
Data structures for quantum circuit verification and how to
compare them
Vinkhuijzen, L.T.

Citation
Vinkhuijzen, L. T. (2025, February 25). Data structures for quantum circuit
verification and how to compare them. IPA Dissertation Series. Retrieved from
https://hdl.handle.net/1887/4208911

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis
in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/4208911

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/4208911

Chapter 2

Preliminaries

This chapter covers the background necessary for the remainder of the thesis: we
introduce the basic notion of quantum computing in Section 2.2; we introduce de-
cision diagrams, which are the primary data structures considered in this thesis, in
Section 2.3; we introduce some methods for comparing data structures (in Sec. 2.3.2);
lastly, we provide a brief overview of quantum model checking in Section 2.4. Each
chapter contains in addition a preliminary section highlighting material for that chap-
ter. The reader may opt to skip this chapter and instead read the specific preliminaries
found in the relevant chapters.

Further reading. The interested reader is encouraged to consult the books of Nielsen
and Chuang, [240] or of Kitaev, Shen and Vyalyi [182] on quantum information and
computing. Wille and Zulehner’s book [376] lays out the problem of design automation
for quantum computing, and explains decision diagrams as a method for addressing
this problem. Wegener’s book gives a more broad view on decision diagrams [344].
A basic understanding of complexity theory, such as can be found in the first few
chapters of the books of Papadimitriou [252] and Arora and Barak [20], will be useful
to understand the analysis of our algorithms and several hardness proofs in this thesis.
By far the most amusing text which covers much of the above material is Aaronson’s
Quantum Computing Since Democritus [2].

The following resources are complementary but somewhat tangential to the topics
in this thesis. A good introduction to model checking can be found in Baier and
Katoen [28], or in the more recent book of Clarke et al. [88]. For quantum model

19

Mathematical preliminaries

checking, one may consult the book by Ying and Feng [361], or their short survey on
the topic [360]. Turrini provides an accessible introduction to the topic [317]. Garwahl
et al. [126] and Ferreina [118] provide excellent surveys of quantum programming
languages.

2.1 Mathematical preliminaries

A Boolean function is a map f : {0, 1}n → {0, 1} which associates each bit-string
x ∈ {0, 1}n with a bit f(x) ∈ {0, 1}. The bits that make up this bit-string are the
input variables and will be denoted by lower case letters, for example as x1, . . . , xn.
If a ∈ {0, 1}ℓ is a bit-string of length ℓ, and if ℓ ≤ n, then a induces the subfunction
fa : {0, 1}n−ℓ → {0, 1}. This induced subfunction is defined by fa(y) = f(a, y) for
y ∈ {0, 1}n−ℓ (sometimes we say that fa restricts f to a). The string a is called a
partial assignment to the variables of x.

Example 2.1. Consider the formula x1∨x2. This formula has an associated function
f : {0, 1}2 → {0, 1}, which takes values f(x1, x2) = x1 ∨ x2. This function outputs the
value f(x1, x2) = 0 at the point (x1, x2) = (0, 0) and outputs f(x1, x2) = 1 everywhere
else. Consider now the length-1 bit-string a = 0. This partial assignments induces
the subfunction fa : {0, 1}1 → {0, 1}. This function takes the values fa(x2) = x2 for
x2 ∈ {0, 1}.

This example also teaches us that, although a formula is associated with a function,
the two are not the same thing; notably, two different formulas may effect the same
function, e.g., the formula x1∨x2 has the same truth values as the formula x1∨(x1∧x2).

We will often make use of the Shannon decomposition of a function [288]. For any
function f , and a single Boolean variable x1, its Shannon decomposition with respect
to x1 is the following expression,

f(x1, x2, . . . , xn) = ¬x1 ∧ f0(x2, . . . , xn) ∨ x1 ∧ f1(x2, . . . , xn) (2.1)

This construction can be applied recursively to the n− 1-variable functions f0 and f1.
The usefulness of the Shannon decomposition lies in that it allows us both to break
down a function into its constituent parts (as is done in Equation 2.1); and to build a
function from smaller functions on fewer variables (namely, in a scenario in which we
have two functions f0 and f1, we can use Equation 2.1 to build the larger function f).

20

Preliminaries

A function of the form f : {0, 1}n → C is called a pseudo-Boolean function. The
concepts of induced subfunctions and Shannon decompositions are applicable here
just as to Boolean functions.

For a set A of group elements, we write ⟨A⟩ to denote the group generated under
multiplication. For example, consider a set of two matrices, A = {

[
1 0
0 −1

]
,
[−1 0

0 1

]
}.

The group ⟨A⟩ generated by this set is

⟨A⟩ =
{
[1 0
0 1] ,

[
1 0
0 −1

]
,
[−1 0

0 1

]
,
[−1 0

0 1

]}
(2.2)

Given an n×m matrix A, and a k× ℓ matrix B, the tensor product of matrices A and
B, denoted A⊗B, is the following nk ×mℓ matrix,

A⊗B =

a11B a12B · · · a1mB

a21B
. . . · · · a2mB

...
...

. . . · · ·
an1B an2B · · · anmB

 (2.3)

Note that each entry aijB above denotes a k × ℓ matrix block. The tensor product
is associative but not commutative. Notably, it distributes over the usual matrix
product: (A⊗B) · (C⊗D) = (A ·C)⊗ (B ·D). We will often consider the special case
of the tensor product when A and B are both vectors. We will write A⊗k = A⊗· · ·⊗A
to denote the k-fold tensor product of a matrix A.

2.2 Introduction to quantum computing

The basic unit of information in quantum computers is the quantum bit, called a
qubit.∗ The state of a qubit (at a specific moment in time) is described by a complex
vector [α0, α1]

T ∈ C2 with norm 1, usually written in Dirac notation† as α0·|0⟩+α1·|1⟩.

∗A qubit can be physically realized in many different ways, e.g., as the polarization of a photon,
or as the spin of an electron. By analogy, a classical bit can be described by the abstract entities 0
or 1, independent of how the bit is physically realized, e.g., stored on a magnetic tape, or on a cd, or
as an electric charge in a DRAM, or even as several copies of one of the above in an error-corrected
context. Likewise, in this thesis, we will deal with qubits only abstractly as vectors in a complex
Hilbert space, which is independent of their physical realization in a quantum computer.

†Aaronson notes, “This notation usually drives computer scientists up a wall when they first see
it – especially because of the asymmetric brackets! But if you stick with it, you see that it’s really
not so bad.” [2]

21

Introduction to quantum computing

Here |0⟩ is shorthand for the vector [10] and |1⟩ is shorthand for [01], so the expression
above is shorthand for

α0 · |0⟩+ α1 · |1⟩ = α0 ·

[
1

0

]
+ α1 ·

[
0

1

]
=

[
α0

0

]
+

[
0

α1

]
=

[
α0

α1

]
(2.4)

and satisfies

|α0|2 + |α1|2 = 1 i.e., quantum state vectors have norm 1 (2.5)

The complex numbers α0, α1 are called the amplitudes of the state. Such an amplitude
vector describes all information about the quantum state. If both amplitudes α0 and
α1 are non-zero, the state is in superposition. It follows from Equation 2.5 that the
zero vector is not a quantum state.

It is sometimes convenient, when doing calculations, to temporarily neglect the con-
straint that quantum state vectors have norm 1 (e.g., when doing calculations by
hand, or when using methods such as QMDDs). A quantum state vector is called
(non-)normalized when it (does not) have norm 1, to emphasize which convention is
used.

Example 2.2. The states |0⟩ = [10] ∈ C2 and |1⟩ = [01] are (normalized) quantum
states on one qubit. The state |+⟩ = 1√

2
[11] is in superposition of |0⟩ and |1⟩.

Two amplitude vectors differing only by a complex factor are considered (physically)
equivalent. More precisely, if |φ⟩ , |ψ⟩ are quantum state vectors, and |φ⟩ = λ |ψ⟩ for
some complex value λ ∈ C, then |φ⟩ and |ψ⟩ are said to describe the same quantum
state. Notably, no physical measurement can distinguish between two such equivalent
amplitude vectors.

A quantum register may consist of multiple qubits. A quantum register consisting of
n qubits has 2n basis states |x⟩ with x ∈ {0, 1}n, each with a corresponding amplitude
αx ∈ C. We denote |x⟩ = |xn⟩ ⊗ · · · ⊗ |x1⟩ = |xn . . . x1⟩, for example, |00⟩ = |0⟩ ⊗ |0⟩.
The state |φ⟩ can therefore be written,

|φ⟩ =
∑

x∈{0,1}n

αx |x⟩ (2.6)

22

Preliminaries

The normalization constraint, requiring |φ⟩ to be a unit vector, is generalized to:∑
0≤x<2n

|αx|2 = 1 (2.7)

A quantum state |φ⟩ is said to be entangled if it cannot be written as a tensor product
of single qubit states, i.e, as |φ⟩ = |φ1⟩ ⊗ · · · ⊗ |φn⟩.

Example 2.3. Consider the quantum state 1/
√
2 · (|00⟩ + |11⟩), known as the Bell

state [240]. As a vector, it would be written as 1/
√
2 · [1 0 0 1]

T. In addition to super-
position, this quantum state shows entanglement.

Alternatively, a state |φ⟩ can be understood as the pseudo-Boolean function
f : {0, 1}n → C, where f(x) = αx. It follows that an amplitude vector can also
be expressed using a Shannon decomposition, as follows,

|φ⟩ = α0 |0⟩ ⊗ |φ0⟩+ α1 |1⟩ ⊗ |φ1⟩ (2.8)

where |φ0⟩ , |φ1⟩ are n − 1-qubit states and α0, α1 ∈ C. Put simply, this expression
defines the vector |φ⟩ as the vector whose top half is α0 · |φ0⟩ and whose bottom half
is α1 · |φ1⟩.

We denote the complex conjugate transpose of a given vector |φ⟩ as ⟨φ| = (|φ⟩T)†.
Thus, Dirac notation makes it easy to see that |φ⟩ is a column vector and ⟨φ| is a row
vector. It follows, for example, that ⟨φ| · |ψ⟩ (or ⟨φ|ψ⟩ for short) is a scalar. A column
vector |φ⟩ is called a ket (or ket vector); a row vector ⟨φ| is called a bra; for this reason
Dirac notation is also called bra-ket notation. For example, if |φ⟩ = 3

5 |0⟩+ i
4
5 |1⟩, then

its complex conjugate transpose is,

⟨φ| = 3

5
⟨0| − i

4

5
⟨1| =

[
3
5 −i 45

]T
(2.9)

The value | ⟨φ|ψ⟩ |2 is the fidelity of |φ⟩ and |ψ⟩, and tells us how close two states are.

Measurement of quantum states. A quantum state can be measured. For the
purposes of this thesis, it will be sufficient to consider only single-qubit measurements
in the computational basis.‡ Suppose that a quantum state |φ⟩ can be written as in
Equation 2.8 and that |φ0⟩ , |φ1⟩ are normalized vectors, i.e., with norm 1. When the

‡For a broader treatment of measurement in quantum computing, see Nielsen and Chuang [240].

23

Introduction to quantum computing

first qubit of this state is measured, this results in either outcome 0, or outcome 1.
The probability of obtaining outcome m is equal to

P[measurement outcome is m] =
|αm|2

|α0|2 + |α1|2
(2.10)

After measurement, the state “collapses”. Specifically, if the outcome 0 was measured,
then the state after measurement (the post-measurement state) is |0⟩⊗ |φ0⟩; similarly,
if 1 was measured then the state becomes |1⟩⊗|φ1⟩. In the new state, the first qubit is
no longer entangled with the other qubits. This is reflected in the amplitude vector: if,
for example, the measurement outcome was m = 1, then the first 2n−1 entries of the
state vector are set to 0. For this reason, measurement is sometimes called destructive,
since information about the quantum state is lost.

Example 2.4. Consider the Bell state from Example 2.3. If this state is measured,
then the post-measurement state has equal probabilities of being one of the basis
states |00⟩ and |11⟩, and zero probability of seeing the states |01⟩ and |10⟩. Measuring
a value for one qubit of the Bell state immediately fixes the value of the other qubit
corresponding to the measurement outcome, e.g., after measuring q1 = |0⟩ (or q1 = |1⟩)
we immediately know that q0 = |0⟩ (or q0 = |1⟩).

2.2.1 Quantum states and operations

Quantum states are manipulated by applying quantum gates. A quantum gate is any
unitary linear operator, i.e., a linear operator mapping quantum states to quantum
states. A gate on n qubits, therefore, corresponds to a matrix U ∈ C2n×2n . If a
quantum state |φ⟩ serves as input to a gate U , then the output is the quantum state
U ·|φ⟩. A quantum circuit consists of a series of gates applied sequentially. Therefore, if
an circuit U consists of sequentially applying first the gate U1, then U2, etc., until Um,
then the action of the circuit U is described by the 2n × 2n unitary matrix Um · · ·U1,
i.e., the matrix of U is simply the product of the (matrices corresponding to the)
gates. We say that a quantum circuit U1, . . . , Um is equivalent to another quantum
circuit V1, . . . , Vℓ iff they effect the same unitary matrix modulo a complex factor, i.e.,
if Um · · ·U1 = λ · Vℓ · · ·V1 for some λ ∈ C. The reason for considering operators up
to a complex factor is because two unitary operators U, V map equivalent quantum
states to equivalent quantum states if and only if these unitaries are equal modulo a
complex factor, i.e., if U = λV .

24

Preliminaries

If U is a k-qubit gate, and it is applied to the first k qubits of a quantum register
containing n qubits, then its action on the n-qubit system is described by the unitary
matrix U ⊗ I⊗n−k. Here I = [1 0

0 1] is the identity gate and I⊗n−k = I ⊗ · · · ⊗ I is its
(n− k)-fold tensor product; this is a matrix of size 2n−k × 2n−k. We say that U acts
as the identity on the remaining n− k qubits. More generally, a gate U may of course
be applied to any subset of qubits, not only to the first qubits in some variable order,
as above. A matrix which acts as the identity on all but k qubits, such as the matrix
U ⊗ I⊗n−k above, is called k-local ; in particular the gate U is also called k-local (we
use the term local independent of whether the affected qubits are located next to each
other).

If U and V are two quantum gates, then the matrix U ⊗ V applies U and V simulta-
neously to separate quantum registers. This is called the parallel composition of two
quantum gates. The earlier expression U ⊗ I⊗n−k can be thought of as a special case
of parallel composition: we apply U to a k-qubit register, and apply the identity gate
I to the remaining n− k qubits.

Example 2.5. Three examples of common quantum gates are the single-qubit
phase-shift operation S, the single-qubit Hadamard operation H, and the two-qubit
controlled-NOT operation CNOT (here shown with control on the first qubit, target
on the second qubit).

S =

[
1 0

0 i

]
H =

1√
2

[
1 1

1 −1

]
CNOT =

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 (2.11)

Example 2.6. The Bell state from Example 2.3 is created by the circuit in Figure 2.1.
In this circuit, the quantum state starts in the initial state |00⟩. First, a Hadamard
gate is applied to the first qubit. The corresponding unitary is H ⊗ I, so the state
after applying this gate is

H ⊗ I · |00⟩ = 1√
2
(|1⟩+ |0⟩)⊗ |0⟩ = 1√

2
(|00⟩+ |10⟩) (2.12)

Next, a controlled-NOT gate is applied. Here the the first qubit acts as the control,
denoted in the circuit by a •; the second qubit is the target. After applying the

25

Introduction to quantum computing

|0⟩ H •

|0⟩ X

Figure 2.1: A 2-qubit quantum circuit preparing the Bell state from Example 2.3. It
contains two gates: first a Hadamard is applied to the first qubit, then a controlled X
gate (a CNOT gate) is applied. The top qubit is the control and the bottom qubit is
the target of this controlled X gate.

|0⟩ H •

|0⟩ X •

|0⟩ X

Figure 2.2: 3-qubit quantum circuit preparing the GHZ state. The rightmost box
denotes a measurement to be performed on the last qubit.

controlled-NOT gate, the state is

CNOT · 1√
2
(|00⟩+ |10⟩) = 1√

2
(|00⟩+ |11⟩) (2.13)

The circuit is described by the 4× 4 matrix U = CNOT · (H ⊗ I).

Example 2.7. Figure 2.2 gives an example of a circuit preparing a quantum state
on 3 qubits, the so-called GHZ state: |GHZ⟩ = 1/

√
2(|000⟩+ |111⟩). At the end of the

circuit, after the three gates are applied, the last qubit is measured. This measurement
has equal probability of measuring a 0, collapsing the state to |000⟩, or measuring a
1, collapsing the state to |111⟩.

As the examples above illustrate, a quantum circuit is typically given as a sequence of
local gates (as opposed to as a sequence of exponentially large matrices). Consequently,
a circuit can be succinctly described, even if the number of qubits is large.

Table 2.1 lists the most important gates encountered in this thesis. It groups gates
into Pauli gates and Clifford gates, which we introduce shortly, in Sec. 2.2.3.

26

Preliminaries

2.2.2 How to simulate a quantum circuit

Given a quantum circuit U1, . . . , Um and an initial state |φ0⟩, this circuit can be
simulated on a classical computer straightforwardly by repeated matrix-vector multi-
plication. The simulation starts with the initial state and applies the quantum gates
one after the other, obtaining the intermediate states |φ1⟩ , . . . , |φm⟩. Each quantum
operation is represented by a unitary matrix Ut of dimension 2n × 2n and each quan-
tum state by a unit vector |φt⟩ of dimension 2n (with |φ0⟩ commonly chosen to be
|φ0⟩ = |0 . . . 0⟩, called the all-zero state). The evolution of a state at time step t is then
given by |φt+1⟩ = Ut+1 |φt⟩. In principle, these matrices and vectors can be stored
in memory in a straightforward way as matrices of complex numbers. However, the
memory requirements of this straightforward approach grow exponentially with the
number of qubits (namely as 2n for the vectors and 4n for the matrices). For many
quantum circuits, the simulation can be conducted much more efficiently by employ-
ing data structures to compactly store the intermediate states, such as the ones we
introduce in Section 2.3.

2.2.3 Clifford circuits, stabilizer states and Pauli operators

An important subset of quantum circuits are Clifford circuits [137], which consist only
of the three Clifford gates S, H and CNOT, defined in Equation 2.11. Clifford circuits
play an essential role in many quantum subroutines and protocols, such as superdense
coding [42], cryptography [38, 131, 263], error-correcting codes [41, 135, 137, 310] and
measurement-based quantum computing [272] Clifford circuits can be efficiently sim-
ulated on a classical computer [3]. We remark that this does not immediately give an
efficient way to simulate all quantum circuits, because Clifford circuits do not capture
all of quantum computing: some quantum circuits cannot be expressed using only
Clifford gates (see, e.g., [61, 63]). Table 2.1 lists some common Clifford gates.

We briefly sketch the idea of fast simulation of Clifford circuits before we give a detailed
exposition. The fast simulation algorithm for Clifford circuits is based on Gottesman
and Knill’s [136] description of quantum states based on symmetries, rather than
(exponential) amplitude vectors. In this formalism, we consider a set of operators
which stabilize a state (specifically, we consider the Pauli operators that stabilize a
state; see below for a definition). This set is called the stabilizer group of that state.
The idea is to uniquely identify a state with its stabilizer group. The set of states that

27

Introduction to quantum computing

can be described this way is called the stabilizer states. A state’s stabilizer group can
be efficiently represented by its generator set, which is what yields a representation of
a set of states that is more compact than an amplitude vector. Lastly, consider a state
|φ⟩ with stabilizer group G, and a Clifford gate U , so that the state after applying
the gate is U |φ⟩. Then the stabilizer group of U |φ⟩ can be efficiently computed given
G and U . The same is true if we wish to simulate a measurement: the probability
of obtaining a given measurement outcome can be efficiently computed, and stabilizer
group of the post-measurement state can be efficiently found. This yields the fast
simulation algorithm. A compact representation is feasible because there are only
few n-qubit stabilizers for any n ≥ 1, namely, 2O(n2). The relation between Clifford
circuits and stabilizer states is that the set of stabilizer states is precisely the set of
intermediate and final states of Clifford circuits, if the initial state was the all-zero
state |0⟩.

We now describe the stabilizer formalism in detail. A unitary operator U stabilizes
a state |φ⟩ if |φ⟩ is a +1 eigenvector of U , i.e., if it satisfies U |φ⟩ = |φ⟩. The set of
stabilizers of any state |φ⟩ forms a group, since if U and V stabilize |φ⟩, then so do
UV , V U and U†. In the stabilizer formalism, we consider only those stabilizers that
are Pauli matrices:

Pauli ≜ {I2, X, Y, Z} (2.14)

where I2 ≜

(
1 0

0 1

)
, X ≜

(
0 1

1 0

)
, Y ≜

(
0 −i
i 0

)
, Z ≜

(
1 0

0 −1

)
(2.15)

The n-qubit Pauli group is defined as the group generated by all Pauli strings P1 ⊗
...⊗ Pn with Pi ∈ Pauli, i.e., Paulin ≜

〈
Pauli⊗n

〉
. One can check that Paulin =

{icP1 ⊗ ...⊗ Pn | P1, ..., Pn ∈ Pauli, c ∈ {0, 1, 2, 3}}. In particular, we have Pauli1 =

{±P,±iP | P ∈ Pauli} (the Pauli set with a factor ±1 or ±i). Pauli operators A,B
either commute (A ·B = B ·A) or anticommute (A ·B = −B ·A).

Definition 2.1 (Stabilizer state, stabilizer group). For a given n-qubit state |φ⟩, its
stabilizer group is the group of Pauli operators P ∈ Paulin that stabilize |φ⟩. This
group is denoted Stab(|φ⟩). An element P ∈ Stab(|φ⟩) is called a stabilizer of |φ⟩. A
state |φ⟩ is called a stabilizer state if it has 2n stabilizers, i.e., if |Stab(|φ⟩)| = 2n. ⋄

The stabilizer group of an n-qubit state always contains exactly 2k elements for some
0 ≤ k ≤ n. For any stabilizer group G = Stab(|φ⟩) with 2k elements, there is a
generating set S with |S| = k elements. Moreover, no two stabilizer states have the

28

Preliminaries

same stabilizer group. Since (i) a stabilizer state’s stabilizer group has n generators;
(ii) each of which is a Pauli string of n Pauli matrices, plus a complex factor c ∈
{±1,±i} called the phase; and (iii) there are only 4 Pauli matrices, a stabilizer state
can be uniquely described using only O(n2) bits. It immediately follows that there
are only 2O(n2) n-qubit stabilizer states. More precisely, Aaronson and Gottesman
(see [3], Proposition 2) show that the number of stabilizer states on n qubits grows
asymptotically as 2(1/2+o(1))n

2

.

Example 2.8. Examples of (generators of) stabilizer groups are Stab(|0⟩) = ⟨Z⟩ and,
letting |Φ0⟩ = 1√

2
(|00⟩+ |11⟩) be the Bell state, Stab(|Φ0⟩) = ⟨X ⊗X,Z ⊗ Z⟩.

Updating a stabilizer state’s generators after application of a Clifford gate or a single-
qubit computational-basis measurement can be done in polynomial time in the num-
ber of qubits [3, 136]. Various efficient algorithms exist for manipulating stabilizer
(sub)groups G, including testing membership (is A ∈ Paulin a member of G?) and
finding a generating set of the intersection of two stabilizer (sub)groups. These algo-
rithms predominantly use standard linear algebra, e.g., Gauss-Jordan elimination, as
described in Sec. 3.5.2 in detail.

Example 2.9. We show how to use the stabilizer formalism to simulate the circuit
in Figure 2.2. First, we use the explicit state vector representation; then we show the
same simulation but using the stabilizer formalism. Here qj denotes the j-th qubit
register.

|φ0⟩ = |000⟩ Initial state

|φ1⟩ =
1√
2
|000⟩+ 1√

2
|100⟩ applied H to q1

|φ2⟩ =
1√
2
|000⟩+ 1√

2
|110⟩ applied CNOT to control q1 and target q2

|φ3⟩ =
1√
2
|000⟩+ 1√

2
|111⟩ applied CNOT to control q1 and target q3

To perform the simulation of this circuit using the stabilizer formalism, we identify

29

Decision Diagrams

each state |φt⟩ with its stabilizer group G(φt) = {G1, G2, G3}, as follows.

G(φ0) = {ZII, IZI, IIZ} Initial state

G(φ1) = {IIZ, IZI, XII} applied H to q1

G(φ2) = {IIZ,ZZI, XXI} applied CNOT to control q1 and target q2

G(φ3) = {ZZI, ZIZ,XXX} applied CNOT to control q1 and target q3

For the purposes of this Introduction, we omit the detailed algorithms for obtaining
the new stabilizer group after applying a Clifford gate; the interested reader may
consult [3].

Graph states on n qubits are the output states of circuits with input state 1
2n/2 (|0⟩+

|1⟩)⊗n followed by only controlled Z gates. Graph states form a strict subset of all
stabilizer states that is also important in error correction and measurement-based
quantum computing [153].

We remark that, in contrast to other work, as noted in Definition 2.1, we also consider
the stabilizer groups of states that are not stabilizer states. In general, we will refer
to any abelian subgroup of Paulin, not containing −I⊗n2 , as an n-qubit stabilizer
subgroup; such a group has ≤ n generators. Such objects are also studied in the
context of simulating mixed states [24] and quantum error correction [135]. A state is
uniquely defined by its stabilizer group G if and only if |G| = 2n, i.e., the elements of
the group G have a unique joint +1 eigenvector if and only if |G| = 2n.

Example 2.10. Examples of stabilizer subgroups are Stab(1√
2
(|0⟩+eiπ/4 |1⟩)) = {I2},

Stab(|1⟩) = ⟨−Z⟩ and Stab(1√
3
(|00⟩+ |11⟩) + 2√

3
(|01⟩+ |10⟩)) = ⟨X ⊗X⟩.

2.3 Decision Diagrams

Decision Diagrams are the protagonists of the story told in this dissertation.

We start with the definition, below, of a Binary Decision Diagram (BDD). It will serve
as a template for all decision diagrams that follow.

Definition 2.2 (Binary Decision Diagram (BDD)). A BDD is a rooted, directed
acyclic graph. It has two leaves, labeled True (or 1) and False (or 0). A non-leaf
node is called a Shannon node; it is labeled with (the index of) a variable and has two

30

Preliminaries

Table 2.1: The quantum gates used in this thesis. We remark that all Pauli gates are,
in particular, Clifford gates.

Gate name Symbol Matrix num. of
qubits

P
au

li
ga

te
s Identity I =

[
1 0

0 1

]
1

Pauli X X =

[
0 1

1 0

]
1

Pauli Y Y =

[
0 −i
i 0

]
1

Pauli Z Z =

[
1 0

0 −1

]
1

C
liff

or
d

ga
te

s Hadamard H = 1√
2

[
1 1

1 −1

]
1

Phase shift S =

[
1 0

0 i

]
1

Controlled NOT CX =

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 =

[
I 0

0 X

]
2

Controlled Y CY =

1 0 0 0

0 1 0 0

0 0 0 −i
0 0 i 0

 =

[
I 0

0 Y

]
2

Controlled Z CZ =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

 =

[
I 0

0 Z

]
2

Swap Swap =

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 2

O
th

er T-gate T =

[
1 0

0 eiπ/4

]
1

Toffoli CCX =

[
I 0

0 CX

]
3

31

Decision Diagrams

(a) (b)

Figure 2.3: Two reduced, ordered BDDs representing the function f(x1, x2, x3, x4) =
(x1 = x2) ∧ (x3 = x4). BDD (a) uses the variable order x1 < x2 < x3 < x4; BDD (b)
uses the variable order x1 < x3 < x2 < x4.

outgoing edges, called the low edge and the high edge. We will use the notation v

to denote an edge to node v, and vv0 v1 to denote a node with a low edge
to v0 and a high edge to v1. Each node v represents a Boolean function [[v]], defined
inductively as follows. In the base case, the True and False leaves represent the
constant functions [[True]] = 1 and [[False]] = 0, respectively. If a Shannon node v is
labeled with variable x and has low edge to v0 and high edge to v1, then it represents
the function [[v]] ≜ ¬x ∧ [[v0]] ∨ x ∧ [[v1]]. A BDD is ordered if, on each path from the
root to a leaf, each variable appears at most once and always in the same order. Two
nodes u, v are called equivalent if they represent the same function, [[u]] = [[v]]. A BDD
is reduced if there are no equivalent nodes. Layer i in an ordered BDD, is the set of
nodes with variable label xi. ⋄

Example 2.11. Figures 2.3(a) and (b) show examples of BDDs. The two BDDs
represent the same function, f ≜ (x1 ⇔ x2) ∧ (x3 ⇔ x4). They have different shapes
because they employ different variables orders, x1 < x2 < x3 < x4 and x1 < x3 <

x2 < x4, respectively.

In the figure, the value f(x) of an assignment x can be found by traversing the diagram
from root to leaf as follows. One starts at the root node. A node is labeled with a
variable xi; if xi = 0, we traverse the low (dotted) edge; otherwise, if xi = 1, we
traverse the high (solid) edge, until we arrive at a leaf, at which point we have found
f(x). More generally, a path from the root to a node v on layer k corresponds to a
partial assignment xn = an, . . . , xk−1 = ak−1 for some string a ∈ {0, 1}n−k. This node
represents the induced subfunction fa. To avoid cluttering the diagram, edges to the
False Leaf are not drawn in the figure.

32

Preliminaries

To emphasize that the size of the BDD is influenced by the variable order, let us
consider what happens if we generalize the function f and the variable orders from
n = 4 to n > 4 variables. The function then becomes f = (x1 ⇔ x2)∧· · ·∧(xn−1 ⇔ xn)

and the variable orders become σ = x1 < · · · < xn and π = x1 < x3 < x5 <

· · · < xn−1 < x2 < x4 · · · < xn. Then the BDD with variable order σ has linear
size, whereas the BDD with variable order π has exponential size (in the number of
variables). In general, finding the optimal variable order for a given function is an
NP-hard problem. [56].

Bryant [67] observed that BDDs can be queried and manipulated in polynomial time
in the size of the diagrams (size is defined as the number of nodes). For example, (i)
given a BDD of size m representing the function f , the number of models of f can be
counted in time O(m); (ii) given BDDs f and g, with k and m nodes, respectively, a
BDD representing the function f ∧ g can be constructed in O(km) time.

A reduced and ordered BDD (ROBDD) is a canonical representation of its correspond-
ing Boolean function [67]: a given function has a unique ROBDD. Canonicity ensures
that the BDD is always as small as possible as equivalent nodes are merged. But more
importantly, canonicity allows for quick equality checks: two reduced diagrams repre-
sent the same state if and only if the diagrams are exactly identical. In a practical
decision diagram software package, this equality check can be performed in constant
time: it suffices to check whether the two diagrams have the same root node, since
the diagrams will share equivalent nodes in such a software package. More generally,
canonicity allows for efficient manipulation algorithms through dynamic programming,
which avoids traversing all paths (exponentially many in the size of the diagram in
the worst case).

2.3.1 Decision diagrams for quantum states

The BDD, defined in Definition 2.2, can represent only Boolean functions, which
are of the form f : {0, 1}n → {0, 1}. To represent quantum states, we use decision
diagrams which are capable of representing pseudo-Boolean functions, of the form
f : {0, 1}n → C. We review two prominent examples of decision diagrams that have
this capability: the Quantum Information Decision Diagram (QuIDD, Definition 2.3)
and the QMDD (Definition 2.4). The QuIDD extends the BDD by allowing more than
two leaves: it contains one leaf for every element in the image of f . The interpretation

33

Decision Diagrams

of the QuIDD is similar to the BDD: to obtain the value f(x) given a string x ∈ {0, 1}n,
one simply traverses the diagram from root to leaf, traversing the low edge of a node
when xj = 0 and otherwise the high edge, when xj = 1. The QuIDD is a specialization
of an ADD; specifically, a QuIDD is an ADD in which the range of the function is
restricted to the complex numbers. The QMDD (Definition 2.4) improves on the
QuIDD (Definition 2.3) by merging nodes which are equivalent up to a complex factor.
This complex factor is then stored as a label on the edges incident to the node that was
merged. Because the QMDD merges nodes, it sometimes contains fewer nodes than
the QuIDD. In the best case, the QMDD contains exponentially fewer nodes than the
QuIDD. Given a QMDD representing a quantum state, measurement probabilities can
be computed in polynomial time in the size of the QMDD. For all quantum gates there
are algorithms to update the QMDD accordingly, i.e., given a gate U and a QMDD
representing |φ⟩, to construct a QMDD representing the state U |φ⟩.

Definition 2.3 (Quantum Information Decision Diagram (QuIDD) [333]). A QuIDD
is a rooted directed acyclic graph (DAG), representing a quantum state |φ⟩. It has a
leaf node for each unique amplitude of |φ⟩, i.e., for each element in the set {⟨x|φ⟩ | x ∈
{0, 1}n}. A leaf labeled z ∈ C represents the length-1 vector [z]. Just as in a BDD, a
non-leaf node is called a Shannon node. A Shannon node v with a low edge to node
v0, and a high edge to v1, represents the quantum state |v⟩ = |0⟩ ⊗ |v0⟩+ |1⟩ ⊗ |v1⟩. ⋄

Definition 2.4 (Quantum Multi-valued Decision Diagram (QMDD) [227, 374]). A
QMDD (QMDD) is a QuIDD in which (i) each edge is labeled with a complex value;
and (ii) there is a unique leaf node, labeled with 1. An edge to node v with label z is
denoted v

z , and denotes the state z |v⟩. A Shannon node with outgoing low edge
v0

a and high edge v1
b is denoted vv0

a v1
b . Such a node represents

the quantum state |v⟩ = a |0⟩ ⊗ |v0⟩ + b |1⟩ |v1⟩ (this is the Shannon decomposition
from Equation 2.8). ⋄

The DDs above all represent vectors. It is also possible to represent matrices using
DDs [227,333], but we defer this topic to Chapter 3.

Example 2.12. Figure 2.4 shows an example of a QMDD (d) and its construction
from a binary tree (a).

It is instructive to consider the similarities and differences between the diagrams. In
each type of decision diagram, a node v has two outgoing edges to nodes v0, v1, which
represent functions on one fewer variable; the decision diagrams are all ordered, and

34

Preliminaries

u 1

1 /
2

0
−
√
2

0

d)

u 1

0

1 2
1 2

-
1 √
2

1
0

c)

1
0

0
1 2

0
1 2

0
-

1 √
2 0

b)

0
0

1 2
0

1 2
0

−
1 √
2

0

a)

3

L
ev

el
: 2 1

F
ig

ur
e

2.
4:

D
iff

er
en

t
de

ci
si

on
di

ag
ra

m
s

re
pr

es
en

ti
ng

th
e
3-

qu
bi

t
st

at
e
[0
,0
,
1 2
,0
,
1 2
,0
,−

1 √
2
,0
]⊤

,e
vo

lv
in

g
in

to
a

Q
M

D
D

(r
ig

ht
).

Le
ft

,(
a)

sh
ow

s
th

e
ex

po
ne

nt
ia

lb
in

ar
y

tr
ee

,w
he

re
a

no
de

on
le

ve
li

re
pr

es
en

ts
x
i
(s

ee
E

qu
at

io
n

2.
8)

an
d

it
s

ou
tg

oi
ng

ar
ro

w
s

x
i
=

0
(d

as
he

d)
an

d
x
i
=

1
(s

ol
id

).
T

he
le

af
co

nt
ai

ns
th

e
co

m
pl

ex
am

pl
it

ud
e

fo
r

th
e

as
si

gn
m

en
t

co
rr

es
po

nd
in

g
to

th
e

pa
th

fr
om

th
e

ro
ot

.
N

ex
t

(b
),

th
e

le
af

s
ar

e
m

er
ge

d
by

di
vi

di
ng

ou
t

co
m

m
on

fa
ct

or
s,

pu
tt

in
g

th
es

e
as

w
ei

gh
ts

(s
ho

w
n

in
bo

xe
s)

on
th

e
ed

ge
s

of
le

ve
l1

no
de

s
(w

e
ca

n
su

pp
re

ss
a

se
pa

ra
te

0
le

af
,a

s
0
=

0
·1

).
T

he
n

th
e

sa
m

e
tr

ic
k

is
ap

pl
ie

d
to

le
ve

l1
no

de
s

in
(c

).
H

er
e

al
ll

ev
el

1
no

de
s

be
co

m
e

is
om

or
ph

ic
an

d
ca

n
be

m
er

ge
d

in
to

a
ne

w
no

de
u

(n
ot

e
ag

ai
n

th
at

0
·|
u
⟩=

[0
,0
]⊤

,w
he

re
|u
⟩=

[1
,0
]
is

th
e

ve
ct

or
th

at
no

de
u

re
pr

es
en

ts
).

F
in

al
ly

,(
d)

sh
ow

s
th

e
re

su
lt

in
g

Q
M

D
D

,a
pp

ly
in

g
th

e
sa

m
e

ta
ct

ic
to

no
de

s
on

le
ve

ls
2

an
d

3.
N

ot
e

th
at

a
Q

M
D

D
re

qu
ir

es
a

ro
ot

ed
ge

.
M

er
gi

ng
(i
so

m
or

ph
ic

)
no

de
s

m
ak

es
Q

M
D

D
s

su
cc

in
ct

.
A

da
pt

ed
fr

om
F
ig

2
in

[3
74

].

35

Decision Diagrams

they can all be reduced by merging equivalent nodes. On the other hand, the various
DDs differ in that they may label the edges with additional information. An edge e,
labeled with a label ℓ, pointing to a node v, represents the state |e⟩ = ℓ◦|v⟩, where ◦ is
some appropriate notion of multiplication. Moreover, although all decision diagrams
merge equivalent nodes, they understand equivalence differently. For example, the
QuIDD considers two nodes u, v equivalent when they represent the same function,
i.e., when |u⟩ = |v⟩, whereas the QMDD considers two nodes equivalent when there
exists a complex constant λ such that λ |u⟩ = |v⟩. Lastly, different decision diagrams
may impose different reduction rules in order to ensure canonicity.

The field of decision diagrams is a fascinating and diverse field of research. Many
decision diagrams have been proposed and implemented, of which Table 2.2 lists a
small selection. The interested reader is directed to [344] for a more comprehensive
treatment.

Lastly, although the definitions above are useful and unambiguous, it is often helpful
to view decision diagrams from several complementary perspectives. We list some
below.§ We have found these different perspectives especially useful while designing
new DDs and when trying to understand differences between DDs.

• A DD is a method of lossless data compression. A striking feature about decision
diagrams is that they allow us to operate on the data without decompressing it
first.

• A DD is a rooted DAG in which the set of paths from the root to the leaves
correspond precisely to the assignments of f .

• A DD is a graphical depiction of the subfunctions of a function f . More precisely,
the nodes of the diagram are in one-to-one correspondence with the induced
subfunctions of f ; and two subfunctions g, h of f are connected by an edge
g → h iff h is a subfunction of g.

• A DD is a way to inductively define quantum states by using the Shannon
decomposition. Namely, to define an amplitude vector |φ⟩, whose top half is |φ0⟩,
and whose bottom half is |φ1⟩, we first construct the DDs v0, v1 representing
these two smaller vectors; then the vector |φ⟩ can be represented by a node

vv0 v1 , whose two edges go to v0 and v1.

§We do not claim that all these perspectives are novel, only that, to the best of our knowledge,
no source collects them into a list.

36

Preliminaries

• A DD is obtained from a binary decision tree by merging equivalent nodes (under
some suitable notion of equivalence).

• A DD is a finite state machine which computes a function f(x) by reading an
input string x and terminating after exactly len(x) steps. Possibly the machine
is equipped with a small amount of internal memory to process the DD’s edge
labels.

• A DD is a Boolean (or algebraic, depending on the range) circuit composed of
AND, OR and NOT gates (or multiplication and addition gates), with a single
output gate. The output gate computes the function we are interested in. Not
all circuits are decision diagrams, but every decision diagram is a circuit.

2.3.2 Comparing decision diagrams

The decision diagrams described above have different behaviour on the same prob-
lem, owing to their different reduction rules and merging strategies. Consequently,
some decision diagrams may consume less memory, or less computation time, than an-
other, for some given task. To quantify these differences, decision diagrams, and data
structures more broadly, can be analytically compared on three criteria: succinctness,
tractability, and rapidity. Succinctness is a partial order which tells us whether one
data structure (DS) consumes less computer memory than another. Tractability tells
us whether or not a given DS performs a given operation (such as applying a certain
gate or measurement) in polynomial time in the size of the input diagram(s). Lastly,
rapidity is a partial order which tells us whether one DS performs a given operation
faster than another DS. Rapidity was introduced by Lai et al. [194]. Formal definitions
follow.

Definition 2.5 (Succinctness, adapated from Darwiche and Marquis [97]). LetD1, D2

be two data structures. Then D1 is at least as succinct as D2, denoted D1 ⪯s D2,
iff there exists a polynomial p such that for every instance α ∈ D2 there exists an
equivalent instance β ∈ D1 such that |β| ≤ p(|α|). Here |α| and |β| are the sizes of α
and β, respectively.

In this definition, the size |α| of a decision diagram is commonly taken to be the
number of nodes in the diagram, or on the widest layer.

37

Decision Diagrams

T
able

2.2:
V

arious
decision

diagram
s

(D
D

s)
treated

by
the

literature.
A

D
D

represents
a

function
f
:{

0,1}
n
→

R
w

here
the

colum
n

R
ange

specifies
the

set
R

.
H

ere
S

is
an

arbitrary
algebraic

structure.
T

he
colum

n
M

erging
strategy

lists
the

conditions
under

w
hich

tw
o

nodes
v
,w

,
representing

subfunctions
f
,g

:{
0,1}

k
→

R
are

m
erged.

H
ere

z
,a

∈
C

are
com

plex
constants,

P
i

are
P
auli

gates
and

f
+
a

denotes
the

function
defined

by
f
(x
)
+
a

for
all

x.
T

he
D

D
s

in
b
old

u
n
d
erlin

ed
text

are
treated

in
depth

in
this

thesis.
See

C
hapter

7
for

a
definition

of
variable

tree;
see

G
ergov

and
M

einel
[129]

for
a

definition
of

F
B

D
D

type.

A
rch

itectu
re

(Q
u
antu

m
)

d
ecision

d
iagram

s
(an

d
variants)

R
ange

N
od

e
m

ergin
g

strategy

variable
order

D
ecision

T
ree

(any)
(no

m
erging)

B
D

D
,

[67]
ZD

D
,

[229]
T

B
D

D
,

[328]
C

B
D

D
,

[68]
K

F
B

D
D

,
[103]

D
SD

B
D

D
,

[46,264]
C

C
D

D
,

[195]
P
artitioned

R
O

B
D

D
,

[237]
M

od-2-O
B

D
D

,
[130]

R
O

B
D

D
[∧
i]C ,[194]C

F
LO

B
D

D
[293]

{0
,1}

f
=
g

M
T

B
D

D
[87],Q

uID
D

[331]
C

f
=
g

A
D

D
[27]

S
f
=
g

S
L
D

D
×

[114,352],
Q

M
D

D
[227,374],

T
D

D
,

[163]
W

C
F
LO

B
D

D
[296]

C
f
=
z
·
g

SLD
D

+
[114],E

V
B

D
D

[193]
C

f
=
g
+
a

A
A

D
D

[281],F
E

V
B

D
D

[308]
C

f
=
z
·g

+
a

L
IM

D
D

[337]
C

f
=
z
P
1 ⊗

...⊗
P
n
·
g

D
D

M
F

U
(2
)

M
=

I⊗
···⊗

id
⊗
U

·R

variable
tree

S
D

D
,[96]ZSD

D
,[245]T

SD
D

,[111]V
S-SD

D
[235]

{0
,1}

f
=
g

P
SD

D
[180]

R
f
=
g

F
B

D
D

type
F
B

D
D

[129],P
artitioned

R
O

B
D

D
[237]

{0
,1}

f
=
g

38

Preliminaries

Definition 2.6 (Tractability, inferred from Darwiche and Marquis [97]). A data struc-
ture D supports a query or transformation OP iff there is a polynomial-time algorithm
performing OP , taking as input (an) instance(s) of D. That is, the algorithm is poly-
nomial in the size |α| of the instance α. In that case, the operation is said to be
tractable for D.

Here, a query is a function mapping (tuples of) quantum states to some fixed range,
whereas a transformation maps (tuples of) quantum states to a quantum state rep-
resented by the same data structure D. For example, computing the probability of a
measurement outcome is a query ; therefore, algorithms on both QuIDD and QMDD
have the same range, namely, they output a real number in [0, 1]. By contrast, the
addition of two quantum states is a transformation. Here, on input (|φ⟩ , |ψ⟩), the
QuIDD (QMDD) algorithm for addition is expected to output a QuIDD (resp. QMDD)
representing the vector |φ⟩+ |ψ⟩. Therefore, the codomain of the addition algorithms
of QuIDD and QMDD are different.

Definition 2.7 (Rapidity, adapted from Lai et al. [194]). Let D1, D2 be two canonical
data structures and OP an operation. Then D1 performs OP at least as rapidly as
D2 iff, for each algorithm ALG1 performing OP (D2), there exists some polynomial p
and an algorithm ALG1 performing OP (D1) such that, for every input x to OP (D2),
and its equivalent input y to OP (D1), the runtime of ALG1 is p(t2 + |x|), where t2 is
the runtime of ALG2 on y.

We emphasize that this definition requires both data structures to be canonical. For
non-canonical data structures, “the equivalent input” is not defined, as there may be
multiple instances ofD1 representing the same quantum state, possibly having different
sizes. In Chapter 5, we give a generalized definition which drops the requirement that
the data structures are canonical.

2.4 Approaches to quantum software verification

In this section, we list several approaches to quantum software verification. This
establishes the context of the work of this thesis, but is not intended as an exhaustive
survey of the topic. For a more in-depth treatment, we refer the reader to Ying and
Feng’s book on quantum model checking [361], their survey [360] and to an accessible
introduction to the topic by Turrini [317].

39

Approaches to quantum software verification

We divide these contributions into specification languages, and software tools. A spec-
ification language for quantum programs is a logic in which a user can specify the
permitted behaviour or output of a quantum program, including how the (quantum)
state of the program may evolve over time (very broadly speaking). A software tool
puts such a specification language into practice by providing a practical method to
check whether this quantum protocol satisfies its specification. Several existing tools
provide support for quantum programming languages: they allow programmers to
write their quantum programs in a high-level programming language, as opposed to
defining a quantum circuit gate by gate. Many of these languages support abstract
data types, such as integers, Boolean values and qubits. Assertions can then be for-
mulated inside the code, e.g., as preconditions and postconditions, which the model
checking tool can then verify. Several of the tools mentioned below build on two es-
tablished quantum programming languages: QPL [285] and Q# [306]. We refer the
interested reader to the surveys on quantum programming languages of Garwahl et
al. [126] and Ferreina [118].

Relation to the present work. Relative to the work below, in this work we adopt
the simplest “specification language,” namely, we aim to simply check whether two
circuits are equivalent. We present a software tool which lays the groundwork for this
purpose in Chapter 3 and Chapter 4. We discuss possibilities for extending the present
work to more expressive specification languages and logics, such as those described
below, in Section 8.3.

Specification languages. A specification language is a logic which specifies how a
state may evolve over time. Most such logics can be thought of, informally, as being
constructed in two steps: first, we define a set of atomic propositions, which allows
us to express assertions about quantum states; in the second step, we add temporal
operators, which allows us to express assertions about how quantum states evolve over
the course of the program, e.g., which quantum states are supposed to be reachable
in the program. The second step makes the logic a quantum temporal logic. By
analogy, in the classical domain, CTL can be obtained using this recipe by starting
with propositional logic, which we can use to formulate assertions about states of a
system, and then adding temporal operators. Similarly, quantum CTL [30] (see below)
can be obtained by starting with so-called quantum propositional logic (EQPL [217])
and adding temporal operators. The approaches listed below use one of three methods
for expressing assertions about quantum states, thus accomplishing the first step in
our recipe: they use either (i) exogenous quantum propositional logic (EQPL), defined

40

Preliminaries

by Mateus and Sernadas [217]; or (ii) quantum preconditions and postconditions,
formulated by D’Hondt and Panangaden [100]; or (iii) closed subspaces of the Hilbert
space, used by Ying in [363]. Below, we start by treating work based on the EQPL
formalism of Mateus and Sernadas, followed by work which builds on D’Hondt and
Panangaden’s approach, and lastly we mention Ying’s quantum LTL based on closed
subspaces.

Mateus and Sernadas introduce exogenous quantum propositional logic (EQPL), which
allows one to express assertions about pure quantum states, e.g., that a given subset of
the qubits is not entangled with another subset [217]. Chadha, Mateus and Sernadas
extend this logic to mixed states (i.e., probability distributions over quantum states),
obtaining Ensemble EQPL (EEQPL) [79].

Baltazar, Chadha and Mateus introduce quantum computation tree logic (QCTL) [30].
This logic is obtained from the EQPL of Mateus and Sernadas [217] by adding the
usual temporal operators of CTL. For example, one can specify that eventually, a
given subset of qubits will be entangled with another subset.

Chadha, Mateus and Sernadas formulate a Hoare-style logic for quantum programs,
in which preconditions and postconditions are assertions in EEQPL [79]. They for-
mulate axioms and inference rules for this logic and show that the resulting calculus
is sound. Their Hoare logic can reason only about so-called quantum while-programs
with bounded iteration.

The literature contains two approaches to formulating a quantum analogue of linear
time logic, by Mateus et al. [216] and by Ying, Li and Feng [363]. First, Mateus
et al. [216] introduce a quantum linear time logic (QLTL) based on the EQPL of
Mateus and Sernadas [217]. In QLTL, one can assert, for example, that in the next
computation step, some subset of qubits is unentangled with another set of qubits.
Building on the QCTL of Baltazar et al. [30], Mateus et al. study the satisfiability
and model checking problems of QCTL and QLTL.

Second, Ying, Li and Feng [363] introduce another quantum analogue of linear-time
logic. In this logic, an atomic proposition asserts that a state |ψ⟩ is an element of
a set X, where X is a closed subspace of the Hilbert space. A linear-time property
P is then defined as a (finite or infinite) collection of (finite or infinite) sequences of
conjunctions of atomic propositions. They use the quantum automaton [186] as their
model of computation. A (finite or infinite) sequence of states of this automaton is
called a trace, just as in the classical sense. Let A = A0, A1, . . . ∈ P be an element of

41

Approaches to quantum software verification

a linear-time property P , i.e., each Aj is a conjunction of atomic propositions. Then
a trace π = |φ0⟩ , |φ1⟩ , . . . of an automaton satisfies A if |φt⟩ ∈ X for each X ∈ At at
each time t ≥ 0. An automaton satisfies a given predicate P if all the automaton’s
possible traces satisfy some A ∈ P . Ying, Li and Feng provide an algorithm for
checking whether an automaton satisfies a given invariant.

D’Hondt and Panangaden formulate a notion of pre- and postconditions which takes
a slightly different approach than the propositional logic approach above [100]. Their
assertions are Hermitian operators P satisfying 0 ≤ P ≤ I.¶ For a given state |φ⟩ and
an assertion P (i.e., a Hermitian operator), D’Hondt and Panangaden argue that the
value 0 ≤ ⟨φ|P |φ⟩ ≤ 1 should be interpreted, informally speaking, as the probability
that |φ⟩ satisfies P . This is analogous to a classical probabilistic statement: if µ is
a probability distribution and P is a classical predicate, then the state satisfies P
with probability 0 ≤ µ.P ≤ 1. With this in mind, D’Hondt and Panangaden go on
to define that, for a given quantum gate U and Hermitian operators P,Q, the triple
{P}U{Q} constitutes a valid Hoare triple if, for all states |φ⟩, it holds that P ≤ U†QU .
Consequently, if {P}U{Q} is a valid Hoare triple, then a quantum state will satisfy Q
with probability p after application of the gate U if it satisfied P with probability p

before applying the gate. This formalization naturally lends itself to mixed states in
addition to pure states.

Ying uses the Hoare triples of D’Hondt and Panangaden to establish a full-fledged
quantum Hoare logic for quantum while-programs [359]. He gives deduction rules
for this logic and formulates and proves soundness and completeness for partial and
total correctness. Relative to the quantum Hoare logic of Chadha et al. [79], the
quantum Hoare logic of Ying is based on D’Hondt and Panangaden’s approach in
which an assertion is a Hermitian operator, rather than a statement in EQPL [217],
as in Chadha et al.’s case. Zhou et al. consider the special case of this Hoare logic
in which the assertions are restricted to be projections, rather than general Hermitian
operators [367]. They argue that this is a common use case and suffices to prove
correctness of several quantum programs. Since such assertions may be easier to
generate and check, this justifies the penalty to expressiveness.

Software tools. We first list tools that model check specifications given in a temporal
logic, after which we list tools that check equivalence of two quantum circuits or
programs.

¶Here A ≤ B means ⟨φ|A |φ⟩ ≤ ⟨φ|B |φ⟩ for all quantum states |φ⟩. Therefore, requiring that
0 ≤ A ≤ I ensures that 0 ≤ ⟨φ|A |φ⟩ ≤ 1 for all states |φ⟩.

42

Preliminaries

First, Gay and Nagarajan [128] build a model checker which can check QCTL prop-
erties of a given quantum protocol. The quantum protocols that are considered are
restricted: the only quantum gates that are allowed are the Clifford gates. Since the
Clifford gate set is not universal for quantum computing, not all quantum protocols
can be expressed in this tool.

Honarvar and Nagarajan [161] implement a model checker for programs written in
the Q# quantum programming language [306]. They allow a user to formulate a
precondition and postcondition for any program statement, inspired by the quantum
Hoare logics of Ying et al. [359] and Zhou et al. [367] above.

Feng et al. [116] build QPMC, which can check QCTL properties (see [30]) of quantum
programs. To this end, they develop a quantum programming language by extending
the PRISM guarded-command based language [191]. QPMC extends the probabilistic
model checker IScasMC [147] and, contrary to the model checker of Gay and Nagara-
jan [128], can check general quantum programs, as it does not restrict the gate set.
Internally, QPMC models a program as a quantum Markov chain, a notion introduced
by Feng et al. [117].

Liu et al. [205] formalize the quantum Hoare logic of Ying [359] in the proof assis-
tant Isabelle/HOL [244]. They use this formalization to prove the correctness of an
implementation of Grover’s algorithm.

Ardeshir-Larijani, Gay and Nagarajan build two equivalence checking tools: first, an
equivalence checker for quantum programs and protocols [17] that are written in the
Quantum Programming Language (QPL, introduced by Selinger [285]); and second, an
equivalence checker for concurrent quantum programs [18]. In [18], Ardeshir-Larijani
et al. develop a new quantum programming language for concurrent quantum pro-
cesses. This programming language is inspired by qCCS of Ying et al., an algebra of
concurrent quantum processes [362]. Just as in [128], the quantum protcols that are
considered restricted to use only Clifford gates.

Burgholzer et al. provide two tools for quantum circuit equivalence checking. First,
given circuits U = U1 · · ·Um and V = V1 . . . Vℓ, Burgholer and Wille [75] use QMDDs
to construct the unitary matrix U†V . If the circuits are equivalent, i.e., if U = λV ,
then U†V = λI, which is a matrix with a very simple QMDD. With this in mind, they
construct the matrix U†V by iteratively constructing matrices of the form (U1 · · ·Ua)† ·
(V1 · · ·Vb) for some a ≤ m, b ≤ ℓ, finding empirically that these intermediate matrices
often remain close to the identity and hence, have small QMDDs.

43

Approaches to quantum software verification

Second, Burgholzer, Kueng and Wille [71] use QMDDs to simulate two given circuits
on a randomly chosen stabilizer state. If the circuits are found to yield different output
states, they conclude the circuits are not equivalent. Although this method is sound
but not complete, they show that the probability of finding a counterexample is quite
good if U and V are “very different,” in a precise sense. Specifically, they consider the
average fidelity Favg(U, V), of two unitary matrices, defined below. They show that
for a random stabilizer state |g⟩, and unitaries U, V , it holds that

E|g⟩[⟨g|U†V |g⟩] ≈Favg(U, V) =
1

2n + 1

(
1 + 2n

∣∣tr(U†V)
∣∣2) (2.16)

Using Markov’s inequality, we immediately obtain a bound on the probability that the
circuits yield the same result:

P|g⟩[| ⟨g|U†V |g⟩ |2 = 1] ≤ Favg(U, V) (2.17)

Notably, the expectation value achieved by random stabilizer states in Equation 2.16
is the same as that achieved by a random Haar state. This is a consequence of the fact
that the set of stabilizer states is a complex projective 3-design [190]. In this narrow
sense, therefore, using random stabilizer states is optimal in the black box setting.
However, random stabilizer states are not optimal in the sense that the probability
of obtaining a counterexample is not as high as for a random Haar state. To achieve
this, one would need to choose as random inputs a different set of states, which is a
projective t-design for some large t.

Lastly, Hong et al. [162] implement a tool for quantum circuit equivalence checking
in the presence of noise. This equivalence checking of noisy circuits is more general
than the equivalence checking problem studied by Burgholzer et al. above [71, 75].
The noisy circuit is modeled by a superoperator, rather than a unitary matrix. They
represent the noisy circuit as a tensor network using the Tensor Decision Diagram
(TDD); they then contract the tensor network using operations on the TDD.

44

