
Enhancing autonomy and efficiency in goal-conditioned
reinforcement learning
Yang, Z.

Citation
Yang, Z. (2025, February 26). Enhancing autonomy and efficiency in goal-
conditioned reinforcement learning. SIKS Dissertation Series. Retrieved from
https://hdl.handle.net/1887/4196074

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis
in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/4196074

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/4196074

Chapter 2

Preliminaries

In this chapter, we explain the necessary concepts, definitions, and notations for under-
standing the entire thesis. Chapter-specific concepts are explained within each chapter.
First, we introduce reinforcement learning, a framework used to solve decision-making
problems. Then, reinforcement learning will be extended to the goal-conditioned set-
ting, where the agent needs to learn policies conditioned on different goals. In the
end, related work on four fundamental phases of the goal-conditioned reinforcement
learning framework is briefly discussed.

2.1 Reinforcement learning

Reinforcement learning (RL) is a framework to solve sequential decision-making prob-
lems, which are formalized as Markovian decision processes (MDPs). In this thesis,
we follow the definition and notations of MDP introduced by Sutton and Barto, 2018.
A MDP is a 5-tuple, < S,A, p, r, γ >, where:

• S is a set of states, called the state space.

• A is a set of actions, called the action space.

• p(s′|s, a) .
= Pr(St = s′|St−1 = s,At−1 = a) is the transition dynamic, which

defines the probability of transitioning from state s to s′ after taking the action
a at time step t. s, s′ ∈ S are states and St is the state at time t. Similarly,
a ∈ A is the action and At is the action at time t.

9

Reinforcement learning

Figure 2.1: The agent-environment interaction in a MDP (Sutton & Barto, 2018). The
agent observes the state St and takes the action At in the environment. The environment
returns the next state St+1 and reward Rt+1. Then the process repeats.

• r(s, a, s′) is the reward function, which produces the intermediate reward Rt
.
=

r(s, a, s′|St−1 = s,At−1 = a, St = s′), i.e. after transitioning from s to s′ by
taking action a.

• γ is the discount factor ranging from [0, 1].

The agent-environment interaction is shown in Figure 2.1. At time step t, the
agent observes the state St. Then, according to a policy π : S → Pr(A), the agent
chooses an action At ∼ π(At|St). Next, the action At is executed and influences the
environment to transition from St to St+1 based on the transition dynamic p. At the
same time, the agent gets a reward Rt+1. The agent observes the new state St+1, then
the process repeats. We are interested in the long-term performance of the agent, thus
we would like to maximize the cumulative future reward that the agent can get. The
cumulative future reward (also called return G) at the time step t can be written as:

Gt
.
= Rt+1 + γ ·Rt+2 + γ2 ·Rt+3 + ... =

∞∑

k=0

γk ·Rt+k+1. (2.1)

We define the value function Vπ(s) of the state s as the expected return starting from
the state s, following the policy π and transition dynamic p:

V π(s)
.
= Eπ,p[Gt|St = s]. (2.2)

The equation can be written in a recursive format, known as the Bellman equation:

V π(s) = Ea∼π(·|s),s′∼p(·|s,a)[r(s, a, s
′) + γ · V π(s′)]. (2.3)

10

Chapter 2. Preliminaries

The state-action value function Qπ(s, a) is defined as the expected return starting from
the state s and taking the action a, and following the policy π afterwards, based on
the transition dynamic p:

Qπ(s, a)
.
= Eπ,p[Gt|St = s,At = a]. (2.4)

Similarly, the state-action value function can be rewritten in a recursive format as
well:

Qπ(s, a) = Es′∼p(·|s,a)[r(s, a, s
′) + γ · Ea′∼π(·|s′)[Q

π(s′, a′)]]. (2.5)

The objective of RL is to find a policy π∗ that maximizes the state-action value
function:

π∗ .
= argmax

π
Qπ(s, a). (2.6)

2.2 Goal-conditioned reinforcement learning

Goal-conditioned reinforcement learning (GCRL) extends RL to a multiple-goal setting
to solve goal-conditioned MDP, which is defined as < S,A, p, r, γ,G >, where G is a
set of goals called the goal space. For any goal g ∈ G, the reward function will also
take the goal g as input, denoted as r(s, a, s′, g) (Schaul, Horgan, et al., 2015), which
provides the reward for achieving the goal g. We can then rewrite the goal-conditioned
state value function and state-action value function in a similar way as Equations (2.3)
and (2.5):

V π(s, g) = Ea∼π(·|s,g),s′∼p(·|s,a)[r(s, a, s
′, g) + γ · V π

g (s′, g)],

Qπ(s, a, g) = Es′∼p(·|s,a)[r(s, a, s
′, g) + γ · Ea′∼π(·|s′,g)[Q

π(s′, a′, g)]],
(2.7)

where π now takes an additional input g to be a goal-conditioned policy. The objective
of GCRL is to find a policy π∗ that maximizes the state-action value function over all
goals (Liu et al., 2022):

π∗ .
= argmax

π
Eg∼pg Q

π(s, a, g), (2.8)

where pg represents the desired goal distribution.
As we discussed in Chapter 1, a typical GCRL framework comprises four phases

(as detailed in Table 2.1): 1) defining the goal space; 2) selecting an interesting goal for
the agent; 3) the agent learning to reach the goal; 4) the agent post-exploring. Each of

11

Goal-conditioned reinforcement learning

Table 2.1: Commonly used methods for each step in the GCRL framework (see Figure 1.1).
Representative references are added in the table and more extensive references can be found
in the text. GCP is short for goal-conditioned policy and MB is short for model-based.

1. Define the goal
space

2. Select a goal 3. Reach the goal 4. Post-explore

State space (Ecof-
fet et al., 2021;
Plappert et al.,
2018)

Frontier states
(Pitis et al., 2020;
Pong et al., 2019)

GCP (Hafner et
al., 2023; Schaul,
Horgan, et al.,
2015)

Random (Ecoffet
et al., 2021)

Learned (Eysen-
bach et al., 2022;
Mendonca et al.,
2021)

Learning progress
(Florensa et al.,
2018; Portelas et
al., 2020)

MB planning
(Hansen et al.,
2023)

Intrinsic reward
(Sekar et al., 2020;
Zhu et al., 2020)

Others (Fu et al.,
2019; Jiang et al.,
2022)

Others (E. S. Hu
et al., 2023; C. Lu
et al., 2024)

Others (Blundell,
Uria, Pritzel, Li,
Ruderman, Leibo,
Rae, et al., 2016;
Ecoffet et al.,
2021)

Others (Klissarov
et al., 2023)

these steps has been studied either independently or in conjunction with others. We
now provide an overview of commonly used methods for each step. A summary can
be found in Table 2.1. It is important to note that while some of these works may
not have been explicitly studied within the GCRL framework, they can essentially be
adapted and integrated into the GCRL framework with minimal modifications.

2.2.1 Define the goal space

To ensure that the training goals align with the evaluation goals, it is essential to
define a goal space that matches or covers the area of interest for evaluation. Typically,
evaluation focuses on a sub-space of the entire state space. For instance, in the Fetch-
Push task 1, although the state space of the block covers the whole table, the robot
is only required to push the block to goals sampled from the center area of the table
during evaluation, rather than the entire table. Thus, a pre-defined sub-space of the
state space is generally used for sampling goals in tasks with a continuous state space
(Plappert et al., 2018; X. Yang et al., 2021; Yu et al., 2019). In tasks with a discrete
state space, specific states are selected (e.g. states that can lead to more exploration
potential) to form a pool representing the goal space (Ecoffet et al., 2021; Kompella

1The Fetch-Push task can be found in https://robotics.farama.org/envs/fetch/push/

12

https://robotics.farama.org/envs/fetch/push/

Chapter 2. Preliminaries

et al., 2022).
When dealing with high-dimensional state spaces, such as images, the original state

space may contain excessive distracting information. Therefore, a more compact latent
space can be learned using techniques such as a self-predictive objective (Hansen et al.,
2023; Schwarzer et al., 2020), contrastive loss (Eysenbach et al., 2022; Poudel et al.,
2024), or reconstruction loss (Hafner et al., 2023; Mendonca et al., 2021), which can
then be utilized as the goal space.

Besides using the original state space or a learned latent space thereof, language
itself offers a compact and abstract representation that can be used as a goal space
(Chevalier-Boisvert et al., 2024; Fu et al., 2019). Moreover, the integration of multi-
modal goals, which combines both languages and images (Jiang et al., 2022), can
further provide a richer goal space.

Although our thesis does not focus on how to better define a goal space, it is a
crucial aspect of the GCRL framework in general.

2.2.2 Select a goal

The exploration of the GCRL agent largely depends on the selected goals, which serve
as guidance to indicate the next area of interest for the agent. Once the goal space
is defined, the most straightforward approach to select goals from the goal space is
uniform sampling, where each goal in the goal space is sampled with equal probability.
However, as learning progresses, certain goals may become more relevant than others.
For instance, after the agent masters nearby goals, it may be more beneficial to focus on
goals that are slightly farther away, but not too distant (e.g. the step 2 in Figure 1.1).

Various strategies have been developed to select goals dynamically. Skew-fit (Pong
et al., 2019) and MEGA (Pitis et al., 2020) focus on selecting frontier states as goals
by first estimating state density and then choosing states with lower densities. These
methods encourage the agent to explore less-visited areas of the state space. AMIGo
(Campero et al., 2021) trains two agents in an adversarial fashion: one agent is trained
to select challenging goals for another agent, which then attempts to reach these se-
lected goals. This approach ensures continuous improvement for both learning agents,
encouraging the goal-selecting agent to select interesting goals progressively. Goal-
GAN (Florensa et al., 2018) selects goals based on their difficulty, and goals that are
neither too easy nor too difficult are selected for the agent to achieve. Similarly, se-
lecting goals where the agent demonstrates learning progress (Portelas et al., 2020)
has also shown to be effective. PEG (E. S. Hu et al., 2023) focuses on goals that offer

13

Goal-conditioned reinforcement learning

the most exploration potential, driving the agent toward the most informative parts
of the state space.

Recently, foundation models have demonstrated a profound understanding of the
real world, characterized by their ability to master a wide range of tasks and domains.
Consequently, they can be directly utilized to inform the agent about which goals to
pursue (C. Lu et al., 2024).

Unlike the goal selection strategy we propose in Chapter 3, which is designed
especially for a more realistic and autonomous RL scenario where the expensive reset
is eliminated, the methods discussed here are tailored for the conventional episodic
RL setting and often fail in the more challenging reset-free setting. More specifically,
these methods cannot deal with over-exploration, a challenge that is introduced by
the reset-free setting.

2.2.3 Reach the goal

After the goal is selected, goal-conditioned policies / value functions (Schaul, Horgan,
et al., 2015) are usually deployed to learn to reach the given goal. On the other
hand, since the process of learning to reach the goal is a decision-making problem
formulated as a MDP, any methods that solve an MDP can be used here. Meanwhile,
RL methods might not always be the best choice due to their poor performance under
certain scenarios, such as low data regime, or in the setting where a dynamic model
is given or learned, methods beyond reinforcement learning are also used to fulfill the
given goal.

If access to the underlying tasks / environments is available, then the agent can be
directly teleported to the selected goal and then post-explores (Ecoffet et al., 2021).
It saves a massive amount of learning time but having such oracle access is impos-
sible and unrealistic in real life. When a dynamic model is given / learned, besides
training goal-conditioned policies/value functions from synthetic data generated by
the dynamic model (Hafner et al., 2023), model-based planning can also be utilized
to find the solution to the given goal (Hansen et al., 2023; Schrittwieser et al., 2020).
Other methods like imitation learning (Ding et al., 2019; Reuss et al., 2023), evolu-
tion strategies (Salimans et al., 2017) or episodic control (Blundell, Uria, Pritzel, Li,
Ruderman, Leibo, Rae, et al., 2016; H. Hu et al., 2021) can also be used to learn to
reach the goal.

In Chapters 4 and 5, we explore the application of episodic control, a non-parametric
approach known for its superior learning speed (Blundell, Uria, Pritzel, Li, Ruderman,

14

Chapter 2. Preliminaries

Leibo, Rae, et al., 2016), for reaching the goal. We first extend the previous episodic
control to tasks with a continuous action space in Chapter 4. Then, to address its
inherent limitation (i.e. non-optimality), we propose to combine episodic control with
deep RL Chapter 5, achieving both fast learning and better final performance.

2.2.4 Post-explore

When the selected goal or the allocated budget is reached, the agent may post-explore.
This differs from the exploration in typical RL paradigms, where the exploration and
exploitation are alternated (e.g. ε-greedy) or integrated (e.g. adding policy entropy
regularization). In contrast, post-exploration is pure exploration, focusing entirely on
exploring the environment without considering any task-specific rewards.

Essentially, any exploration approaches can be used for post-exploration. The
most straightforward approach is random exploration (Ecoffet et al., 2021; Pong et
al., 2019), which, despite its simplicity, has demonstrated strong performance. More
sophisticated exploration mechanisms that seek novel states based on intrinsic reward
(distinct from extrinsic reward provided by the environment) are also applicable.

For instance, Random Network Distillation (RND) (Burda et al., 2018) encourages
the agent to seek novel states by maximizing the prediction error between a fixed
randomly initialized network and a predictor network. In this setup, the predictor
network is trained to predict the random network’s output, with larger prediction
errors indicating more novel states. Another method, Intrinsic Curiosity Module (ICM)
(Pathak et al., 2017), rewards the agent based on the prediction error between the
predicted and the real next state. ICM stimulates the agent to collect states that lead
to more accurate prediction, effectively targeting less frequently encountered states.
Plan To Explore (P2E) (Sekar et al., 2020) is a model-based exploration method
that is trained to maximize the disagreement among outputs of an ensemble of world
models, encouraging the agent to visit states that can improve world models the most.

Foundation models, as we described in Section 2.2.3, show profound understandings
of the world. They can be used to provide preferences over states (Klissarov et al.,
2023), which are then used to guide the exploration in a manner that aligns with the
heuristics and insights of the used foundation models.

Whereas the paper that first introduces the idea of post-exploration illustrates that
RL agents equipped with post-exploration can solve extremely challenging exploration
tasks (Ecoffet et al., 2021), it lacks a direct comparison with agents that do not employ
post-exploration. The underlying reasons why post-exploration enhances performance

15

Goal-conditioned reinforcement learning

remains unclear. Therefore, in Chapter 6, we conduct a systematic investigation on
post-exploration by turning it on and off within the same RL agent and qualitatively
analyse why post-exploration facilitates stronger performance.

Four primary steps of the GCRL framework in Figure 1.1 are discussed above and
the chapters presented later focus on the step 2, 3 and 4. In Chapter 3, we work
on the step 2 where a goal sampling strategy is proposed to tackle the reset-free RL
setting. Chapter 4 and Chapter 5 study the step 3, and propose two non-parametric
methods to learn the given task faster. Post-exploration (the step 4) is investigated
in Chapter 6.

16

