stabilizer group, each of which is represented by O(n)

bits to encode the Pauli string (plus factor), yielding O(n2) bits in total. Examples of
(generators of) stabilizer groups are ⟨Z⟩ for |0⟩ and ⟨X ⊗X,Z ⊗ Z⟩ for 1√

2
(|00⟩+|11⟩).

Updating a stabilizer state’s generators after application of a Clifford gate or a single-
qubit computational-basis measurement can be done in polynomial time in n [3, 136].
Various efficient algorithms exist for manipulating stabilizer (sub)groups S, including
testing membership (is A ∈ Paulin a member of S?) and finding a generating set
of the intersection of two stabilizer (sub)groups. These algorithms predominantly use
standard linear algebra, e.g., Gauss-Jordan elimination, as described in Sec. 3.5.2 in
detail.

In this work, we also consider states which are not stabilizer states and which therefore
have a nonmaximal stabilizer group (i.e. < n generators). To emphasize that a
stabilizer group need not be maximal, i.e. it is a subgroup of maximal stabilizer
groups, we will use the term stabilizer subgroup. Such objects are also studied in the

53

Preliminaries: decision diagrams and the stabilizer formalism

context of simulating mixed states [24] and quantum error correction [135]. Examples
of stabilizer subgroups are {I} for 1√

2
(|0⟩ + eiπ/4 |1⟩), ⟨−Z⟩ for |1⟩ and ⟨X ⊗ X⟩ for

1√
6
(|00⟩+ |11⟩) + 1√

3
(|01⟩+ |10⟩). In contrast to stabilizer states, in general a state is

not uniquely identified by its stabilizer subgroup.

Graph states on n qubits are the output states of circuits with input state 1
2n/2 (|0⟩+

|1⟩)⊗n followed by only CZ ≜ |00⟩⟨00|+ |01⟩⟨01|+ |10⟩⟨10| − |11⟩⟨11| gates, and form
a strict subset of all stabilizer states that is also important in error correction and
measurement-based quantum computing [153]. By the (two-dimensional) cluster state
on n2 qubits, we mean the graph state whose graph is the n× n grid.

Given a vector space V ⊆ {0, 1}n and a length-n bitstring s, the corresponding coset
state is 1√

|V |

∑
x∈V |x+ s⟩ where ‘+’ denotes bitwise xor-ing [1]. Each coset state is

a stabilizer state.

Stabilizer decomposition-based methods [61, 62, 64, 165, 184, 185] extend the stabilizer
formalism to families of Clifford circuits with arbitrary input states |φn⟩, enabling the
simulation of universal quantum computation [63]. By decomposing the n-qubit state
|φn⟩ as linear combination of χ stabilizer states followed by simulating the circuit on
each of the χ stabilizer states, the measurement outcomes can be computed in time
O(χ2 ·poly(n)), where the least χ is referred to as the stabilizer rank of |φn⟩. Therefore,
stabilizer-rank based methods are efficient for any family of input states |φn⟩ whose
stabilizer rank grows polynomially in n.

A specific method for obtaining a stabilizer decomposition of the output state of
an n-qubit circuit is by rewriting the circuit into Clifford gates and T = |0⟩⟨0| +
eiπ/4|1⟩⟨1| gates (a universal gate set). Next, each of the T gates can be converted
into an ancilla qubit initialized to the state T |+⟩ where |+⟩ = 1√

2
(|0⟩ + |1⟩); thus,

an n-qubit circuit containing t T gates will be converted into an n + t-qubit Clifford
circuit with input state |φ⟩ = |0⟩⊗n ⊗ (T |+⟩)⊗t [64]. We will refer to the resulting
specific stabilizer-rank based simulation method as the ‘Clifford + T simulator,’ whose
simulation runtime scales with χt = χ((T |+⟩)⊗t), the number of stabilizer states in
the decomposition of |φ⟩. Trivially, we have χt ≤ 2t, and although recent work [62,64]
has found decompositions smaller than 2t terms based on weak simulation methods,
the scaling of χt remains exponential in t. We emphasize that the Clifford + T
decomposition is not necessarily optimal, in the sense that the intermediate states of
the circuit might have lower stabilizer rank than |T ⟩⊗t does. Consequently, if a given
circuit contains t = Ω(n) T -gates, then the Clifford + T simulator requires exponential

54

LIMDD: a decision diagram for simulation of quantum computing
including stabilizer states

time (in n) for simulating this n-qubit circuit, even if there exist polynomially-large
stabilizer decompositions of each of the circuit’s intermediate and output states (i.e., in
principle, there might exist another stabilizer rank-based simulator that can simulate
this circuit efficiently).

3.2.3 Matrix product states

Representing quantum states as matrix product states (MPS) has proven successful for
solving a large range of many-body physics problems [262,346]. For qubits, an n-qubit
MPSM is formally defined as a series of 2nmatrices Axk ∈ CDk×Dk+1 where k ∈ [n], x ∈
{0, 1}, Dk ∈ N≥1 and D1 = Dn+1 = 1. Here, Dk+1 is the matrix dimension over the
k-th bond. The interpretation |M⟩ is determined as ⟨x1x2...xn|M⟩ = Ax1

1 A
x2
2 · · ·Axn

n

for x1, ..., xn ∈ {0, 1}. If the bond dimension may scale exponentially in the number
of qubits, any family of quantum states can be represented exactly by an MPS.

The Schmidt rank of a state |φ⟩ on n qubits, relative to a bipartition of the qubits
into two sets A and B, is the smallest integer m ≥ 1 such that |φ⟩ can be expressed
as the superposition |φ⟩ =

∑m
j=1 cj |aj⟩A |bj⟩B for complex coefficients cj , where the

states |aj⟩A (|bj⟩B) form an orthonormal basis for the Hilbert space of the A register
(B register). The relation with MPS is that the maximum Schmidt rank with respect
to any bipartition A = {x1, . . . , xk}, B = {xk + 1, . . . , xn} is precisely the smallest
possible bond dimension Dk+1 required to exactly express a state in MPS.

Vidal [335] showed that MPS-based circuit simulation is possible in time O(n ·poly(χ))
per elementary operation, where n is number of qubits and χ the maximum Schmidt
rank for all intermediate states computed.

3.3 Local Invertible Map Decision Diagrams

Sec. 3.3.1 introduces a LIMDD definition parameterized with different local operations.
We mainly consider the Pauli-LIMDD and refer to it simply as LIMDD. We show how
LIMDDs generalize QMDDs and can represent arbitrary quantum states, normalized
or not. We then use this definition in Sec. 3.3.2 to show how LIMDDs succinctly —i.e.,
in polynomial space— represent graph states (in particular cluster states), coset states
and, more generally, stabilizer states. On the other hand, QMDDs and MPS require

55

Local Invertible Map Decision Diagrams

exponential size to represent two-dimensional cluster states.

We translate this exponential advantage in quantum state representation to (universal
and strong) quantum circuit simulation in Sec. 3.3.3 by giving algorithms to update
and query the LIMDD data structure. These LIMDD manipulation algorithms take a
LIMDD φ, representing some state |φ⟩, and return another LIMDD ψ that represents
the state |ψ⟩ = U |φ⟩ for standard gates U and also for arbitrary unitaries U (by
preparing U in LIMDD form first; we show how). The measurement algorithm we give
returns the outcome in linear time in size of the LIMDD representation of the quantum
state.

For many quantum operations, we show that our manipulation algorithms are efficient
on all quantum states, i.e., take polynomial time in the size of the LIMDD represen-
tation of the state. Algorithms for certain other operations are efficient for certain
classes of states, e.g., all Clifford gates can be applied in polynomial time to a LIMDD
representing a stabilizer state. We show that LIMDDs can be exponentially faster
than QMDDs, while they are never slower by more than a multiplicative factor O(n3).
These algorithms use a canonical form of LIMDDs, such that for each state there is a
unique LIMDD. We defer this subject to Section 3.4, which introduces reduced LIMDDs
and efficient algorithms to compute them.

With these algorithms, a quantum circuit simulator can be engineered by applying
the circuit’s gates one by one on the representation of the state as LIMDD. Prop. 3.1
provides the bottom line of this section by comparing simulator runtimes. In Sec. 3.3.4,
we prove Prop. 3.1.

Proposition 3.1. Let QSimClifford + T
C denote the runtime of the Clifford + T sim-

ulator on circuit C (allowing for weak simulation as in [62]). Let QSimDC denote the
runtime of strong simulation of circuit C using method D = (Pauli−)LIMDD, QMDD,
QMDD ∪ Stab, MPS, QMDD ∪ Stab.∗ Here, the latter is an (imaginary) ideal com-
bination of QMDD (not tractable for all Clifford circuits) and the stabilizer formalism
(tractable for Clifford circuits), i.e., one that always inherits the best worst-case run-
time from either method.
The following holds, where Ω∗ discards polynomial factors, i.e., Ω∗(f(n)) ≜

Ω(nO(1)f(n)).

There is a family of circuits C such that:
∗We are not aware of any (potentially better) weak D-based simulation approaches and do not

consider them.

56

LIMDD: a decision diagram for simulation of quantum computing
including stabilizer states

1. LIMDD is exponentially faster than Clifford + T : QSimClifford + T
C = Ω∗(2n ·

QSimLIMDD
C),†

2. LIMDD is exponentially faster than MPS: QSimMPS
C = Ω∗(2n · QSimLIMDD

C),
and

3. LIMDD is exponentially faster than QMDD: QSimQMDD
C = Ω∗(2n ·QSimLIMDD

C).

4. For all C, LIMDD is at worst cubically slower than QMDD: QSimLIMDD
C = O(n3 ·

QSimQMDD
C).

5. Item 3 and 4 hold when replacing QMDD with QMDD ∪ Stab.

3.3.1 The LIMDD data structure

Where QMDDs only merge nodes representing the same complex vector up to a con-
stant factor, the LIMDD data structure goes further by also merging nodes that are
equivalent up to local operations, called Local Invertible Maps (LIMs) (see Defini-
tion 3.1). As a result, LIMDDs can be exponentially more succinct than QMDDs, for
example in the case of stabilizer states (see Sec. 3.3.2). We will call nodes which are
equivalent under LIMs, (LIM-) isomorphic. This definition generalizes SLOCC equiv-
alence (Stochastic Local Operations and Classical Communication); if we choose the
parameter G to be the linear group, then the two notions coincide (see [107, App. A]
and [39,82]).

Definition 3.1 (G-LIM, G-Isomorphism). An n-qubit G-Local Invertible Map (LIM)
is an operator O of the form O = λOn ⊗ · · · ⊗ O1, where G is a group of invertible
2 × 2 matrices, Oi ∈ G and λ ∈ C \ {0}. A G-isomorphism between two n-qubit
quantum states |φ⟩ , |ψ⟩ is a LIM O such that O |φ⟩ = |ψ⟩, denoted |φ⟩ ≃G |ψ⟩. Note
that G-isomorphism is an equivalence relation.

We define PauliLIMn ≜ ⟨Pauli⟩-LIM, i.e., the group of Pauli operators P ∈ Paulin
with arbitrary complex factor λ ∈ C \ {0} (λ can absorb the factor γ = ±1,±i in
P = γPn ⊗ ...⊗ P1. Note λ = ±1 still for PauliLIMn operators which are stabilizers,
by eq. (3.2)).

Before we give the formal definition of LIMDDs in Definition 3.2, we give a motivating
example in Figure 3.3, which uses ⟨X,Y, Z, T ⟩-LIMs to demonstrate how the use of

†Assuming the exponential time hypothesis (ETH). See Sec. 3.3.4.3 for details.

57

Local Invertible Map Decision Diagrams

q
3

q ′3

q
2

p
2

q ′2
p
′2

q
1

q ′1

1

14

-1

-ω
ω

i
-ω

i
-ω

−
1

a)

q
3

q ′3

q
2

p
2

q ′2
p
′2

ℓ
11

14

−
1

-ω
ω

i
Z

-ω
Z

iZ

-ω
Z

b)

q
3

q ′3

ℓ
2

ℓ ′2

ℓ
11

14

−
1

I
⊗

I -ω
T
Z
X

⊗
I

I
⊗

Z

ω
T

⊗
X

i·I
Z

c)

ℓ
3

ℓ
2

ℓ ′2

ℓ
11

14
·I

⊗
I
⊗

I
⊗

X

Z
⊗

I
⊗

Z

ω
·
T

⊗
Z

i·I

Z

d)

4
L
evel:

321

F
igure

3.3:
A

Q
M

D
D

(a)
representing

the
state

14
[1
,1,i,i,−

ω
,ω
,i,i,−

1,1,−
i,i,−

ω
,−
ω
,i,−

i] ⊤
w

ith
ω
=
e
iπ
/
4,evolving

into
a

LIM
D

D
(d).

A
s

in
F
igure

3.2,diagram
nodes

are
horizontally

ordered
in

‘levels’w
ith

qubit
indices

4
,3
,2,1.

Low
edges

are
dashed,high

edges
solid.

See
the

text
for

an
explanation.

B
y

convention,unlabelled
edges

have
label

1
(for

Q
M

D
D

)
or

I ⊗
k

(for
LIM

D
D

nodes
at

level
k).

58

LIMDD: a decision diagram for simulation of quantum computing
including stabilizer states

isomorphisms can yield small diagrams for a four-qubit state. This figure shows how
to merge nodes in four steps, shown in subfigures (a)-(d), starting with a large QMDD
(a) and ending with a small LIMDD (d). In the QMDD (a), the nodes labeled q1 and
q′1 represent the single-qubit states |q1⟩ = [1, 1]

⊤ and |q′1⟩ = [1,−1]
⊤, respectively. By

noticing that these two vectors are related via |q′1⟩ = Z |q1⟩, we merge nodes q1, q′1
into node ℓ1 in (b), storing the isomorphism Z on all incoming edges that previously
pointed to q′1. From step (b) to (c), we first merge q2, q

′
2 into ℓ2, observing that

|q′2⟩ = I ⊗ Z |q2⟩. Second, we create a node ℓ′2 such that |p2⟩ = TZX ⊗ I |ℓ′2⟩ and
|p′2⟩ = T ⊗X |ℓ′2⟩. So we can merge nodes p2, p′2 into ℓ′2, placing these isomorphisms
on the respective edges. To go from (c) to (d), we merge nodes q3, q′3 into node ℓ3 by
noticing that |q′3⟩ = (Z ⊗ I ⊗ Z) |q3⟩. This isomorphism Z ⊗ I ⊗ Z is stored on the
high edge out of the root node. We have |q3⟩ = I ⊗ I ⊗ X |ℓ3⟩, so we propagate the
isomorphism I ⊗ I ⊗ X upward, and store it on the root edge. Therefore, the final
LIMDD has the LIM 1

4 I ⊗ I ⊗ I ⊗X on its root edge.

The resulting data structure in Figure 3.3 is a LIMDD of only six nodes instead of ten,
but requires additional storage for the LIMs. Sec. 3.3.2 shows that merging isomorphic
nodes sometimes leads to exponentially smaller diagrams, while the additional cost of
storing the isomorphisms results only costs a linear factor of space (linear in the number
of qubits).

The transformation presented above (for Figure 3.3) only considers particular choices
for LIMs. For instance, it would be equally valid to select LIM I ⊗ Z instead of
−I⊗XZ for mapping q′2 onto q2. In fact, efficient algorithms to select LIMs in such a
way that a canonical LIMDD is obtained are a cornerstone for the LIMDD manipulation
algorithms presented in Sec. 3.3.3. Section 3.4 provides a solution for ⟨Pauli⟩-LIMs
(the basis for all results presented in the current article), which is based on using the
stabilizers of each node, e.g., the group generated by {I ⊗X,Y ⊗ I} for q2.

Definition 3.2. An n-G-LIMDD is a rooted, directed acyclic graph (DAG)
representing an n-qubit quantum state. Formally, it is a 6-tuple (Node ∪
{Leaf}, idx, low, high, label, eroot), where:

• Leaf (a sink) is a unique leaf node with qubit index idx(Leaf) = 0;

• Node is a set of nodes with qubit indices idx(v) ∈ {1, . . . , n} for v ∈ Node;

• eroot is a root edge without source pointing to the root node r ∈ Node with
idx(r) = n;

59

Local Invertible Map Decision Diagrams

• low, high : Node → Node ∪ {Leaf} indicate the low and high edge functions,
respectively. We write lowv (or highv) to obtain the edge (v, w) with w = low(v)
(or w = high(v)). For all v ∈ Node it holds that idx(low(v)) = idx(high(v)) =

idx(v)− 1 (no qubits are skipped‡);

• label : low∪ high∪ {eroot} → k−G-LIM∪ {0} is a function labeling edges (. , w)
with k-G-LIMs or 0, where k = idx(w)

We will find it convenient to write uv
A

w
B for a node u with low and high

edges to nodes v and w labeled with A and B, respectively. We will also denote v
A

for a (root) edge to v labeled with A. When omitting A or B, e.g., v , the LIM
should be interpreted as I⊗idx(v).

We define the semantics of a leaf, node v and an edge e to node v by overloading the
Dirac notation:

|Leaf⟩ ≜ 1

|e⟩ ≜ label(e) · |v⟩

|v⟩ ≜ |0⟩ ⊗ |lowv⟩+ |1⟩ ⊗ |highv⟩

It follows from this definition that a node v with idx(v) = k represents a quantum
state on k qubits. This state is however not necessarily normalized: For instance,

a normalized state α |0⟩ + β |1⟩, can be represented as a LIMDD v1
α

1
β

or a

LIMDD v1 1
β/α

with root edge v
α . So the node v represents a state up to

global scalar. But, in general, any scalar can be applied to the root edge, or any other
edge for that matter. So LIMDDs can represent any complex vector.

The tensor product |e0⟩⊗|e1⟩ of the G-LIMDDs with root edges e0 v
A and e1 w

B

can be computed just like for QMDDs [227]: Take all edges 1
α pointing to

the leaf in the LIMDD e0 and replace them with edges w
α · B pointing to the e1

root node w. The result is an n + m level LIMDD if e0 has n levels and e1 has m.
In addition, the LIMs C on the other edges in the LIMDD e0 should be extended to
C ⊗ I⊗m.

We can now consider various instantiations of the above general LIMDD definition for

‡Decision diagram definitions [7, 67, 115] often allow to skip (qubit) variables, interpreting them
as ‘don’t cares.’ We disallow this here, since it complicates definitions and proofs, while at best it
yields linear size reductions [183].

60

LIMDD: a decision diagram for simulation of quantum computing
including stabilizer states

different LIM groups G. A G-LIMDD with G = {I} yields precisely all QMDDs by
definition, i.e., all edges labels effectively only contain scalars. As all groups G contain
the identity operator I, the universality of G-LIMDDs (i.e., all quantum states can be
represented) follows from the universality of QMDDs. It also follows that any state
that can efficiently be represented by QMDD, can be efficiently represented by a G-
LIMDD for any G. Similarly, we can consider ⟨Z⟩ and ⟨X⟩, which are subgroups of
the Pauli group, and define a ⟨Z⟩-LIMDD and a ⟨X⟩-LIMDD; instances that we will
study for their relation to graph states and coset states in Sec. 3.3.2. Finally, and most
importantly, ⟨Pauli⟩-LIMDDs can represent all stabilizer states in polynomial space,
which is a feature that neither QMDDs nor matrix product states (MPS) posses, as
shown in Sec. 3.3.2.

In what follows, we only consider ⟨X⟩-, ⟨Z⟩-, and ⟨Pauli⟩-LIMDDs, or Pauli-LIMDD
for short. For Pauli-LIMDDs, we now illustrate how to find the amplitude of
a computational basis state ⟨x|ψ⟩ for a bitstring x ∈ {0, 1}n by traversing the
LIMDD of the state |ψ⟩ from root to leaf, as follows. Suppose that this diagram’s
root edge eroot points to node r and is labeled with the LIM label(eroot) = A =

λPn ⊗ · · · ⊗ P1 ∈ PauliLIMn. First, we substitute |r⟩ = |0⟩ |lowr⟩ + |1⟩ |highr⟩,
where lowr, highr are the low and high edges going out of r, thus obtaining ⟨x|ψ⟩ =

⟨x|eroot⟩ = ⟨x|A (|0⟩ |lowr⟩+ |1⟩ |highr⟩). Next, we notice that ⟨x|A = λ(⟨xn|Pn) ⊗
· · · ⊗ (⟨x1|P1) = γ ⟨y| for some γ ∈ C and a computational basis state ⟨y|. Therefore,
letting y′ = yn−1 . . . y1, it suffices to compute ⟨yn| ⟨y′| (|0⟩ |lowr⟩ + |1⟩ |highr⟩), which
reduces to computing either ⟨y′|lowr⟩ if yn = 0, or ⟨y′|highr⟩ if yn = 1. By applying
this simple rule repeatedly, one walks from the root to the leaf, encountering one node
on each level. The amplitude ⟨x|ψ⟩ is then found by multiplying together the scalars
γ found along this path. Algorithm 1 formalizes this. Its runtime is O(n2).

Algorithm 1 Read the amplitude for basis state |xn...x1⟩ from n-qubit state |e⟩ =
A · |v⟩ with A = λPn ⊗ ...⊗ P1 ∈ PauliLIMn.

1: procedure ReadAmplitude(Edge e v
A , xn, ..., x1 ∈ {0, 1} with n = idx(v))

2: if n = 0 then return λ

3: γ ⟨yn...y1| := ⟨xn...x1|λPn ⊗ ...⊗ P1 ▷ O(n)-computable LIM operation

4: if yn = 0 then ▷ yn = 0

5: return γ · ReadAmplitude(lowv, yn−1, ..., y1)
6: else ▷ yn = 1

7: return γ · ReadAmplitude(highv, yn−1, ..., y1)

61

Local Invertible Map Decision Diagrams

Pauli-LIMDD

QMDD ∪ Stab

⟨X⟩-LIMDD ⟨Z⟩-LIMDD

QMDD

stabilizer states

graph statescoset states

2D cluster states

Figure 3.4: Relations between non-universal classes of quantum states (gray) and
decision diagrams, where we consider a diagram as the set of states that it can represent
in polynomial size. Solid arrows denote set inclusion. Dashed arrows D1 99K D2

signify an exponential separation between two classes, i.e., some quantum states have
polynomial-size representation in D1, but only exponential-size in D2.
By transitivity, QMDD is exponentially separated from all representations (not drawn
for clarity).

3.3.2 Succinctness of LIMDDs

Succinctness is crucial for efficient simulation, as we show later. In this section,
we show exponential advantages for representing states with LIMDDs over two other
state-of-the-art data structures: QMDDs and Matrix Product States (MPS) [262,346].
Specifically, QMDDs and MPS require exponential space in the number of qubits to
represent specific stabilizer states called (two-dimensional) cluster states. We also
show that an ad-hoc combination of QMDD with the stabilizer formalism still requires
exponential space for ‘pseudo-cluster states.’ These results are visualized in Figure 3.1.

3.3.2.1 LIMDDs are exponentially more succinct than QMDDs (union sta-
bilizer states)

Figure 3.4 visualizes succinctness relations between different quantum state represen-
tations, as proved in Prop. 3.2. In particular, G-LIMDDs with G = ⟨Pauli⟩ can
be exponentially more succinct than QMDDs, and retain this exponential advantage
even with G = ⟨Z⟩ , ⟨X⟩. In Corollary 3.1, we show the strongest result, namely that
LIMDDs are also more succinct than the union of QMDDs and stabilizer states, written
QMDD ∪ Stab, which can be thought of a structure that switches between QMDD
and the stabilizer formalism depending on its content (stabilizer or non-stabilizer

62

LIMDD: a decision diagram for simulation of quantum computing
including stabilizer states

state). This demonstrates that ad-hoc combinations of existing formalisms do not
make LIMDDs obsolete.

Proposition 3.2. The inclusions and separations in Figure 3.4 hold.

Proof. The inclusions between the sets of states shown in gray are well known [1,
153]. The inclusions between decision diagrams hold because, e.g., a QMDD is a G-
LIMDD with G = {I}, i.e., each label is of the form λIn with λ ∈ C, as discussed in
Sec. 3.3.1. The relations between coset, graph, stabilizer states and G-LIMDD with
G = ⟨X⟩ , ⟨Z⟩ , ⟨Pauli⟩ are proven in Theorem 3.1 and App. B (which also shows that
poly-sized LIMDD includes QMDD ∪ Stab). Corollary 3.1 shows that there is family of
a non-stabilizer states (with small LIMDD) for which QMDD is exponential, hence the
separation between QMDD ∪ Stab. Theorem 3.2 shows the separation with QMDDs
by demonstrating that the so-called (two-dimensional) cluster state, requires 2Ω(

√
n)

nodes as QMDD. Finally, App. B proves the same for coset states.

Theorem 3.1 shows that any stabilizer state can be represented as a ⟨Pauli⟩-Tower
LIMDD (Definition 3.3).

Definition 3.3. A n-qubit G-Tower-LIMDD, is a G-LIMDD with exactly one node on
each level. Edges to nodes on level k are labeled as follows: low edges are labeled
with I⊗k, high edges with P ∈ G⊗k ∪ {0} and the root edge is labeled with λ · P with
P ∈ G⊗k and λ ∈ C \ {0} (i.e., in contrast to high edges, the root edge can have an
arbitrary scalar). Figure 3.6 depicts a n-qubit G-Tower LIMDD.

Theorem 3.1. Let n > 0. Each n-qubit stabilizer state is represented up to nor-
malization by a ⟨Pauli⟩-Tower LIMDDs of Definition 3.3, e.g., where the scalars λ of
the PauliLIMs λP on high edges are restricted as λ ∈ {0,±1,±i}. Conversely, every
such LIMDD represents a stabilizer state.

Proof sketch of Theorem 3.1. (Full proof in App. B) The n = 1 case: the six single-
qubit states |0⟩ , |1⟩ , |0⟩ ± |1⟩ and |0⟩ ± i |1⟩ are all represented by a ⟨Pauli⟩-Tower
LIMDD with a single node on top of the leaf. The induction step: Let |ψ⟩ be an n-qubit
stabilizer state. First, consider the case that |ψ⟩ = |a⟩ |ψ′⟩ where |a⟩ = α |0⟩ + β |1⟩
(with α, β ∈ {0,±1,±i}) and |ψ′⟩ are stabilizer states on respectively 1 and n − 1

qubits. Then |ψ⟩ is represented by the ⟨Pauli⟩-Tower-LIMDD ψ′ αI
ψ′βI .

In the remaining case, |ψ⟩ = 1√
2
(|0⟩ |ψ0⟩+ |1⟩ |ψ1⟩), where both |ψ0⟩ and |ψ1⟩ are

63

Local Invertible Map Decision Diagrams

v

1

1/
√

2 · I⊗3 eGHZ

X ⊗X

0

0

1

1/
√
8 · I⊗3 e+++

1

1/
√
8 · I⊗3 eφ

X ⊗X

Y

−1

Figure 3.5: Figure 3.5: Example ⟨Pauli⟩-Tower LIMDDs for three
stabilizer states: the GHZ state |eGHZ⟩ = 1√

2
(|000⟩+ |111⟩), for

|e+++⟩ = |+++⟩ where |+⟩ = 1√
2
(|0⟩+ |1⟩), and the state |eφ⟩ =

1√
8
(|000⟩ − |001⟩+ i |010⟩+ i |011⟩+ i |100⟩+ i |101⟩ − |110⟩+ |111⟩) with stabi-

lizer group generators {X ⊗X ⊗X,−Z ⊗ Z ⊗X, I ⊗ Y ⊗ Z}.

stabilizer states. Moreover, since |ψ⟩ is a stabilizer state, there is always a set of single-
qubit Pauli gates P1, . . . , Pn and a λ ∈ {±1,±i} such that |ψ1⟩ = λPn ⊗ · · · ⊗P1 |ψ0⟩.
That is, in our terminology, the states |ψ0⟩ and |ψ1⟩ are isomorphic. Hence |ψ⟩ can
be written as

|ψ⟩ = 1√
2
[|0⟩ |ψ0⟩+ λ |1⟩ ⊗ (Pn ⊗ · · · ⊗ P1 |ψ0⟩)] (3.5)

Hence |ψ⟩ is represented by the Tower Pauli-LIMDD ψ0
I

ψ0
λPn ⊗ · · · ⊗ P1 . In both

cases, |ψ′⟩ is represented by a Tower Pauli-LIMDDs (up to normalization) by the
induction hypothesis.

We stress that obtaining the LIMs for the Pauli Tower-LIMDD of a stabilizer state
is not immediate from the stabilizer generators; specifically, the edge labels in the
Pauli-LIMDD are not directly the stabilizers of the state. For example, the GHZ

state 1√
2
(|000⟩+ |111⟩) is represented by |eGHZ⟩ = 1√

2
v

I
v

X ⊗X with |v⟩ =
|00⟩ in Figure 3.5, but X ⊗ X is not a stabilizer of |00⟩. Nonetheless, Theorem 3.1
implicitly contains an algorithm that constructs a ⟨Pauli⟩-Tower LIMDD stabilizer
state. Section 3.4 also provides the inverse construction, which we use to make LIMDDs
(representing any quantum state) canonical in time O(mn3) (using Algorithm 3).

We also note that Theorem 3.1 demonstrates that for any n-qubit stabilizer state |φ⟩,

64

LIMDD: a decision diagram for simulation of quantum computing
including stabilizer states

...

...

...

1

λ · Ln

Ln−1

L0

Level n

Level n− 1

Level 1

Figure 3.6: Figure 3.6: An n-qubit G-Tower LIMDD. We let Li ∈ G⊗i ∪ {0} and
λ ∈ C \ {0} (only root edges have an arbitrary scalar).

the (n − 1)-qubit states (⟨0| ⊗ I2n−1) |φ⟩ and (⟨1| ⊗ I2n−1) |φ⟩ are not only stabilizer
states, but also PauliLIM-isomorphic. While we believe this fact is known in the com-
munity,§ we have not found this statement written down explicitly in the literature.
More importantly for this work, to the best of our knowledge, the resulting recur-
sive structure (which DDs are) has not yet been exploited in the context of classical
simulation.

Next, Theorem 3.2 shows the separation with QMDDs by demonstrating that the so-
called (two-dimensional) cluster state, requires 2Ω(

√
n) nodes as QMDD. Corollary 3.1

shows that a trivial combination with stabilizer formalism does not solve this issue.

Theorem 3.2. Denote by |Gn⟩ the two-dimensional cluster state, defined as a graph
state on the n× n lattice. Each QMDD representing |Gn⟩ has at least 2⌊n/12⌋ nodes.

Proof sketch. Consider a partition of the vertices of the n×n lattice into two sets S and
T of size 1

2n
2, corresponding to the first 1

2n
2 qubits under some variable order. Then

there are at least ⌊n/3⌋ vertices in S that are adjacent to a vertex in T [204, Th. 11].
Because the degree of the vertices is small, many vertices on this boundary are not con-
nected and therefore influence the amplitude function independently of one another.
From this independence, it follows that, for any variable order, the partial assignments
a⃗ ∈ {0, 1}

1
2n

2

induce 2⌊n/12⌋ different subfunctions fa⃗, where f : {0, 1}n
2

→ C is the
§For instance, this fact can be observed (excluding global scalars) by executing the original al-

gorithm for simulating single-qubit computational-basis measurement on the first qubit, as observed
in [136]. Similarly, the characterization in Prop. 3.2 of ⟨Z⟩-Tower-LIMDDs as representing precisely
the graph states, is immediate by defining graph states recursively (see App. B). The fact that ⟨X⟩-
Tower LIMDDs represent coset states is less evident and requires a separate proof, which we also give
in App. B.

65

Local Invertible Map Decision Diagrams

amplitude function of |Gn⟩. The lemma follows by noting that a QMDD has a single
node per unique subfunction modulo phase. For details see App. A.

Corollary 3.1 (Exponential separation between Pauli-LIMDD versus QMDD union
stabilizer states). There is a family of non-stabilizer states, which we call pseudo
cluster states, that have polynomial-size Pauli-LIMDD but exponential-size QMDDs
representation.

Proof. Consider the pseudo cluster state |φ⟩ = 1√
2
(|0⟩ + eiπ/4 |1⟩) ⊗ |Gn⟩ where

|Gn⟩ is the graph state on the n × n grid. This is not a stabilizer state, because
each computational-basis coefficient of a stabilizer state is of the form z · 1√

2
k for

z ∈ {±1,±i} and some integer k ≥ 1 [325], while ⟨1| ⊗ ⟨0|⊗n
2

|φ⟩ = eiπ/4 ·
(

1√
2

)n2+1

is not of this form. Its canonical QMDD and Pauli-LIMDD have root nodes

Gn
1

Gn
eiπ/4

and Gn
I

Gn
eiπ/4I , where the respective diagram for Gn

is exponentially large (Theorem 3.2) and polynomially small (Theorem 3.1).

3.3.2.2 LIMDDs are exponentially more succinct than matrix product
states

Theorem 3.3 states that matrix product states (MPS) require large bond dimension
for representing the two-dimensional cluster states, which follows directly from the
well-known results that these states have large Schmidt rank.

Theorem 3.3. To represent the graph state on the n× n grid (the two-dimensional
cluster state on n2 qubits), an MPS requires bond dimension 2Ω(n).

Proof. Van den Nest et al. [323] consider spanning trees over the complete graph
where each node corresponds to a qubit and define the Schmidt-rank width: the
largest encountered base-2 logarithm of the Schmidt rank between the two connected
components resulting from removing an edge from the spanning tree, minimized over
all possible spanning trees. It then follows from the relation between bond dimension
and Schmidt rank (see Section 3.2) that any quantum state with Schmidt-rank width
w requires bond dimension 2w for representation by an MPS. Van den Nest et al. also
showed that for graph states, the Schmidt-rank width equals the so-called rank width
of the graph, which for n × n grid graphs was shown to equal n − 1 by Jelinek [168].
This proves the theorem.

66

LIMDD: a decision diagram for simulation of quantum computing
including stabilizer states

In contrast, the Pauli-LIMDD efficiently represents cluster states, and more generally
all stabilizer states (Theorem 3.1).

3.3.3 Pauli-LIMDD manipulation algorithms for simulation of
quantum computing

In this section, we give all algorithms that are necessary to simulate a quantum circuit
with Pauli-LIMDDs (referred to simply as LIMDD from now on). We provide algorithms
which update the LIMDD after an arbitrary gate and after a single-qubit measurement
in the computational basis. In addition, we give efficient specialized algorithms for
applying a Clifford gate to a stabilizer state (represented by a ⟨Pauli⟩-Tower LIMDD)
and computing a measurement outcome. We also show that many (Clifford) gates
can in fact be applied to an arbitrary state in polynomial time. Table 3.1 provides an
overview of the LIMDD algorithms and their complexities compared to QMDDs.

Central to the speed of many DD algorithms is keeping the diagram canonical through-
out the computation. Recall from Sec. 3.3.1, that a G-LIMDD can merge isomorphic
nodes v ≃G w, i.e., if there exists a G-LIM C such that |w⟩ = C |v⟩. To achieve this,
we require a ‘MakeEdge’ subroutine which, given the node wv0

A v1
B , re-

turns v
C with C |v⟩ = |w⟩, where v is the unique, canonical node in the diagram

that is G-isomorphic to node w. Sec. 3.4.2 provides a O(n3) MakeEdge algorithm

Table 3.1: Worst-case complexity of currently best-known algorithms for applying
specific operations, in terms of the size of the input diagram size m (i.e., the number of
nodes in the DD) and the number of qubits n. Although addition (Add) of quantum
states is not, strictly speaking, a quantum operation, we include it because it is a
subroutine of gate application. Note that several of the LIMDD algorithms invoke
MakeEdge and therefore inherit its cubic complexity (as a factor).

Operation \ input: QMDD LIMDD Section
Single |0⟩ / |1⟩-basis measurement O(m) O(m) Sec. 3.3.3.1
Single Pauli gate O(m) O(1) Sec. 3.3.3.2
Single Hadamard gate / Add() O(2n) ¶ O(n32n) ¶ Sec. 3.3.3.2
Clifford gate on stabilizer state O(2n) O(n4) Sec. 3.3.3.4
Multi-qubit gate O(4n) O(n34n) Sec. 3.3.3.3
MakeEdge O(1) O(n3) Sec. 3.4.2
Checking state equality O(1) O(n3) Sec. 3.4.2.2

¶The worst-case of QMDDs and LIMDDs is caused by the vector addition introduced by the
Hadamard gate [113, Table 2, +BC, +SLDD]. See Figure 3.9 for an example.

67

Local Invertible Map Decision Diagrams

for ⟨Pauli⟩-LIMDDs satisfying this specification. For now, the reader may assume the
provisional implementation in Algorithm 2, which does not yet merge LIM-isomorphic
nodes and hence does not yield canonical diagrams.

In line with other existing efficient decision-diagram algorithms, we use dynamic pro-
gramming in our algorithms to avoid traversing all paths (possibly exponentially many)
in the LIMDD. In this approach, the decision diagram is manipulated and queried using
recursive algorithms, which store intermediate results for each recursive call to avoid
unnecessary recomputations. For instance, Algorithm 3 makes any LIMDD canon-
ical using dynamic programming and the (real) O(n3) MakeEdge algorithm from
Sec. 3.4.2. It recursively traverses child nodes at Line 3, reconstructing the diagram
bottom up in the backtrack at Line 4. By virtue of dynamic programming it visits each
node only once: The table CanonicalCache : Node → Edge stores for each node
its canonical counterpart as soon as it is computed at Line 4. The algorithm therefore
runs in time O(n3m) where m is the number of nodes in the original diagram.

Algorithm 2 Provisionary algorithm MakeEdge for creating a new node/edge.
Given two edges representing states A |v⟩ , B |w⟩, it returns an edge representing the
state |0⟩A |v⟩+ |1⟩B |w⟩. The real MakeEdge algorithm (Sec. 3.4.2) returns a canon-
ical node, assuming v, w are already canonical.

1: procedure MakeEdge(Edge v
A , Edge w

B)
2: u := uv

A
w

B

3: return Edge u
I⊗k

▷ Where k = idx(u)

Algorithm 3 Make any LIMDD canonical using MakeEdge.

1: procedure MakeCanonical(Edge v
A)

2: if v /∈ CanonicalCache then ▷ Compute result once for v and store in cache:
3: e0, e1 := MakeCanonical(low(v)),MakeCanonical(high(v))
4: CanonicalCache[v] := MakeEdge(e0, e1)

5: return A · CanonicalCache[v] ▷ Retrieve result from cache

This recursive algorithmic structure that uses dynamic programming and reconstructs
the diagram in the backtrack, is typical for all DD manipulation algorithms. Note
that constant-time cache lookups (using a hash table) therefore require the canonical
nodes produced by MakeEdge. LIMDDs additionally require the addition of LIMs
to the caches; Sec. 3.3.3.3 shows how we do this.

Finally, in this section, we often decompose LIMS using A = λPn ⊗P ′. Here λ ∈ C is

68

LIMDD: a decision diagram for simulation of quantum computing
including stabilizer states

a non-zero scalar, P ′ a Pauli string and Pn ∈ {I, X, Z, Y } = Pauli. Our algorithms
will use the Follow procedure from Algorithm 4 to easily navigate diagrams according
to edge semantics. Provided with a bit string xn...x1, the procedure is the same as
ReadAmplitude. If however fewer bits are supplied, it returns a LIMDD root edge
representing a subvector. For instance, the subvector for |10⟩ of the LIMDD root

edge er in Figure 3.3 (d) is computed by taking |follow(10, er)⟩ = | ℓ2

1
4 I ⊗XZ

⟩ =
1
4 · [−1, 1,−i, i]. So, we can specify it as |follow(b, e)⟩ = (⟨b|⊗In−ℓ) |e⟩, i.e., select the
bth block of size 2n−ℓ from the vector |e⟩ (or rather, return a LIMDD edge representing
that block).

Algorithm 4 Follow: a generalization of ReadAmplitude, returning edges.

1: procedure Follow(Edge e v
λPn ⊗ ...⊗ P1 , xn, ..., xk ∈ {0, 1} with n = idx(v)

and k ≥ 1)
2: if k > n then return v

λPn ⊗ ...⊗ P1 ▷ End of bit string

3: γ ⟨yn...yk| := ⟨xn...xk|λPn ⊗ ...⊗ Pk ▷ O(n)-computable LIM operation

4: if yn = 0 then ▷ yn = 0

5: return γ · Follow(lowv, yn−1, ..., yk)
6: else ▷ yn = 1

7: return γ · Follow(highv, yn−1, ..., yk)

3.3.3.1 Performing a measurement in the computational basis

We discuss algorithms for measuring, sampling and updating after measurement of
the top qubit. App. C gives general algorithms with the same worst-case runtimes.

The procedure MeasurementProbability in Algorithm 5 computes the probability
p of observing the outcome |0⟩ for state |e⟩. If the quantum state can be written as
|e⟩ = |0⟩ |e0⟩+ |1⟩ |e1⟩, then the probability is p = ⟨e0|e0⟩ / ⟨e|e⟩, where we have ⟨e|e⟩ =
⟨e0|e0⟩ + ⟨e1|e1⟩. Hence we compute the squared norms of ex = follow(x, e) using
the SquaredNorm subroutine. The total runtime is dominated by the subroutine
SquaredNorm, which computes the quantity ⟨e|e⟩ given a LIMDD edge e = v

λP

by traversing the entire LIMDD. We have ⟨e|e⟩ = |λ|2 ⟨v|P †P |v⟩ = |λ|2 ⟨v|v⟩, because
P †P = I for Pauli matrices. Therefore, to this end, it computes the squared norm
of |v⟩. Since ⟨v|v⟩ = ⟨lowv|lowv⟩ + ⟨highv|highv⟩, this is accomplished by recursively
computing the squared norm of the node’s low and high edges. This subroutine visits
each node at most once by virtue of dynamic programming, which stores intermedi-

69

Local Invertible Map Decision Diagrams

Algorithm 5 Algorithms MeasurementProbability and UpdatePostMeas for
respectively computing the probability of observing outcome |0⟩ when measuring the
top qubit of a Pauli LIMDD in the computational basis and converting the LIMDD
to the post-measurement state after outcome m ∈ {0, 1}. The subroutine Squared-
Norm takes as input a Pauli LIMDD edge e, and returns ⟨e|e⟩. It uses a cache to store
the value s of a node v.
1: procedure MeasurementProbability(Edge e)
2: s0 := SquaredNorm(follow(0, e))
3: s1 := SquaredNorm(follow(1, e))

4: return s0/(s0 + s1)

5: procedure SquaredNorm(Edge v
λP with λ ∈ C, P ∈ Pauliidx(v))

6: if idx(v) = 0 then return |λ|2

7: if v /∈ SNormCache then ▷ Compute result once for v and store in cache:

8: SNormCache[v] := SquaredNorm(follow(0, v
I)) +

SquaredNorm(follow(1, v
I))

9: return |λ|2 · SNormCache[v] ▷ Retrieve result for v from cache and multiply with
|λ|2

10: procedure UpdatePostMeas(Edge e v
λP , measurement outcome m ∈

{0, 1})
11: if m = 0 then
12: er := MakeEdge(follow(0, e), 0 · follow(0, e))
13: else
14: er := MakeEdge(0 · follow(0, e), follow(1, e))

15: return 1/
√

SquaredNorm(er) · er

ate results in a cache SNormCache : Node → R for all recursive calls (Line 7, 8).
Therefore, it runs in time O(m) for a diagram with m nodes.

The outcome m ∈ {0, 1} can then be chosen by flipping a p-biased coin. The corre-
sponding state update is implemented by the procedure UpdatePostMeas. In order
to update the state |e⟩ = |0⟩ |e0⟩ + |1⟩ |e1⟩ after the top qubit is measured to be m,
we simply construct an edge |m⟩ |em⟩ using the MakeEdge subroutine. This state
is finally normalized by multiplying (the scalar on) the resulting root edge with a
normalization constant computed using squared norm.

To sample from a quantum state in the computational basis, simply repeat the mea-
surement procedure for edge v with k = idx(v), throw a p-biased coin to determine
xk, use follow(xk, v) to go to level k − 1 and repeat the process.

70

LIMDD: a decision diagram for simulation of quantum computing
including stabilizer states

3.3.3.2 Gates with simple LIMDD algorithms

As a warm up, before we give the algorithm for arbitrary gates and Clifford gates,
we first give algorithms for several gates that have a relatively simple and efficient
LIMDD manipulation operation. In the case of a controlled gate, we distinguish two
cases, depending whether the control or the target qubit comes first; we call these a
downward and an upward controlled gate, respectively.

Here, we let Lk denote the unitary applying local gate L on qubit k, i.e., Lk ≜
I⊗n−k ⊗ L⊗ I⊗k−1.

Applying a single-qubit Pauli gate Q to qubit k of a LIMDD, by updating the
diagram’s root edge from A to QkA, i.e., change A = λPn ⊗ · · · ⊗ P1 to λPn ⊗ · · · ⊗
Pk+1 ⊗ QPk ⊗ Pk−1 ⊗ · · · ⊗ P1. Since only nodes —and not root edges— need be
canonical, this can be done in constant time, provided that the LIMDD is stored in
the natural way (uncompressed with objects and pointers).

Applying any diagonal or antidiagonal single-qubit gate to the top qubit can
be done efficiently, e.g., applying the T -gate to the top qubit. For root edge
e = v

Broot , we can construct ex = follow(x, e), which propagates the root edge’s
LIM to the root’s two children. Then, for a diagonal node

[
α 0
0 β

]
, we construct a new

root node MakeEdge(α · e0, β · e1). For the anti-diagonal gate
[
0 β
α 0

]
, it is sufficient

to note that
[
0 β
α 0

]
= X ·

[
α 0
0 β

]
; thus, we can first apply a diagonal gate, and then an

X gate, as described above.

v

v0 v1

⇝

Broot

BA

v′

v0 v1

SkBrootS
†
k

A iB

Applying a phase gate (S = [1 0
0 i]) to qubit with index k on

v
Broot is also efficient. Algorithm 6 gives a recursive proce-

dure. If k < n = idx(v) (top qubit), then note SkBroot |v⟩ =

(SkBrootS
†
k)Sk |v⟩ where SkBrootS

†
k is the new (O(n)-computable)

root ⟨Pauli⟩-LIM because Sk is a Clifford gate. Hence, we can
‘push’ Sk through the LIMs down the recursion, rebuilding the
LIMDD in the backtrack with MakeEdge on Line 6 and 7. To apply Sk to v when
k = n = idx(v), we finally multiply the high edge label with i on Line 4. Dynamic
programming, using table SGateCache, ensures a linear amount of recursive calls in
the number of nodes m. The total runtime is therefore O(mn3), as MakeEdge’s is
cubic (see Section 3.4).

71

Local Invertible Map Decision Diagrams

Algorithm 6 Apply gate S to qubit k for Pauli-LIMDD v
A . We let n = idx(v).

1: procedure SGate(Edge v
A with A ∈ Pauli-LIM, k ∈ {1, ..., idx(v)})

2: if v /∈ SGateCache then ▷ Compute result once for v and store in cache:

3: if idx(v) = k then
4: SGateCache[v] := MakeEdge(lowv, i · highv)
5: else
6: SGateCache[v] := MakeEdge(SGate(lowv, k), SGate(highv, k))
7: return SkAS

†
k · SGateCache[v] ▷ Retrieve result from cache

v

v0 v1

idx(v) = c :

⇝

BA

v′

v0 v1

A QtB

Applying a Downward Controlled-Pauli gate CQct , where
Q is a single-qubit Pauli gate, c the control qubit and t the target
qubit with t < c, to a node v can also be done recursively. If
idx(v) > c, then since CQct is a Clifford gate, we may push it
through the node’s root label, and apply it to the children low(v)
and high(v), similar to the S gate. Otherwise, if idx(v) = c, then
update v’s high edge label as B 7→ QtB, and do not recurse. Algorithm 7 shows the
recursive procedure, which is similar to Algorithm 6 and also has O(mn3) runtime.

Algorithm 7 Apply gate CX with control qubit c and target qubit t for Pauli-
LIMDD v

A . We let n = idx(v). We can replace CX, with CY,CZ. modifying
Line 4 accordingly (i.e. to Yt, Zt).

1: procedure CPauliGate(Edge v
A with A ∈ Pauli-LIM, c, t with 1 ≤ c <

t ≤ n)
2: if v /∈ CPauliCache then ▷ Compute result once for v and store in cache:

3: if idx(v) = k then
4: CPauliCache[v] := MakeEdge(lowv, Xt · highv)
5: else
6: CPauliCache[v] := MakeEdge(CPauliGate(lowv, c, t),CPauliGate(highv, c, t))

7: return CXc
t ·A · CXc

t
† · CPauliCache[v] ▷ Retrieve result from cache

Sec. 3.3.3.4 shows that all Clifford gates (including Hadamard and upward CNOT)
have runtime O(n4) when applied to a stabilizer state represented as a LIMDD. We
first show how to apply general gates, in Sec. 3.3.3.3, as this yields some machinery
required for Hadamards (specifically, a pointwise addition operation).

72

LIMDD: a decision diagram for simulation of quantum computing
including stabilizer states

3.3.3.3 Applying a generic multi-qubit gate to a state

We use a standard approach [124] to represent quantum gates (2n× 2n unitary matri-
ces) as LIMDDs. Here a matrix U is interpreted as a function u(r1, c1, . . . , rn, cn) ≜

⟨r|U |c⟩ on 2n variables, which returns the entry of U on row r and column c. The
function u is then represented using a LIMDD of 2n levels. The bits of r and c

are interleaved to facilitate recursive descent on the structure. In particular, for
x, y ∈ {0, 1}, the subfunction uxy represents a quadrant of the matrix, namely the
submatrix uxy(r2, c2, ..., rn, cn) ≜ u(x, y, r2, c2, ..., rn, cn), as follows:

u =

u0∗︷ ︸︸ ︷[
u00 u01

u10 u11

]}
u∗1 (3.6)

Definition 3.4 formalizes this idea. Figure 3.7 shows a few examples of gates repre-
sented as LIMDDs.

Definition 3.4 (LIMDDs for gates). A LIMDD edge e = u
A can represent a (uni-

tary) 2n × 2n matrix U iff idx(u) = 2n. The value of the matrix cell Ur,c is defined as
follow(r1c1r2c2...rncn, u

A) where r, c are the row and column index, respectively,
with binary representation r1, ..., rn and c1, ..., cn. The semantics of a LIMDD edge e
as a matrix is denoted [e] ≜ U (as opposed to its semantics |e⟩ as a vector).

The procedure ApplyGate (Algorithm 8) applies a gate U to a state |φ⟩, rep-
resented by LIMDDs eU and eφ. It outputs a LIMDD edge representing U |φ⟩. It
works similar to well-known matrix-vector product algorithms for decision diagrams
[124, 227], except that we also handle edge weights with LIMs (see Figure 3.8 for an
illustration). Using the follow(x, e) procedure, we write |φ⟩ and U as

|φ⟩ = |0⟩ |φ0⟩+ |1⟩ |φ1⟩ (3.7)

U = |0⟩ ⟨0| ⊗ U00 + |0⟩ ⟨1| ⊗ U01 + |1⟩ ⟨0| ⊗ U10 + |1⟩ ⟨1| ⊗ U11 (3.8)

Then, on Line 6, we compute each of the four terms Urc |φc⟩ for row/column bits
r, c ∈ {0, 1}. We do this by constructing four LIMDDs fr,c representing the states
|fr,c⟩ = Ur,c |φc⟩, using four recursive calls to the ApplyGate algorithm. Next, on
Line 7 and 8, the appropriate states are added, using Add (Algorithm 9), producing
LIMDDs e0 and e1 for the states |e0⟩ = U00 |φ0⟩ + U01 |φ1⟩ and for |e1⟩ = U10 |φ0⟩ +

73

Local Invertible Map Decision Diagrams

1

X

0

1

−X

0

1

Z

1

X ⊗ I ⊗X

0

X

0I gate Z gate H gate

CNOT gate:

Figure 3.7: LIMDDs representing various gates.

U11 |φ1⟩. The base case of ApplyGate is the case where n = 0, which means U and
|v⟩ are simply scalars, in which case both eU and eφ are edges that point to the leaf.

Algorithm 8 Applies the gate [eU] to the state |eφ⟩. Here eU and eφ are LIMDD
edges. The output is a LIMDD edge ψ satisfying |ψ⟩ = [eU] |eφ⟩.

1: procedure ApplyGate(Edge eU = u
λP , Edge eφ = v

γQ
with idx(u) =

2 · idx(v))

2: if idx(v) = 0 then return 1
λ · γ

▷ P = Q = 1

3: P ′, Q′ := RootLabel(u
P),RootLabel(v

Q
) ▷ Get canonical root labels

4: if (P ′, u,Q′, v) /∈ Apply-cache then ▷ Compute result for the first time:

5: for r, c ∈ {0, 1} do

6: Edge fr,c := ApplyGate(follow(rc, u
P ′

), follow(c, v
Q′

))

7: Edge e0 := Add(f0,0, f0,1)
8: Edge e1 := Add(f1,0, f1,1)
9: ApplyCache[(P ′, u,Q′, v)] := MakeEdge(e0, e1) ▷ Store in cache

10: e′ψ := Apply-cache[(P ′, u,Q′, v)] ▷ Retrieve from cache

11: return λγ · e′ψ

Caching in ApplyGate. A straightforward way to implement dynamic program-
ming would be to simply store all results of ApplyGate in the cache, i.e., when

ApplyGate(u
λP , v

γQ
) is called, store an entry with key (P, u,Q, v) in the

cache. This would allow us to retrieve the result the next time ApplyGate is called
with the same parameters. However, we can do much better, in such a way that we can

74

LIMDD: a decision diagram for simulation of quantum computing
including stabilizer states

u

u00 u01 u10 u11

λAeU

U ×

v

v0 v1

γBeφ

|φ⟩ =

f0,0+f0,1 f1,0+f1,1

e′ψ

e0 e1

U |φ⟩ = λγ · |e′ψ⟩ = |eψ⟩

Figure 3.8: An illustration of ApplyGate (Algorithm 8), where matrix U is applied
to state B |v⟩, both represented as Pauli-LIMDDs. The edges f0,0, f0,1, etc. are the
edges made on Line 6. The dotted box indicates that these states are added, using
Add, producing edges e0, e1, which are then passed to MakeEdge, producing the
result edge. For readability, not all edge labels are shown.

retrieve the result from the cache also when the procedure is called with parameters

ApplyGate(x
A , yB) satisfying [u

λP] = [x
A] and | v

γQ ⟩ = | yB ⟩.
This can happen even when λP ̸= A or γQ ̸= B; therefore this may prevent many
recursive calls.

To this end, we store not just an edge-edge tuple from the procedure’s parameters,
but a canonical edge-edge tuple. To obtain canonical edge labels, our algorithms use
the function RootLabel which returns a canonically chosen LIM, i.e., it holds that
RootLabel(v

A) = RootLabel(v
B) whenever A |v⟩ = B |v⟩. A specific choice for

RootLabel is the lexicographic minimum of all possible root labels. In Algorithm 17,
we give an O(n3)-time algorithm for computing the lexicographically minimal root
label, following the same strategy as the MakeEdge procedure in Sec. 3.4.2. As a
last optimization, we opt to not store the scalars λ, γ in the cache (they are “factored
out”), so that we can retrieve this result also when ApplyGate is called with inputs
that are equal up to a complex phase. These scalars are then factored back in on
Line 11 and 9.

The subroutine Add (Algorithm 9) adds two quantum states, i.e., given two
LIMDDs representing |e⟩ and |f⟩, it returns a LIMDD representing |e⟩+|f⟩. It proceeds
by simple recursive descent on the children of e and f . The base case is when both
edges point to the diagram’s leaf. In this case, these edges are labeled with scalars
A,B ∈ C, so we return the edge 1

A+ B .

Caching in Add. A straightforward way to implement the cache would be to store a
tuple with key (A, v,B,w) in the call Add(v

A , w
B). However, we can do much

75

Local Invertible Map Decision Diagrams

Algorithm 9 Given two n-LIMDD edges e, f , constructs a new LIMDD edge a with
|a⟩ = |e⟩+ |f⟩.

1: procedure Add(Edge e = v
A , Edge f = w

B with idx(v) = idx(w))

2: if idx(v) = 0 then return 1
A+ B

▷ A,B ∈ C

3: if v ̸≼ w then return Add(w
B , v

A) ▷ Normalize for cache lookup

4: C := RootLabel(w
A−1B)

5: if (v, C,w) /∈ Add-Cache then ▷ Compute result for the first time:

6: Edge a0 := Add(follow(0, v), follow(0, w
C))

7: Edge a1 := Add(follow(1, v), follow(1, w
C))

8: Add-Cache[(v, C,w)] := MakeEdge(a0, a1) ▷ Store in cache

9: return A · Add-Cache[(v, C,w)] ▷ Retrieve from cache

1

1 4

0 1

1

1 2

1 2

1

1 2

1

3 1

4

+ =

Figure 3.9: Adding two states (0, 1, 0, 4) and (1, 2, 2, 4) as QMDDs can cause an expo-
nentially larger result QMDD (1, 3, 2, 8) due to the loss of common factors.

better; namely, we remark that we are looking to construct the state A |v⟩ + B |w⟩,
and that this is equal to A · (|v⟩+A−1B |w⟩). This gives us the opportunity to “factor
out” the LIM A, and only store the tuple (v,A−1B,w). We can do even better by

finding a canonically chosen LIM C = RootLabel(w
A−1B) (on Line 4) and storing

(v, C,w) (on line Line 8). This way, we get a cache hit at Line 5 upon the call
Add(v

D , w
E) whenever A−1B |w⟩ = D−1E |w⟩. This happens of course in

particular when (A, v,B,w) = (D, v,E,w), but can happen in exponentially more
cases; therefore, this technique works at least as well as the “straightforward” way
outlined above. Finally, on Line 3, we take advantage of the fact that addition is
commutative; therefore it allows us to pick a preferred order in which we store the
nodes, thus improving possible cache hits by a factor two. We also use C in the
recursive call at Line 6 and 7.

The worst-case runtime of Add is O(n32n) (exponential as expected), where n is the
number of qubits. This can happen when the resulting LIMDD is exponential in the

76

LIMDD: a decision diagram for simulation of quantum computing
including stabilizer states

input sizes (bounded by 2n), as identified for QMDDs in [113, Table 2]. The reason
for this is that addition may remove any common factors, as illustrated in Figure 3.9.
However, the Add algorithm is polynomial-time when v = w and v is a stabilizer
state, which is sufficient to show that the Hadamard gate can be efficiently applied to
stabilizers represented as LIMDD, as we demonstrate next in Sec. 3.3.3.4.

3.3.3.4 LIMDD operations for Clifford gates are polynomial time on sta-
bilizer states

We give an algorithm for the Hadamard gate and then show that it runs in polynomial
time when applied to a stabilizer state. Together with the results of Sec. 3.3.3.2, this
shows that all Clifford gates can be applied to stabilizer states in polynomial time
(Theorem 3.4). Indeed, since the LIMDD does not grow in size (indeed, it remains
a Tower), this means all Clifford circuits can be simulated in polynomial time using
LIMDDs.

In this section, we sketch the proof that the Hadamard gate can be applied in polyno-
mial time; a complete proof is given in Theorem C.1 in Section C.2. The key ingredient
is Lemma C.3, which shows that the Add algorithm makes only O(n) many recursive
calls when applied to two Pauli-equivalent stabilizer states, i.e., when it is called as
Add(v

A , v
B).

Theorem 3.4. Any Clifford gate (H,S, CNOT) can be applied in O(n4) time to any
(combination of) qubits to a LIMDD representing a stabilizer state.

Proof. Let |ψ⟩ be an n qubit stabilizer state, represented by a LIMDD with root edge
v

A . By Theorem 3.1, this LIMDD is a ⟨Pauli⟩-Tower-LIMDD with m = n nodes
apart from the leaf.

Sec. 3.3.3.2 shows that any S-gate can be applied in time O(n3m), so we get O(n4).

Theorem 3.5 shows that any Hadamard gate can be applied on any qubit in time
O(n4).

Sec. 3.3.3.2 shows that any downward CNOT-gate can be applied in time O(n3m), so
in this case O(n4). By applying Hadamard to the target and control qubits, before
and after the downward CNOT, we obtain an upward CNOT, i.e., CXt

c = (H ⊗
H)CXc

t (H ⊗H), still in time O(n4).

77

Local Invertible Map Decision Diagrams

v ⇝

e0e1

v′

e0 + e1 e0 − e1

1/
√
2

a0 a1

To apply a Hadamard gate (H = 1√
2

[
1 1
1 −1

]
) to the

first qubit, we first construct edges representing the states
|a0⟩ = |e0⟩+|e1⟩ and |a1⟩ = |e0⟩−|e1⟩, using the Add pro-
cedure (Algorithm 9 and multiplying the root edge with
−1). Then we construct an edge representing the state
|0⟩ |a0⟩+ |1⟩ |a1⟩ using MakeEdge. Lastly, the complex
factor on the new edge’s root label is multiplied by 1√

2
. Since the Hadamard is also a

Clifford gate, we can apply this operation to any qubit in the LIMDD by “pushing it
through the LIMs,” as we saw in Sec. 3.3.3.2. Specifically, when applying a Hadamard
gate to edge v

A , we use HkA |v⟩ = (HkAH
†
k) · H |v⟩, which allows us to apply a

Hadamard gate to the node v rather than the edge v
A . Algorithm 10 shows the

complete algorithm.

Algorithm 10 Apply gate H to qubit k for Pauli-LIMDD v
A . We let n = idx(v).

1: procedure HGate(Edge v
A with A ∈ Pauli-LIM, k ∈ {1, ..., idx(v)})

2: if v /∈ HGateCache then ▷ Compute result once for v and store in cache:

3: if idx(v) = k then
4: a0 := Add(low(v), high(v))
5: a1 := Add(low(v),−high(v))
6: HGateCache[v] := 1/

√
2 · MakeEdge(a0, a1)

7: else
8: HGateCache[v] := MakeEdge(HGate(low(v), k),HGate(high(v), k))

9: return HkAH
†
k · HGateCache[v] ▷ Retrieve result from cache

Theorem 3.5. Let e be the root edge of an n-qubit ⟨Pauli⟩-Tower-LIMDD. Then
HGate(e, k) of Algorithm 10 takes O(n4) time.

Proof sketch. A complete proof is given in Theorem C.1 in Section C.2. By virtue
of the cache, HGate is called at most once per node. Since the LIMDD is a Tower,
there are only n nodes; so HGate is called at most n times. For the node at level
k, HGate makes two calls to Add on Line 4 and Line 5. Lemma C.3 shows that
these calls to Add each make at most 5k = O(n) recursive calls. Each recursive call
to Add may invoke the MakeEdge procedure, which runs in time O(n3), yielding a
total worst-case running time of O(n4), since k ≤ n.

Since stabilizer states are closed under Clifford gates, one naturally expects that

78

LIMDD: a decision diagram for simulation of quantum computing
including stabilizer states

⟨Pauli⟩-Tower-LIMDDs are also closed under the respective LIMDD manipulation op-
erations. Indeed, we show this in Lemma B.2 (App. B).

3.3.4 Comparing LIMDD-based simulation with other methods

Prop. 3.1 shows exponential advantages of (Pauli-)LIMDDs over three state-of-the-art
classical quantum circuit simulators: those based on QMDDs and MPS [262,346], and
the Clifford + T simulator. In this section we prove the proposition, mainly using
results from the current section: To show the separation between simulation with
LIMDDs and Clifford + T , we present Theorem 3.6.

Our proofs often rely on the fact that LIMDDs are exponentially more succinct repre-
sentations of a certain class of quantum states S that are generated by circuits with
a certain (non-universal) gate set G. For instance, the stabilizer states that are gen-
erated by the Clifford gate set. LIMDD-based simulation —similar to MPS [335] and
QMDD-based [374] simulation— proceeds by representing a state |φt⟩ at time step t as
a LIMDD φt. It then applies the gate Ut ∈ G in the circuit corresponding to this time
step to obtain a LIMDD φt+1 with |φt+1⟩ = Ut |φt⟩, thus yielding strong simulation at
the final time step as reading amplitudes from the final LIMDD is easy (see Sec. 3.3.1).

It follows that LIMDD-based simulation is efficient provided that it can execute all
gates Ut in polynomial time (in the size of the LIMDD representation), at least for the
states in S. Note in particular that since the execution stays in S, i.e., |φt⟩ ∈ S =⇒
|φt+1⟩ ∈ S, the representation size can not grow to exponential size in multiple steps
(S can be considered an inductive invariant in the style of Floyd [121] and de Bakker
& Meertens [98]). On the other hand, since MPS and QMDD are exponentially sized
for cluster states, they necessarily require exponential time on circuits computing this
family of states.

3.3.4.1 LIMDD is exponentially faster than QMDD-based simulation

As state set S, we select the stabilizer states and for G the Clifford gates. Theorem 3.1
shows that LIMDDs for stabilizers are always quadratic in size in the number of qubits
n, as the diagram contains n nodes and n+ 1 LIMs, each of size at most n (see Defi-
nition 3.3). Sec. 3.3.3.2 shows that LIMDD can execute all Clifford gates on stabilizer
states in time O(n4).

79

Local Invertible Map Decision Diagrams

On the other hand, Theorem 3.2 shows that QMDDs for cluster states are exponentially
sized. It follows that in simulation also, there is an exponential separation between
QMDD and LIMDD, proving that QSimQMDD

C = Ω∗(2n ·QSimLIMDD
C) (Prop. 3.1 Item 3).

For the other direction, we now show that LIMDDs are at most a factor O(n3) slower
than QMDDs on any given circuit. First, a LIMDD never contains more nodes than a
QMDD representing the same state (because QMDD is by definition a specialization
of LIMDD, see Sec. 3.3.1). The LIMDD additionally uses O(n) memory per node to
store two Pauli LIMs; thus, the total memory usage is at most a factor O(n) worse
than QMDDs for any given state. The ApplyGate and Add algorithms introduced in
Sec. 3.3.3.3 are very similar to the ones used for QMDDs in [124,373]. In particular, our
ApplyGate and Add algorithms never make more recursive calls than those for QMDDs.
However, one difference is that our MakeEdge algorithm runs in time O(n3) instead
of O(1). Therefore, in the worst case these LIMDD algorithms make the same number
of recursive calls to ApplyGate and Add, in which case they are slower by a factor
O(n3).

Finally, Corollary 3.1 shows that the pseudo-cluster state |φ⟩ has a polynomial rep-
resentation in LIMDD. By definition of the pseudo-cluster state, post-selecting (con-
straining) the top qubit to 0 (or 1) yields the cluster state |Gn⟩. Therefore, QMDD
for the pseudo-cluster state must have exponential size, as constraining can never
increase the size of DD [344, Th 2.4.1]. Together with the universal simulation dis-
cussed above, this proves that the above also holds for for a simulator based on the
combination QMDD ∪ Stab (Prop. 3.1 Item 5).

3.3.4.2 LIMDD is exponentially faster than MPS

In Sec. 3.3.4.1, we saw that LIMDD can simulate the cluster state in polynomial time.
On the other hand, Theorem 3.3 shows that MPS for cluster states are exponentially
sized. It follows that in simulation also, there is an exponential separation between
MPS and LIMDD, proving Prop. 3.1 Item 2.

3.3.4.3 LIMDD is exponentially faster than Clifford + T

In this section, we consider a circuit family that LIMDDs can efficiently simulate,
but which is difficult for the Clifford+T simulator because the circuit contains many

80

LIMDD: a decision diagram for simulation of quantum computing
including stabilizer states

T gates, assuming the Exponential Time Hypothesis (ETH, a standard complexity-
theoretic assumption which is widely believed to be true). This method decomposes
a given quantum circuit into a circuit consisting only of Clifford gates and the T =[
1 0
0 eiπ/4

]
gate, as explained in Section 3.2.

The circuit family, given my McClung [220], maps the input state |0⟩⊗n to the n-qubit
W state |Wn⟩, which is the equal superposition over computational-basis states with
Hamming weight 1,

|Wn⟩ =
1√
n
(|100...00⟩+ |010...00⟩+ ...+ |000...01⟩)

Arunachalam et al. showed that, assuming ETH, any circuit which deterministically
produces the |Wn⟩ state in this way requires Ω(n) T gates [21]. Consequently, the
Clifford + T simulator cannot efficiently simulate the circuit family, even when one
allows for preprocessing with a compilation algorithm aiming to reduce the T -count
of the circuit (such as the ones developed in [181,313]).

Theorem 3.6 now shows that the exponential separation between simulation with
LIMDD and Clifford + T , i.e., that QSimClifford + T

C = Ω(2n · QSimLIMDD
C) (Prop. 3.1

Item 1). App. D gives its proof.

Theorem 3.6. There exists a circuit family Cn such that Cn |0⟩⊗n = |Wn⟩, that
Pauli-LIMDDs can efficiently simulate. Here simulation means that it constructs rep-
resentations of all intermediate states, in a way which allows one to, e.g., efficiently
simulate any single-qubit computational-basis measurement or compute any compu-
tational basis amplitude on any intermediate state and the output state.

We note that we could have obtained a similar result using the simpler scenario where
one applies a T gate to each qubit of the (|0⟩ + |1⟩)⊗n input state. However, our
goal is to show that LIMDDs can natively simulate scenarios which are relevant to
quantum applications, such as the stabilizer states from the previous section. The W
state is a relevant example, as several quantum communication protocols use the W
state [170, 203, 206]. In contrast, the circuit with only T gates yields a product state,
hence it is not relevant unless we consider it as part of a larger circuit which includes
multi-qubit operations.

Lastly, it would be interesting to analytically compare LIMDD with general stabilizer
rank based simulation (without assuming ETH). However, this would require finding
a family of states with provably superpolynomial stabilizer rank, which is a major

81

Canonicity: Reduced LIMDDs with efficient MakeEdge algorithm

open problem. Instead, we implemented a heuristic algorithm by Bravyi et al. [61] to
empirically find upper bounds on the stabilizer rank and applied it to a superset of the
W states, so-called Dicke states, which can be represented as polynomial-size LIMDD.
The O(n2)-size LIMDD can be obtained via a construction by Bryant [67], since the
amplitude function of a Dicke state is a symmetric function. The results hint at a
possible separation but are inconclusive due to the small number of qubits which the
algorithm can feasibly investigate in practice. See Section 3.6 for details.

3.4 Canonicity: Reduced LIMDDs with efficient Ma-

keEdge algorithm

Unique representation, or canonicity, is a crucial property for the efficiency and effec-
tiveness of decision diagrams. In the first place, it allows for circuit analysis and sim-
plification [69,227], by facilitating efficient manipulation operations through dynamic
programming efficiently, as discussed in Sec. 3.3.3. In the second place, a reduced
diagram is smaller than an unreduced diagram because it merges nodes with the same
semantics. For instance, Pauli-LIMDDs allow all states in the same ≃Pauli equivalence
class to be merged. Here, we define a reduced Pauli-LIMDD, which is canonical.

In general, many different LIMDDs can represent a given quantum state, as illustrated
in Figure 3.10. However, by imposing a small number of constraints on the diagram,
listed in Definition 3.5 and visualized in Figure 3.11, we ensure that every quantum
state is represented by a unique ‘reduced ’ Pauli-LIMDD. We present a MakeEdge

algorithm (Algorithm 11 in Sec. 3.4.2) that computes a canonical node assuming its
children are already canonical. The algorithms for quantum circuit simulation in
Sec. 3.3.3 ensure that all intermediate LIMDDs are reduced by creating nodes exclu-
sively through this subroutine.

3.4.1 LIMDD canonical form

The main insight used to obtain canonical decision diagrams is that a canonical form
can be computed locally for each node, assuming its children are already canonical.
In other words, if the diagram is constructed bottom up, starting from the leaf, it
can immediately be made canonical. (This is why decision diagram manipulation

82

LIMDD: a decision diagram for simulation of quantum computing
including stabilizer states

v v′

1

1√
2
I ⊗ I

0 0

v v′

1

1√
2
X ⊗ I

0 0

v

1

1√
2
I ⊗ I

X

0

v

1

1√
2
Z ⊗ I

−X

0

Figure 3.10: Four different Pauli-LIMDDs representing the Bell state 1√
2
(|00⟩+ |11⟩).

From left to right: as I-LIMDD, swapping high and low nodes v, v′ by placing an X on
the root LIM, merging v′ into v by observing that |v⟩ = X |v′⟩ and selecting a different
high LIM −X together with changing the root LIM. This section shows that selecting
a unique high LIM is the most challenging, as in general many LIMs can be chosen.

algorithms always construct the diagram in the backtrack of the recursion using a
typical ‘MakeNode’ procedure for constructing canonical nodes [124], like in Sec. 3.3.3.)
For instance, a QMDD node v

α
w

β with α, β ∈ C \ {0} can be reduced
into a canonical node by dividing out a common factor α and placing it on the root
edge. Assuming that v, w are canonical, the resulting node v

1
w

β/α can
be stored as a tuple (1, v, β/α, w) in a hash table. Moreover, any other node that is
equal to this node up to a scalar is reduced to the same tuple with this strategy [227]
and thus merged in the hash table.

For LIMDD, we use a similar approach of dividing out ‘common LIM factors.’ However,
we need to do additional work to obtain a unique high edge label (β/α in the exam-
ple above), as the PauliLIM group is more complicated than the group of complex
numbers (scalars).

Definition 3.5 gives reduction rules for LIMDDs and Figure 3.11 illustrates them. The
merge (1) and low factoring (4) rules fulfill the same purpose as in the QMDD case
discussed above. In a Pauli-LIMDD, we may always swap high and low edges of a node
v by multiplying the root edge LIM with X ⊗ I, as illustrated in Figure 3.10. The low
precedence rule (3) makes this choice deterministic, but only in case low(v) ̸= high(v).
Next, the zero edges (2) rule handles the case when α ór β are zero in the above, as
in principle a edge e with label 0 could point to any node on the next level k, as this
always yields a 0 vector of length 2k (see semantics below Definition 3.2). The rule
forces low(v) = high(v) in case either edge has a zero label. We explain the interaction

83

Canonicity: Reduced LIMDDs with efficient MakeEdge algorithm

among the zero edges (2), low precedence (3) and low factoring (4) rules below. Finally,
the high determinism rule (5) defines a deterministic function to choose LIMs on high
edges, solving the most challenging problem of uniquely selecting a LIM on the high
edge. We give an O(n3) algorithm for this function in Sec. 3.4.2.

Definition 3.5 (Reduced LIMDD). A Pauli-LIMDD is reduced when it satisfies the
following constraints. It is semi-reduced if it satisfies all constraints except possibly
high determinism.

1. Merge: No two nodes are identical: We say two nodes v, w are identical if
low(v) = low(w),
high(v) = high(w), label(low(v)) = label(low(w)), label(high(v)) = label(high(w)).

2. (Zero) edge: For any edge (v, w) ∈ high ∪ low, if label(v, w) = 0, then both
edges outgoing from v point to the same node, i.e., high(v) = low(v) = w.

3. Low precedence: Each node v has low(v) ≼ high(v), where ≼ is a total order
on nodes.

4. Low factoring: The label on every low edge to a node v is the identity I⊗idx(v).

5. High determinism: The label on the high edge of any node v is Bhigh =

HighLabel(v), where HighLabel is a function that takes as input a semi-reduced
n-Pauli-LIMDD node v, and outputs an (n − 1)-Pauli-LIM Bhigh satisfying
|v⟩ ≃Pauli |0⟩ |low(v)⟩ + |1⟩ ⊗ Bhigh |high(v)⟩. Moreover, for any other semi-
reduced node w with |v⟩ ≃Pauli |w⟩, it satisfies HighLabel(w) = Bhigh. In other
words, the function HighLabel is constant within an isomorphism class.

We make several observations about reduced LIMDDs. First, let us apply this definition
to a state |0⟩⊗A |φ⟩+|1⟩⊗B |ψ⟩ with |φ⟩ ̸≃Pauli |ψ⟩, where A,B ∈ PauliLIM. Assume
we already have canonical LIMDDs for φ and ψ (note that necessarily φ ̸= ψ). We will
transform this node so that it satisfies all the reduction rules above. There is a choice
between representing this state as either φ A

ψ
B or ψ

B φA ,
as these are related by the isomorphism X ⊗ I. The low precedence rule resolves this
choice here. Assuming φ ≺ ψ, low factoring can now be realized by dividing out the
LIM A, yielding a node φ

I
ψ

A−1B (with root edge I ⊗ A as in Figure 3.11

(4)). Otherwise, if ψ ≺ φ, we obtain node ψ
I

φB−1A with incoming edge
X ⊗B. Finally, since there might be other LIMs Bhigh not equal to B−1A that yield
the same state, the high determinism rule is finally needed to obtain a canonical node

84

LIMDD: a decision diagram for simulation of quantum computing
including stabilizer states

u
v

w

C
D

A

B
A

B

⇝
v w

C
D

A
B

v

u
w

⇝

C 0
B

v
′

w

C

0
B

v

w
u

⇝

C B
A

v
′

u
w

(X
⊗

Ik
)
·C

A
B

v

u
w

C

A
B

⇝
v
′

u
w

(I
⊗
A
)
·C

A
−

1
B

v

u
w

⇝

C

A

v
′

u
w

C
·(
A
H

−
1
)

H

(1
)

M
er

ge
u
,v

in
to
v

(2
)

Ze
ro

ed
ge

s
(3

)
Lo

w
pr

ec
ed

en
ce

(4
)

Lo
w

fa
ct

or
in

g
(5

)
H

ig
h

de
te

rm
in

is
m

w
it

h
u
≼
w

H
=

H
ig

hL
ab

el
(v
)

F
ig

ur
e

3.
11

:
Il
lu

st
ra

ti
on

s
of

th
e

re
du

ct
io

n
ru

le
s

fr
om

D
efi

ni
ti

on
3.

5
ap

pl
ie

d
at

le
ve

lk
+
1

(i
.e

.,
k
+
1
=

id
x(
v
)
=

id
x(
v
′)

).
N

ot
e

th
at

,i
n

ge
ne

ra
l,

th
e

to
p

ed
ge

s
ar

e
no

t
ne

ce
ss

ar
ily

ro
ot

ed
ge

s,
bu

t
co

ul
d

be
hi

gh
an

d
lo

w
ed

ge
s

fo
r

no
de

s
on

le
ve

lk
+

2
.

So
,

in
ge

ne
ra

l,
th

er
e

ca
n

be
m

ul
ti

pl
e

su
ch

in
co

m
in

g
ed

ge
s

(d
as

he
d

an
d

so
lid

).

85

Canonicity: Reduced LIMDDs with efficient MakeEdge algorithm

ψ
I

φ
Bhigh as shown in Figure 3.12. This last step turns a semi-reduced node

into a (fully) reduced node. Sec. 3.4.2 discusses it in detail.

Now, let us apply the definition to a state |1⟩ ⊗ A |φ⟩. First, notice that the zero
edges rule forces low(v) = high(v) = φ in this case. There is a choice between repre-
senting this state as either φ A φ0 or φ 0 φA , which denote
the states |0⟩ ⊗A |φ⟩ and |1⟩ ⊗A |φ⟩, as these are related by the isomorphism X ⊗ I.
The low factoring rule requires that the low edge label is I, yielding a node of the
form φ A φ0 with root label X ⊗ A: In other words, this rule enforces
swapping high and low edges, placing a X on the root label, and dividing out the LIM
A. Consequently, the high edge must be labeled with 0, and therefore, semi-reduction,
in this case, coincides with (full) reduction (no high determinism is required). Notice
also that there is no reduced LIMDD for the 0-vector, because low factoring requires
low edges with label I. This is not a problem, since the 0-vector is not a quantum
state.

The rules in Definition 3.5 are defined only for Pauli-LIMDDs, to which our results
pertain (except for the brief mention of ⟨X⟩ and ⟨Z⟩-LIMDDs in Sec. 3.3.2). We briefly
discuss alternative groups here. IfG is a group without the elementX ̸∈ G, the reduced
G-LIMDD based on the same rules is not universal (does not represent all quantum
states), because the low precedence rule cannot always be satisfied, since it requires
that v0 ≼ v1 for every node. Hence, in this case, reduced G-LIMDD cannot represent
a state |0⟩ |v0⟩ + |1⟩ |v1⟩ when v1 ≺ v0. However, it is not difficult to formulate rules
to support these groups G; for instance, when G = {I}, we recover the QMDD and
may use its reduction rules [374].

Nodes and edges in a reduced LIMDD need not represent normalized quantum states,
just like in (unreduced) LIMDDs as explained in Sec. 3.3.1. Consider, e.g., node ℓ2 in
Figure 3.3, which represents state [1, 1, i, i]⊤. Because the normalization constant was
divided out (see factor 1/4 on the root edge), this state is not normalized. In fact, the
root node does not need to be normalized, as even reduced LIMDDs can represent any
vector (except for the zero vector).

Lastly, the literature on other decision diagrams [7,67,115] often considers a “redundant
test” or “deletion” rule to remove nodes with the same high and low child. This would
introduce the skipping of qubit levels, which our syntactic definition disallows, as
already discussed in Footnote ‡. However, if needed Definition 3.2 could be adapted
and a deletion rule could be added to Definition 3.5.

86

LIMDD: a decision diagram for simulation of quantum computing
including stabilizer states

We now give a proof of Theorem 3.7, which states that reduced LIMDDs are canonical.

Theorem 3.7 (Node canonicity). For each n-qubit quantum state |φ⟩, there exists a
unique reduced Pauli-LIMDD L with root node vL such that |vL⟩ ≃ |φ⟩.

Proof. We use induction on the number of qubits n to show universality (the existence
of an isomorphic LIMDD node) and uniqueness (canonicity).

Base case. If n = 0, then |φ⟩ is a complex number λ. A reduced Pauli-LIMDD for
this state is the leaf node representing the scalar 1. To show it is unique, consider that
nodes v other than the leaf have an idx(v) > 0, by the edges rule, and hence represent
multi-qubit states. Since the leaf node itself is defined to be unique, the merge rule is
not needed and canonicity follows.
Finally, |φ⟩ is represented by root edge 1

λ .

Inductive case. Suppose n > 0. We first show existence, and then show uniqueness.

Part 1: existence. We use the unique expansion of |φ⟩ as |φ⟩ = |0⟩⊗|φ0⟩+ |1⟩⊗|φ1⟩
where |φ0⟩ and |φ1⟩ are either (n − 1)-qubit state vectors, or the all-zero vector. We
distinguish three cases based on whether |φ0⟩ , |φ1⟩ = 0.

Case |φ0⟩ , |φ1⟩ = 0: This case is ruled out because |φ⟩ ≠ 0.

Case |φ0⟩ = 0 or |φ1⟩ = 0: In case |φ0⟩ ̸= 0, by the induction hypothesis, there
exists a Pauli-LIMDD with root node w satisfying |w⟩ ≃ |φ0⟩. By definition of ≃,
there exists an n-qubit Pauli isomorphism A such that |φ0⟩ = A |w⟩. We construct
the following reduced Pauli-LIMDD for |φ⟩: vw

I
w

0 , adding a root edge

er = v
I ⊗ A as illustrated in Figure 3.12 (left). In case |φ1⟩ ≠ 0, we do the same for

root node In case |φ1⟩ ≠ 0, we do the same for root |w⟩ ≃ |φ1⟩ = A |w⟩, but switch the

high and the low edge by instead a root edge er = v
X ⊗ A (similar to Figure 3.11

(3)). In both cases, it is easy to check that the root node v is reduced as it can
be represented by a tuple (I, w, 0, w), where w is canonical because of the induction
hypothesis. Also in both cases, we also have |φ⟩ = |er⟩ because either |φ⟩ = I ⊗ A |v⟩
or |φ⟩ = X ⊗A |v⟩.

Case |φ0⟩ , |φ1⟩ ̸= 0: By applying the induction hypothesis twice, there exist Pauli-
LIMDDs L and R with root nodes |vL⟩ ≃ |φ0⟩ and |vR⟩ ≃ |φ1⟩. The induction
hypothesis implies only a ‘local’ reduction of LIMDDs L and R, but not automatically
a reduction of their union. For instance, L might contain a node v and R a node

87

Canonicity: Reduced LIMDDs with efficient MakeEdge algorithm

v′

w

A

0
v

I ⊗A

0

⇝
v′′

vL vR

A
B

≼

v′

I ⊗A

A−1B

⇝
v

(I ⊗A)Broot

Bhigh

⇝

Figure 3.12: Reduced node construction in case |φ1⟩ = 0 (left), and |φ0⟩ , |φ1⟩ ≠ 0 and
vL ≼ vR (right). Not shown: for cases |φ0⟩ = 0 and vR ≼ vL, we take instead root
edge X ⊗A and swap low/high edges.

w such that v ≃ w. While the other reduction rules ensure that v and w will be
structurally the same, the induction hypothesis only applies the merge rule L and M
in isolation, leaving two copies of identical nodes v, w. We can solve this by applying
merge on the union of nodes in L and M , to merge any equivalent nodes, as they
are already structurally equivalent by the induction hypothesis. This guarantees that
(also) vL, vR are identical nodes.

By definition of ≃, there exist n-qubit Pauli isomorphisms A and B such that |φ0⟩ =
A |vL⟩ and |φ1⟩ = B |vR⟩. In case vL ≼ vR, we construct the following reduced Pauli-
LIMDD for |φ⟩: the root node is vvL

I vR
E , where E is the LIM computed

by HighLabel(vL I vR
A−1B) . Otherwise, if vR ≼ vL, then we construct the

following reduced Pauli-LIMDD for |φ⟩: the root node is vvR
I vL

F , where

F = HighLabel(vL I vR
B−1A). It is straightforward to check that, in both

cases, this Pauli-LIMDD is reduced. Moreover, |v⟩ isomorphic to |φ⟩ as illustrated in
Figure 3.12 (right).

Part 2: uniqueness. To show uniqueness, let L and M be reduced LIMDDs with
root nodes vL, vM such that |vL⟩ ≃ |φ⟩ ≃ |vM ⟩, as follows,

vLv0L
AL

v1L
BL vMv0M

AM
v1M

BM (3.9)

The fact that these nodes are isomorphic means that there is a Pauli isomorphism P

such that P |vL⟩ = |vM ⟩. We write P = λPtop ⊗ Prest ̸= 0 where Ptop is a single-qubit
Pauli matrix and Prest an (n−1)-qubit Pauli LIM. Expanding the semantics of vL and

88

LIMDD: a decision diagram for simulation of quantum computing
including stabilizer states

vM , we obtain,

λPtop ⊗ Prest(|0⟩ ⊗AL |v0L⟩+ |1⟩ ⊗BL |v1L⟩) = |0⟩ ⊗AM |v0M ⟩+ |1⟩ ⊗BM |v1M ⟩ .
(3.10)

We distinguish two cases from here on: where Ptop ∈ {I, Z} or Ptop ∈ {X,Y }.

Case Ptop = I, Z. If Ptop = [1 0
0 z] for z ∈ {1,−1}, then Equation 3.10 gives:

λPrestAL |v0L⟩ = AM |v0M ⟩ and zλPrestBL |v1L⟩ = BM |v1M ⟩ (3.11)

By low factoring, we have AL = AM = I, so we obtain λPrest |v0L⟩ = |v0M ⟩. Hence |v0L⟩
is isomorphic with |v0M ⟩, so by the induction hypothesis, we have v0L = v0M . We now
show that also vL = vM by considering two cases.

BL ̸= 0 and BM ̸= 0: then zλPrestBL |v1L⟩ = BM |v1M ⟩, so the nodes v1L and v1M rep-
resent isomorphic states, so by the induction hypothesis we have v1L = v1M .
We already noticed by the low factoring rule that vL and vM have I as low
edge label. By the high edge rule, their high edge labels are HighLabel(vL)
and HighLabel(vM), and since the nodes vL and vM are semi-reduced and
|vL⟩ ≃ |vM ⟩, we have HighLabel(vM) = HighLabel(vL) by definition of HighLabel.

BL = 0 or BM = 0: In case BL = 0, we see from Equation 3.11 that 0 = BM |v1M ⟩.
Since the state vector |v1M ⟩ ̸= 0 by the observation that a reduced node does
not represent the zero vector, it follows that BM = 0. Otherwise, if BM = 0,
then Equation 3.11 yields zλPrestBL |v1L⟩ = 0. We have zλ ̸= 0, Prest ̸= 0 by
definition, and we observed |v1L⟩ ̸= 0 above. Therefore BL = 0. In both cases,
BL = BM .

We conclude that in both cases vL and vM have the same children and the same edge
labels, so they are identical by the merge rule.

Case Ptop = X,Y . If Ptop =
[
0 z∗

z 0

]
for z ∈ {1, i}, then Equation 3.10 gives:

λzPrestAL |v0L⟩ = BM |v1M ⟩ and λz∗PrestBL |v1L⟩ = AM |v0M ⟩ .

By low factoring, AL = AM = I, so we obtain zλPrest |v0L⟩ = BM |v1M ⟩ and
λz∗PrestBL |v1L⟩ = |v0M ⟩. To show that vL = vM , we consider two cases.

89

Canonicity: Reduced LIMDDs with efficient MakeEdge algorithm

BL ̸= 0 and BM ̸= 0: we find |v0L⟩ ≃ |v1M ⟩ and |v1L⟩ ≃ |v0M ⟩, so by the induction
hypothesis, v0L = v1M and v1L = v0M . By low precedence, it must be that
v1L = v1M = v0L = v0M . Now use high determinism to infer that BL = BM

as in the Ptop = I, Z case.

BL = 0 or BM = 0: This case leads to a contradiction and thus cannot occur. BL

cannot be zero, because then |v0M ⟩ is the all-zero vector, which we excluded.
The other case: if BM = 0, then it must be that λzPrestAL |v0L⟩ is zero. Since
λzPrest ̸= 0 and AL = I, it follows that |v0L⟩ is the all-zero vector, which is again
excluded.

We conclude that vL and vM have the same children and the same edge labels for all
choices of Ptop, so they are identical by the merge rule.

3.4.2 The MakeEdge subroutine: Maintaining canonicity
during simulation

To construct new nodes and edges, our algorithms use the MakeEdge subroutine
(Algorithm 11), as discussed in Sec. 3.4.1. MakeEdge produces a reduced parent
node (with root edge) given two reduced children, so that the LIMDD representation
becomes canonical. Here we give the algorithm for MakeEdge and show that it runs
in time O(n3) (assuming the input nodes are reduced).

The MakeEdge subroutine distinguishes two cases, depending on whether both chil-
dren are non-zero vectors, which both largely follow the discussion below Definition 3.5.
It works as follows:

• First it ensures low precedence, switching e0 and e1 if necessary at Line 3. This
is also done if e0’s label A is 0 to allow for low factoring (avoiding divide by
zero).

• Low factoring, i.e., dividing out the LIM A, placing it on the root node, is
visualized in Figure 3.12 for the cases e1 = 0/e1 ̸= 0, and done in the algorithm
at Line 6,7 / 9,11.

• The zero edges rule is enforced in the B = 0 branch by taking v1 := v0.

90

LIMDD: a decision diagram for simulation of quantum computing
including stabilizer states

• The canonical high label Bhigh is computed by GetLabels, discussed below,
for the semi-reduced node wv0

I
v1

Â with v0 ̸= v1. With the result-
ing high label, it now satisfies the high determinism rule of Definition 3.5 with
HighLabel(w) = Bhigh.

• Finally, we merge nodes by creating an entry (v0, Bhigh, v1) in a table called the
unique table [59] at Line 13.

All steps except for GetLabels have complexity O(1) or O(n) (for checking low
precedence, we use the nodes’ order in the unique table). The algorithm GetLabels,
which we sketch below in Sec. 3.4.2.1 and fully detail in Section 3.5, has runtime O(n3)

if both input nodes are reduced, yielding an overall complexity O(n3).

Algorithm 11 Algorithm MakeEdge takes two root edges to (already reduced)
nodes v0, v1, the children of a new node, and returns a reduced node with root edge.
It assumes that idx(v0) = idx(v1) = n. We indicate which lines of code are responsible
for which reduction rule in Definition 3.5.

1: procedure MakeEdge(Edge e0 v0
A , e1 v1

B , with v0, v1 reduced, A ̸= 0 or
B ̸= 0)

2: if v0 ̸≼ v1 or A = 0 then ▷ Enforce low precedence and enable factoring

3: return (X ⊗ I⊗n) · MakeEdge(e1, e0)
4: if B = 0 then
5: v1 := v0 ▷ Enforce zero edges

6: v := v0
I⊗n

v0
0 ▷ Enforce low factoring

7: Broot := I ⊗A ▷ Broot |v⟩ = |0⟩ ⊗A |v0⟩+ |1⟩ ⊗B |v1⟩
8: else
9: Â := A−1B ▷ Enforce low factoring

10: Bhigh, Broot := GetLabels(Â, v0, v1) ▷ Enforce high determinism

11: v := v0
I⊗n

v1
Bhigh ▷ Broot |v⟩ = |0⟩ ⊗ |v0⟩+ |1⟩ ⊗A−1B |v1⟩

12: Broot := (I ⊗A)Broot ▷ (I ⊗A)Broot |v⟩ = |0⟩ ⊗A |v0⟩+ |1⟩ ⊗B |v1⟩

13: vr := Find or create unique table entry Unique[v] = (v0, Bhigh, v1) ▷ Enforce
merge

14: return vr
Broot

3.4.2.1 Choosing a canonical high-edge label

In order to choose the canonical high edge label of node v, the MakeEdge algorithm
calls GetLabels (Line 10 of Algorithm 11). The function GetLabels returns a

91

Canonicity: Reduced LIMDDs with efficient MakeEdge algorithm

uniquely chosen LIM Bhigh among all possible high-edge labels which yield LIMDDs
representing states that are Pauli-isomorphic to |v⟩. We sketch the algorithm for
GetLabels here and provide the algorithm in full detail in Section 3.5 (Algorithm 12).
First, we characterize the eligible high-edge labels. That is, given a semi-reduced node

vv0
I

v1
Â , we characterize all C such that the node v0

I
v1

C is

isomorphic to vv0
I

v1
Â . Our characterization shows that, modulo some

complex factor, the eligible labels C are of the form

C ∝ g0 · Â · g1, for g0 ∈ Stab(|v0⟩), g1 ∈ Stab(|v1⟩) (3.12)

where Stab(|v0⟩) and Stab(|v1⟩) are the stabilizer subgroups of |v0⟩ and |v1⟩, i.e., the
already reduced children of our input node v. Note that the set of eligible high-edge
labels might be exponentially large in the number of qubits. Fortunately, eq. (3.12)
shows that this set has a polynomial-size description by storing only the generators of
the stabilizer subgroups.

Our algorithm chooses the lexicographically smallest eligible label, i.e., the smallest
C of the form C ∝ g0Âg1 (the definition of ‘lexicographically smallest’ is given in
Sec. 3.5.2). To this end, we use two subroutines: (1) an algorithm which finds (a
generating set of) the stabilizer group Stab(|v⟩) of a LIMDD node v; and (2) an al-
gorithm that uses these stabilizer subgroups of the children nodes to choose a unique
representative of the eligible-high-label set from eq. (3.12).

For (1), we use an algorithm which recurses on the children nodes. First, we note
that, if the Pauli LIM A stabilizes both children, then I ⊗ A stabilizes the parent
node. Therefore, we compute (a generating set for) the intersection of the children’s
stabilizer groups. Second, our method finds out whether the parent node has stabilizers
of the form Pn ⊗ A for Pn ∈ {X,Y, Z}. This requires us to decide whether certain
cosets of the children’s stabilizer groups are empty. These groups are relatively simple,
since, modulo phase, they are isomorphic to a binary vector space, and cosets are
hyperplanes. We can therefore rely in large part on existing algorithms for linear
algebra in vector spaces. The difficult part lies in dealing with the non-abelian aspects
of the Pauli group. We provide the full algorithm, which is efficient, also in Section 3.5.

Our algorithm for (2) applies a variant of Gauss-Jordan elimination to the generating
sets of Stab(|v0⟩) and Stab(|v1⟩) to choose g0 and g1 in eq. (3.12) which, when mul-
tiplied with Â as in eq. (3.12), yield the smallest possible high label C. (We recall
that Gauss-Jordan elimination, a standard linear-algebra technique, is applicable here

92

LIMDD: a decision diagram for simulation of quantum computing
including stabilizer states

w

v0 ≼ v1

I⊗n
λP

vr

Broot = (λX ⊗ P)
x ·
(
Zs ⊗ (g0)

−1
)

I⊗n

Bhigh = (−1)sλ(−1)xg0Pg1

⇝

g0 ∈ Stab(v0) Stab(v1) ∋ g1

Choose s, x ∈ {0, 1}, g0 ∈ Stab(v0), g1 ∈ Stab(v1) s.t. Bhigh is minimal and x = 0 if
v0 ̸= v1.

Figure 3.13: Illustration of finding a canonical high label for a semi-reduced node w,
yielding a reduced node vr. The chosen high label is the minimal element from the set
of eligible high labels based on stabilizers g0, g1 of v0, v1 (drawn as self loops). The
minimal element holds a factor λ(−1)x for some x ∈ {0, 1}. There are two cases: if
v0 ̸= v1 or x = 0, then the factor is λ and the root edge should be adjusted with an I
or Z on the root qubit. The other case, x = 1, leads to an additional multiplication
with an X on the root qubit.

because the stabilizer groups are group isomorphic to binary vector spaces, see also
Sec. 3.5.2). We explain the full algorithm in Section 3.5.

3.4.2.2 Checking whether two LIMDDs are Pauli-equivalent

To check whether two states represented as LIMDDs are Pauli-equivalent, it suffices
to check whether they have the same root node. Namely, due to canonicity, and in
particular the Merge rule (in Definition 3.5), there is a unique LIMDD representing a
quantum state up to phase and local Pauli operators.

3.5 Efficient algorithms for choosing a canonical high

label

Here, we present an efficient algorithm which, on input Pauli-LIMDD node
wv0

I
v1

λP , returns a canonical choice for the high label Bhigh (algorithm
GetLabels, in Algorithm 12). By canonical, we mean that it returns the same high
label for any two nodes in the same isomorphism equivalence class, i.e., for any two
nodes v, w for which |v⟩ ≃Pauli |w⟩.

This section is structured as follows. In Sec. 3.5.1, we identify the canonical high label

93

Efficient algorithms for choosing a canonical high label

that we are after – the minimum element of a certain set – and presents an algorithm
GetLabels, which finds it. The algorithm GetLabels calls several subroutines,
which are presented in Sec. 3.5.2, Sec. 3.5.3 and Sec. 3.5.4. present algorithms which
find this canonical label. Sec. 3.5.2 presents algorithms operating on group of Pauli
operators.

3.5.1 Choosing a canonical high label

We first characterize all eligible labels Bhigh in terms of the stabilizer subgroups of
the children nodes v0, v1, denoted as Stab(v0) and Stab(v1) (see Section 3.2 for the
definition of stabilizer subgroup). Then, we provide the algorithm GetLabels which
correctly finds the lexicographically minimal eligible label (and corresponding root
label), and runs in time O(n3) where n is the number of qubits.

Figure 3.13 illustrates this process. In the figure, the left node w summarizes the status
of the MakeEdge algorithm on Line 10, when this algorithm has enough information

to construct the semi-reduced node wv0
I⊗n

v1
λP , shown on the left. The node

vr, on the right, is the canonical node, and is obtained by replacing w’s high edge’s label
by the canonical label Bhigh. This label is chosen by minimizing the expression Bhigh =

(−1)sλ(−1)xg0Pg1, where the minimization is over s, x ∈ {0, 1}, g0 ∈ Stab(|v0⟩), g1 ∈
Stab(|v1⟩), subject to the constraint that x = 0 if v0 ̸= v1. We have |w⟩ ≃Pauli |vr⟩ by
construction as intended, namely, they are related via |w⟩ = Broot |vr⟩. Theorem 3.8
shows that this way to choose the high label indeed captures all eligible high labels,
i.e., a node vrv0

I
v1

Bhigh is isomorphic to |w⟩ if and only if Bhigh is of this form.

Theorem 3.8 (Eligible high-edge labels). Let wv0
I⊗n

v1
λP be a semi-reduced

n-qubit node in a Pauli-LIMDD, where v0, v1 are reduced, P is a Pauli string and

λ ̸= 0. For all nodes v = vv0
I⊗n

v1
Bhigh , it holds that |w⟩ ≃ |v⟩ if and only if

Bhigh = (−1)s · λ(−1)xg0Pg1 (3.13)

for some g0 ∈ Stab(v0), g1 ∈ Stab(v1), s, x ∈ {0, 1} and x = 0 if v0 ̸= v1. An isomor-
phism mapping |w⟩ to |v⟩ is

Broot = (X ⊗ λP)x · (Zs ⊗ (g0)
−1). (3.14)

Proof. It is straightforward to verify that the isomorphism Broot in eq. (3.14) indeed

94

LIMDD: a decision diagram for simulation of quantum computing
including stabilizer states

maps |w⟩ to |v⟩ (as x = 1 implies v0 = v1), which shows that |w⟩ ≃ |v⟩. For the
converse direction, suppose there exists an n-qubit Pauli LIM C such that C |w⟩ = |v⟩,
i.e.,

C (|0⟩ ⊗ |v0⟩+ λ |1⟩ ⊗ P |v1⟩) = |0⟩ ⊗ |v0⟩+ |1⟩ ⊗Bhigh |v1⟩ . (3.15)

We show that if Bhigh satisfies eq. (3.15), then it has a decomposition as in eq. (3.13).
We write C = Ctop ⊗Crest where Ctop is a single-qubit Pauli operator and Crest is an
(n− 1)-qubit Pauli LIM (or a complex number ̸= 0 if n = 1). We treat the two cases
Ctop ∈ {I, Z} and Ctop ∈ {X,Y } separately:

(a) Case Ctop ∈ {I, Z}. Then Ctop =
[
1 0
0 (−1)y

]
for y ∈ {0, 1}. In this case,

Equation 3.15 implies Ctop |0⟩Crest |v0⟩ = |0⟩ |v0⟩, so Crest |v0⟩ = |v0⟩, in other
words Crest ∈ Stab(|v0⟩). Moreover, Equation 3.15 implies (−1)yλCrestP |v1⟩ =
Bhigh |v1⟩, or, equivalently, (−1)−yλ−1P−1C−1

restBhigh ∈ Stab(v1). Hence, by
choosing s = y and x = 0, we compute

(−1)yλ(−1)0 Crest︸︷︷︸
∈Stab(v0)

P (−1)−yλ−1P−1C−1
restBhigh︸ ︷︷ ︸

∈Stab(v1)

=
(−1)yλ(−1)0

(−1)yλ
Bhigh = Bhigh

(b) Case Ctop ∈ {X,Y }. Write Ctop =
[
0 z−1

z 0

]
where z ∈ {1, i}. Now, eq. (3.15)

implies

zCrest |v0⟩ = Bhigh |v1⟩ and z−1λCrestP |v1⟩ = |v0⟩ . (3.16)

From Equation 3.16, we first note that |v0⟩ and |v1⟩ are isomorphic, so by
Corollary 3.7, and because the diagram has merged these two nodes, we have
v0 = v1. Consequently, we find from Equation 3.16 that z−1C−1

restBhigh ∈
Stab(v0) and z−1λCrestP ∈ Stab(v1). Now choose x = 1 and choose s such
that (−1)s · z−2C−1

restBhighCrest = Bhigh (recall that Pauli LIMs either commute
or anticommute, so BhighCrest = ±CrestBhigh). This yields:

(−1)sλ−1·z−1C−1
restBhigh︸ ︷︷ ︸

∈Stab(v0)

·P ·z−1λPCrest︸ ︷︷ ︸
∈Stab(v1)

= λ−1·λ·(−1)sz−2·
(
C−1

restBhighCrest
)
= Bhigh

where we used the fact that P 2 = I⊗(n−1) because P is a Pauli string.

95

Efficient algorithms for choosing a canonical high label

Corollary 3.2. As a corollary of Theorem 3.8, we find that taking, as in Figure 3.13,

HighLabel(vv0
I

v1
λP) = min

i,s,x∈{0,1},gi∈Stab(vi)
(
{
(−1)s · λ(−1)x · g0 · P · g1 | x ̸= 1 if v0 ̸= v1

}
)

yields a proper implementation of HighLabel as required by Definition 3.5, because it
considers all possible Bhigh such that |v⟩ ≃Pauli |0⟩ |v0⟩+ |1⟩ ⊗Bhigh |v1⟩.

A naive implementation for GetLabels would follow the possible decompositions of
eligible LIMs (see Equation 3.13) and attempt to make this LIM smaller by greedy
multiplication, first with stabilizers of g0 ∈ Stab(v0), and then with stabilizers g1 ∈
Stab(v1). To see why this does not work, consider the following example: the high
edge label is Z and the stabilizer subgroups are Stab(v0) = ⟨X⟩ and Stab(v1) = ⟨Y ⟩.
Then the naive algorithm would terminate and return Z because X,Y > Z, which is
incorrect since the high-edge label X · Z · Y = −iI is smaller than Z.

Algorithm 12 Algorithm for finding LIMs Bhigh and Broot required by MakeEdge.
Its parameters represent a semi-reduced node vv0

I
v1

λP and it returns

LIMs Bhigh, Broot such that |v⟩ = Broot |w⟩ with wv0
I

v1
Bhigh . The LIM

Bhigh is chosen canonically as the lexicographically smallest from the set character-
ized in Theorem 3.8. It runs in O(n3)-time (with n the number of qubits), provided
GetStabilizerGenSet has been computed for children v0, v1 (an amortized cost).

1: procedure GetLabels(PauliLim λP , Node v0, v1 with λ ̸= 0 and v0, v1 re-
duced)
Output: canonical high label Bhigh and root label Broot

2: G0, G1 := GetStabilizerGenSet(v0), GetStabilizerGenSet(v1)
3: (g0, g1) := ArgLexMin(G0, G1, λP)

4: if v0 = v1 then
5: (x, s) := argmin

(x,s)∈{0,1}2

{
(−1)sλ(−1)xg0Pg1

}
6: else
7: x := 0
8: s := argmin

s∈{0,1}
{(−1)sλg0Pg1}

9: Bhigh := (−1)s · λ(−1)x · g0 · P · g1
10: Broot := (X ⊗ λP)x · (Zs ⊗ (g0)

−1)

11: return (Bhigh, Broot)

To overcome this, we consider the group closure of both Stab(v0) and Stab(v1). See
Algorithm 12 for the O(n3)-algorithm for GetLabels, which proceeds in two steps.
In the first step (Line 3), we use the subroutine ArgLexMin for finding the minimal

96

LIMDD: a decision diagram for simulation of quantum computing
including stabilizer states

Pauli LIM A such that A = λP · g0 · g1 for g0 ∈ Stab(v0), g1 ∈ Stab(v1). We will
explain and prove correctness of this subroutine below in Sec. 3.5.4. In the second
step (Line 4-8), we follow Corollary 3.2 by also minimizing over x and s. Finally,
the algorithm returns Bhigh, the minimum of all eligible edge labels according to
Corollary 3.2, together with a root edge label Broot which ensures the represented
quantum state remains the same.

Below, we will explain O(n3)-time algorithms for finding generating sets for the sta-
bilizer subgroup of a reduced node and for ArgLexMin. Since all other lines in
Algorithm 12 can be performed in linear time, its overall runtime is O(n3).

3.5.2 Efficient linear-algebra algorithms for stabilizer sub-
groups

In this section, we present preliminaries that are used in algorithms which ensure
LIMDD canonicity, presented in Sec. 3.5.1.

In Section 3.2, we defined the stabilizer group for an n-qubit state |φ⟩ as the group
of Pauli operators A ∈ Paulin which stabilize |φ⟩, i.e. A |φ⟩ = |φ⟩. Here, we ex-
plain existing efficient algorithms for solving various tasks regarding stabilizer groups
(whose elements commute with each other). We also outline how the algorithms can
be extended and altered to work for general PauliLIMs, which do not necessarily
commute. For sake of clarity, in the explanation below we first ignore the scalar λ of
a PauliLIM or Pauli element λP . At the end, we explain how the scalars can be
taken into account when we use these algorithms as subroutine in LIMDD operations.

Any n-qubit Pauli string can (modulo factor ∈ {±1,±i}) be written as (XxnZzn) ⊗
...⊗ (Xx1Zz1) for bits xj , zj , 1 ≤ j ≤ n. We can therefore write an n-qubit Pauli string
P as a length-2n binary vector as follows [3],

(xn, xn−1, ...x1︸ ︷︷ ︸
X block

| zn, zn−1, ..., z1︸ ︷︷ ︸
Z block

),

where we added the horizontal bar (|) only to guide the eye. We will refer to such
vectors as check vectors. For example, we have X ∼ (1, 0) and Z ⊗ Y ∼ (0, 1|1, 1)
. This equivalence induces an ordering on Pauli strings following the lexicographic
ordering on bit strings. For example, X < Y because (1|0) < (1|1) and Z⊗ I < Z⊗X
because (00|10) < (01|10).

97

Efficient algorithms for choosing a canonical high label

A set of k Pauli strings thus can be written as 2n×k binary matrix, often called check
matrix, as the following example shows.(

X ⊗ X ⊗ X

I ⊗ Z ⊗ Y

)
∼

(
1 1 1 | 0 0 0

0 0 1 | 0 1 1

)
.

Furthermore, if P,Q are Pauli strings corresponding to binary vectors (x⃗P , z⃗P) and
(x⃗Q, z⃗Q), then

P ·Q ∝
n⊗
j=1

(
XxP

j Zz
P
j

)(
XxQ

j Zz
Q
j

)
=

n⊗
j=1

(
XxP

j ⊕xQ
j Zz

P
j ⊕zQj

)
and therefore the group of n-qubit Pauli strings with multiplication (disregarding
factors) is group isomorphic to the vector space {0, 1}2n (i.e., F2n

2) with bitwise addition
⊕ (i.e., exclusive or; ‘xor’). Consequently, many efficient algorithms for linear-algebra
problems carry over to sets of Pauli strings. In particular, if G = {g1, ..., gk} are
length−2n binary vectors (/ n-qubit Pauli strings) with k ≤ n, then we can efficiently
perform the following operations.

RREF: bring G into a reduced-row echelon form (RREF) using Gauss-Jordan elim-
ination (both are standard linear algebra notions) where each row in the check
matrix has strictly more leading zeroes than the row above. The RREF is achiev-
able by O(k2) row additions (/ multiplications modulo factor) and thus O(k2 ·n)
time (see [321] for a similar algorithm). In the RREF, the first 1 after the leading
zeroes in a row is called a ‘pivot’.

Construct Minimal-size Generator Set convert G to a (potentially smaller) set G′ by
performing the RREF procedure and discarding resulting all-zero rows. It holds
that ⟨G⟩ = ⟨G′⟩, i.e., these sets generate the same group modulo phase.

Membership: determining whether a given a vector (/ Pauli string) h has a decompo-
sition in elements of G. This can be done by obtaining minimal-size generating
sets H1, H2 for the sets G and G ∪ {h}, respectively. Then the generating sets
have the same number of elements (i.e., rows) if and only if h ∈ ⟨G⟩; otherwise,
if h ̸∈ ⟨G⟩, it holds that |H2| = |H1|+ 1.

Intersection: determine all Pauli strings which, modulo a factor, are contained in both
GA and GB , where GA, GB are generator sets for n-qubit stabilizer subgroups.
More specifically, we obtain the generator set of this group, i.e., we obtain a set

98

LIMDD: a decision diagram for simulation of quantum computing
including stabilizer states

GC such that ⟨GC⟩ = ⟨GA⟩ ∩ ⟨GB⟩. This can be achieved using the Zassenhaus
algorithm [212] for computing the intersection of two subspaces of a vector space,
in time O(n3).

Division remainder: given a vector h (/ Pauli string h), determine
hrem := ming∈⟨G⟩{g ⊕ h} (minimum in the lexicographic ordering). We do
so in the check matrix picture by bringing G into RREF, and then making the
check vector of h contain as many zeroes as possible by adding rows from G:

1: for column index j = 1 to 2n do

2: if hj = 1 and G has a row gi with its pivot at position j then h := h⊕gi

The resulting h is hrem. This algorithm’s runtime is dominated by the RREF
step; O(n3).

To include the scalar into the representation, we remark that Pauli LIMs that appear
as labels on diagrams may have λ ∈ C, i.e., any complex number is allowed. Therefore,
to store LIMs, we use a minor extension to the check vector form introduced above,
in order to also include the phase. Specifically, the phase is stored using two real
numbers, by writing λ = r · eiθ with r ∈ R>0 and θ ∈ [0, 2π). Consequently, the check
vector has 2n+ 2 entries, where the last entries store r and θ, e.g.:(

3X ⊗ X ⊗ X

− 1
2 iI ⊗ Z ⊗ Y

)
∼

(
1 1 1 | 0 0 0 | 3 0

0 0 1 | 0 1 1 | 1
2

3π
2

)

where we used 3 = 3 · ei·0 and − 1
2 i = 1

2 · e3πi/2. This extended check vector also
easily allows a total ordering, namely, we simply use the ordering on real numbers for
r and θ. For example, (1, 1, |0, 0|2, 12) < (1, 1|1, 0|3, 0). Let us stress that the factor
encoding (r, θ) is less significant than the Pauli string encoding (xn, ..., x1|zn, ..., z1).
As a consequence, we can greedily determine the minimum of two Pauli operators, by
reading their check vectors from left to right.

Finally, we emphasize that the algorithms above rely on bitwise xor-ing, which is a
commutative operation. Since conventional (i.e., factor-respecting) multiplication of
Pauli operators is not commutative, the algorithms above are not straightforwardly
applicable to arbitrary PauliLIMn input. (When the input consist of pairwise com-
muting Pauli operators, such as stabilizer subgroups [3], the algorithms can be made
to work by adjusting row addition to keep track of the scalar.) Fortunately, since Pauli
strings either commute or anti-commute, row addition may only yield factors up to

99

Efficient algorithms for choosing a canonical high label

the ± sign, not the resulting Pauli strings. This feature, combined with the stipulated
order assigning least significance to the factor, enables us to invoke the algorithms
above as subroutine. We do so in Sec. 3.4.2.1 and Sec. 3.5.3.

3.5.3 Constructing the stabilizer subgroup of a LIMDD node

In this section, we give a recursive subroutine GetStabilizerGenSet to construct the
stabilizer subgroup Stab(|v⟩) = {A ∈ PauliLIMn | A |v⟩ = |v⟩} of an n-qubit LIMDD
node v (see Section 3.2). This subroutine is used by the algorithm GetLabels to
select a canonical label for the high edge and root edge. If the stabilizer subgroup of
v’s children have been computed already, GetStabilizerGenSet’s runtime is O(n3).
GetStabilizerGenSet returns a generating set for the group Stab(|v⟩). Since these
stabilizer subgroups are generally exponentially large in the number of qubits n, but
they have at most n generators, storing only the generators instead of all elements may
save an exponential amount of space. Because any generator set G of size |G| > n can
be brought back to at most n generators in time O(|G| · n2) (see Sec. 3.5.2), we will
in the derivation below show how to obtain generator sets of size linear in n and leave
the size reduction implicit. We will also use the notation A · G and G · A to denote
the sets {A · g | g ∈ G} and {g ·A | g ∈ G}, respectively, when A is a Pauli LIM.

We now sketch the derivation of the algorithm. The base case of the algorithm
is the Leaf node of the LIMDD, representing the number 1, which has stabilizer
group {1}. For the recursive case, we wish to compute the stabilizer group of a
reduced n-qubit node v = vv0

I v1
Bhigh . If Bhigh = 0, then it is straight-

forward to see that λPn ⊗ P ′ |v⟩ = |v⟩ implies Pn ∈ {I, Z}, and further that
Stab(|v⟩) = ⟨{Pn ⊗ g | g ∈ G0, Pn ∈ {I, Z}}⟩, where G0 is a stabilizer generator set
for v0.

Otherwise, if Bhigh ̸= 0, then we expand the stabilizer equation λP |v⟩ = |v⟩:

λPn ⊗ P ′ (|0⟩ ⊗ |v0⟩+ |1⟩ ⊗Bhigh |v1⟩) = |0⟩ ⊗ |v0⟩+ |1⟩ ⊗Bhigh |v1⟩ ,which implies:

100

LIMDD: a decision diagram for simulation of quantum computing
including stabilizer states

λP ′ |v0⟩ = |v0⟩ and zλP ′Bhigh |v1⟩ = Bhigh |v1⟩ if Pn = [1 0
0 z] with z ∈ {1,−1}

(3.17)

y∗λP ′Bhigh |v1⟩ = |v0⟩and λP ′ |v0⟩ = y∗Bhigh |v1⟩ if Pn =
[
0 y∗

y 0

]
, with y ∈ {1, i}

(3.18)

The stabilizers can therefore be computed according to Equation 3.17 and 3.18 as
follows.

Stab(|v⟩) =
⋃

z=∈{1,−1},y∈{1,i}

[1 0
0 z]⊗ (Stab(|v0⟩) ∩ z · Stab(Bhigh |v1⟩))

∪
[

0 y
y∗ 0

]
⊗
(
Iso(y∗Bhigh |v1⟩ , |v0⟩) ∩ Iso(|v0⟩ , y∗Bhigh |v1⟩)

)
(3.19)

where Iso(v, w) denotes the set of Pauli isomorphisms A which map |v⟩ to |w⟩ and we
have denoted π ·G := {π · g | g ∈ G} for a set G and a single operator π. Lemma 3.1
shows that such an isomorphism set can be expressed in terms of the stabilizer group
of |v⟩.

Lemma 3.1. Let |φ⟩ and |ψ⟩ be quantum states on the same number of qubits. Let
π be a Pauli isomorphism mapping |φ⟩ to |ψ⟩. Then the set of Pauli isomorphisms
mapping |φ⟩ to |ψ⟩ is Iso(|v⟩ , |w⟩) = π · Stab(|φ⟩). That is, the set of isomorphisms
|φ⟩ → |ψ⟩ is a coset of the stabilizer subgroup of |φ⟩.

Proof. If P ∈ Stab(|φ⟩), then π · P is an isomorphism since π · P |φ⟩ = π |φ⟩ = |ψ⟩.
Conversely, if σ is a Pauli isomorphism which maps |φ⟩ to |ψ⟩, then π−1σ ∈ Stab(|φ⟩)
because π−1σ |φ⟩ = π−1 |ψ⟩ = |φ⟩. Therefore σ = π(π−1σ) ∈ π · Stab(|φ⟩).

With Lemma 3.1 we can rewrite eq. (3.19) as

Stab(|v⟩) =I ⊗ (Stab(|v0⟩) ∩ Stab(Bhigh |v1⟩))︸ ︷︷ ︸
stabilizer subgroup

∪ Z ⊗ (I · Stab(|v0⟩) ∩ −I · Stab(Bhigh |v1⟩))︸ ︷︷ ︸
isomorphism set

∪
⋃

y∈{1,i}

[
0 y
y∗ 0

]
⊗
(
π · Stab(y∗Bhigh · |v1⟩) ∩ π−1 · Stab(|v0⟩)︸ ︷︷ ︸

isomorphism set

)
(3.20)

where π denotes a single isomorphism y∗Bhigh |v1⟩ → |v0⟩.

101

Efficient algorithms for choosing a canonical high label

Given generating sets for Stab(v0) and Stab(v1), evaluating eq. (3.20) requires us to:

• Compute Stab(A |w⟩) from Stab(w) (as generating sets) for Pauli LIM
A and node w. It is straightforward to check that

{
AgA† | g ∈ G

}
, with ⟨G⟩ =

Stab(w), is a generating set for Stab(A |w⟩).

• Find a single isomorphism between two edges, pointing to reduced
nodes. In a reduced LIMDD, edges represent isomorphic states if and only if
they point to the same nodes. This results in a straightforward algorithm, see
Algorithm 16.

• Find the intersection of two stabilizer subgroups, represented as gener-
ating sets G0 and G1 (IntersectStabilizerGroups, Algorithm 15).
First, it is straightforward to show that the intersection of two stabilizer sub-
groups is again a stabilizer subgroup (namely, it is abelian and does not contain
−I. It is never empty since I is a stabilizer of all states).‖ The algorithm pro-
ceeds in two steps: first, we compute the intersection of G0 and G1 modulo
phase; second, we “correct for” the fact that the phases play a role.

Very broadly speaking, we use the following algebraic properties of Pauli groups.
First, when considering a Pauli string λP modulo phase, it is convenient to think
of it as simply the Pauli string P with phase equal to +1. This allows us to take
an element P ∈ G0 from a Pauli stabilizer group G0 modulo phase, and, by
abuse of language, multiply it by a phase λ ∈ C to obtain λ · P ∈ G0. Second,
for any Pauli string P ∈ G0 ∩ G1, i.e., in the group modulo phase, there exists
a unique λ such that λ · P ∈ ⟨G0⟩; and a unique ω such that ω · P ∈ ⟨G1⟩.
Moreover, we have ω = ±λ in this case due to anti-commutativity. Consequently,
if S = {P1, . . . , Pℓ} is a generating set for the group ⟨S⟩ =

〈
G0

〉
∩
〈
G1

〉
modulo

phase, then we can divide these generators Pj into two sets, S = S0 ∪ S1, where
each P ∈ S0 satisfies λP ∈ G0 ∩ G1 for some λ ∈ C and each P ∈ S1 satisfies
λP ∈ G0 and −λP ∈ G1. The algorithm finds these sets S0 and S1, including
phase, in the loop in Line 5-11. Given such sets S0, S1, any element in G0 ∩G1

(i.e., the set we are interested in) can be written as a product of elements of S0

and an even number of elements from S1. The set {e1 · e2, . . . , e1 · em}, found by

‖To be clear, here we consider the stabilizers including their phase, i.e., we are not considering the
groups modulo phase. Indeed, computing the intersection of two groups modulo phase is relatively
easy, as shown in Sec. 3.5.2.

102

LIMDD: a decision diagram for simulation of quantum computing
including stabilizer states

the algorithm in Line 14-16, generates precisely this set of elements generated
from an even number of elements of S1.

All of the above steps can be performed in O(n3) time, where n is the number
of qubits. In particular, a generating set for the intersection of G0 and G1

modulo phase is simply the intersection of two vector spaces over F2, which is
constructed in time O(n3) on Line 3 using the Zassenhaus algorithm. On line
Line 7, checking whether λP ∈ G0 for given λ, P can be done in O(n2) time; this
happens at most O(|S|) = O(n) times, so in total this operation takes up O(n3)

time. Lastly, the loop in Line 14-16 runs in O(n2) time, as there are at most
|S| − 1 = O(n) multiplications of Pauli strings, each of which takes O(n) time.
We remark that the Zassenhaus algorithm cannot be straightforwardly applied
to find the intersection of the groups G0 and G1 directly, since the elements of
G0 may not commute with those of G1.

• IntersectIsomorphismSets: Find the intersection of two isomorphism
sets, represented as single isomorphism (π0, π1) with a generator set of
a stabilizer subgroup (G0, G1), see Lemma 3.1. This is the coset intersec-
tion problem for the PauliLIMn group. Isomorphism sets are coset of stabilizer
groups (see Lemma 3.1) and it is not hard to see that that the intersection of
two cosets, given as isomorphisms π0/1 and generator sets G0/1, is either empty,
or a coset of ⟨G0⟩ ∩ ⟨G1⟩ (this intersection is computed using Algorithm 15).
Therefore, we only need to determine an isomorphism π ∈ π0⟨G0⟩ ∩ π1⟨G1⟩, or
infer that no such isomorphism exists.

We solve this problem in O(n3) time in two steps (see Algorithm 14 for the full
algorithm). First, we note that that π0⟨G0⟩∩π1⟨G1⟩ = π0[⟨G0⟩∩(π−1

0 π1)⟨G1⟩], so
we only need to find an element of the coset S := ⟨G0⟩∩ (π−1

0 π1)⟨G1⟩. Now note
that S is nonempty if and only if there exists g0 ∈ ⟨G0⟩, g1 ∈ ⟨G1⟩ such that g0 =

π−1
0 π1g1, or, equivalently, π−1

0 π1 · g1 · g−1
0 = I. We show in Lemma 3.2 that such

g0, g1 exist if and only if I is the smallest element in the set Sπ−1
0 π1 ⟨G1⟩ · ⟨G0⟩.

Hence, for finding out if S is empty we may invoke the LexMin algorithm we
have already used before in GetLabels and we will explain below in Sec. 3.5.4.
If it is not empty, then we obtain g0, g1 as above using ArgLexMin, and output
π0 · g0 as an element in the intersection. Since Lexmin and ArgLexMin take
O(n3) time, so does Algorithm 14.

Lemma 3.2. The coset S := ⟨G0⟩ ∩ π−1
1 π0 · ⟨G1⟩ is nonempty if and only

103

Efficient algorithms for choosing a canonical high label

if the lexicographically smallest element of the set S = π−1
0 π1 ⟨G1⟩ · ⟨G0⟩ ={

π−1
0 π1g1g0 | g0 ∈ G0, g1 ∈ G1

}
is 1 · I.

Proof. (Direction ⇒) Suppose that the set ⟨G0⟩ ∩π−1
0 π1 ⟨G1⟩ has an element a. Then

a = g0 = π−1
0 π1g1 for some g0 ∈ ⟨G0⟩ , g1 ∈ ⟨G1⟩. We see that I = π−1

0 π1g1g
−1
0 ∈

π−1
0 π1 ⟨G1⟩ · ⟨G0⟩, i.e., I ∈ S. Note that I is, in particular, the lexicographically

smallest element, since its check vector is the all-zero vector (⃗0|⃗0|00).

(Direction ⇐) Suppose that I ∈ π−1
0 π1 ⟨G1⟩ · ⟨G0⟩. Then I = π−1

0 π1g1g0, for some
g0 ∈ ⟨G0⟩ , g1 ∈ ⟨G1⟩, so we get g−1

0 = π−1
0 π1g1 ∈ ⟨G0⟩ ∩π−1

0 π1 ⟨G1⟩, as promised.

The four algorithms above allow us to evaluate each of the four individual terms in
eq. (3.20). To finish the evaluation of eq. (3.20), one would expect that it is also
necessary that we find the union of isomorphism sets. However, we note that if πG
is an isomorphism set, with π an isomorphism and G an stabilizer subgroup, then
Pn ⊗ (πg) = (Pn ⊗ π)(I ⊗ g) for all g ∈ G. Therefore, we will evaluate eq. (3.20), i.e.
find (a generating set) for all stabilizers of node v in two steps. First, we construct
the generating set for the first term, i.e. I ⊗ (Stab(|v0⟩) ∩ Stab(Bhigh |v1⟩)), using the
algorithms above. Next, for each of the other three terms Pn ⊗ (πG), we add only a
single stabilizer of the form Pn⊗π for each Pn ∈ {X,Y, Z}. We give the full algorithm
in Algorithm 13 and prove its efficiency below.

Lemma 3.3 (Efficiency of function GetStabilizerGenSet). Let v be an n-qubit
node. Assume that generator sets for the stabilizer subgroups of the children v0, v1 are
known, e.g., by an earlier call to GetStabilizerGenSet, followed by caching the result
(see Line 28 in Algorithm 13). Then Algorithm 13 (function GetStabilizerGenSet),
applied to v, runs in time O(n3).

Proof. If n = 1 then Algorithm 13 only evaluates Line 2–4, which run in con-
stant time. For n > 1, the algorithm performs a constant number of calls
to GetIsomorphism (which only multiplies two Pauli LIMs and therefore runs in
time O(n)) and four calls to IntersectIsomorphismSets. Note that the function
IntersectIsomorphismSets from Algorithm 14 invokes O(n3)-runtime external algo-
rithms:

• the Zassenhaus algorithm [212] to calculate a basis for the intersection of two
subspaces of a vector space,

104

LIMDD: a decision diagram for simulation of quantum computing
including stabilizer states

• the RREF algorithms mentioned in Sec. 3.5.2, and

• Algorithm 2 from [125] to synthesize a circuit that transforms any stabilizer
state to a basis state. Specifically, this algorithm receives as input a stabilizer
subgroup G and outputs a Clifford circuit U such that UGU† = {Z1, . . . , Z|G|}.
We remark that García et al. assume in their work that G is the stabilizer group
of a stabilizer state, i.e., |G| = n, but in fact the algorithm works also without
that assumption, i.e., in the more general case when G is any abelian group of
Pauli operators not containing −I. Our algorithms use this more general use
case.

Therefore, GetStabilizerGenSet has runtime is O(n3).

3.5.4 Efficiently finding a minimal LIM by multiplying with
stabilizers

Here, we give O(n3) subroutines solving the following problem: given generators sets
G0, G1 of stabilizer subgroups on n qubits, and an n-qubit Pauli LIM A, determine
min(g0,g1)∈⟨G0,G1⟩A · g0 · g1, and also find the g0, g1 which minimize the expression.
We give an algorithm for finding both the minimum (LexMin) and the arguments of
the minimum (ArgLexMin) in Algorithm 17. The intuition behind the algorithms
are the following two steps: first, the lexicographically minimum Pauli LIM modulo
scalar can easily be determined using the scalar-ignoring DivisionRemainder algorithm
from Sec. 3.5.2. Since in the lexicographic ordering, the scalar is least significant
(Sec. 3.5.2), the resulting Pauli LIM has the same Pauli string as the the minimal
Pauli LIM including scalar. We show below in Lemma 3.4 that if the scalar-ignoring
minimization results in a Pauli LIM λP , then the only other eligible LIM, if it exists,
is −λP . Hence, in the next step, we only need to determine whether such LIM −λP
exists and whether −λ < λ; if so, then −λP is the real minimal Pauli LIM ∈ ⟨G0∪G1⟩.

Lemma 3.4. Let v0 and v1 be LIMDD nodes, R a Pauli string and ν, ν′ ∈ C. Define
G = Stab(v0) ∪ Stab(v1). If νR, ν′R ∈ ⟨G⟩, then ν = ±ν′.

Proof. We prove g ∈ ⟨G⟩ and λg ∈ ⟨G⟩ implies λ = ±1. Since Pauli LIMs commute or
anticommute, we can decompose both g and λg as g = (−1)xg0g1 and λg = (−1)yh0h1

for some x, y ∈ {0, 1} and g0, h0 ∈ Stab(v0) and g1, h1 ∈ Stab(v1). Combining these

105

Efficient algorithms for choosing a canonical high label

Algorithm 13 Algorithm for constructing the Pauli stabilizer subgroup of a Pauli-
LIMDD node. The algorithm always returns a set in reduced row echelon form (see
Sec. 3.5.2), which is accomplished in line 27. In particular, the set always returns at
most n elements for n-qubit states.

1: procedure GetStabilizerGenSet(Edge e0 v0
I⊗n

, e1 v1
Bhigh with v0, v1 re-

duced)
2: if n=1 then
3: if there exists P ∈ ±1 · {X,Y, Z} such that P |v⟩ = |v⟩ then return P

4: else return None

5: else
6: if v ∈ StabCache[v] then return StabCache[v]

7: G0 := GetStabilizerGenSet(v0)

8: if Bhigh = 0 then
9: return {I2 ⊗ g | g ∈ G0} ∪ {Z ⊗ I⊗n−1}

10: else
11: G := ∅
12: G1 :=

{
Bhigh · g ·B†

high | g ∈ GetStabilizerGenSet(v1)
}

13: (π,B) := IntersectIsomorphismSets((I⊗n−1, G0), (I⊗n−1, G1))
14: G := G ∪ {I2 ⊗ g | g ∈ B} ▷ Add all stabilizers of the form I ⊗ ...

15:
16: π0, π1 := I⊗n−1, GetIsomorphism(e1,−1 · e1)
17: (π,B) := IntersectIsomorphismSets((π0, G0), (π1, G1))

18: if π ̸= None then G := G ∪ {Z ⊗ π} ▷ Add stabilizer of form Z ⊗ ...
19:
20: π0, π1 := GetIsomorphism(e0, e1), GetIsomorphism(e1, e0))
21: (π,B) := IntersectIsomorphismSets((π0, G0), (π1, G1))

22: if π ̸= None then G := G ∪ {X ⊗ π} ▷ Add stabilizer of form X ⊗ ...
23:
24: π0, π1 := GetIsomorphism(e0,−i · e1), GetIsomorphism(−i · e1, e0))
25: (π,B) := IntersectIsomorphismSets((π0, G0), (π1, G1))

26: if π ̸= None then G := G ∪ {Y ⊗ π} ▷ Add stabilizer of form Y ⊗ ...
27: G := RREF (G) ▷ Bring G to reduced row echelon form, potentially pruning

some rows
28: StabCache[v] := G

29: return G

106

LIMDD: a decision diagram for simulation of quantum computing
including stabilizer states

Algorithm 14 An O(n3) algorithm for computing the intersection of two sets
of isomorphisms, each given as single isomorphism with a stabilizer subgroup (see
Lemma 3.1).

output: Pauli LIM π, stabilizer subgroup generating set G s.t. π⟨G⟩ = π0⟨G0⟩ ∩
π1⟨G1⟩
1: procedure IntersectIsomorphismSets(stabilizer subgroup generating sets
G0, G1,

Pauli-LIMs π0, π1)
2: π := LexMin(G0, G1, π

−1
1 π0)

3: if π = I then
4: (g0, g1) = ArgLexMin(G0, G1, π

−1
1 π0)

5: π := π0 · g0
6: G := IntersectStabilizerGroups(G0, G1)

7: return (π,G)
8: else
9: return None

Algorithm 15 Algorithm for finding the intersection ⟨G0⟩ ∩ ⟨G1⟩ of the groups gen-
erated by two stabilizer subgroup generating sets G0 and G1.

output: a generating set for ⟨G0⟩ ∩ ⟨G1⟩
1: procedure IntersectStabilizerGroups(stabilizer subgroup generating sets
G0, G1)

2: Use the Zassenhaus algorithm to compute the intersection modulo phase
3: S := IntersectGroupsModuloPhase(G0, G1)
4: J, S0, S1 := ∅
5: for P ∈ S do
6: By abuse of language, we treat P as a Pauli string with phase +1
7: Find λ ∈ {±1,±i} such that λ · P ∈ ⟨G0⟩
8: if λ · P ∈ ⟨G1⟩ then
9: S0 := S0 ∪ {λ · P}

10: else if −λ · P ∈ ⟨G1⟩ then
11: S1 := S1 ∪ {λ · P}
12: J := S0

13: if ∃e ∈ S1 then
14: for e′ ∈ S1 \ {e} do
15: q := e′ · e
16: J := J ∪ {q}
17: return J

107

Efficient algorithms for choosing a canonical high label

Algorithm 16 Algorithm for constructing a single isomorphism between the quantum
states represented by two Pauli-LIMDD edges, each pointing to a canonical node.

1: procedure GetIsomorphism(Edge v
A , w

B with v, w reduced,
A ̸= 0 ∨B ̸= 0)

2: if v = w and A,B ̸= 0 then
3: return B ·A−1

4: return None

yields λ(−1)xg0g1 = (−1)yh0h1. We recall that, if g ∈ Stab(|φ⟩) is a stabilizer of any
state, then g2 = I. Therefore, squaring both sides of the equation, we get λ2(g0g1)2 =

(h0h1)
2, so λ2I = I, so λ = ±1.

The central procedure in Algorithm 17 is ArgLexMin, which, given a LIM A and sets
G0, G1 which generate stabilizer groups, finds g0 ∈ ⟨G0⟩ , g1 ∈ ⟨G1⟩ such that A ·g0 ·g1
reaches its lexicographic minimum over all choices of g0, g1. It first performs the scalar-
ignoring minimization (Line 5) to find g0, g1 modulo scalar. The algorithm LexMin

simply invokes ArgLexMin to get the arguments g0, g1 which yield the minimum and
uses these to compute the actual minimum.

The subroutine FindOpposite finds an element g ∈ G0 such that −g ∈ G1, or infers
that no such g exists. It does so in a similar fashion as IntersectStabilizerGroups

from Sec. 3.5.3: by conjugation with a suitably chosen unitary U , it maps G1 to
{Z1, Z2, ..., Z|G1|}. Analogously to our explanation of IntersectStabilizerGroups,
the group generated by UG1U

† contains precisely all Pauli LIMs which satisfy the
following three properties: (i) the scalar is 1; (ii) its Pauli string has an I or Z at
positions 1, 2, ..., |G1|; (iii) its Pauli string has an I at positions |G1|+1, ..., n. Therefore,
the target g only exists if there is a LIM in ⟨UG0U

†⟩ which (i’) has scalar −1 and
satisfies properties (ii) and (iii). To find such a g, we put UG0U

† in RREF form and
check all resulting generators for properties (i’), (ii) and (iii). (By definition of RREF,
it suffices to check only the generators for this property) If a generator h satisfies these
properties, we return U†hU and None otherwise. The algorithm requires O(n3) time
to find U , the conversion G 7→ UGU† can be done in time O(n3), and O(n) time is
required for checking each of the O(n2) generators. Hence the runtime of the overall
algorithm is O(n3).

108

LIMDD: a decision diagram for simulation of quantum computing
including stabilizer states

Algorithm 17 Algorithms LexMin and ArgLexMin for computing the minimal
element from the set A · ⟨G0⟩ · ⟨G1⟩ = {Ag0g1 | g0 ∈ G0, g1 ∈ G1}, where A is a Pauli
LIM and G0, G1 are generating sets for stabilizer subgroups. The algorithms make use
of a subroutine FindOpposite for finding an element g ∈ ⟨G0⟩ such that −g ∈ ⟨G1⟩.
A canonical choice for the Rootlabel (see Sec. 3.3.3.3) of an edge e pointing to a
node v is LexMin(G, {I}, label(e)) where G is a stabilizer generator group of Stab(v).

1: procedure LexMin(stabilizer subgroup generating sets G0, G1 and Pauli LIM A)
output: min(g0,g1)∈⟨G0∪G1⟩A · g0 · g1

2: (g0, g1) := ArgLexMin(G0, G1, A)

3: return A · g0 · g1

4: procedure ArgLexMin(stabilizer subgroup generating sets G0, G1 and Pauli
LIM A)
output: argming0∈G0,g1∈G1

A · g0 · g1
5: (g0, g1) := argmin

(g0,g1)∈⟨G0∪G1⟩
{h | h ∝ A · g0 · g1}

▷ Using the scalar-ignoring DivisionRemainder algorithm from Sec. 3.5.2,
6: g′ := FindOpposite(G0, G1, g0, g1)

7: if g′ is None then
8: return (g0, g1)
9: else

10: h0, h1 := g0 · g′, (−g′) · g1 ▷ g0g1 = −h0h1

11: if A · h0 · h1 <lex A · g0 · g1 then return (h0, h1)

12: else return (g0, g1)

13: procedure FindOpposite(stabilizer subgroup generating sets G0, G1)
output: g ∈ G0 such that −g ∈ G1, or None if no such g exists

14: Compute U s.t. UG1U
† = {Z1, Z2, ..., Z|G1|}, using Algorithm 2 from [125]

▷ Zj is the Z gate applied to qubit with index j

15: H0 := UG0U
†

16: HRREF
0 := H0 in RREF form

17: for h ∈ HRREF
0 do

18: if h satisfies all three of the following: (i) h has scalar −1; the Pauli string
of h (ii) contains only I or Z at positions 1, 2, ..., |G1|, and (iii) only I at positions
|G1|+ 1, ..., n then

19: return U†hU

20: return None

109

Numerical search for the stabilizer rank of Dicke states

3.6 Numerical search for the stabilizer rank of Dicke

states

Given the separation between the Clifford + T simulator —a specific stabilizer-rank
based simulator— and Pauli-LIMDDs, it would be highly interesting to theoretically
compare Pauli-LIMDDs and general stabilizer-rank simulation. However, proving an
exponential separation would require us to find a family of states for which we can
prove its stabilizer rank scales exponentially, which is a major open problem. Instead,
we here take the first steps towards a numerical comparison by choosing a family of
circuits which Pauli-LIMDDs can efficiently simulate and using Bravyi et al.’s heuristic
algorithm for searching the stabilizer rank of the circuits’ output states [64]. If the
stabilizer rank is very high (specifically, if it grows superpolynomially in the number
of qubits), then we have achieved the goal of showing a separation. We cannot use
W states for showing this separation because the n-qubit W state |Wn⟩ has linear
stabilizer rank, since it is a superposition of only n computational basis states. Instead
we focus on their generalization, Dicke states |Dn

w⟩, which are equal superpositions of
all n-qubit computational-basis status with Hamming weight w (note |Wn⟩ = |Dn

1 ⟩),

|Dn
w⟩ =

1√(
n
w

) ∑
x:|x|=w

|x⟩ (3.21)

We implemented the algorithm by Bravyi et al.: see [305] for our open-source im-
plementation. Unfortunately, the algorithm’s runtime grows significantly in practice,
which we believe is due to the fact that it acts on sets of quantum state vectors, which
are exponentially large in the number of qubits. Our implementation allowed us to
go to at most 9 qubits using the SURF supercomputing cluster. We believe this is
a limitation of the algorithm and not of our implementation, since Bravyi et al. do
not report beyond 6 qubits while Calpin uses the same algorithm and reaches at most
10 qubits [76]. Table 3.2 shows the heuristically found stabilizer ranks of Dicke states
with our implementation. Although we observe the maximum found rank over w to
grow quickly in n, the feasible regime (i.e. up to 9 qubits) is too small to draw a firm
conclusion on the stabilizer ranks’ scaling.

Since our heuristic algorithm finds only an upper bound on the stabilizer rank, and
not a lower bound, by construction we cannot guarantee any statement on the scaling
of the rank itself. However, our approach could have found only stabilizer decomposi-

110

LIMDD: a decision diagram for simulation of quantum computing
including stabilizer states

tions of very low rank, thereby providing evidence that Dicke states have very slowly
growing rank, meaning that stabilizer-rank methods can efficiently simulate circuits
which output Dicke states. This is not what we observe; at the very least we can say
that, if Dicke states have low stabilizer rank, then the current state-of-the-art method
by Bravyi et al. does not succeed in finding the corresponding decomposition. Further
research is needed for a conclusive answer.

We now explain the heuristic algorithm by Bravyi et al. [64], which has been explained
in more detail in [76]. The algorithm follows a simulated annealing approach: on input
n,w and χ, it performs a random walk through sets of χ stabilizer states. It starts
with a random set V of χ stabilizer states on n qubits. In a single ‘step’, the algorithm
picks one of these states |ψ⟩ ∈ V at random, together with a random n-qubit Pauli
operator P , and replaces the state |ψ⟩ with |ψ′⟩ := c(I+P) |ψ⟩ with c a normalization
constant (or repeats if |ψ′⟩ = 0), yielding a new set V ′. The step is accepted with
certainty if FV < FV ′ , where FV := | ⟨Dn

w|ΠV |Dn
w⟩ | with ΠV the projector on the

subspace of the n-qubit Hilbert space spanned by the stabilizer states in V . Otherwise,
it is accepted with probability exp(−β(FV ′ − FV)), where β should be interpreted as
the inverse temperature. The algorithm terminates if it finds FV = 1, implying that
|Dn

w⟩ can be written as linear combination of V , outputting the number χ as (an upper
bound on) the stabilizer rank of |ψ⟩. For a fixed χ, we use identical values to Bravyi
et al. [64] and vary β from 1 to 4000 in 100 steps, performing 1000 steps at each value
of β.

3.7 Related work

We mention related work on classical simulation formalisms and decision diagrams
other than QMDDs.

The Affine Algebraic Decision Diagram, introduced by Tafertshofer and Pedam [308],
and by Sanner and McAllister [281], is akin to a QMDD except that its edges are labeled

with a pair of real numbers (a, b), so that an edge v
(a, b)

represents the state vector
a |v⟩ + b |+⟩⊗n (i.e., here b is added to each element of the vector a |v⟩). To the best
of our knowledge, this diagram has not been applied to quantum computing.

Context-Free-Language Ordered Binary Decision Diagrams (CFLOBDDs) [293, 294]
extend BDDs with insights from visibly pushdown automata [10]. An extension of

111

Related work

Table 3.2: Heuristically-found upper bounds on the stabilizer rank χ of Dicke states
|Dn

w⟩ (eq. (3.21)) using the heuristic algorithm from Bravyi et al. [64], see text in
Section 3.6 for details. We investigated up to 9 qubits using the SURF supercomputing
cluster (approximately the same as the number of qubits reached in the literature as
described in the text). Empty cells indicate non-existing or not-investigated states. In
particular, we have not investigated w > ⌊n2 ⌋ since |Dn

w⟩ and |Dn
n−w⟩ have identical

stabilizer rank because X⊗n |Dn
w⟩ = |Dn

n−w⟩. For |D8
3⟩ and |D9

4⟩, we have run the
heuristic algorithm to find sets of stabilizers up to size 11 (theoretical upper bound)
and 10, respectively, but the algorithm has not found sets in which these two Dicke
states could be decomposed. We emphasize that the algorithm is heuristic, so even if
there exists a stabilizer decomposition of a given rank, the algorithm might not find
it.

Hamming weight w
#qubits n 0 1 2 3 4

1 1
2 1 1
3 1 2
4 1 2 2
5 1 3 2
6 1 3 4 2
7 1 4 7 4
8 1 4 8 ≤ 11 5
9 > 10?

CFLOBDD to the complex domain [296] shows good performance for various simula-
tion of quantum computing benchmarks. Sentential Decision Diagrams [96] generalize
BDDs by replacing their total variable order with a variable tree (vtree). Although
Kisa et al. [180] introduced an SDD which represents probability distributions, SDDs
have not yet been used to simulate quantum computing, to the best of our knowledge.
The Variable-Shift SDD (VS-SDD) [235] improves on the SDD by merging isomorphic
vtree nodes. We remark that CFLOBDDs are similar to VS-SDD with a balanced
vtree.

Günther and Drechsler introduced a BDD variant [146] which, in LIMDD terminology,
has a label on the root node only. To be precise, this diagram’s root edge is labeled with
an invertible matrix A ∈ Fn×n2 . If the root node represents the function r : Bn → B,
then the diagram represents the function f(x⃗) = r(A · x⃗). (This concepts extends
trivially to the domain of pseudo-Boolean functions, by replacing the BDD with an
ADD.) In contrast, LIMDDs allow a label on every edge in the diagram, not only the
root edge. We show that this is essential to capture stabilizer states.

112

LIMDD: a decision diagram for simulation of quantum computing
including stabilizer states

A multilinear arithmetic formula is a formula over +,× which computes a polynomial
in which no variable appears raised to a higher power than 1. Aaronson showed that
some stabilizer states require superpolynomial-size multilinear arithmetic formulas [1,
65].

3.8 Discussion

We have introduced LIMDD, a novel decision diagram-based method to simulate quan-
tum circuits, which enables polynomial-size representation of a strict superset of sta-
bilizer states and the states represented by polynomially large QMDDs. To prove this
strict inclusion, we have shown the first lower bounds on the size of QMDDs: they
require exponential size for certain families of stabilizer states. Our results show that
these states are thus hard for QMDDs. We also give the first analytical comparison
between simulation based on decision diagrams, and matrix product states, and the
Clifford + T simulator.

LIMDDs achieve a more succinct representation than QMDDs by representing states
up to local invertible maps which uses single-qubit (i.e., local) operations from a group
G. We have investigated the choices G = Pauli, G = ⟨Z⟩ and G = ⟨X⟩, and found
that any choice suffices for an exponential advantage over QMDDs; notably, the choice
G = Pauli allows us to succinctly represent any stabilizer state. Furthermore, we
showed how to simulate arbitrary quantum circuits, encoded as Pauli-LIMDDs. The
resulting algorithms for simulating quantum circuits are exponentially faster than for
QMDDs in the best case, and never more than a polynomial factor slower. In the case
of Clifford circuits, the simulation by LIMDDs is in polynomial time (in contrast to
QMDDs).

We have shown that Pauli-LIMDDs can efficiently simulate a circuit family outputting
theW states, in contrast to the Clifford + T simulator which requires exponential time
to do so (assuming the widely believed ETH), even when allowing for preprocessing
of the circuit with a T -count optimizer.

Since we know from experience that implementing a decision diagram framework is a
major endeavor, we leave an implementation of the Pauli-LIMDD, in order to observe
its runtimes in practice on relevant quantum circuits, to future work. We emphasize
that from the perspective of algorithm design, we have laid all the groundwork for such

113

Discussion

an implementation, including the key ingredient for the efficiency of many operations
for existing decision diagrams: the existence of a unique canonical representative of
the represented function, combined with a tractable MakeEdge algorithm to find it.

Regarding extensions of the LIMDD data structure, an obvious next step is to investi-
gate other choices of G. Of interest are both the representational capabilities of such
diagrams (do they represent interesting states?), and the algorithmic capabilities (can
we still find efficient algorithms which make use of these diagrams?). In this vein, an
important question is what the relationship is between G-LIMDDs (for various choices
of G) and existing formalisms for the classical simulation of quantum circuits, such as
those based on match gates [152,177,311] and tensor networks [163,248]. It would also
be interesting to compare LIMDDs to graphical calculi such as the ZX calculus [89],
following similar work for QMDDs [336].

Lastly, we note that the current definition of LIMDD imposes a strict total order over
the qubits along every path from root to leaf. It is known that the chosen order can
greatly influence the size of the DD [278, 344], making it interesting to investigate
variants of LIMDDs with a flexible ordering, for example taking inspiration from the
Sentential Decision Diagram [96,180].

114

