
Enhancing autonomy and efficiency in goal-conditioned
reinforcement learning
Yang, Z.

Citation
Yang, Z. (2025, February 26). Enhancing autonomy and efficiency in goal-
conditioned reinforcement learning. SIKS Dissertation Series. Retrieved from
https://hdl.handle.net/1887/4196074

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis
in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/4196074

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/4196074

Chapter 3

World Models Increase
Autonomy in Reinforcement
Learning

Authors: Zhao Yang, Thomas M. Moerland, Mike Preuss, Aske Plaat, Edward S. Hu
In submission

17

Abstract
Reinforcement learning (RL) is an appealing paradigm for training intelligent agents,
enabling policy acquisition from the agent’s own autonomously acquired experience.
However, the training process of RL is far from automatic, requiring extensive human
effort to reset the agent and environments.

To tackle the challenging reset-free setting, we first demonstrate the superiority of
model-based (MB) RL methods in such setting, showing that a straightforward applica-
tion of MBRL can outperform all the prior state-of-the-art methods while requiring less
supervision. We then identify limitations inherent to this direct extension and propose
a solution called model-based reset-free (MoReFree) agent, which further enhances the
performance. MoReFree adapts two key mechanisms, exploration and policy learning,
to handle reset-free tasks by prioritizing task-relevant states. It exhibits superior
data-efficiency across various reset-free tasks without access to environmental reward
or demonstrations while significantly outperforming privileged baselines that require
supervision. Our findings suggest model-based methods hold significant promise for
reducing human effort in RL. Website: https://sites.google.com/view/morefree

18

https://sites.google.com/view/morefree

Chapter 3. World Models Increase Autonomy in Reinforcement
Learning

3.1 Introduction

Reinforcement learning presents an attractive framework for training capable agents.
At first glance, RL training appears intuitive and autonomous - once a reward is
defined, the agent learns from its own automatically gathered experience. However,
in practice, RL training often assumes the access to environmental resets that can
require significant human effort to setup, which poses a significant barrier for real
world applications of RL like robotics.

Most RL systems on real robots to date have employed various strategies to imple-
ment resets, all requiring a considerable amount of effort (Levine et al., 2016; Naga-
bandi et al., 2020; Yahya et al., 2017; Zhu et al., 2019). In Nagabandi et al. (2020)’s
work, which trains a dexterous hand to rotate balls, the practitioners had to (1) posi-
tion a funnel underneath the hand to catch dropped balls, and (2) deploy a separate
robot arm to pick up the dropped balls for resets, and (3) script the reset behav-
ior. These illustrate that even for simple behaviors, proper implementation of reset
mechanisms can result in significant human effort and time.

Figure 3.1: Performance and collected data
of different agents on the reset-free Ant loco-
motion task.

Rather than depending on human-
engineered reset mechanisms, the agent
can operate within a reset-free training
scheme, learning to reset itself (Eysen-
bach et al., 2017; Haldar et al., 2023;
Sharma, Gupta, et al., 2021; Sharma
et al., 2022) or train a policy capable
of starting from diverse starting states
(Zhu et al., 2020). However, the absence
of resets introduces unique exploration
challenges. Without periodic resets, the
agent can squander significant time in
task-irrelevant regions that require care-
ful movements to escape and may overex-
plore, never returning from indefinite exploration. Recent unsupervised model-based
RL (MBRL) approaches (E. S. Hu et al., 2023; Mendonca et al., 2021) in the episodic
setting have shown sophisticated exploration, high data-efficiency and promising re-
sults in long-horizon tasks. This prompts the question: would MBRL agents excel in
the reset-free RL setting?

As an initial attempt, we first evaluate an unsupervised MBRL agent, in a reset-

19

Introduction

free Ant locomotion task. The ant is reset to the center of a rectangular arena, and is
tasked with navigating to the upper right corner. The agent is reset only once at the
start of training. The evaluation is episodic - the agent is reset at the start of each
evaluation episode.

For the MBRL agent, we use PEG (E. S. Hu et al., 2023), which was developed
to solve hard exploration tasks in the episodic setting. As seen in Figure 3.1, PEG,
with minor modifications for the reset-free version, outperforms prior state-of-the-art,
model-free agent, IBC (J. Kim et al., 2023), tailored for the reset-free setting.

In Figure 3.1, we plot state visitation heatmaps of the agents, where lighter colors
correspond to more visitations. The oracle agent, with access to resets, explores the the
“task-relevant” area between the initial and top right corner, which is ideal for training
a policy that succeeds in episodic evaluation. IBC’s heatmap (bottom) shows that it
fails to explore effectively, never encountering the goal states in the top right region.
In contrast, PEG exhaustively explores the entire space, as seen through its uniform
heatmap. This results in an overexploration problem - PEG may devote considerable
time on finding irrelevant states rather than concentrating on the task-relevant region
of the task. This leads us to ask: how can MBRL agents acquire more task-
relevant data in the reset-free setting to improve its performance?

We propose Model-based, Reset-Free (MoReFree), which improves two key mech-
anisms in model-based RL, exploration and policy optimization, to better handle reset-
free training. Following the top row of Figure 3.2: to gather task-relevant data without
resets, we define a training curriculum that alternates between temporally extended
phases of task solving, resetting, and exploration. Next, as seen in the bottom row
of Figure 3.2, we bias the policy training within the world model towards achieving
task-relevant goals such as reaching initial states and evaluation states.

Our key contributions are as follows: (1) We demonstrate the viability of using
model-based agents with strong exploration abilities for the reset-free setting as well as
their inherent limitations. We address such limitations through the MoReFree frame-
work which focuses exploration and policy optimization on task-relevant states. (2)
We evaluate the adapted reset-free version of MBRL baseline and MoReFree against
state-of-the-art reset-free methods in 8 challenging reset-free tasks ranging from ma-
nipulation to locomotion. Notably, both model-based approaches outperform prior
state-of-the-art baselines in 7/8 tasks in final performance and data efficiency, all the
while requiring less supervision (e.g. environmental reward or demonstrations). MoRe-
Free outperforms the model-based baseline in the 3 hardest tasks. (3) We perform
in-depth analysis of the MoReFree and baselines behaviors, and show that MoReFree

20

Chapter 3. World Models Increase Autonomy in Reinforcement
Learning

explores the state space thoroughly while retaining high visitation counts in the task-
relevant regions. Our ablations show that the performance gains of MoReFree come
from the proposed design choices and justify the approach.

: sampled goal : goal-cond. policy : exploration policy

: sampled goal : goal-cond. policy

: sampled goalImagined Practice Achieving
Eval Goal

Practice Achieving
Initial State

Practice Achieving
Random State

∞ …

Real

Figure 3.2: MoReFree is a model-based RL agent for solving reset-free tasks. Top row:
MoReFree strikes a balance between exploring unseen states and practicing optimal behavior
in task-relevant regions by directing the goal-conditioned policy to achieve evaluation states,
initial state states (emulating a reset), and exploratory goals. Bottom row: MoReFree
focuses the goal-conditioned policy training inside the world model on achieving evaluation
states, initial states, and random replay buffer states to better prepare the policy for the
aforementioned exploration scheme.

3.2 Related Work
Reset-free RL: There is a growing interest in researching reinforcement learning
methods that can effectively address the complexities of reset-free training. Sharma,
Xu, et al., 2021 proposes a reset-free RL benchmark (EARL) and finds that standard
RL methods like SAC (Haarnoja, Zhou, Hartikainen, et al., 2018) fail catastrophically
in EARL. Multiple approaches have been proposed to address reset-free training, which
we now summarize. One approach is to add an additional reset policy, to bring the
agent back to suitable states for learning (Eysenbach et al., 2017; J. Kim et al., 2022,
2023; Sharma, Gupta, et al., 2021; Sharma et al., 2022). LNT (Eysenbach et al., 2017)
and J. Kim et al., 2022 train a reset policy to bring the agent back to initial state
distribution, supervised by dense rewards and demonstrations respectively. MEDAL
(Sharma et al., 2023, 2022), train a goal-conditioned reset policy and direct it to
reset goal states from demonstrations. IBC (J. Kim et al., 2023) defines a curriculum
for both task and reset policies without requiring demonstrations. VaPRL (Sharma,

21

Related Work

Gupta, et al., 2021) trains a single goal-conditioned policy to reach high value states
close to the initial states. Instead of guiding the agent back to familiar states, R3L
(Zhu et al., 2020) and Xu et al., 2020 learn to reset the policy to diverse initial states,
resulting in a policy that is more robust to variations in starting states. However, such
methods are limited to tasks where exploration is unchallenging. The vast majority
of reset-free approaches are model-free, with a few exceptions (K. Lu, Grover, et al.,
2020; K. Lu, Mordatch, & Abbeel, 2020). Other works (Gupta et al., 2021; Smith
et al., 2019) model the reset-free RL training process as a multi-task RL problem and
require careful definition of the task distribution such that the tasks reset each other.

Goal-conditioned Exploration: A common theme running through the afore-
mentioned work is the instantiation of a curriculum, often through commanding goal-
conditioned policies, to keep the agent in task-relevant portions of the environment
while exploring. Closely related is the subfield of goal-conditioned exploration in RL,
where a goal-conditioned agent selects its own goals during training time to generate
data. There is a large variety of approaches for goal selection, such as task progress
(Baranes & Oudeyer, 2013; Veeriah et al., 2018), intermediate difficulty (Florensa
et al., 2018), value disagreement (Y. Zhang et al., 2020), state novelty (Pitis et al.,
2020; Pong et al., 2019), world model error (E. S. Hu et al., 2023; Sekar et al., 2020),
and more. Many goal-conditioned exploration methods use the “Go-Explore” (Ecoffet
et al., 2021) strategy, which first selects a goal and runs the goal-conditioned pol-
icy (“Go”-phase), and then switches to an exploration policy for the latter half of
the episode (“Explore”-phase). PEG (E. S. Hu et al., 2023), which MoReFree uses,
extends Go-Explore to the model-based setting, and utilizes the world model to plan
states with higher exploration value as goals. However, such methods are not designed
for the reset-free RL setting, and may suffer from over-exploration of task-irrelevant
states.

Table 3.1: A conceptual overview of reset-free methods. Existing methods are model-free,
and most of them require other forms of supervision (environmental reward or demonstra-
tions or both). In performance, MoReFree improves over reset-free PEG, which significantly
outperforms privileged baselines IBC, MEDAL and R3L.

Approach MEDAL IBC VaPRL R3L reset-free PEG MoReFree
Model-based ! ! ! ! " "

Demonstrations " ! " ! ! !
Environmental reward " " " ! ! !

We notice that the majority of all prior work are model-free and may suffer from
poor sample efficiency and exploration issues. In contrast, our model-based approaches

22

Chapter 3. World Models Increase Autonomy in Reinforcement
Learning

use world models to efficiently train policies and perform non-trivial goal-conditioned
exploration with minimal supervision. See Table 3.1 for a conceptual comparison
between prior work and two model-based methods (MoReFree and reset-free PEG).

3.3 Preliminaries

3.3.1 Reset-free RL

We follow the definition of reset-free RL from EARL (Sharma, Xu, et al., 2021), and
extend it to the goal-conditioned RL setting. Consider the goal-conditioned Markov
decision process (MDP) M = (S,G,A, p, r, ρ0, ρg∗ , γ). At each time step t in the state
st ∈ S, a goal-conditioned policy π(·|st, g) under the goal command g ∈ G selects an
action at ∈ A and transitions to the next state st+1 with the probability p(st+1|st, at),
and gets a reward r(st, at, g). ρ0 is the initial state distribution, ρg∗ is the evaluation
goal distribution, and γ is the discount factor.

The learning algorithm A is defined: {si, ai, si+1}t−1
i=0 $→ (at,πt), which maps the

transitions collected until the time step t to the action at the agent should take in the
non-episodic training and the best guess πt of the optimal policy π∗ on the evaluation
goal distribution (ρg∗). In reset-free training the agent will only be reset to the initial
state s0 ∼ ρ0 a few times. The evaluation of agents is still episodic. The agent always
starts from s0 ∼ ρ0, and is asked to achieve g ∼ ρg∗ . The evaluation objective for a
policy π is:

J(π) = Es0∼ρ0,g∼ρg∗ ,aj∼π(·|sj ,g),sj+1∼p(·|sj ,aj)[
T∑

j=0

γjr(sj , aj , g)], (3.1)

where T is the total time steps during the evaluation. The goal of algorithm A during
the reset-free training is to minimize the performance difference D(A) of the current
policy πt and the optimal policy π∗:

D(A) =
∞∑

t=0

(J(π∗)− J(πt)). (3.2)

In summary, the algorithm A should output an action at that the agent should take
in the non-episodic data collection and a policy πt that can maximize J(πt) at every
time step t based on all previously collected data.

23

Preliminaries

3.3.2 Model-based RL setup

Recent goal-conditioned MBRL approaches like LEXA (Mendonca et al., 2021) and
PEG (E. S. Hu et al., 2023) train goal-conditioned policies purely using synthetic data
generated by learned world models. Their robust exploration demonstrate significant
success in solving long-horizon goal-conditioned tasks. In the reset-free setting, strong
exploration is crucial, as the agent can no longer depend on episodic resets to bring it
back to task-relevant areas if it gets stuck. Therefore, we select PEG as the backbone
MBRL agent for its strong exploration abilities and sample efficiency.

PEG (E. S. Hu et al., 2023) is a model-based Go-Explore framework that extends
LEXA (Mendonca et al., 2021), an unsupervised goal-conditioned variant of Dream-
erV2 (Hafner et al., 2020). The following components are parameterized by θ and
learned:

world model: T̂θ(st|st−1, at−1)

goal conditioned policy: πG
θ (at|st, g) goal conditioned value: V G

θ (st, g)

exploration policy: πE
θ (at|st) exploration value: V E

θ (st)

(3.3)

The world model is a recurrent state-space model (RSSM) which is trained to
predict future states and is used as a learned simulator to train the policies and value
functions. The goal-conditioned policy πG

θ is trained to reach random states sampled
from the replay buffer. The exploration policy πE

θ is trained on an intrinsic motivation
reward that rewards world model error, expressed through the variance of an ensemble
(Sekar et al., 2020). Both policies are trained on simulated trajectory rollouts in the
world model.

! Self-supervised Goal-reaching Reward Function: Rather than assuming
access to the environmental reward, PEG learns its own reward function. PEG uses a
dynamical distance function (Hartikainen et al., 2019) as the reward function within
world models, which predicts the number of actions between a start and goal state.
The distance function is trained on random state pairs from imaginary rollouts of
πG
θ . πG

θ is then trained to minimize the dynamical distance between its states and
commanded goal state in imagination. See Mendonca et al., 2021 for more details.

! Phased Exploration via Go-Explore: For data-collection, PEG employs the
Go-Explore strategy. In the “Go”-phase, a goal is sampled from some goal distribution
ρ. The goal-conditioned policy, conditioned on the goal is run for some time horizon
HG, resulting in trajectory τg.

Then, in the “Explore”-phase, starting from the last state in the “Go”-phase, the

24

Chapter 3. World Models Increase Autonomy in Reinforcement
Learning

exploration policy is run for HE steps, resulting in τe. The interleaving of goal-
conditioned behavior with exploratory behavior results in more directed exploration
and informative data. This in turn improves accuracy of the world model, and the
policies that train inside the world model. See Algorithm 1 and Algorithm 2 for pseu-
docode. The choice of goal distribution ρ is important for Go-Explore. In easier tasks,
the evaluation goal distribution ρg∗ may be sufficient. But in longer-horizon tasks,
evaluation goals may be too hard to achieve. Instead, intermediate goals from an
exploratory goal distribution ρE can help the agent explore. We choose PEG, which
generates goals by planning through the world model to maximize exploration value
(see E. S. Hu et al., 2023 for details).

3.4 Method
As motivated in Section 3.1 and Figure 3.1, the
direct application of PEG to the reset-free setting
shows promising performance but suffers from over-
exploration of task-irrelevant states. To adapt model-
based RL to the reset-free setting, we introduce MoRe-
Free, a model-based approach that improves PEG
to handle the lack of resets and overcome the over-
exploration problem. MoReFree improves two key
mechanisms of MBRL for reset-free training: explo-
ration and policy training.

3.4.1 Back-and-Forth Go-Explore

First, we introduce MoReFree’s procedure for collecting new datapoints in the real
environment. PEG (E. S. Hu et al., 2023) already has strong goal-conditioned explo-
ration abilities, but was developed for solving episodic tasks. Without resets, PEG’s
Go-Explore procedure can undesirably linger in unfamiliar but task-irrelevant portions
of the state space. This generates large amounts of uninformative trajectories, which
in turn degrades world model learning and policy optimization.

MoReFree overcomes this by periodically directing the agent to return to the states
relevant to the task (i.e. initial and evaluation goals). We call this exploration pro-
cedure “Back-and-Forth Go-Explore”, where we sample pairs of initial and evaluation
goals and ask the agent to cycle back and forth between the goal pairs, periodically

25

Method

interspersed with exploration phases (see Figure 3.2 top row).
Now, we define the “Back-and-Forth Go-Explore” strategy as seen in Algorithm

3. First, we decide whether to perform initial / evaluation state directed exploration.
With probability α, we sample goals (g∗, g0) from ρg∗ , ρ0 respectively. Then, we ex-
ecute the Go-Explore routine for each goal. We name Go-Explore trajectories condi-
tioned on initial state goals as “Back” trajectories, and Go-Explore trajectories con-
ditioned on evaluation goals as “Forward” trajectories. With probability 1 − α, we
execute exploratory Go-Explore behavior by sampling exploratory goals from PEG.
The difference between reset-free PEG and MoReFree can be seen in Algorithm 2,
unlike PEG, MoReFree employs the “Back-and-Forth Go-Explore”.

By following this exploration strategy, the agent modulates between various Go-
Explore strategies, alternating between solving the task by pursuing evaluation goals,
resetting the task by pursuing initial states, and exploring unfamiliar regions via ex-
ploratory goals.

3.4.2 Learning to Achieve Relevant Goals in Imagination

Next, we describe how MoReFree trains the goal-conditioned policy in the world model.
To train πG

θ , MoReFree samples various types of goals and executes πG
θ (· | ·, g) inside

the world model to generate “imaginary” trajectories. The trajectory data is scored

26

Chapter 3. World Models Increase Autonomy in Reinforcement
Learning

using the learned dynamical distance reward mentioned in Section 3.3.2 , and the policy
is updated to maximize the expected return. This procedure is called imagination
(Hafner et al., 2019), and allows the policy to be trained on vast amounts of synthetic
trajectories to improve sample efficiency.

First, we choose to sample evaluation goals from ρg∗ since the policy will be evalu-
ated on its evaluation goal-reaching performance. Next, recall that Back-and-Forth Go-
Explore procedure also samples initial states from ρ0 as goals for the Go-phase to emu-
late resetting behavior. Since we would like πG

θ to succeed in such cases so that the task
is
reset, we will also sample from ρ0. Fi-
nally, we sample random states from
the replay buffer to increase πG

θ ’s abil-
ity to reach arbitrary states. The sam-
pling probability for each goal type is
set to α/2,α/2, 1 − α respectively. In
other words, MoReFree biases the goal-
conditioned policy optimization proce-
dure to focus on achieving task-relevant
goals (i.e. evaluation and initial states),
as they are used during evaluation and
goal-conditioned exploration to condi-
tion the goal-reaching policy (see Fig-
ure 3.2 bottom row). This leads to additional changes of line 13 in Algorithm 2.

3.4.3 Implementation Details

Our work builds on the top of PEG (E. S. Hu et al., 2023), and we use its default
hyperparameters for world model, policies, value functions and temporal reward func-
tion. We set the length of each phase for Go-Explore (HG,HE) to half the evaluation
episode length for each task. We set the default value of α = 0.2 for all tasks (never
tuned). See Section 3.7.3 for more details and the supplemental for MoReFree code.

3.5 Experiments
We evaluate three MBRL methods (PEG (E. S. Hu et al., 2023), the extension reset-
free PEG and our proposed method MoReFree) and four competitive reset-free base-

27

Experiments

PointUMaze Tabletop

Push and PP (hard) Ant

Sawyer Door

Fetch Push and PP

PointUMaze Tabletop

Push and PP (hard) Ant

Sawyer Door

Fetch Push and PP

Figure 3.3: We evaluate MoReFree on eight reset-free tasks ranging from navigation to
manipulation. PP is short for Pick&Place.

lines on eight reset-free tasks. We aim to address the following questions: 1) Do MBRL
approaches work well in reset-free tasks in terms of sample efficiency and performance?
2) What limitations arise from running MBRL in the reset-free setting, and does our
proposed solution MoReFree address them? 3) What sorts of behavior do MoReFree
and baselines exhibit in such tasks, and are our design choices for MoReFree justified?

Baselines: All baselines except for R3L are implemented using official codebases,
see Section 3.7.2 for details.

• PEG (E. S. Hu et al., 2023) is the original episodic PEG in which exploratory
goals are only sampled once at the beginning of each episode (in the reset-free
setting, the episode is extremely long). The goal-conditioned policy and the
exploration policy are then executed for the first half and second half of the
episode, respectively.

• reset-free PEG is a straightforward extension of PEG to the reset-free setting.
Exploratory goals are sampled every HG+HE steps. Then, the goal-conditioned
policy is executed for HG steps followed by the exploration policy being executed
for HE steps.

• MEDAL (Sharma et al., 2022) requires demonstrations and trains two policies,
one for returning to demonstration states and another that achieves task goals.

• IBC (J. Kim et al., 2023) is a competitive baseline that outperforms prior reset-
free work (e.g. MEDAL, VaPRL) by defining a bidirectional curriculum for the
goal-conditioned forward and backwards (i.e. reset) policies trained using the
environmental reward.

• R3L (Zhu et al., 2020) trains two policies, one for achieving task goals and
another that perturbs the agent to novel states. Notably, it is the only baseline
that operates without any additional assumptions (i.e. environmental rewards,
demonstrations, and resets).

28

Chapter 3. World Models Increase Autonomy in Reinforcement
Learning

• Oracle is SAC (Haarnoja, Zhou, Hartikainen, et al., 2018) trained under the
episodic setting on the environmental reward.

Note that most baselines enjoy some advantage over two MBRL methods: MEDAL,
IBC and Oracle use ground truth environmental reward, while MEDAL also uses
demonstrations and Oracle uses resets. See Table 3.1 for a conceptual comparison
between MoReFree and prior work.

Environments: We evaluate MoReFree and baselines on eight tasks (see Fig-
ure 3.3). We select five tasks from IBC’s evaluation suite of six tasks; (Fetch Reach is
omitted because it is trivially solvable). Next, we increased the complexity of the two
hardest tasks from IBC, Fetch Push and Fetch Pick&Place, by extending the size of
the workspace, replacing artificial workspace limits (which cause unrealistic jittering
behavior near the limits, see the website for videos) with real walls, and evaluating on
harder goal states (i.e. Pick&Place goals only in the air rather than including ones
on the ground). In addition, we contributed a difficult locomotion task, Ant, which is
adapted from the PEG codebase (E. S. Hu et al., 2023). All methods are run with 5
seeds, and the mean performance and standard error are reported. During the evalua-
tion, the performance on tasks with randomly sampled goals from ρg∗ is measured by
averaging over 10 episodes. See Section 3.7 for more experimental details.

3.5.1 Results
As shown in Fig 3.4, two reset-free model-based methods (MoReFree and reset-free
PEG), without demonstrations or access to environmental reward, outperform other
baselines with privileged access to supervision in both final performance and sample
efficiency in 7/8 tasks. We observe that the two reset-free MBRL methods learn good
behaviors: the pointmass agent hugs the wall of the UMaze to minimize travel time
and the Fetch robot deftly pushes and picks up the block into multiple target locations.
MoReFree is always competitive with or outperforms reset-free PEG, with large gains
in the 3 hardest tasks: Push (hard) by 45%, Pick&Place (hard) by 13% and Ant
(hard) by 36%. We observe that MoReFree learns non-trivial reset behaviors such as
picking and pushing blocks back into the center of the table for the hard variants of the
Fetch manipulation tasks. However, the original PEG performs poorly, suggesting that
directly applying episodic MBRL methods in a reset-free setting without adaptations
yields suboptimal results. See the website for videos of MoReFree and baselines.

In many tasks, the baselines fail to learn at all. We believe this is due the low
sample budget, which may be too low for the baselines to fully explore the environment

29

Experiments

PushSawyer DoorPointUMaze Tabletop

Su
cc

es
s

ra
te

Pick&Place Push (hard)

Su
cc

es
s

ra
te

AntPick&Place (hard)

Figure 3.4: Two reset-free MBRL methods (MoReFree and reset-free PEG) significantly
outperform baselines in 7/8 tasks. However, directly applying PEG works poorly. In 4 tasks,
only MBRL methods are able to learn meaningful behavior, showcasing MBRL’s sample
efficiency in the reset-free setting. MoReFree outperforms reset-free PEG in the 3 most
difficult tasks.

and learn the proper resetting behaviors necessary to train the actual task policy. In
Section 3.11, we increased the training budget by 3× for the IBC baseline and it
still fails, underscoring the difficulty of the tasks and the sample-efficiency gains of
MoReFree and MBRL. On the other hand, we noticed that one environment, Sawyer
Door, seemed particularly hard for MBRL agents to solve. We hypothesize that the
dynamics of the task are hard to model, resulting in performance degradation for
model-based approaches (see Section 3.10 for more analysis).

3.5.2 Analysis

To explain the performance differences between MoReFree and baselines, we closely
analyze the exploration behaviors.

MoReFree focuses on task-relevant states. In Figure 3.5 we visualize the
state visitation heatmaps of methods in various environments, and also compute the
percentage of “task-relevant” states (initial and goal regions, highlighted with white
borders). We highlight two trends. First, the heatmaps show that MoReFree and reset-
free PEG explore thoroughly while baselines have more myopic exploration patterns,
as seen in the Ant heatmaps at the top.

Next, performance differences between reset-free PEG and MoReFree are intu-

30

Chapter 3. World Models Increase Autonomy in Reinforcement
Learning

Push

13.2% 9.8%

Pick&Place (hard)

MoReFree reset-free PEG MoReFree reset-free PEG

MoReFree reset-free PEG IBC MEDAL R3L

22.7% 11.4%

83.6%83.6%

Push (hard)

 74.5%79.7%

Pick&Place

Ant

6.1% 1.3%

Figure 3.5: State visitation heatmaps of different agents. White areas are task-relevant
states (including initial and goal state distributions) and we overlay the percentages of task-
relevant states. reset-free MBRL methods explore more and in harder environments, MoRe-
Free experiences more task-relevant states.

itively explained by the amount of task-relevant data collected by each agent. In eas-
ier environments like Push or Pick&Place where both reset-free PEG and MoReFree
encounter similar amounts of task-relevant states, the performance is roughly similar
between reset-free PEG and MoReFree. But in harder environments (Ant, Push (hard),
Pick&Place (hard)) with larger state spaces and more complicated resetting dynamics,
MoReFree collects 1.3− 5× more task-relevant data and has large performance gains
over reset-free PEG. By experiencing more task-relevant states and training policies
on them in imagination, MoReFree policies are more suited towards succeeding at the
episodic evaluation criteria. See Section 3.8 for additional visualizations.

MoReFree effectively resets. Next, we investigate the qualitative behavior
of MoReFree’s Back-and-Forth Go-Explore. To see if “Back” trajectories help free
the agent from the sink states, we analyze the replay buffer of MoReFree for the
environments, and plot the starting locations of the agent / object up to 100 timesteps
before a successful “Back” trajectory is executed in Figure 3.6. The color intensity of
the dots correspond to state density over the last 100 steps (i.e. dark red means the

31

Experiments

Push (hard) Pick&Place (hard)

PointUMaze Tabletop Ant (hard)

Push (hard) Pick&Place (hard)

PointUMaze Tabletop Ant (hard)

Push (hard) Pick&Place (hard)

PointUMaze Tabletop Ant

Push (hard) Pick&Place (hard)

PointUMaze Tabletop AntPush (hard) Pick&Place (hard)

PointUMaze Tabletop Ant

Figure 3.6: We visualize the start position (red dots) of successful “Back” trajectories of
MoReFree’s Back-and-Forth Go-Explore, where πG

θ is directed to reset the environment. The
color intensity of the dots correspond to state density over the last 100 steps.

agent / object has rested there for a while). We observe that the starting locations
(red dots) of the agent / object are in corners or next to walls in all environments. This
suggests that these areas act as sink states, where the agent / object would remain for
long and waste time. We observe that MoReFree learns reset behaviors like picking
the block out of corners and walls in Fetch Push and Fetch Pick&Place. See detailed
videos of the reset behavior on the website.

3.5.3 Ablations

To justify our design choices, we ablate the two mechanisms of MoReFree, the back-
and-forth exploration and task-relevant goal-conditioned policy training, and plot the
results in Figure 3.7. First, removing all mechanisms (MF w/o Explore & Imag.)
reduces to reset-free PEG, and we can see a large gap in performance. Next, MF with
Only Task Goals sets α = 1, which causes an extreme bias towards task-relevant
states in the exploration and policy training. This also degrades performance, due to
the need for strong exploration in the reset-free setting. Examinations of more values
for α can be found in Section 3.7.3.

Finally, we isolate individual components of MoReFree. First, we disable Back-
and-Forth Go-Explore by disallowing the sampling of initial or evaluation goals during
Go-Explore. Only exploratory goals are used in Go-Explore for this ablation (named
MF w/o BF-GE). Next, in MF w/o Imag. we turn off the initial / evaluation
goal sampling in imagination, so only random replay buffer goals are used to train
πG
θ . We see that both variants perform poorly. This is somewhat intuitive, as the two

components rely on each other. Having both forms a synergistic cycle where 1) the
goal-conditioned policy’s optimization is more focused towards reaching initial / goal
states, and 2) the exploration is biased towards reaching initial / goal states by using
the goal-conditioned policy we just optimized in step 1. If we remove one without the

32

Chapter 3. World Models Increase Autonomy in Reinforcement
Learning

Figure 3.7: Ablations on 5 variants of MoReFree over 3 hard environments, Push (hard),
Pick&Place (hard) and Ant, with normalized final performance.

other, then the cycle breaks down. In MF w/o Imag., Back-and-Forth Go-Explore
will suffer since πG

θ trained on random goals cannot reliably reach initial / evaluation
goals. In MF w/o BF-GE, the exploration strategy will not seek initial / evaluation
states, resulting in an inaccurate world model and degraded policy optimization. In
summary, the ablations show that MoReFree’s design is sound and is the major factor
behind its success in the reset-free setting. See Section 3.9 for details.

3.6 Conclusion and Future Work
As a step towards reset-free training, we adapt model-based methods to the reset-
free setting and demonstrate their superior performance. Specifically, we show that
with minor modifications, unsupervised MBRL method substantially outperforms the
state-of-the-art model-free baselines tailored for the reset-free setting while being more
autonomous (requires less supervision like environmental reward or demonstrations).
We then identify a limitation of unsupervised MBRL in the reset-free setting (over-
exploration on task-irrelevant states), and propose MoReFree to address such limi-
tations by focusing model-based exploration and goal-conditioned policy training on
task-relevant states. We conduct a through experimental study of MoReFree and base-
lines over 8 tasks, and show considerable performance gains over the MBRL baseline
and prior state-of-the-art reset-free methods. Despite its overall success, MoReFree
is not without limitations. Being a model-based approach, it inherits all associated
disadvantages. For example, we believe Sawyer Door is a task where learning the

33

Experimental Details

dynamics is harder than learning the policy (see Section 3.10), disadvantaging MBRL
approaches. Next, MoReFree uses a fixed percentage of task-relevant goals for explo-
ration and imagination, whereas future work could consider an adaptive curriculum.
Finally, scaling MoReFree to high-dimensional observations would be a natural exten-
sion. We hope MoReFree inspires future efforts in increasing autonomy in RL.

3.7 Experimental Details

3.7.1 Environments

PointUMaze: The state space is 7D and the action space is 2D. The initial state is
(0, 0), which located in the bottom-left corner, and noise sampled from U(−0.1, 0.1) is
added when reset. The goal during the evaluation is always located in at the top-left
corner of the U-shape maze. The maximum steps during the evaluation is 100. Hard
reset will happen after every 2e5 steps. In the whole training process we performed,
it only reset once at the beginning of the training. Taken from the IBC (J. Kim et al.,
2023) paper.

Tabletop: The state space is 6D, and the action space is 3D. During the evaluation,
four goal locations are sampled in turn, the initial state of the agent is always fixed
and located in the center of the table. The maximum steps during the evaluation is
200. Hard reset will happens after every 2e5 steps. In the whole training process we
performed, it only reset once at the beginning of the training. Taken from the EARL
(Sharma, Xu, et al., 2021) benchmark and also used in the IBC paper.

Sawyer Door: The state space is 7D and the action space is 4D. The position
of door is initialized to open state (60 degree with noise sampled from (0, 18) degree)
and the goal is always to close the door (0 degree). The arm is initialized to a fixed
location. Maximum number of steps is 300 for the evaluation. Hard reset will happen
after every 2e5 steps. In the whole training process we performed, it resets twice.
Taken from the EARL (Sharma, Xu, et al., 2021) benchmark and also used in the IBC
paper.

Fetch Push and Pick&Place: The state space is 25D and action space is 4D.
These are taken from the IBC paper. Authors converted the original Fetch environ-
ments to a reversible setting by defining a constraint on the block position. The initial
and goal distributions are identical to the original Fetch Push and Pick&Place. More
details can be found in the IBC paper.

Push (hard): Different from the original Fetch Push task, in our case walls are

34

Chapter 3. World Models Increase Autonomy in Reinforcement
Learning

added to prevent the block from dropping out of the table. The workspace of the
robot arm is also limited. The block is always initialized to a fixed location, and goal
distribution during the evaluation is U(−0.15, 15). Fetch Push used in the IBC paper,
the block is limited by joint constraint, which shows unrealistic jittering behaviors
near the limits (we observe such phenomenon by running model-based go-explore, the
exploration policy prefers to always interact with the block and keep pushing it towards
the limit boundary, see videos on our project website 1). Meanwhile, the gripper is
blocked, which makes the task easier. In our case, we release the gripper and it can
now open and close again which add two more dimension of the state space. We found
it is important to release the gripper in our version of Push task, when the block is
in corners, it will need to operate the gripper to drag the block escape from corners.
The maximum steps the agent can take in 50 during the evaluation. Hard reset will
happen after every 1e5 steps. In the whole training process we performed, it resets 5
times in total.

Pick&Place (hard): We add walls in the same way as we did for Push (hard).
We make it more difficult by only evaluating the agent on goals that are in the air.
Then it has to learn to perform picking behavior properly, whereas goals on the ground
can just be solved by pushing. The goal will be uniformly sampled from a 5× 5× 10

cm cubic area above the table. It has the same observation space, action space, initial
state and maximum steps with Fetch Push described above. Hard reset will happens
after every 1e5 steps. In the whole training process we performed, it resets 5 times
in total. See the visual difference between our Pick&Place and IBC’s in Figure 3.3.
Since the workspace of the robot is limited within the walls as well in Push (hard)
and Pick&Place (hard), when the block gets stuck in corners, the robot needs to
precisely move to the corner and bring the block back. In contrast, the robot in IBC’s
version can move to everywhere, being able to create various circumstance to solve
such difficult position.

Ant: We adapt the AntMaze task from environments2 codebase of PEG and
change the shape of the maze to square, also change the evaluation goal distribution
to be a uniform distribution U(2, 3) for both x and y location, which lies on the top-left
corner of the square. The ant is always initialized to the center point (0, 0) of the
square to start from, with uniform noise (U(−0.1, 0.1)) added. The state space is 29D
and the action space is 8D. The maximum steps for evaluation is 500. Hard reset will
happen after every 2e5 steps. In the whole training process we performed, it reset 4

1https://sites.google.com/view/morefree
2https://github.com/edwhu/mrl

35

https://sites.google.com/view/morefree
https://github.com/edwhu/mrl

Experimental Details

times in total.

3.7.2 Baseline Implementations
PEG: We use the official implementation of PEG3 and only optimize the exploratory
goal distribution once at the beginning of each reset-free training episode, i.e. HG and
HE are set to half of the reset-free episode length.

reset-free PEG: We extend the official implementation of PEG4 to reset-free
setting by 1) set HG and HE to half of the evaluation episode length; 2) optimizing
the goal distribution every HG +HE steps; 3) keeping all other hyperparameters the
same as MoReFree.

IBC: We use the official implementation from authors5 and keep hyperparameters
unchanged.

MEDAL: We follow the official implementation of MEDAL6 and use the deaf-
ult setting for experiments. Since MEDAL requires demonstrations, for tasks from
EARL benchmark, demonstrations are provided. For other environments, we generate
demonstrations by executing the final trained MoReFree to collect data. 30 episodes
are generated for each task.

R3L: We implement R3L agent by modifying the FBRL agent from MEDAL code-
base. The backward policy is replaced by an exploration policy trained using the
random network distillation (RND) objective (Burda et al., 2018). The RND imple-
mentation we follow is from DI-engine7.

Oracle: This is a episodic SAC agent, we use the implementation from MEDAL
codebase and keep all the hyper-parameters unchanged.

MoReFree: Our agent is built on the model-based go-explore method PEG (E. S.
Hu et al., 2023), we extend their codebase by adding back-and-forth goal sampling
procedure and training on evaluation initial and goal states in imagination goal-
conditioned policy training. See our codebase in the supplemental.

3.7.3 Hyperparameters
Train ratio (i.e. Update to Data ratio) is an important hyper-parameter in MBRL. It
controls how frequently the agent is trained. Every n steps, a batch of data is sampled

3https://github.com/penn-pal-lab/peg
4https://github.com/penn-pal-lab/peg
5https://github.com/snu-larr/ibc_official
6https://github.com/architsharma97/medal
7https://opendilab.github.io/DI-engine/12_policies/rnd.html

36

https://github.com/penn-pal-lab/peg
https://github.com/penn-pal-lab/peg
https://github.com/snu-larr/ibc_official
https://github.com/architsharma97/medal
https://opendilab.github.io/DI-engine/12_policies/rnd.html

Chapter 3. World Models Increase Autonomy in Reinforcement
Learning

Figure 3.8: Performance of MoReFree with different values of α in Push (hard).

from the replay buffer, the world model is trained on the batch, and then policies and
value functions are trained in imagination. In all our experiments, we only vary n

on different tasks. See the table below for different values on different tasks we used
through experiments. MoReFree also introduces a new parameter α, which we keep
α = 0.2 for all tasks and did not tune it at all. All other hyperparameters we keep the
same as the original code base.

Table 3.2: Different train ratio we used for different tasks. We keep all other hyperparam-
eters the same as default ones.

PointUMaze 2 Sawyer Door 5 Tabletop 1 Fetch Push 2
Fetch Pick&Place 2 Push (hard) 2 Pick&Place (hard) 2 Ant 2

Different values for α. We examine different values of α in MoReFree on Fetch
Push task, which affects how much MoReFree focuses on task-relevant goals in explo-
ration and imagination. In Figure 3.8, we see that introducing a moderate amount
of task-relevant goals (α=0.2, α=0.5) results in sensible performance, while too many
task-relevant goals (α=0.7, α=1.0) degrades performance. We use the same value of
alpha, 0.2, across all tasks, which showcases MoReFree ’s consistency.

37

More Visualizations on Replay Buffer

3.7.4 Results Clarification
In Push and Pick&Place results, we retrieved the final performance of MEDAL directly
from the IBC paper (dashed purple lines) and did not have time to run R3L in these
two environments. R3L is shown to be a lot worse than MEDAL in the MEDAL paper
and performs obviously bad in other tasks shown in Figure 3.4. In Push (hard) and
Pick&Place (hard), we ran R3L and MEDAL with less budget since other methods
clearly outperform and their learning curves do not show any evidence for going up.

3.7.5 Resource Usage
We submit jobs on a cluster with Nvidia 2080, 3090 and A100 GPUs. Our model-based
experiments take 1-2 days to finish, and the model-free baselines take half day to one
day to run.

3.8 More Visualizations on Replay Buffer
We visualize the replay buffer of different agents on more tasks. See Figure 3.9 for
XY location of the mug in Tabletop, Figure 3.11 for XY location data of the agent
in PointUMaze, Figure 3.10 for XZ location of the block in Pick&Place (hard) and
Figure 3.12 for XY location data of the block in Push (hard) and Pick&Place (hard).
Overall, we see MoReFree explores the whole state space better. Meanwhile, due
to back-and-forth procedure, MoReFree collects more data near initial / goal states,
which are important for the evaluation. However, IBC, MEDAL, R3L and Oracle all
fail to explore well; their heatmaps are mostly populated with low visitation cells.

3.9 Detailed Ablations
We report learning curves for each variant agent we ablate in Section 3.5.3 on every
task in Figure 3.13. Since MoReFree does not learn at all in Saywer Door task, we
exclude the ablation for it. In each task, MoReFree is better or on par with all other
ablations. Through learning curves, we see different components contribute differently
on different tasks.

We further analyze the ablation on PointUMaze as an example by visualizing the
replay buffer of different variants, see Figure 3.14. In the performance on PointUMaze
from Figure 3.13, sampling exploratory goals for data collection is important (MF w/o
Explore & Imag. outperforms other ablations). But we see in 3.14, MF w/o Explore

38

Chapter 3. World Models Increase Autonomy in Reinforcement
Learning

MoReFree IBC MEDAL Oracle

Tabletop
200k MEDAL,

100/50

reset-free PEG R3L

Figure 3.9: XY state visitation heatmap of the mug in Tabletop of various approaches.
MoReFree’s heatmap shows high state diversity while retaining high visitation counts near
the task-relevant states (red circles are goal states, the blue circle is the initial state). reset-
free PEG also shows diverse exploration, but it over-explores the bottom-right corner which
is entirely task-irrelevant. IBC’s bi-directional curriculum leads the exploration shuttles be-
tween the initial state and goal states, but fails to explore well. All other methods fail to
explore, visited states mostly cluster in few spots.

Fetch Pick&Place
x-z view
200k

[1.15, 1.55], [0.4, 0.55]
bins=50/vmax=5

MoReFree IBC MEDAL Oraclereset-free PEG R3L

Figure 3.10: XZ state visitation heatmap of the block in Pick&Place (hard). States above
the red line are in the air, which are crucial for solving the picking task. Two MBRL methods
collect more data diversely in the air, while other reset-free methods barely pick up the block.

Figure 3.11: State visitation heatmap on point maze. MoReFree has special focuses
on both initial state (blue circles) corner and goal state (red circles), while explore much
uniformly. MEDAL collects lots of data near the goal state and little data on the initial state.
Both MEDAL and Oracle explore less extensively.

& Imag. does not have focus on the initial / goal state which we care about for the
evaluation, which makes it slightly worse than MoReFree. MF with Only Task Goals
has a strong preference on initial / goal state, we think it is because in the later phase of

39

MBRL on Sawyer Door

Figure 3.12: Block state visitation heatmap on Fetch Push (left) and Fetch Pick&Place
(right) of different agents. MoReFree better explores the whole state space, while IBC and
MEDAL do not have too much interactions with the block, thus lighted areas are scattered
everywhere.

the training when the agent is able to solve the task, it goes back-and-forth consistently
to collect data. But in the early phase of the training, it might lack exploration which
causes the degraded performance compare with MoReFree. MF w/o Explore and MF
w/o Imag. only either go to initial / goal state for data collection and do not practice
on it during the imagination training, or practice without really going, which both
does not form the positive cycle, and end up with poor performance.

3.10 MBRL on Sawyer Door
We investigate why two MBRL methods fail on Sawyer Door tasks. Note that MoRe-
Free is able to solve intermediate goals such as closing the door in some angles, but is
unable to solve the original IBC evaluation goal (see website for more videos).

We simplify Sawyer Door task by limiting the movement range of the robot to a
box and also having a block holds the door to prevent it from opening it too much,
see Figure 3.15. Although MBRL methods are trained on the simplified environment,
we see learning curves on Sawyer Door are completely flat in Figure 3.4, compared
with other baselines trained on the original task. We wonder why MBRL methods can
show the same performance and gain benefits as it does in other environments.

40

Chapter 3. World Models Increase Autonomy in Reinforcement
Learning

Figure 3.13: Learning curves of ablation study on 5 tasks. We see different components
contribute differently in different tasks. For instance, in Tabletop, MF w/o Imag. even
performs better than MoReFree, maybe because the whole state space can be explored quickly,
then randomly sampling states from the replay buffer as goals for training already has good
coverage on evaluation initial / goal states.

Figure 3.14: State visitation heatmap on PointUMaze task of all ablations. Red circles
are evaluation goal states and blues are initial states. We see MoReFree collect good amount
of data near initial / goal states while stronger exploration. MF w/o Explore and MF w/o
Imag. could not gather task-relative data, which further causes poor performance.

MoReFree and reset-free PEG use DreamerV2 as backbone agents and extend it
to reset-free settings. We hypothesize that Dreamer itself, even under the episodic
setting with task reward function, would not work well. If that’s the case, then MBRL
methods in the reset-free setting with self-supervised reward function would almost
certainly not work either. For example, if the backbone agent cannot model the

41

MBRL on Sawyer Door

dynamics precisely, then both policy learning and dynamical distance reward learning,
will be degraded.

Figure 3.15: Simplified version of Sawyer Door. Orange walls show the limited workspace
for the robot arm, and a grey wall is added to limit the movement of the door. The door can
only move to maximum 60 degrees.

Figure 3.16: Performance of DreamerV2 and V3 on episodic Sawyer Door task. SAC can
solve the task in 200k steps, while after 1 million steps MBRL is still not able to steadily
solve the task.

We then run the underlying MBRL backbones under the episodic setting. Fig-
ure 3.16 shows DreamerV2 8, and Dreamerv3 9 struggle to solve the task, while model-
free method SAC can steadily solve the task after 200k steps. This might be a potential
reason that MBRL methods do not work on the more difficult reset-free setting. We
hypothesize that the combination of the sparse environmental reward and dynamics
of the door result in a hard prediction problem for world modelling approaches. We
leave further investigation for the future work.

8https://github.com/danijar/dreamerv2
9https://github.com/danijar/dreamerv3

42

https://github.com/danijar/dreamerv2
https://github.com/danijar/dreamerv3

Chapter 3. World Models Increase Autonomy in Reinforcement
Learning

Figure 3.17: Longer training of IBC in our Fetch tasks, where the state space is larger and
artificial constraints are replaced with surrounded walls. IBC still can not learn meaningful
behaviors.

Figure 3.18: XY location of the block collected by IBC on Push (hard) and its original
version (Push). IBC covers the whole state space very well in Push while fails in Push (hard),
where the block stays for long time in corners or areas next to walls.

3.11 More Analysis on Fetch Environments

Although IBC gains good final performance in Push and Pick&Place, it starts learning
late compared with MBRL methods and fails entirely in our harder versions. We
suspect IBC might need more computational budget to start learning in harder tasks.
Thus we train IBC with two millions environment steps and results in Figure 3.17
show that it still fails to solve the harder version of Push.

Figure 3.18 shows 600k data of the obejct (XY view) collected by IBC on our
Push (hard) and IBC’s Push. We see the block stays in corners or next to walls
a lot in Push (hard), while goes everywhere and covers the whole space in IBC’s
Push, indicating object interaction is more difficult in Push (hard) due to the larger
state space, surrounded walls and limited work space. In IBC’s Push, the block can
bounce back when it hits the limit of joint constraints. However, in Push (hard), the

43

Analysis on R3L

block needs to be explicitly brought back from the corner or walls, requiring more
sophisticated behaviors. Meanwhile, larger size of the limited area (our version is 3×
larger than IBC’s.) also increases the difficulty of the task.

3.12 Analysis on R3L
R3L trains two policies, one for reaching the goal and another that brings the agent
to novel states. The goal-reaching policy is trained using a learned classifier to classify
the goal state and other states. Original R3L takes images as inputs, thus the trained
classifier can successfully classify goal images from random state images. In our work,
we use low-dimensional state input. Outputs of the trained classifier on the whole
state space of PointUMaze is shown in Figure 3.19. We see that the classifier learns
to output higher values for states close to the goal state (red dot) and lower values for
states further away. Nonetheless, due to the smoothness of the output scope, states
near the initial state (blue circle) that are numerically closer but spatially further to the
goal state also have higher values. R3L agent trained using such reward function will
always tend to follow states with higher values to the corner instead of going forward.
See the website for more videos. These trained reward functions are misleading for
learning reasonable policies which result in poor performance we see in Figure 3.4.

Figure 3.19: Outputs of the learned classifier on the whole state space. Due to the
smoothness of the output scope, states near the initial state (blue circle) also have higher
values.

44

