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Abstract 

High throughput sequencing technologies have become essential in the fields of 
evolutionary biology and genomics. When dealing with non-model organisms or genomic 
gigantism, sequencing whole genomes is still relatively costly and therefore reduced-
genome representations are frequently obtained, for instance by ‘target capture’ 
approaches. While computational tools exist that can handle target capture data and 
identify small-scale variants such as single nucleotide polymorphisms and micro-indels, 
options to identify large scale structural variants are limited. To meet this need, we 
introduce PAV-spotter: a tool that can identify presence/absence variation (PAV) in target 
capture data. PAV-spotter conducts a signal cross-correlation calculation, in which the 
distribution of read counts per target between samples of different a priori defined classes 
– e.g. male versus female, or diseased versus healthy – are compared. We apply and test 
our methodology by studying Triturus newts: salamanders with gigantic genomes that 
currently lack an annotated reference genome. Triturus newts suffer from a hereditary 
disease that kills half their offspring during embryogenesis. We compare the target 
capture data of two different types of diseased embryos, characterized by unique 
deletions, with those of healthy embryos. Our findings show that PAV-spotter helps to 
expose such structural variants, even in the face of medium to low sequencing coverage 
levels, low sample sizes, and background noise due to mis-mapped reads. PAV-spotter 
can be used to study the structural variation underlying supergene systems in the absence 
of whole genome assemblies. The code, including further explanation, is available through 
the PAV-spotter GitHub repository: https://github.com/Wielstra-Lab/PAVspotter.  
 

 Keywords 

PA variation, Hyb-Seq , target enrichment, copy number variation, pattern recognition, 
Triturus, supergenes, hemizygosity.   

https://github.com/Wielstra-Lab/PAVspotter
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Introduction 
 
Next-generation DNA sequencing methods have revolutionized the biological sciences, 
with an ever-growing amount of sequence data being generated worldwide [1, 2]. High 
throughput sequencing techniques have become more affordable and increasingly used, 
however sequencing entire genomes can still be challenging, for instance when dealing 
with non-model organisms, genomic gigantism, or a combination of the two [3-5]. In such 
cases, well-annotated reference genomes for aligning (re-)sequenced reads are generally 
unavailable, making whole genome sequencing relatively costly in terms of money and 
(computational) time [e.g. see; 6, 7, 8]. Many biologists therefore still opt for more cheap 
and efficient ‘reduced-representation’ high throughput sequencing techniques, which 
allow for a subset of loci to be sequenced more deeply [9-11].  
  A technique that has become particularly popular for studying non-model 
species is target capture, also referred to as hybridization sequencing, exon capture, 
sequence capture, or exome capture [11-14]. This method facilitates collecting sequence 
information on hundreds or thousands of pre-selected loci. Due to the consequent rise of 
large multi-locus DNA sequence datasets, the need for innovative, easy-to-implement 
bioinformatic applications has surged as well [15]. User-friendly pipelines help to pre-
process sequence reads by wrapping and connecting existing software tools, with well-
known examples for target capture including HybPiper [16], Assexon [17] and Sequence 
Capture Processor [i.e. SECAPR, see; 18]. These pipelines and their software 
dependencies support fast upstream data cleaning and guide the user to phylogenetic 
applications downstream.  
  Typically, target capture analysis pipelines are utilized to identify small-scale 
genetic variants such as single nucleotide polymorphisms (SNPs) and relatively small 
insertions/deletions (microindels, ranging from 1~50bp) to perform, for instance, 
phylogenetic tree-building [10]. However, to identify and analyze larger scale information 
from target capture data, such as genomic structural variation, few tools are available – 
especially when focusing on non-model organisms. A particular type of larger-scale 
variation that is hard to identify in multi-locus DNA sequence datasets is 
presence/absence variation (hereafter referred to as ‘PAV’) of relatively big insertions/ 
deletions (macroindels, > 50bp), i.e. above the size of microindels [19, 20].  
  Structural variants such as PAVs are regularly overlooked because they are 
harder to identify than SNPs [21, 22]. However they are a major source of genetic 
divergence and diversity [23-26]. PAV in particular poses an extreme example of copy 
number variation, where fragments in the size of entire exons or (stretches of DNA 
containing multiple) genes are missing from one genome compared to another [27, 28]. 
When comparing such genomes, target capture data would in theory display PAV by 
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showing ‘normal data’ in the case of target presence, versus a ‘data gap’ in the case of 
target absence. This would be an indication of structural variation.  
  Whether there are consistent differences in presence or absence of sequence 
data can be determined by analyzing the way that reads pile up against a certain reference 
set of sequences. Some tools can detect copy number variation and PAV patterns by 
comparing the depth of mapped reads of different samples, such as ExomeCNV 
(Sathirapongsasuti et al, 2011) and SUPER-CAP (Yuan et al, 2019). However, these tools 
come with strict requirements, such as good quality reference genomes being available, 
known functional annotation of variants, and/or coverage being consistently high across 
all samples and targets, with mapped reads ideally following a normal distribution. Yet, 
most multi-locus datasets, including those resulting from target capture experiments, 
generally do not meet such requirements [10].   
  We introduce PAV-spotter: a flexible signal cross-correlation method that is able 
to ‘spot’ potential PAV in target capture datasets. Our approach borrows the notion of 
cross-correlation to detect the dissimilarity between datasets obtained through target 
capture experiments. Cross-correlation methods are generally used in the domain of 
control engineering. Classically, they are applied on time-series data [29], for example in 
machinery fault detection studies [30]. However, cross-correlation approaches have been 
proven useful in the field of pattern recognition as well [31].   
  Being able to identify structural variation by using pattern recognition would be 
especially informative when studying supergenes systems, in which individuals can have 
zero, one or two copies of particular loci [32, 33]. Supergenes consist of genes that are 
inherited together as a single locus due to the suppression of recombination [33-35]. As a 
result, the non-recombining stretches of ‘supergene DNA’ evolve independently of one 
another, facilitating the rapid evolution of complex adaptations [36, 37]. These sets of 
genes are often polymorphic and subjected to balancing selection, as a species generally 
possesses at least two supergene variants [38]. Sex chromosomes, for instance, are 
classically considered supergenes [39]. In diploid organisms the heterogametic sex 
inherits the sex-determining ‘supergene’, as well as the alternate sex chromosome, in a 
hemizygous manner – meaning that they only receive one copy of each [40]. In the XX-XY 
sex determination system of mammals, for instance, males generally possess a single 
copy of the supergene that is the Y chromosome (as well as a single copy of the X-
chromosome), whereas in the ZW-WW system it is the females that possess the Z 
supergene once (next to a single W chromosome). Hence, genes that are hemizygous and 
thus lie solely on the sex-determining supergene would show PAV in target capture 
datasets when data of different sexes is compared.  
 However, supergene systems are not limited to the biological concept of sex. 
Other, famous examples of supergenes underlying complex traits are; the Müllerian 
mimicry complex in Numata longwing butterflies [39], the striking sexual dimorphism and 
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breeding behaviors of ruffs [41, 42] and white-throated sparrows [43], the social 
polymorphism observed in several species of ant [44], and heterostyly in primrose flowers 
[45]. Furthermore, hemizygous inheritance of (super)genes also occurs in, for instance, 
genetic incompatibilities such as with “hybrid necrosis” in plants, which can be linked to 
PAV in certain genes in for example Asian rice  [46, 47]; hereditary diseases such as α-
thalassaemia, which is caused by large deletions in the alpha globin gene cluster on 
chromosome 16 in humans [48]; and in balanced lethal systems, in which two distinct 
chromosome forms exist that are covered by unique lethal mutations [49].  
  We demonstrate the application of PAV-spotter using the balanced lethal system 
in Triturus newts as a case study. Triturus individuals either are heteromorphic and 
possess two different versions of their largest autosomal chromosome, characterized by 
unique deletions, or they are homomorphic and possess two identical versions of this 
chromosome [50]. The two types of homomorphic individuals express a unique disease 
state and both die during embryogenesis, whereas the heteromorphic individuals are 
viable [51-54]. This ‘double hemizygous’ system lends itself particularly well for using 
target capture data to detect PAV, as it allows for a reciprocal test: targets deleted from 
one chromosome version should be present on the alternate version and the other way 
around. Based on our findings, we describe the usefulness, as well as the limitations, of 
our approach.  

 

Methods 
 
Sample information & collection  
The first chromosome of Triturus comes in two forms: 1A and 1B. Homomorphic 
individuals (1A1A or 1B1B) invariably die during embryogenesis, while heteromorphic 
individuals (1A1B/1B1A) are viable. We collected T. macedonicus x T. ivanbureschi F1 
hybrid embryos from an ongoing breeding experiment at the Institute for biological 
research, „Siniša Stanković”, University of Belgrade [with experimental settings, breeding 
conditions, and other details on the process of raising embryos as described in; 55, 56]. 
Embryo development was followed through observation with a stereomicroscope. 
Diseased embryos were collected when the process leading up to developmental arrest 
occurred, which is visible as a ‘growth slowdown’, during the late tail-bud phase. Diseased 
embryos were then classified into either the “fat-tailed” (FT) phenotype or the “slim-
tailed” (ST) phenotype based on morphological characteristics of the embryo [53, 57]. 
Healthy/control (HC) embryos that survived this critical phase were subsequently 
collected. We collected 30 individuals in total (Supplementary Table 1); ten of each class, 
i.e. ten ST, ten FT and ten HC embryos. Samples were stored in ethanol at -20 °C until 
further handling.   
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Laboratory procedures & pre-processing of sequence data  
We followed the standard “NewtCap” workflow of salt-based extraction of DNA from 
embryonic tissue, followed by quantification, library preparation, target capture and 
Illumina sequencing [as described in; 58]. After obtaining the raw, paired-end sequence 
reads from Baseclear B.V. (Leiden, the Netherlands), we followed a standard pipeline for 
checking the quality of, and for cleaning-up and mapping, our sequence data in a Linux 
environment up to and until the deduplication of the BAM files step [as described in; 58]. 
These deduplicated BAM files served as input for further data extraction and analyses. 
Throughout the cleaning and mapping process, we used SAMtools’ [59] stats, flagstat and 
coverage  options to calculate basic statistics from the FASTQ and BAM files. The 
reference FASTA file used for read mapping can be found in Supplementary Material as 
‘Targets.fasta’. These 7,139 sequences, initially used for probe tiling, were based on T. 
dobrogicus transcripts, and had a maximum length of 450bp [58, 60].  
 
Preparing read depth data for PAV-spotter  
From the BAM files we extracted information on sequence read depth for all sites per 
target by using the SAMtools depth option [59]. We optimized this extracted information 
by following several file-manipulation steps in a custom ‘prepping’ shell script (Script 1) 
to make the input files and folder structure match the requirements of our PAV-spotter 
tool. The steps in Script 1 include automatically merging and sorting of intermediate files 
where appropriate, changing the tab-delimited format to a CSV format, splitting the overall 
CSV file into multiple files (one file per separate target/gene), and creating a text file with 
sample names for later use (details are explained in the script). The exact format of the 
input folder structure and input files is described in Box 1.  
  PAV-spotter assumes background knowledge on phenotype classes that 
presumably differ in the presence of certain genes (in other words, cross-comparisons are 
not random: for instance males are compared to females, diseased individuals are 
compared to control samples, etc.). Here, we work with the a priori classification of three 
phenotypes: two types of diseased embryos (FT vs. ST) and healthy embryos to serve as 
a control (HC). Which sample belongs to which class needs to be designated by your input 
filenames (the BAM files), which will end up in an automatically created text file 
“individuals.txt” after running Script 1. This is crucial, as PAV-spotter performs the 
comparisons based on the phenotype information embedded in the names of this text file. 
In case phenotypic classes as specified by the user cannot be deduced from input file 
names, the user needs to either alter the input file names manually, or alter the identifiers 
in Script 1 manually – or both – before running Script 1 (ideally, the user includes such 
filename identifiers at the raw FASTQ file stage for consistency throughout the pipeline).  
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Applying PAV-spotter  
We applied Script 1 on our total set of 30 samples (Supplementary Table 2; n=30, ten ‘ST’, 
ten ‘FT’ and ten ‘HC’ individuals, with these identifier abbreviations occurring in the sample 
names). Additionally, we applied the script on random subsets of samples 
(Supplementary Table 3 and Supplementary Table 4); two separate analyses with a 
sample size of five per class (i.e. two total subsets of n=15, indicated by sample set ‘5_1’ 
and run ‘5_2’), and five more separate analyses with a sample size of two per class (i.e. 
five total subsets of n=6, indicated by sample set ‘2_1’, ‘2_2’, ‘2_3’, ‘2_4’ and ‘2_5’). This 
allowed us to assess the performance of PAV-spotter when lower sample sizes are used. 
We randomized the grouping of samples into subsets by using the ‘shuf’ command from 
the standard GNU Core Utilities (http://gnu.org/s/coreutils/).  
  We ran a custom MATLAB script (Script 2, hereafter ‘PAV-spotter’) remotely 
through SLURM  workload manager (example batch script attached). Users can compare 
two, or three phenotypic classes (using the argument “categories”, see the SLURM script), 
but if only two are provided, only two are compared. Also, we indicated which class we 
considered the control group (by implementing “ctrl_category = 'HC'”) and we provided a 
common identifier for all input files/targets (with the argument “common_identifier = 
'DN'”). Also, information on the working directory and desired output filename was 
provided in the MATLAB command depending on the analysis, and the same is the case 
for the customized #SBATCH lines for running the SLURM job.  

BOX 1: 
This is a description of the expected input file format for the PAV-spotter script: 
 
‘Species’ Directories: 
- Each species, or otherwise distinguishable set of data, has its own directory 
- PAV-spotter is built in such a way that it will loop over multiple such directories 
“individuals.txt” file:  
- An automatically generated file, uses the initial sample names for input 
- Needs to be located in, and corresponding to the contents of, a particular species directory 
- This file contains the individual information, with each sample name on a new line and with 
information on the classes to be compared included in the name (e.g. ‘ST’, ‘FT’, and ‘HC’) 
Gene/Target Data Files: 
- Also needs to be located in, and corresponding to the contents of, a particular species 
directory 
- Each file represents a single gene or target 
- Each file has columns and is in CSV format (this should be the output from batch script 1): 
  - Column 1: Gene/target name 
  - Column 2: Gene/target position (a number) 
  - Column 3: Read depth data (a number) 
  - Column 4: Sample/class name (should match identifiers in “individuals.txt” file) 

http://gnu.org/s/coreutils/
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The script was run four times on our total set of n=30: once with default settings (no 
filtering, “reads_threshold”  == 0 and “contig_width” == 0), one time with a mild coverage 
filtering (“reads_threshold” == 5 and “contig_width” == 0), one time with a mild filtering for 
minimum length of contigs (“reads_threshold” == 0, “contig_width” == 50) and one time 
with both of the filtering thresholds (“reads_threshold” == 5 and “contig_width” == 50). By 
setting a soft coverage filter of a minimum of five reads, we filter out reads of any poorly 
covered target of an individual that does not meet this criterium (thereby assuming a 
coverage of zero across the target in question). Furthermore, by specifying a minimum 
contig width, the script will filter out read information of covered regions in between two 
positions with zero coverage, in case those regions are narrower than, in this case, 50bp 
(thereby assuming a coverage of zero in that specific target region). For the tests on sample 
subsets of five individuals per class and two individuals per class, we only used the default 
filtering settings (no filtering, “reads_threshold”  == 0 and “contig_width” == 0). In all 
analyses, we enabled the script to plot accessory figures (“plot_figures” == TRUE, 
clarification below). MATLAB v.9.13.0 (https://www.mathworks.com) was used for 
running PAV-spotter.  
 
The rationale behind PAV-spotter  
After setting up the input files and initiating PAV-spotter successfully, filtering settings are 
applied as specified. Subsequently, PAV-spotter merges and normalizes the sequence 
read depth information for all the samples per target per specified sampling class before 
it starts the actual cross-correlation analyses (but users can turn this setting off in case 
calculations of all possible cross-comparisons on an individual level are desired). By 
exploiting the availability of multiple samples per phenotypic class in this way, we ensure 
that the comparisons will be made on a class level rather than on an individual level. In the 
latter case, more false outcomes would be expected as a result of the stochastic nature 
of target capture experiments, something that can be avoided by pooling results. PAV-
spotter can loop through a set of input directories if separate datasets need to be analyzed 
with similar settings consecutively  
  The cross-correlation analysis in PAV-spotter works as follows (Figure 1). Two 
target capture results of the same targeted region, but of a different phenotypic class, are 
defined by 𝐷1 and 𝐷2. These represent two vectors of identical length 𝑇, where the vector 
position represents the target position and the vector values represent the normalized 
sequence read depth. PAV-spotter then calculates the similarity of the cross-correlation 
formulated by 

𝐶1,2[𝑛] = ∑ 𝐷1[𝑚]𝐷2[𝑚 + 𝑛]

𝑇

𝑚=−𝑇

 

https://www.mathworks.com/
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for all 𝑛 between −𝑇 and 𝑇, with 𝑛 and 𝑚 accessing the indices of the vectors 𝐶1,2, 𝐷1 , 𝐷2. 
This constructs a cross-correlation vector of which the maximum value provides the 
maximum similarity of 𝐷1 and 𝐷2. For example, in the case that 𝐷1 = 𝐷2 (i.e., in the case 
of autocorrelation), the similarity score C will be 100%.  
 PAV-spotter outputs a CSV file per separate analysis with all the cross-
correlation data in the form of percentage similarity, and it outputs a folder with figures. 
Also, a CSV file with cross-comparisons between data from samples from the control 
group only (the HCs) is generated. This extra file allows for a calculation of the overall 
resemblance of the control samples, which should have data present with well-captured 
targets. This as opposed to the FT and ST samples, which are expected to show ‘data gaps’, 
or absence, for some targets.   
 

Figure 1: A simplified visualization of the cross-correlation methodology in PAV-spotter, showing a 
hypothetical gene/target that is missing in only ST embryos as an example. (A) A number of 
sequence reads are mapped (in grey) against a gene/target. This information is taken from depth files 
and merged per phenotypic class (in case of multiple samples per class), then the absolute 
distributions of the read depths are normalized, here represented by the colored lines; dark blue = 
FT, purple = HC, red = ST. (B) The distribution data of the FT and the HC classes are compared. A 
measure of similarity is determined as a function of the displacement of one read depth distribution 
relative to the other, as if they were to ‘slide over’ each other (indicated by black arrows). The 
similarity appears close to 1 (=100%) and the graph produced by PAV-spotter also follows a smooth 
line. (C) The distribution data of the HC and ST classes are compared: the similarity is not close to 
100% and the similarity graph produced by PAV-spotter does not follow a smooth line. (D) The 
distribution data of the HC and ST classes are compared: the similarity is not close to 100% and the 
similarity graph produced by PAV-spotter does not follow a smooth line.  
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As we are investigating a double hemizygous system, we always have three cross-
correlation values to work with. This means we are able to use not only the healthy 
embryos (HC), but also the other class of diseased embryo (ST or FT), as a control, 
because genes absent in one class of diseased embryo are expected to be present in both 
other embryo classes (e.g. to recognize absence in ST embryos, which should have a 1A1A 
genotype, we can check for presence in the HC embryos which should have the 1A1B 
genotype, but we can do an additional check for presence in the ST embryos that should 
have a 1B1B genotype – and the same applies the other way around). Hence, to deduce 
PAV in the chromosome that is inherited twice in ST embryos, we search for a pattern in 
which a significant portion of the target was present in both HC and FT embryos (which 
contain the alternate chromosome form), but absent in ST embryos. Conversely, to 
deduce PAV in the chromosome inherited twice by FT embryos, we searched for absence 
in FT, but presence in both HC and ST embryos.   
 
Downstream PAV estimation  
To automatically deduce PAV patterns, we applied another custom shell script, Script 3. 
This script takes the main output file of PAV-spotter, creates an overall matrix of the 
results, adds columns with information on the cross-correlation data that stand out, and 
makes lists of the targets that show potential PAV based on a threshold (which can be 
customized). When, for a certain target, the data of FT versus ST embryos were less than 
80% similar, the data of FT versus HC embryos were less than 80% similar, and the data 
of ST versus HC embryos were more than 80% similar, this target was scored as ‘1A-
linked’. For ‘1B-linked’ genes it was the other way around: FT vs. ST embryos < 80% similar, 
ST vs. HC embryos < 80% similar, and FT vs ST embryos > 80% similar. This threshold of 
20% dissimilarity equals a p-value of between 0.01 (≈ 15% dissimilarity) and 0.001 (≈ 
28% dissimilarity). The PAV-spotter output file that shows all similarity scores among the 
HC embryos only, guided our choice for this threshold (e.g. see Figures 1 and 2). 
 Finally, as not much is known about the genetic background of our non-model 
study species Triturus, we performed visual inspections of the read content of all BAM 
files (n=30) that were used as input for PAV-spotter by checking them in Integrative 
Genomics Viewer (IGV) software (Robinson et al, 2011) on a Windows environment. This 
constitutes the last step in our overall workflow (Figure 2). We automated obtaining 
screenshots through IGV by running batch commands for all 7,139 targets (an example 
batch script is available). With a ‘checking-by-eye’ approach we categorized PAV hits as 
‘likely true’ and ‘likely false’ in order to assess the quantity of false positive outcomes and 
we cross-checked the results of all the different runs to identify false negative outcomes 
(in other words: in case a ‘likely true’ target with PAV was retrieved in one analysis, but not 
in another, we counted it as a false negative in the latter analysis).  
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Figure 2: A summary of the consecutive steps of our methods in which the order of the steps is 
indicated by black arrows. Blue boxes show the laboratory process, orange boxes represent 
bioinformatic pre-processing steps, green boxes stand for the application of the main PAV-spotter 
scripts, and the grey box covers the conclusive steps of inspecting and interpreting the results. 

 
We executed all bioinformatic steps, from pre-processing of reads and read depth 
information to applying PAV-spotter and extracting information from the output, through 
the High Performance Computing facility called ‘ALICE’ (Academic Leiden 
Interdisciplinary Cluster Environment, the Netherlands). The GitHub repository of PAV-
spotter provides all the scripts and further explanation: https://github.com/Wielstra-
Lab/PAVspotter. 
 

Results 
 
A mean of 6,483,062 read pairs were generated on average per sample, with a standard 
deviation of 1,450,648 read pairs (Supplementary Table 1). After trimming, this changed 
to a total of 6,187,680 read pairs with a SD of 1,369,254 read pairs. On average, 35.57% 
of the trimmed reads were successfully mapped against the reference targets after 
duplicate removal, as an average of 17.09% of all trimmed reads were flagged as 
duplicates (Supplementary Table 1).   

https://github.com/Wielstra-Lab/PAVspotter
https://github.com/Wielstra-Lab/PAVspotter
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Overall, the targets had a mean read depth of 90.09 sequences and a mean coverage of 
97.19 % of the sequence bases (Supplementary Table 2, presented per phenotypic class). 
For the overall set with ten samples per phenotypic class, the average depth of coverage 
was 84.7 in the FT group, 97.7 in the group of HC embryos, and 87.8 in the ST embryo 
group (Supplementary Table 2). Moreover, for the batched samples with five individuals 
per phenotypic class, this average depth of coverage varied between the lowest number 
of 76.6 in FT batch 5-2 and the highest number of 102.2 in HC batch 5-1 (Supplementary 
Table 3). Lastly, for the batched samples with two individuals per phenotypic class, the 
averages varied between the lowest number of 37.1 in FT batch 2-1, and the highest 
number of 134.1 in FT batch 2-5 (Supplementary Table 4).  
   Through the different runs with a sample size of ten per class, we discovered 
large-scale PAV for in total 72 targets. Genes without PAV had sequence reads with similar 
distributions for all three classes (Figure 3A), whereas of those 72 aberrant genes that we 
discovered, 32 showed an absence in FT, but a presence in HC and ST embryos (and are 
thus “1A-linked”, Table 5 and Figure 3B), while the remaining 40 were absent in ST, but not 
in HC and FT embryos (and are thus “1B-linked”, Table 6 and Figure 3C). We confirmed our 
findings using the visual IGV inspection (for examples, see Supplementary Figures 3-5).  
  After running PAV-spotter without any filtering options on the full dataset, we 
correctly identified all 32 1A targets and generated one false positive in the 1A list, which 
we identified by the visual IGV inspection (see Supplementary Figure 6). By re-running 
PAV-spotter with the previously described filtering options, this false positive was 
removed from the list in some cases, however these additional analyses also generated 
more false positives and false negatives: the frequency of them depending on the 
combination of filtering settings used (Supplementary Table 5). For the 40 1B targets, we 
discovered 37 true positives and three false positives in the unfiltered run. Depending on 
the combination of filtering settings applied, two of these three false positives again 
disappeared from the list. However, these extra runs with filtering settings also highlighted 
three additional 1B targets that were overlooked (as false negatives) in the initial analysis 
(Supplementary Table 6).  
  The false positive outcomes consistently had either the lowest - or in a single 
case, the highest - mean depth values, reflected by the ‘MAXpeak’ output of the overall 
results matrix generated by PAV-spotter. This value is the peak number of reads in one 
position of a certain target observed across all the individual samples included in the 
analyses. The false negative outcomes that came to light as true positive results after 
additional filtering was applied, all had similarity scores for the resembling classes (FT and 
HC) above 99% in the unfiltered analysis. But the lower similarity scores of these targets 
between the non-resembling classes (both between FT and ST and between ST and HC) 
were lower than 90%, but not lower than the 80% threshold (which is why they were 
initially overlooked).   
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◄ Figure 3: Examples of target-specific plots produced by PAV-spotter in the overall run with no 
filtering (n=10 per class). The stacked plots on the left side within the panels A-C show the merged 
and normalized distributions of sequence read depths per phenotypic class, and the colored plots 
on the right side within the panels A-C show associated measures of similarity of those distributions 
as a function of the displacement of one relative to the other (including a legenda explaining the 
colors and cross-correlation values). A) An example of a ‘normal’ gene/target, showing the cross-
correlation analyses of control marker ‘CDK’ (see Discussion), with a similar shape of the sequence 
read depth distributions and high correlation values (above the 80% similarity threshold) between 
all three classes. B) An example of a 1A-linked gene/target, showing the cross-correlation analyses 
of ‘PLEKHM1’ (see Discussion), with a deviant read depth distribution for the FT class and a high 
correlation value (>80%) for ST vs. HC samples, but a lower cross-correlation value (<80%) for the 
ST vs. FT and FT vs. HC sample comparisons. C) An example of a 1B-linked gene/target, showing 
the cross-correlation analyses of ‘NAGLU’ (see Discussion), with a deviant read depth distribution 
for the ST class and a high correlation value (>80%) for FT vs. HC samples, but lower cross-
correlation values (<80%) for the FT vs. ST and the ST vs. HC samples. 

 
The results for the n=5 per class runs (5_1 and 5_2) resemble our earlier findings. We re-
discovered an average of 68.5 (95.1% success) out of the total of 72 PAV targets 
previously discovered, but with half the sample size. For run 5_1, this number was 70 out 
of 72 PAV targets (97.2% success) and for run 5_2 this number was 67 out of 72 (93.1% 
success). Overall, for 1A, the results of both the analyses with a sample size of five 
individuals per class were complementary, as all 32 previously identified 1A targets were 
re-discovered at least once (Supplementary Table 7). The same goes for the 40 previously 
identified 1B targets (Supplementary Table 8). Between the two runs, the overall mean 
depth of coverage was the lowest in 5_2, the analyses that also showed less successful 
out of the two.  
  The analysis of the 5_1 subset (n=15) resulted in the discovery of 31 true 1A 
targets plus one false negative and one two positives, and in 39 true 1B targets with one 
false negatives and one false positive. The analysis of the 5_2 subset (n=15) again resulted 
in 31 true 1A targets (with one difference) plus one false negative and two false positives. 
These false outcomes were not the same as with the 5_1 subset analysis. For 1B, the 5_2 
analysis yielded 36 true 1B targets with four false negatives and seven false positives.  
  The results of the n=2 per class runs (2_1 through 2_5, each with n=6 in total) 
again highlighted the same PAV exhibiting targets. We re-discovered an average of 70 
(97.2% success) out of the total of 72 PAV targets previously discovered, but with a fifth 
of the sample size (Supplementary Tables 9 and 10). For each of the 2_1, 2_2 and 2_4 
runs, these numbers were indeed 70 out of 72 (97.2% success), run 2_3 retrieved 71 out 
of 72 PAV targets (98.6% success) and run 2_5 69 out of 72 (95.8%).    
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Overall, for both the 32 previously identified 1A targets and the 40 previously identified 1B 
targets, these five analyses with a sample size of only two individuals per class appeared 
complementary, as all true positive targets were re-discovered at least once. For 1A, one 
of the false negative outcomes came forward as a false negative in two out of the five 
analyses (and as a true positive in the three other analyses). The other three false negative 
outcomes in the 1A list were incidental. For 1B, each of the false negative outcomes 
occurred in only one of the five analyses (and formed a true positive result in the four 
alternative analyses). The number of false positive outcomes was slightly higher with 
these low sample size tests (Supplementary Tables 11 and 12), however this was 
especially noticeable for the 1A results of the first batch (2_1). The mean depth of 
coverage was also the lowest for the FT (1B1B) samples in this batch (Supplementary 
Table 4). We therefore tested for a correlation and show that the mean depth of the 
samples exhibiting absence (i.e. the mean depth of FT samples with determining 1A 
absence, and the mean depth of the ST with determining 1B absence) appeared to be 
negatively and significantly correlated to the number of false positives brought forward 
(Spearmann’s rank correlation, n=10, p=0.018).  

 
 

Discussion 
 
We employ a signal cross-correlation approach to discern PAV patterns in target capture 
data of Triturus newt DNA. By comparing the read depth in sequence data of embryos of 
different phenotypic classes, and by manually checking the results of the read alignments, 
we are able to identify over seventy targets that appear to be either present in, or absent 
from, the genome, depending on the phenotype.  
  The three example targets displayed in Figure 3 have been independently tested 
using multiplex (mx) PCR techniques, including mxKASP [61]. Control marker CDK is 
present in all three embryo classes. This corresponds with our results from PAV-spotter, 
where we discover high cross-correlations values between the distribution of mapped 
reads of all three phenotypic classes for this target marker (>99% similarity, way above 
our 80% cutoff threshold). On the other hand, PLEKHM1 is observed in HC and ST 
embryos, but not in FT embryos, and NAGLU is observed in HC and FT embryos, but not 
in ST embryos [61]. Again, this matches our PAV-spotter findings – even with sample sizes 
as low as two individuals per phenotypic class.  
   Evidently, PAV-spotter relies on the correct, a priori classification of samples. 
Also, it merges the read depth data of samples per each phenotypic class in case multiple 
samples are provided (a setting that is recommended, but can be turned off if desired). 
Thus, future users should carefully consider what they want to compare. Additionally, we 
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underline that cross-contamination of DNA is, for example, a main concern with target 
capture of ancient DNA [62] and it could potentially distort the similarity values calculated 
by PAV-spotter – something to be wary of.  
  The fact that PAV-spotter is able to, on average, re-discover 97,2% of true positive 
PAV target outcomes in our trials is especially convenient for studies where scientists 
must rely on a limited amount of available DNA, as is often the case with herbarium 
specimens [63, 64]. However, the highest yield of false positive outcomes is observed in 
our 1A results of batch 2_1, but not the accessory 1B results, which firstly shows that 
there is a likely trade-off between sample size and sequence coverage. Preferably, the 
quality of DNA is as high as possible when working with small sample sizes. Although also 
preferred in case of a larger sample size per phenotypic class, the chances are then higher 
that any poor coverage sample(s) will be compensated for by sample(s) with better 
coverage. In general, spreading sequencing efforts across at least a couple samples, with 
slightly lower – but still informative – depths per sample, is considered a safer option than 
working with extremely low sample sizes [65, 66].  
  Regardless of sample size, identifying and characterizing structural variation from 
target capture data is widely recognized to be difficult [67] and it is especially challenging 
with non-model organisms. This is because capture-rates may vary considerably 
depending on bait design, sample quality, species relatedness, batch effects, and 
stochastic factors [10, 68]. In most cases where targets showed a significant absence of 
mapped reads, we observe a small amount of reads being (mis)mapped against reference 
targets when none are expected, for instance (visible in the PAV-spotter output figures and 
the IGV screenshots). Occasionally, these consist of (clipped/partially matching) reads, 
something that can be caused by sequencing errors, chimeric reads, errors in the 
reference sequence, tandem duplications, or genomic rearrangements and structural 
variants [69, 70].   
   A solution to remove any unwanted (mis-)mapped reads would be to filter more 
strictly upstream. However, in case of samples or targets that show poor or limited 
coverage – an issue that is not uncommon with target capture procedures [71] – strict 
filtering may not be desired. This means that, due to this potential stochasticity, merely 
using existing tools to check whether there are any mapped reads at all in a sample/target 
(i.e. checking for the presence of zero reads versus >0 reads), or building de novo 
assembled contigs per target on a sample-per-sample basis, will not be sufficient to 
identify PAV accurately. Our method offers an alternative solution, as PAV-spotter appears 
robust enough to detect PAV, even in the face of low coverage and (partially) mis-mapped 
and clipped reads. However, the trade-off in false positive and false negative outcomes 
will largely depend on the similarity thresholds and other criteria set by users, as well as 
on any manual, double-checks performed.  
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In conclusion, we show that considering the genomic position as a variable for signal 
displacement instead of time – which is generally the case in more classic cross-
correlation applications [29] – makes it possible to identify markers of PAV/structural 
variation in target capture data, without needing any prior knowledge on large-scale, 
genomic context. Our study shows that a multidisciplinary bioengineering and 
biotechnological approach can help bioinformatics, and thus the fields of evolutionary and 
molecular research, forward when dealing with challenging research questions, datasets, 
and study organisms.  
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