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ABSTRACT

Aims. The expansion of satellite constellations poses a significant challenge to optical ground-based astronomical observations, as
satellite trails degrade observational data and compromise research quality. Addressing these challenges requires developing robust
detection methods to enhance data processing pipelines, creating a reliable approach for detecting and analyzing satellite trails that can
be easily reproduced and applied by other observatories and data processing groups.

Methods. Our method, called ASTA (Automated Satellite Tracking for Astronomy), combined deep learning and computer vision
techniques for effective satellite trail detection. It employed a U-Net based deep learning network to initially detect trails, followed
by a probabilistic Hough transform to refine the output. ASTA’s U-Net model was trained on a dataset of manually labeled full-field
MeerLICHT telescope images prepared using the user-friendly LABKIT annotation tool. This approach ensured high-quality and
precise annotations while facilitating quick and efficient data refinements, which streamlined the overall model development process.
The thorough annotation process was crucial for the model to effectively learn the characteristics of satellite trails and generalize its
detection capabilities to new, unseen data.

Results. The U-Net performance was evaluated on a test set of 20 000 image patches, both with and without satellite trails, achieving
approximately 0.94 precision and 0.94 recall at the selected threshold. For each detected satellite, ASTA demonstrated a high detection
efficiency, recovering approximately 97% of the pixels in the trails, resulting in a False Negative Rate (FNR) of only 0.03. When
applied to around 200 000 full-field MeerLICHT images focusing on Geostationary (GEO) and Geosynchronous (GES) satellites,
ASTA identified 1742 trails — 19.1% of the detected trails — that could not be matched to any objects in public satellite catalogs. This
indicates the potential discovery of previously uncatalogued satellites or debris, confirming ASTA’s effectiveness in both identifying

known satellites and uncovering new objects.

Key words. methods: data analysis — techniques: image processing — astronomical databases: miscellaneous

1. Introduction

The rise of large satellite constellations has greatly enhanced
global communication and connectivity. However, this devel-
opment introduces significant challenges for ground-based tele-
scopes, as satellite trails appear as streaks of light in astronomical
images, degrading data quality by introducing noise and covering
celestial objects (McDowell 2020). Historically, astronomical
observations have faced various sources of interference, but
the rapid increase in satellite launches, especially with mega-
constellations such as Starlink and OneWeb, has exacerbated the
issue (Tyson et al. 2020; Hainaut & Williams 2020; Mallama
2022; Bassa et al. 2022; Gallozzi et al. 2020; Groot 2022). Even
space-based observatories, such as the Hubble Space Telescope,
are not immune to these effects, highlighting the pervasive nature
of satellite interference (Kruk et al. 2023).

The anticipated surge in satellite deployments can signif-
icantly increase the frequency and severity of interference,
underscoring the need for proactive measures and innovative

* Corresponding author; fiorenzo.stoppa@physics.ox.ac.uk

solutions to ensure the continued effectiveness of ground-based
astronomy (Walker et al. 2020). Despite their advanced capabili-
ties, wide-field optical ground-based telescopes, such as ATLAS
(Tonry et al. 2018), GOTO (Steeghs et al. 2022), BlackGEM
(Groot et al. 2024), ZTF (Bellm et al. 2019), and Pan-STARRS
(Chambers et al. 2016), face significant challenges due to the
increasing presence of satellite trails in their observations.
Upcoming large aperture and wide field-of-view facilities like
the Vera Rubin Observatory (Ivezi¢ et al. 2019) will be even
more affected by these bright satellite trails. These streaks intro-
duce noise and can obscure celestial objects, complicating the
detection and analysis of transient events (see e.g., Groot 2022).

Currently, several methods are employed to detect and miti-
gate satellite trails in astronomical images. These methods can be
broadly categorized into simple source detection, template fitting
to line shapes, computer vision techniques, and machine learning
algorithms. Simple source detection, such as using SExtractor
(Bertin & Arnouts 1996) and focusing on elongated shapes,
has been employed to detect streaks. However, this approach
is less effective at low signal-to-noise ratios (SNR) and tends
to result in a high false-alarm rate (Waszczak et al. 2017). In

A199, page 1 of 10

Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe to Open model. Subscribe to A&A to support open access publication.


https://www.aanda.org
https://doi.org/10.1051/0004-6361/202451663
https://orcid.org/0000-0002-3424-8528
https://orcid.org/0000-0002-4488-726X
https://orcid.org/0000-0003-3114-2733
https://orcid.org/0000-0002-6896-1655
mailto:fiorenzo.stoppa@physics.ox.ac.uk
https://www.edpsciences.org/en/
https://creativecommons.org/licenses/by/4.0
https://www.aanda.org/subscribe-to-open-faqs
mailto:subscribers@edpsciences.org

Stoppa, F., et. al: A&A, 692, A199 (2024)

contrast, template fitting to line shapes involves aligning a pre-
defined streak shape to the image data and calculating a weighted
sum of the pixels along the line to assess the match qual-
ity. This matched-filter approach (Turin 1960), used by Dawson
et al. (2016), employs the maximum likelihood method to detect
streaks, assuming uncorrelated noise and a constant known Point
Spread Function (PSF). While accurate, it can be computa-
tionally intensive and may require multiple templates or faster
computational techniques.

Computer vision techniques provide another set of tools for
streak detection, using methods developed for natural image
processing. These techniques are attractive due to their versatil-
ity and effectiveness in various imaging contexts. Two popular
methods are the Hough transform (Duda & Hart 1972) and
the Radon transform (Radon 1986). The Hough transform is
applied to binary images following edge detection, while the
Radon transform is used on grayscale images. Despite their dif-
ferent applications, both methods have been successful in finding
streaks in crowded fields and images with diffuse light sources
(Cheselka 1999; Virtanen et al. 2014; BekteSevi¢ & Vinkovié
2017). Both the Hough transform and the Radon transform have
seen improvements in computational efficiency with the devel-
opment of the probabilistic Hough transform and the Fast Radon
transform (FRT), respectively. These advanced methods, which
often leverage GPUs, provide significant improvements in speed
and computational performance (Zimmer et al. 2013; Andersson
et al. 2016; Nir et al. 2018; Borncamp & Lian Lim 2019). A
conceptual enhancement to the standard Radon transform, the
Median Radon transform (MRT), was recently introduced by
Stark et al. (2022). Unlike the traditional approach that sums val-
ues along all paths across an image, MRT calculates the median.
This method minimizes the influence of non-linear features such
as stars and galaxies, resulting in significant sensitivity gains
compared to previous techniques.

Despite recent progress, there remains a need for meth-
ods that can handle the increasing complexity and volume
of astronomical data. Deep learning, in particular, offers new
opportunities for improving streak detection. By training con-
volutional neural networks (CNNs, LeCun et al. 1999) on large
datasets of labeled images, these methods can learn complex pat-
terns and features directly from data, improving detection rates
and reducing false positives (Paillassa et al. 2020; Elhakiem et al.
2023; Chatterjee et al. 2024). Building on these advancements,
our study introduces ASTA (Automated Satellite Tracking for
Astronomy), a novel tool that uniquely combines the strengths
of deep learning and computer vision techniques for detecting
satellite trails in ground-based observations. We used a U-Net
architecture (Ronneberger et al. 2015) for initial satellite streak
detection, followed by a probabilistic Hough transform to refine
the output and extract satellite information.

A common criticism of machine learning methods is the dif-
ficulty in obtaining high-quality and well-labeled training sets,
which are crucial for achieving accuracy and reliability. This
issue often hinders the widespread adoption and reproducibil-
ity of such methods. However, we have addressed this challenge
by using the LABKIT tool (Arzt et al. 2022) to meticulously
annotate images from the MeerLICHT telescope (Bloemen et al.
2016), ensuring the high-quality training data necessary for
effective model training. This approach not only produces a reli-
able dataset for our application but also simplifies the creation
process, making it accessible to other researchers and observa-
tories. By providing a detailed account of our methodology and
dataset preparation, we aim to facilitate the widespread adop-
tion of ASTA, enhancing the ability of observatories worldwide
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to mitigate the impact of satellite trails on astronomical data
quality.

The paper is organized as follows: Section 2 describes
the data and the process of image selection and preparation.
Section 3 outlines the machine learning techniques and the
probabilistic Hough transform used for refining the detections,
along with their validation. Section 4 demonstrates the appli-
cation of our tool, ASTA, by searching for Geostationary and
Geosynchronous satellites in approximately 200000 full-field
MeerLICHT images. This analysis focuses on identifying satel-
lite trails and cross-referencing the results with known public
satellite catalogs. Finally, Section 5 summarizes our key findings
and discusses the significance of developing sustainable solu-
tions to ensure the advancement of astronomical research in the
era of satellite constellations.

ASTA is directly accessible on GitHub'. All the images and
masks used in this paper for training, test, and validation are
available on Zenodo” (Stoppa 2024).

2. Data

This study uses data from the MeerLICHT telescope located in
South Africa. MeerLICHT, a prototype for the recently opera-
tional BlackGEM telescope array (Groot et al. 2024), plays a
crucial role in detecting and analyzing transient astronomical
phenomena. Both MeerLICHT and BlackGEM are designed to
capture high-quality astronomical data, but their ground-based
nature makes them susceptible to satellite trails, which can
degrade the quality of the data and impact the accurate analysis
and interpretation of transient events.

In this section, we explain the data used to create ASTA
and the dataset-building process. This involves selecting, prepar-
ing, and manually labeling images to ensure high-quality training
data for our machine learning algorithm.

2.1. MeerLICHT and BlackGEM telescopes array

The MeerLICHT telescope, with its 65 cm aperture and a high-
resolution 10.5k x 10.5k pixel CCD, offers a wide field-of-view
of 2.7 square degrees, sampled at 0.56"/pixel. MeerLICHT is
equipped with the Sloan-Gunn type u, g, 1,1,z filter set, along
with an additional wide-band ¢ filter (440-720 nm), enhancing
its observational versatility. The telescope uses 60s integrations
by default and reaches a limiting point-source magnitude of
gas > 20.5 under standard conditions. As a consequence, any
satellite in Low Earth Orbit (LEO) up to Geostationary orbit
(GEO) is very well detected and causes strong streaks in the
observations. This causes interference in the photometric mea-
surements of astrophysical objects but, at the same time, offers
the opportunity to monitor the satellite’s presence in Earth’s
orbit.

Images captured by MeerLICHT are promptly processed at
the IDIA/ilifu facility using BlackBOX?® image processing soft-
ware (Vreeswijk et al., in prep). The processing pipeline includes
source detection via SourceExtractor (Bertin & Arnouts 1996),
astrometric and photometric calibration (Lang et al. 2010), PSF
determination (Bertin 2011), image subtraction, and transient
detection (Zackay et al. 2016; Hosenie et al. 2021). Furthermore,
a new set of deep learning methods has been developed specifi-
cally for the MeerLICHT/BlackGEM telescopes. These methods

' https://github.com/FiorenSt/ASTA
2 https://zenodo.org/records/11642424
3 https://github.com/pmvreeswijk/BlackBOX
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Fig. 1. Full-field, 10560 x 10560 pixels, MeerLICHT image with a 60-

second exposure, showcasing five satellite trails overlaying dozens of
sources.

are currently being tested and compared against traditional pixel-
based counterpart techniques as detailed in Stoppa et al. (2022,
2023c,a).

Figure 1 illustrates a typical full-field MeerLICHT image,
showcasing the impact of multiple satellite trails.

2.2. Dataset preparation

Creating a high-quality training dataset is fundamental for devel-
oping an effective machine learning model. In our study, we
require an accurately labeled dataset where pixels belonging
to a satellite trail are assigned to one class, and all other pix-
els — including those representing the sky background, stars, and
common linear artifacts seen in CCD images, such as diffrac-
tion spikes, cosmic ray hits, and charge bleeding — are assigned
to another class. With such a dataset, the network can effec-
tively learn the relationship between the original image and the
segmentation mask, enabling accurate and reliable detection of
satellite trails.

However, a significant challenge for researchers attempting
to reproduce machine learning methods for their specific appli-
cations is the lack of a well-labeled dataset and uncertainty about
how to create one from scratch. This obstacle often discourages
the adoption of machine learning techniques. To address this
issue, we provide a detailed explanation of how to build a reli-
able dataset for satellite trail detection, offering a clear guide for
other researchers and observatories.

We started by collecting 178 full-field MeerLICHT images,
all visually inspected to identify the presence of satellite trails.
These images included trails of varying lengths and SNRs*.
Specifically, the SNR of the trails in our training set ranged from

4 The SNR was estimated by dilating the true mask by 10 pixels to iden-
tify both the trail and surrounding background pixels, then calculating
the total satellite flux divided by the square root of the total flux plus the
number of satellite pixels multiplied by the square of the background
flux standard deviation, normalized by trail length.

as low as 1.25, which is really close to the background noise
level, up to 180, with a median SNR of 11. This wide range allows
the model to learn to detect both faint and bright trails, ensuring
its sensitivity to trails near the detection limit. The lengths of
the trails also varied significantly, from as short as 380 pixels for
trails partially captured in the image due to entering or exiting
the field of view, up to 14 000 pixels for trails that span the entire
image, such as those caused by LEO satellites.

To facilitate the creation of the ground truth segmentation
masks, we used LABKIT (Arzt et al. 2022), a plugin for the
Fiji image processing package, which simplifies the annotation
process with its pixel classification algorithm for quick auto-
matic segmentation. In LABKIT, we first manually classified a
really small subset of pixels in the images (~0.001%) into two
classes: satellite trails and background. This initial step involved
selecting pixels that represent the trails and marking the sky
background, sources, and other linear features as background.
LABKIT then used these labeled pixels to train a random forest
classifier. For each pixel in the image, LABKIT automatically
computes a set of values by applying various image process-
ing filters, such as Gaussian blurs, difference of Gaussians, and
Laplacian operators. These filters emphasize different aspects of
the input image, and their responses for each pixel are combined
to form a feature vector. The collection of these feature vectors,
paired with their respective ground-truth classes, constitutes the
training set for the random forest, which consists of a hundred
decision trees. LABKIT then proceeds to predict the segmenta-
tion mask for the entire image and provides a quick, although
rough, approximation of all the trails.

After LABKIT’s initial automated classification, the soft-
ware easily provides tools to manually refine the annotations to
ensure their accuracy and reliability. Using LABKIT’s interface,
we adjusted the pixels and specific parts of trails or spurious
detections that were assigned to the wrong class. This compre-
hensive annotation process resulted in a full binary mask for
each full-field MeerLICHT image and was completed by a single
person in three days.

After labeling, the full-field images and their associated
ground truth masks were divided into smaller patches of
528x528 pixels to facilitate efficient training. Data augmentation
techniques, including 90-degree rotations, flips, and shifts, were
applied exclusively to patches containing satellite trails. This
approach enhanced the model’s exposure to diverse trail char-
acteristics, thereby improving detection accuracy. This selective
augmentation was necessary to prevent the dataset from becom-
ing unbalanced, as most patches from a full-field image do not
contain satellite trails. Without this, the dataset would be domi-
nated by patches with empty masks, making the model training
more difficult and less effective.

Figure 2 shows four examples of patches with satellite trails
and their corresponding ground truth masks. As can be seen
in Fig. 2, MeerLICHT’s spatial resolution is high enough that
seeing- and tracking-variations during the integration can be
seen as a ‘wavy’ nature of the trail, making them significantly
deviate from just a straight line.

3. Method

This section outlines the methodology employed by ASTA for
detecting and analyzing satellite trails in astronomical images.
ASTA leverages a U-Net architecture for the initial segmentation
of satellite trails, providing a robust framework for distinguish-
ing trails from other features. To enhance the precision of
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Fig. 2. Examples of satellite trail annotations in MeerLICHT images.
The figure shows two columns and four rows: (a) original images with
satellite trails of varying intensities and types in the first column, (b)
corresponding labeled ground truth masks in the second column.

trail delineation, the initial segmentation is refined using the
probabilistic Hough transform (Galamhos et al. 1999). This
combination of deep learning and classical image processing
techniques ensures high accuracy and reliability in identifying
and characterizing satellite trails.

3.1. Detection of satellite trails using U-Net

Astronomical images are often crowded with various linear
and non-linear features, including stars, galaxies, cosmic rays,
and diffraction spikes from bright stars. These complexities
present a significant challenge for accurately identifying satel-
lite trails. The U-Net architecture (Ronneberger et al. 2015),
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originally developed for biomedical image segmentation, excels
at identifying complex patterns in images, making it well-suited
for detecting satellite trails against such diverse backgrounds.

U-Net’s architecture is designed to understand and recon-
struct the context of an image through two main pathways: a
contracting path that compresses the image to grasp its broader
context and an expansive path that reconstructs the image’s
details for precise localization of features. This structure allows
U-Net to process the image at multiple scales, capturing both
the overall patterns and the fine details. By integrating features
from both paths, U-Net maintains a balance between contextual
understanding and detailed segmentation.

Our network consists of convolutional layers with
LeakyReLU activations that adjust the spatial dimensions
and number of filters, from 8 to 128. To prevent overfitting,
dropout layers are integrated within the network. The final
layer produces a predicted segmentation map, indicating the
likelihood of each pixel belonging to a satellite trail with values
ranging from O to 1. Overall, the model has approximately
485 000 trainable parameters, ensuring it is both lightweight and
efficient for large astronomical datasets.

To optimize the model during training, we used the Combo
loss (Taghanaki et al. 2019), a combination of binary cross-
entropy (BCE) loss (Mannor et al. 2005) and Dice loss (Sudre
et al. 2017). This approach balances pixel-wise accuracy with
segmentation performance, improving detection accuracy in
class-imbalanced datasets. For a more detailed description of this
loss function, we refer readers to Stoppa et al. (2022).

Figure 3 illustrates a comparison between a ground truth
segmentation mask and the corresponding prediction made by
the U-Net model. The predicted segmentation map effectively
captures the trail, and the pixel values decrease rapidly to
zero beyond the edges of the trail, indicating the U-Net’s abil-
ity to accurately identify and differentiate the trail from the
background and other artifacts.

After the U-Net processes the images, we apply a threshold
to its output to create binary segmentation masks. This step is
crucial as we need to identify which pixels belong to satellite
trails and which do not. Pixels with values above the threshold
are classified as satellite trails (value of 1), while those below
are classified as background, including the sky and astronomical
sources (value of 0). To evaluate the effectiveness of the U-Net
and determine the optimal threshold, we tested the model on
20000 patches, both with and without satellite trails. We used
several metrics, including precision, recall, F1-score, and Inter-
section over Union (IoU). Figure 4 shows these metrics across
different thresholds.

Precision measures the accuracy of the model’s positive pre-
dictions, while recall assesses its ability to identify all relevant
instances. The Fl1-score balances precision and recall, provid-
ing a single metric that accounts for both false positives and
false negatives. Intersection over Union (IoU) measures the over-
lap between the predicted segmentation and the ground truth,
offering a comprehensive view of segmentation quality. Indepen-
dently of the threshold, all metrics indicate that U-Net performs
well in predicting trails and distinguishing them from other lin-
ear artifacts. A threshold of 0.58 provides a balanced result and
is therefore used as the default value for the successive analy-
ses in this paper. However, there is some flexibility in adjusting
the threshold. Lowering the threshold allows for more conserva-
tive masking, including fainter pixels, but may introduce minor
artifacts. We have chosen a threshold that optimizes the perfor-
mance metrics, though users may prefer to adjust it based on
their specific requirements.



Stoppa, F., et. al: A&A, 692, A199 (2024)

Segmentation Mask

100

1071

Predicted Mask 1072

L 10—3

Ll 10—4

Fig. 3. Comparison of ground truth segmentation mask and U-Net
predicted segmentation map. The top panel shows the ground truth seg-
mentation mask with satellite trails marked in black. The bottom panel
shows the U-Net predicted segmentation map, with pixel values ranging
from O to 1, indicating the likelihood of each pixel belonging to a satel-
lite trail. The insets provide a zoomed-in view to highlight the detailed
accuracy of the predictions.

Despite the overall high performance, it is important to
address the sources of false detections and factors that tend to
confuse the U-Net model. The most common sources of false
positives are diffraction spikes from bright stars and linear fea-
tures within the image patches, such as bleeding from saturated
stars or CCD defects. In our training dataset, these artifacts are
present within the patches but are not marked in the ground truth
masks since they are not satellite trails. This means that the net-
work is exposed to these features during training and learns that
they should not be classified as satellite trails. However, due to
the limited context provided by the patches and the complexity
of the background, the U-Net may occasionally misclassify these
artifacts as satellite trails, leading to false positives.

Additionally, the U-Net may produce false negatives, where
parts of satellite trails are missed in the predictions. This can
occur due to variations in trail brightness, interruptions caused
by bright stars, or the limited field of view in small patches that

1.00

0.95

Metric Values

—e— loU
Precision

—&— Recall

—+— F1-Score

0.70

0.65

0.0 0.2 0.4 0.6 0.8 1.0
Threshold

Fig. 4. Performance metrics for U-Net across different threshold levels:
ToU, Precision, Recall, and Fl-score. A threshold of 0.58 provides a
balanced result in terms of all metrics tested.

may not capture the entire trail. In the next section, we introduce
an additional refinement step to improve detection accuracy and
trail integrity using a probabilistic Hough transform.

3.2. Refinement with probabilistic Hough transform

While U-Net predictions effectively identify satellite trails, they
may exhibit gaps due to factors such as tumbling of the satel-
lites, bright stars, detector defects, or unfortunate locations in
the 528 x 528 pixel patches. To address these gaps in the recom-
bined full-field binary masks, we applied a probabilistic Hough
transform (Galamhos et al. 1999), which is highly effective for
detecting linear patterns in images. The primary function of
the Hough transform in this context is to fill in splits or gaps
in the predicted trails, ensuring continuous and accurate repre-
sentation. This refinement step maintains the integrity of trail
detection, particularly in areas with discontinuities, and ensures
more accurate statistics about satellites. This is crucial for fur-
ther steps, such as estimating the total number of satellites and
matching them with known satellite catalogues.

The Hough transform works by translating spatial relation-
ships within an image into a parameter space, making it effective
for detecting linear patterns like satellite trails. In this space, any
line in the image can be represented as a point defined by the
equation r = xcos(f) + ysin(d), where r is the perpendicular
distance from the origin to the line, and 8 is the angle of this
perpendicular line with the horizontal axis. For each pixel that
might belong to a satellite trail, the Hough transform evaluates
every possible line through that pixel, represented by various (7,
#) combinations, resulting in a sinusoidal curve in the parameter
space for each pixel. The intersection of these curves from dif-
ferent points indicates a consensus on the presence of a line in
the image space, with accumulations in an array highlighting the
most significant lines.

To address the computational intensity and scalability issues
associated with the standard Hough transform, we used a proba-
bilistic Hough transform instead. Unlike the traditional method,
which examines every edge pixel in the image, the probabilistic
Hough transform processes a random subset of edge points. This
sampling approach significantly reduces the number of com-
putations required, enhancing efficiency without substantially
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(a) Original Patch

(b) Segmentation Mask

(c) U-Net Prediction (d) Hough Transform

/

Fig. 5. Sequential steps of satellite trail detection and refinement: (a) Original patch image, (b) Ground truth segmentation mask, (c) U-Net predicted
segmentation map, (d) Final result after applying the probabilistic Hough transform. This workflow demonstrates the process from initial detection
to refined trail delineation, ensuring precise identification and continuity of satellite trails.

compromising detection accuracy. Additionally, the probabilis-
tic Hough transform optimizes the resolution of the parameter
space by adjusting the granularity of the (r, 6) bins. This opti-
mization is crucial for accurately detecting satellite trails, as
it balances sensitivity with computational efficiency, allowing
for rapid processing of large datasets while maintaining high
detection performance.

Finally, we analyzed the fraction of trails recovered by ASTA
before and after applying the Hough transform using the full-
field images from our test set. Initially, ASTA had a False
Negative Rate (FNR) of approximately 0.0698, meaning around
7% of a trail could be missing due to gaps caused by bright
stars, artifacts, and patching required for U-Net predictions.
After applying the Hough transform, the FNR was reduced by
51%, achieving an FNR of 0.0338. More importantly, trails that
were previously identified as two distinct satellites were correctly
reconnected into single detections. Figure 5 illustrates two cases
where the U-Net prediction is improved by the Hough transform,
demonstrating the process from initial detection to refined trail
delineation and ensuring precise identification and continuity of
satellite trails.

3.3. Contour analysis and feature extraction

Following the refinement by the Hough transform, we obtain
a binary mask consisting solely of satellite trails. The final
step involves extracting features of the detected trails, such as
length, width, location of start and end points, inclination, and
brightness.

To achieve this, we identify the contours of the trails in the
refined binary mask using the cv2.findContours function from
the OpenCV package. If each satellite trail were independent,
we would only need to extract the pixel values within the con-
tour to determine the trail brightness and easily identify the most
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extreme points of the trail and their coordinates. However, the
recent increase in satellite trails often results in multiple trails
crossing each other, as shown in the first row of Fig. 5.

To address this occurrence, for each independent contour
identified, there is an effective method to determine if the con-
tour is actually the intersection of two or more trails. This is
achieved by running a clustering algorithm based on DBSCAN
(Density-Based Spatial Clustering of Applications with Noise,
Ester et al. 1996) on the angles of the Hough transform segments
that compose the current contour. This can quickly identify as
many clusters as there are intersecting trails and provides an
effective solution for separating them. Once the trails are sep-
arated, features such as length, width, location of start and end
points, inclination, and brightness are easily extracted.

4. Application to MeerLICHT data

In this section, we applied ASTA to MeerLICHT images col-
lected since January 2020. We analyzed approximately 200 000
non-red-flagged (i.e., science-grade) images, detecting both
Low Earth Orbit (LEO) and Geostationary/Geosynchronous
(GEO/GES) satellites.

Low Earth Orbit satellites typically produce streaks that span
the entire field of view in a single MeerLICHT image, as illus-
trated in Fig. 1. While ASTA effectively detects these extensive
trails, accurately identifying the specific satellites poses signif-
icant challenges. Due to their rapid movement relative to the
Earth’s surface, LEO satellite trails often lack discernible start
and end points within a single image. These endpoints are crucial
for matching detected trails with known satellite catalogs using
Two-Line Element (TLE) data, making precise identification
difficult. These challenges will be addressed in a forthcoming
paper. Conversely, this study focuses on the detection and iden-
tification of GEO and GES satellites, whose trails generally
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start and stop within the field of view during our 60-second
integration time.

GEO satellites orbit Earth at an altitude of approximately
35786 kilometers, matching the planet’s rotational period. This
allows them to remain stationary relative to a fixed point on
Earth. GEOs are widely used for communication, weather mon-
itoring, and broadcasting. In astronomical images, GEOs typ-
ically appear as short streaks with a length consistent with
the integration time in seconds due to the fact that the tele-
scope tracks celestial objects and not satellites. For Meer-
LICHT/BlackGEM, which use 60 s integration times, this means
a streak of 15 arcminutes in length, corresponding to ~1600 pix-
els, in the East-West direction (90° in the convention used
here).

GES satellites, on the other hand, have orbits with the same
period as the Earth’s rotation but are inclined relative to the equa-
tor. This results in their position in the sky tracing an analemma
over time. These satellites can appear as longer or shorter trails
depending on their current position in their orbit relative to
the observer and are generally at an angle to the East-West
orientation on the detector.

Starting from ASTA’s results for over 200 000 MeerLICHT
images, we selected all trails away from the image edges. These
detected trails were then cross-referenced with satellite catalogs
from celestrak.org using TLEs to ensure accurate identification.
A detected trail was considered a match to a cataloged trail if the
difference in their inclinations was less than 0.4 degrees, reflect-
ing the high parallelism of well-matched trails. This 0.4-degree
threshold was empirically determined based on the distribu-
tion of inclination differences between detected trails and cata-
loged satellite trajectories, balancing true positive matches while
minimizing false positives. Additionally, the average distance
between the ends of the detected and cataloged trails had to be
within 200 arcseconds to account for minor timing discrepancies
between observations and satellite positions.

Focusing specifically on GEO and GES satellites, we applied
a declination cut between —15 and +25 degrees. We fur-
ther selected detected trails with lengths between 1440 and
1640 pixels and orientations between 72.5 and 107.5 degrees,
where a clear cutoff exists in the distribution of matched satel-
lites. Out of the remaining 9107 detected trails, 7365 (80.9%)
were matched to known satellites, while 1742 (19.1%) remained
unmatched. Figure 6 illustrates both the matched and unmatched
satellites, which form a distinct band around the projected celes-
tial equator. Observed from South Africa, part of the Virgo

galaxy cluster is projected behind the geostationary belt, result-
ing in a significant number of detections around Right Ascension
(RA) ~12 hours. These regions have been primary targets of the
MeerLICHT telescope, contributing to the high concentration of
detections in these areas.

Of the detected trails, 19.1% could not be matched to any
objects in public catalogs. While ASTA effectively detects satel-
lite trails, certain artifacts and image contaminations can mimic
satellite signatures. However, our stringent selection criteria for
angles, trail lengths, and sky coordinates significantly reduce
the likelihood of such false positives. Specifically, diffraction
spikes, always oriented at 45°, and linear features aligned at 0°
are excluded from our search. The remaining potential artifacts,
such as those caused by the saturation of bright stars (oriented at
90°), would need to coincidentally match the exact trail length
range of approximately 1500 pixels to be misidentified as GEOs,
which is unlikely. Figure 7 presents a pair plot of orientation
angles, median brightness, and trail lengths for both matched
and unmatched GEO/GES satellite trails. The diagonal panels
display the marginal distributions of each quantity, while the
off-diagonal panels illustrate the relationships between pairs of
variables, highlighting differences between the two populations.

Visually, there are notable differences in the distribution
of orientation angles and trail lengths between matched and
unmatched trails. To statistically confirm these observations, we
performed a consistency test (ConTEST, Stoppa et al. 2023b)
comparing the distributions of orientation angles, trail lengths,
and median brightness for both populations. The results indi-
cate significant differences, leading to the rejection of the null
hypothesis that the distributions are consistent. This confirms
that, although matched and unmatched trails share some simi-
larities in their properties, they belong to distinct populations.

The majority of the matched 7365 trails correspond to GEO
satellites, which are characterized by their strict 90-degree ori-
entation. In contrast, the unmatched 1742 trails exhibit a bias
towards more inclined orientations. This distinction is signifi-
cant for two main reasons. First, the subset of the unmatched
trails that are oriented at 90 degrees are predominantly located
within the geostationary belt (around +6° declination). If these
90-degree detections were artifacts of the detection method, we
would expect them to be uniformly distributed across the sky.
Instead, their concentration near known GEO locations indicates
that they are genuine detections rather than random artifacts.
Second, the inclination of the remaining unmatched trails sug-
gests that these objects are likely Geosynchronous Transfer
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Fig. 7. Pair plot of orientation angles, median brightness, and trail
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Orbits (GTO) satellites and older geosynchronous debris; GEOs
launched decades ago tend to exhibit varying inclinations due
to solilunar perturbations over the years. These inclined objects
are more difficult to track and predict over time, resulting in
their absence from public satellite catalogs. Consequently, the
unmatched trails detected by ASTA represent genuine, albeit
less-tracked, objects in Earth’s orbit. With optical telescopes like
MeerLICHT and BlackGEM, we can successfully trace these
inclined satellites, enhancing our ability to monitor and manage
space debris.

By identifying and cataloguing these unmatched satellites,
especially if they are observed in multiple images taken within a
short time frame and exhibit realistic orbital characteristics, we
can contribute to the maintenance and expansion of public satel-
lite catalogues. This effort is crucial for maintaining the safety
and accuracy of future astronomical observations and could aid
in the management and mitigation of space debris.

5. Conclusions

In this study, we introduced ASTA (Automated Satellite
Tracking for Astronomy), a robust methodology combin-
ing U-Net and probabilistic Hough transform to detect and
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analyze satellite trails in ground-based astronomical observa-
tions. Using data from the MeerLICHT telescope, we demon-
strated the effectiveness of ASTA in identifying and characteriz-
ing satellite trails.

Importantly, the methodology developed in this study can
be easily adopted by other observatories. The use of LABKIT
for manual annotation ensures a straightforward and repro-
ducible process, encouraging other researchers and observatories
to implement similar techniques. By sharing this approach, we
hope to foster a collaborative effort in addressing the challenges
posed by satellite trails, improving data quality across various
astronomical facilities.

The U-Net’s performance was rigorously evaluated on a test
set of 20 000 image patches, achieving approximately 94% preci-
sion and 94% recall. This high detection accuracy demonstrates
the model’s capability in effectively identifying satellite trails
amidst complex backgrounds. Furthermore, the integration of
deep learning and classical image processing techniques, specif-
ically the probabilistic Hough transform, proved effective in
refining trail detection, achieving a False Negative Rate of only
3% and successfully reconnecting split trails even in the presence
of bright stars and other challenging background features.

When applied to around 200000 full-field MeerLICHT
images focusing on Geostationary (GEO) and Geosynchronous
(GES) satellites, ASTA matched 80.9% of the detected trails
(7365 out of 9107) with known satellites in public catalogs.
Additionally, ASTA identified 19.1% of trails (1742) that could
not be matched to any objects in public satellite catalogs. These
unmatched trails are predominantly GES, in particular Geosyn-
chronous Transfer Orbits objects, such as rocket stages, as well
as decades old geostationary satellites exhibiting varying incli-
nations due to solilunar perturbations. The specific orientations
and concentrations of these unmatched trails further support the
conclusion that they are genuine objects, highlighting ASTA’s
effectiveness not only in identifying known satellites but also in
uncovering new objects.

Future improvements could enhance artifact recognition and
overall model performance. One key improvement is the use
of better and larger GPUs, which would eliminate the need for
patching. This would provide U-Net with more context from
larger images and nearby sources, reducing confusion caused by
small patches and minimizing gaps or inconsistencies in pre-
dictions. By processing larger portions of the image at once,
U-Net can maintain context and continuity across the entire field,
leading to more accurate and reliable detections. Additionally,
increased computational efficiency from advanced GPUs will
allow for faster processing times, making it feasible to analyze
large datasets of astronomical images more efficiently.

Future work will concentrate on a comprehensive statistical
analysis of the temporal and spatial components of all types of
satellites, from GEOs to LEO satellites, using MeerLICHT and
BlackGEM data collected over the last five years. This analysis
will examine trends and patterns, improving our understand-
ing of satellite distributions and their impact on observational
data, providing a basis for developing more effective mitigation
strategies.
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Appendix A: Computation time

To evaluate the efficiency of ASTA, we measured the com-
putation time required to process a full-field MeerLICHT
image, including image loading, patch creation, U-Net pre-
diction, Hough transform application, and satellite information
extraction. The tests were conducted on an Alienware Area
51IM equipped with an Intel Core i9-9900K processor, 32GB
DDR4/2400 RAM, and an Nvidia GeForce RTX 2080 GPU.

The processing times were measured using both CPU and
GPU for each of the four stages: Preprocessing, Prediction,
Hough transform, and Contour Analysis. The results are sum-
marized in Table A.1.

Table A.1. Average computation time and standard deviation for each
processing stage using CPU and GPU.

Stage | CPU Time (s) | GPU Time (s)
Preprocessing 0.66 = 0.01 0.66 = 0.01
Prediction 21.97 £0.25 2.56 +0.04

Hough transform 0.13 +£0.02 0.13+£0.02
Contour Analysis 1.20 + 0.26 1.24 £0.26
Total 23.96 + 0.53 4.59 +0.33

These results demonstrate the substantial efficiency gains

achievable through GPU acceleration. The average total GPU
processing time was significantly lower than the total CPU pro-
cessing time, highlighting the critical role of GPU acceleration
in handling large volumes of astronomical data effectively.
The Contour Analysis stage exhibits the highest variability in
computation time, which can be attributed to the complexity and
number of detected satellite trails in each image. The variabil-
ity arises from the differing number of contours that need to be
processed and the presence of intersecting trails, which require
additional computation to separate accurately.
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